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Abstract

The present paper is related to a conjecture made by Green and Lazarsfeld
concerning 1-linear syzygies of curves. Given a complex projective smooth
curve, we prove that the least integer ¢ for which the property (M) fails for
a line bundle L on X does not depend on L as soon as its degree becomes
sufficiently large. Consequently, this number is an invariant of the curve, and
the statement of Green-Lazarsfeld’s conjecture is equivalent to saying that
this invariant coincides to the gonality of the curve. We verify the conjecture
for plane curves, curve lying on a Hirzebruch surface, and for generic curves
having the genus sufficiently large compared to the gonality.

0. Introduction, main results

A main challenge in the theory of syzygies is to interpret the information carried by
the graded Betti numbers of a smooth projective variety. Notably, the attempt to
understand the way in which the distribution of zeroes in a Betti table interacts with
the geometry of the variety has led to a considerable amount of work, motivated by
the conjectures that Green, Green-Lazarsfeld, and others had formulated (see, for
example, [Grl], [GL1], [EL], [La2]).

One of the most significant conjectures made by Green and Lazarsfeld (cf. [GL1]
3.7; see also [Gr3] 3.5 and [La2] 2.3), nowadays known as the gonality conjecture,
predicts that one could read off the gonality of a smooth complex projective curve
from the minimal resolution of any line bundle of sufficiently large degree. In order
to give a precise statement, the authors introduced the vanishing property (My) (see
[GL1], [Gr3]), which is the following (we use the notation of Section 1).
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Definition. (Green-Lazarsfeld) If X is a smooth complex projective curve of genus
g, L a line bundle on X, and £ > 0 an integer, one says that (X, L) satisfies the
property (My) (or, simply, L satisfies (My)) if K, 1(X,L) =0, for allp > h°L—k—1.

It is well-known (see, for example, [GL1|, [GL2| or [Schl]) that if X carries a
g;, then no line bundle of sufficiently large degree can satisfy (My). The gonality
conjecture states a converse of this fact: if deg(L) >> 2g, and (M) fails for L,
then X carries a g;, with ¢ < k. Green has shown this conjecture holds for £ = 1,2
(cf. [Grl]); Ehbauer proved it in the case k = 3 (cf. [Ehb]). Thus hyperelliptic and
trigonal curves are characterized by syzygies.

The purpose of the present work is to prove that, under certain conditions, the
property (M) is preserved when we add an effective divisor to a line bundle. The
first result is:

Theorem 1. Let X be a smooth complex projective curve of genus g > 1, Ly be a
nonspecial globally generated line bundle on X, and k > 0 be an integer such that
the pair (X, Lo) satisfies the property (My). Then, for any effective divisor D on
X, the pair (X, Ly + D) also satisfies the property (My). In particular, for any line
bundle L with deg(L) > deg(Ly) + g, the pair (X, L) satisfies the property (My) as
well.

There are a number of immediate consequences of Theorem 1. For instance, if
X carries a g;, and Ly € Pic(X) is nonspecial, and globally generated, then (X, Ly)
cannot satisfy (My). Further, the least k& for which the property (Mj) fails for a
nonspecial, globally generated line bundle cannot decrease when adding effective
divisors, and cannot pass over the gonality of X, and thus it must be constant when
the degree of the line bundle grows large enough. The challenge of the gonality
conjecture is to show that this constant always equals the gonality of X.

In view of Theorem 1, verifying the gonality conjecture for a given k-gonal X
of genus g reduces to finding a single nonspecial, globally generated line bundle
(for example, a line bundle whose degree is sufficiently large compared to 2g), with
property (M _1). Concretely, we get the following criterion for testing the gonality
conjecture:

Corollary 2. Let X be a smooth complex projective curve of genus g > 1, which
carries a g, and Lo be a nonspecial globally generated line bundle on X satisfying
the property (My_1). Then X is k-gonal, and the gonality conjecture is valid for X.

By semicontinuity of minimal resolutions, and irreducibility of the moduli space
M, i, of k-gonal curves of genus g (cf. [F]), it turns out that the gonality conjecture
would also be valid for a generic curve in M, once it was verified for a particular
k-gonal curve of genus g. It seems thus very reasonable to predict that for any
positive integers k, and g, such that M, # 0, a generic k-gonal curve of genus g
verifies the gonality conjecture (see below).

One could address now the question of what happens if we drop the nonspeciality
condition in Theorem 1. A partial answer is given by:



Theorem 3. Let X be a smooth complex projective curve of genus g > 1, and
k > 0 be an integer such that the pair (X, Kx) satisfies the property (My). Then,
for any effective divisor D on X, the pair (X, Kx + D) satisfies the property (My).

Unfortunately, the result just stated is weaker than it might look like at a first
sight - it does not show that Green’s generic canonical conjecture implies gonality
conjecture for a generic curve, as one could think of. The following better version
of it would do the job instead.

Conjecture. Let X be a smooth complex projective curve of Clifford dimension
one, and p an integer such that K, 1(X, Kx) = 0. Then there ezist a positive integer
d, and an effective divisor D on X, of degree d, such that Ky q4-11(X, Kx+ D) = 0.

This conjecture is obviously false if we drop the condition that the Clifford di-
mension be equal to one, as seen by analyzing the case of smooth plane curves. In
exchange, it holds for other curves which are not plane curves, such as curves lying
on Hirzebruch surfaces (see Sections 6 and 8), and, more generally, it is true for
curves which verify both the gonality conjecture, and Green’s canonical conjecture
(trigonal curves, for instance).

The main ingredient we use to prove Theorem 1, and Theorem 3, is projection
of syzygies, concept which was introduced by Ehbauer [Ehb], in a coordinate-based
manner. In Section 2, we propose a more abstract view on the subject, in the spirit
of [Gr2] 1.b.1, and we think of projections of syzygies as being corestrictions of
the fiber-restrictions of a certain morphism between vector bundles. We investigate
some properties of the projection morphisms, and we show, among other things,
that, under some conditions which are almost always satisfied, any nonzero syzygy
survives by projection from a generic point (see (2.8)).

The third Section deals with projection of syzygies of varieties. We recall here
Ehbauer’s approach, and examine the case of syzygies of curves.

In Section 4 we complete the proofs of Theorem 1, and Theorem 3, and further,
in the final part of the paper, we analyze some very concrete cases.

We verify first the gonality conjecture for smooth plane curves, and for smooth
curves lying on a Hirzebruch surface, in which cases we can make use of the geometry
of the ambient surface to produce suitable line bundles. Additionally, we recover
the description of the minimal pencils in these cases, which has already been known
before (for plane curve, see, for example [ACGH], for curves on a Hirzebruch surface
we refer to [Mal]).

In the fifth Section, we test the gonality conjecture for nodal curves on P* x P!,
case which eventually shows the following (compare with the main result of [Sch2]):

Theorem 4. For any integer k > 3, the gonality conjecture is valid for a generic
k-gonal curve of genus g > (k — 1)(k — 2).

We conclude this paper by applying the vanishing result (6.2) proved here to show
that Green’s canonical conjecture holds for smooth curves on Hirzebruch surfaces
(compare with [Lo]). As a general philosphy, we expect that smart choices of line
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bundles on a surface, whose restrictions satisfy the vanishing property required in the
gonality conjecture for some curves lying on that surface, be used to prove Green’s
canonical conjecture for such curves.

1. Some notation, preliminaries

For many of the theoretical facts included in this section we refer to the papers
[Grl], [Gr3], [Lal], without further mention. Throughout this section, V' is a finite-
dimensional complex vector space, and SV denotes the symmetric algebra of V.

(1.1) If B= @ B, is a graded SV-module, then there is the Koszul complez
qE€Z

p+1

. — B ® \V "5 B, ®/\V—Q>Bq+1®/\V—>

where

dpa(b® (v1 A ... Avp)) D7 (wh) @ (0 A e AT A oo A ),
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for any element b € B, and any linearly independent vectors vy,...,v, € V. One
denotes
Kpqo(B,V) = Ker dyq/Im dpy1,4-1;

they are called the Koszul cohomology groups of B.

(1.2) It is well-known (see, for example, [Gr3]) that all K, ,(SV,V) vanish except
for K, (SV, V) which is isomorphic to C.

(1.3) To any short exact sequence of graded SV-modules, 0 — A — B —
C — 0 one associates a long exact sequence, for any p (cf. [Grl], 1.d.4):

.. — Kp+1,0(0, V) — Kp,l(A, V) — Kp,l(B, V) — Kp,l(C’, V) — Kpfl’g(A, V) —

In particular, if Cy = 0, then the map K,(A,V) — K,1(B,V) is injective, and if
Coy, and C; both vanish, then K,,(A,V) = K,(B,V).

(1.4) If all the graded pieces B, of B are finitely generated complex vector spaces,
and B, = 0 for all ¢ < 0, then B has a minimal free resolution of type

= P SV(—q) @ Miy(B,V) - @ SV(—q) @ Moy(B,V) = B — 0,

q>1 q>0

where M, ,(B,V) are finitely generated complex vector spaces. They are related
to the Koszul cohomology groups of B via the isomorphisms of vector spaces:
K, 4(B,V) = M,,.,B,V), for all integers p and gq.



(1.5) In the real life, we often meet graded SV-modules which satisfy the following
property:

B, =0forall ¢ <0, and K,(B,V) =0 for all p > 1.
For example, these conditions are automatically fulfilled if either B, = 0 for all¢ <0
or B is the homogeneous coordinate ring of a nondegenerate subvariety of P. In
the latter case, the graded pieces of B are moreover finitely generated vector spaces,
and thus (1.4) also applies.

(1.6) If X is an irreducible complex projective variety, L € Pic(X) is a line bundle,
F is a coherent sheaf, and V C H°(X, L), take B = @ HY(X,F ®qL) (here, qL is

the g-th tensor power of L in Pic(X)), and denote qu(X F,L)V) =K, ,B,V).
If we choose L = Ox(D), for a divisor D on X, then we replace L by D, and write
K, (X, F,D,V); similarly for an invertible .7-". If V= H%X, L), we drop V and
write K, ,(X,F, L), if F = Ox, we suppress it, and write K, ,(X, L,V); the nota-
tion K, ,(X, L) corresponds to the choice V = H%(X, L) and F = Ox.

(1.7) If L is a globally generated line bundle over the smooth irreducible variety X,
and V = H°(X, L), by denoting X’ the image of X in PV*, through the morphism
given by the complete linear system |L|, and Sx» = Im(SV — @ H®(X,qL)) its ho-
mogeneous coordinate ring, then, in virtue of (1.3), we have natural isomorphisms
K,1(Sx,V) = K, (X, L), for all integers p.

(1.8) If X is a smooth irreducible projective variety with A'Ox = 0, L € Pic(X)
a line bundle, and Y € |L| is irreducible, then K,;(X,L) = K, (Y, L|y) for any
integer p. The proof is very similar to 3.b.7 of [Grl], and we sketch it next.

Let V = H°(X, L) as usual. From the exact sequence

0— H°Ox -V — H°(Y,Lly) — 0,

we have APV 2 APHO(Y, Lly) @ AP"*HC(Y, L|y), for any p. The long exact sequence
associated to the exact sequence of graded SV-modules 0 - B" - B — A — 0,
where B' = @ H(X,(¢ — 1)L), B = @ H*(X,qL), and A = B/B', gives iso-
morphisms, for any p, K,1(A,V) = K,1(X,L) ® K,_1:(X,L). Using the above-
mentioned decomposition of APV, and (1.3), we see that K,1(A,V) = K, (Y, L|y)®
K, 11(Y,Lly), and an induction on p closes the proof of the claim.

2. Projections of syzygies at large

We consider, as in the previous section, 7 > 1 an integer, V an (r + 1)-dimensional
complex vector space, and B a graded SV-module.

(2.1) We denote by P = PV* = Proj(SV) the projective space of one-dimensional
quotients of V. A point x € P corresponds to a short exact sequence of vector
spaces:

0—>Ww—>VﬂLw—>0.



The one-dimensional vector space L, is canonically isomorphic to the fiber over x of

the line bundle Op(1) of hyperplane sections in P, and the surjection V' Ne 1, is
the evaluation of the elements of V"= H°Op(1) in the point z. The above-mentioned
short exact sequence induces, for any p > 0, a short exact sequence:

p+1 p+1 P

0— AW, > ANV —=L, AW, —0;

the surjection AP*'V — L, ® AP W, can be thought of as being a projection
morphism for multivectors. In coordinates, for a basis {v1,...,v,} of Wy, a vector
vo & Wy, and multi-indices 0 < iy < ... <'ipyy <7, the multivector vy, A... A vy, is
projected to [v;,] ® (vi, A ... Av;,,,), where [v;,] denotes the class of v; modulo W,.

(2.2) By twisting the exact sequences of (2.1) with the graded pieces of B, we
get a short exact sequence of complexes, for any integer [:
I+1—x I+1—x l—x
0—B.® N W,—B.® N V—L,B.® \W,—0,
and further, by setting [ = p+ ¢, a long exact sequence (compare with [Gr2] 1.b.1):
e = K1 o(BWe) B Ky (B, V) B L, ® Ky o(B,Wy) 58 K 1 (B, W,) — ..

The map Kp114(B,V) =% L, ® K, ,(B, W,) is called projection of syzygies centered
in z, and the elements of its image, which coincides to the kernel of the (noncanon-
ical) connecting map

Lw ® Kp,q(Ba Ww) ﬁ) Kp,q+1(Ba Ww)a

are called projected syzygies.

(2.3) The composed map 0, = (7, ®idyr,) 0 Ty : Kpi1,4(B,V)—L, @ K, 4(B,V)
is in fact the fiber-restriction over x of a natural morphism of sheaves:

Op @ Kpi14(B,V) -2 0p(1) ® K, (B, V).

In order to see this, let us recall first that there is an exact complex of vector bundles
on P, derived from the projection morphisms:

r+1 T
0= 0p(-r=1)®c AV = Op(-r)@c AV = ... > Op(-1) @c V = Op — 0.

For any integer n, and for any point z € P, the restriction to the fiber over z,
A"V — L, ® A"V of the morphism of vector bundles Op @ A"V — Op(1) ®
A"V, is obtained by composing the inclusion L, @ A" W, — L, ® A"V, and the
surjection A"V — L, ® A" W,. Alternatively, it is also obtained as the composed

map of the evaluation V @ A"V evx_®>1d L, ® A"V, and the Koszul differential
ATV — V@ A"V. For any integer | € Z, the exact complex above, and the



Koszul complex of B, canonically induce a double complex of vector bundles over

P with general term
l—s—q

K =0p(s)®B,® NV,

Since the rows of this double complex are exact, we get a spectral sequence abutting
to zero, with general term

gf’q = OP(S) ® Kl_s_q’q(B, V)

The differential Op ® Kpi14(B,V) - Op(1) ® K, 4(B, V), obtained at the first
level of the above spectral sequence by setting s = 0 and p = [ — ¢ — 1, is the
morphism we were looking for.

(2.4) Projection of syzygies is functorial, that is, for any morphism B — C of
graded SV-modules, and any integers p, ¢, the induced morphisms between syzygies
Ky114(B,V) = Kp11,(C, V), and L, @ K, ,(B,W,) = L, ® K, ,(C, W) commute
with the corresponding projection morphisms K, ,(B,V) — L, @ K, (B, W),
and, respectively, Ky;14,(C,V) — Ly @ K, ,(C,W,). Furthermore, projection of
syzygies is compatible with the connecting morphisms arising from the long coho-
mology sequence of a short exact sequence of graded SV -modules. More precisely,
if 0 > A— B — C — 0is an exact sequence of graded SV-modules, and p, and
g, are two integers, then the connecting morphisms K, 4,(C,V) — K, ,11(A,V),
and L, @ K, ,(C,W,) = Ly @ Kp_14+1(A, Wy) (cf. [Grl], 1.d.4), commute with
the projections K, ,(C,V) — L, ® K, ,(C,W,), and, respectively, K, ,+1(A4,V) —
L, ® Ky 1411(A4,W,).

From now on, we will require B to satisfy the property (1.5). In this case, we
are able to prove some properties of the projection of syzygies for ¢ = 1, as follows.

HO

(2.5) For any p > 1, the map K,1,(B,V) =3 V ® K, (B, V) is injective.

To prove this claim, we apply first H® to the double complex K*9. The new
double complex we obtain in this way, with general term HYK*9, gives a spec-
tral sequence such that E{? = H°E}? and E%? = 0 for any pair (s, q), except for
(5,q9) = (0,1) when E% = B;. Moreover, we see that H°(d) coincides to the differ-
ential Ef 1 Ell L of this new spectral sequence. Because of the assumptions we
have made on B, we get Ey' = E9' = .. = E%' = 0. In particular, Ker H°(9) = 0,
which proves the claim.

In addition, (2.5) goes to show that vanishing of K, (B, V) automatically implies
vanishing of K,;11(B, V).

(2.6) For any p > 0, the map K,,11(B, W,) = K,.11(B,V) is injective.

Indeed, the long exact sequence of (2.2) applied for I = p, shows that K, ¢(B, W,) =
0 for any p > 0, and thus B satisfies the property (1.5) as a graded SW,-module as



well. In this case, setting [ = p+ 1 in (2.2), the map 7, is injective, as claimed, and
the long exact sequence becomes:

0— Kpi11(B,Wo) B Kpy11(B,V) B L, ® K, 1 (B,W,) 55 K, 2(B,W,) — ...

(2.7) As an immediate consequence of (2.6), replacing (p + 1) by p, we see that,
for all p > 1 the projection of syzygies is actually the corestriction of the map
K,11(B,V) N L, ® K,,(B,V), obtained by restricting the morphism 0 to the
fibers over the point . Moreover, the map Kp41.1(B,V) 25 L,® K,,1(B, V) can be
seen in two different ways: either as the composed map (id;, ®n,) o7, as before, or,

alternatively, as the composition between the evaluation map VQK,:(B,V)—L,®
K,1(B,V) and H°(9) (see also (2.3)).

(2.8) Any nonzero element o € Kp.11(B,V) survives when we project it from
a point x outside a projective subspace of P.

In fact, for any nonzero element « € K,11(B, V), writing H°(0)(a) = Y v; @ a,
with o € K, 1(B,V) linearly independent and v; € V, 0,(c) # 0 as long as the
point z does not belong to the projective subspace of P, {y € P, v; € W, for all i}.
This subspace is not the whole P, as H°(9)(«) # 0.

3. Projections of syzygies of projective varieties

In this Section, we move towards a more geometric context, and apply the general
theory of Section 2 to syzygies of projective varieties.

First of all, we recover the projections of syzygies as introduced by Ehbauer.
For this, consider X C P a nondegenerate irreducible variety, + € P a point, and
Y € PW the image of X by the projection centered in z, P\{z} — PW}. Denote
by Ix C SV, Iy C SW, the homogeneous ideals, and Sx = SV/Ix, Sy = SW, /Iy
the homogeneous coordinate rings of X, and Y respectively. It is clear that, via the
embedding SW, C SV, Iy = SW, N Ix, and thus we have a natural embedding
Sy < Sx. It induces, for any integer p, a natural injective map K, ;(Sy, W) —
K,1(Sx, W;). Moreover, L, ® K, 1(Sy, W,) contains all the projected syzygies, as
shown in [Ehb]:

(3.1) Lemma. (Ehbauer) Foranyp > 1, Im(K,411(Sx, V) =% L,®K,1(Sx, Ws)) C

Proof. (cf. [Ehb] Section 6) We begin with the exact sequence of graded SV-modules
0—Ix — SV — Sx — 0;

since the image of X in P is nondegenerate, the long exact sequence gives rise to a
canonical isomorphisms, for any p > 1,

P p—1
Kp—l—l,l(SXa V) = Kp,Z(IX7 V) = Ker ((IX)2 & /\ V= (IX)3 ® /\ V) )
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similarly for Y. The statement of Lemma reduces then to prove that the projection
of an element of K, 5(Ix, V') belongs to L, ® K,_1 2(Iy, Wy).

Choose next homogeneous coordinates Xy, ..., X, on P, such that z =[1:0: ...:
0], and all the coordinate points belong to X. An element in K,.;:(Sx,V) can be
seen then as a collection of quadrics vanishing on X, (Q;,..i,) satisfying
the equations:

0<i1 <...<ip<r?

o (—)*ERBQ ks Xk =0,
k@{k1,....kp_1}
for all 0 < ky < ... < kp—1 < r. Since the coordinate points belong to X, and
Qi,...i,’s vanish on X it follows that any such a quadric contains no terms of type
XZ?; the equations above tell moreover that @);,..;, has only terms of type X; X with
Jj#k,and j, k & {i1,...,ip}. In particular, for any 1 < iy < ... < i, <r, the quadric
Qoi,...i, does not depend on X.

Projecti~on of syzygies simply means removing all the @;,.;,’s for i, # 0, and
renaming Qj,.j,_, = Qojy..j,_,, for all 1 < j; < ... < g1 < r. We see that
.(le___jp_1)1§j1<.__<jp719 belongs to L, ® (Iy)s ® AP~! W, and the proof of Lemma
is over.

Let us see next what happens in the particular case of curves, which is the
most interesting for our purposes. So, let X be a smooth complex projective curve
of genus ¢, L a line bundle on X, and x € X a point, and set Ly = L — z,
V = H%X,L), and W, = H°(X, Ly). Using (1.3) for the graded SW,-modules
B' = @ H(X,qLy), and B = @ H%(X,qL), one can easily check that, for any
integer p, the natural map K, (X,L — z) — K,1(X, L, W,) is injective. If L is
globally generated, then (1.7) applies, so, if X' denotes the image of X in PV*, then
K,111(Sx,V) =2 K,111(X, L), for all p. We project now our objects from the point
x. If the image of X' is Y C PW}, the projected syzygies all live in K, ;(Sy, W)
(cf. (2.10)). Now, the homogeneous ideal of Y is

Iy = Ker(SW, — @ H°(X, L)),

and thus, since the map SW, — @ H°(X,qL) factors through @ H®(X, qL,), the
homogeneous coordinate ring of Y is

Sy = Im(SW, — @ H*(X, qLy)).

In particular, by means of (1.3), it follows K, 1 (Sy, W) =2 K, 1(X, L —x). We have
proved:

(3.2) Proposition. If L is a globally generated line bundle over the smooth
complezx curve X, and x € X, then, for all p > 1, we have

Im(K,411(X, L) = L, ® K, (X, L,W,)) C Ly ® Kp1(X, L — 7).

Using the same notation, we get, via (2.8), and (3.2):



(3.3) Corollary. If L is globally generated, and K,11(X,L) # 0, for an integer
p>1, then K,1(X, L —z) # 0 for a generic point x € X.

Proof. Observe that, by means of (2.8), any nonzero element in Kp.11(X,L) # 0
survives in K, ;(X, L,W,) by projecting from a generic point € X, as the image
of X in PHY(X, L)* is nondegenerate.

4. Proofs of main results

Theorem 1, and Theorem 3 will follow as easy consequences of two key Lemmas
which we show next.

(4.1) Lemma. The property (My) is open in families of nonspecial line bundles on
X.

Proof. Due to the universal property of the Jacobian variety, it suffices to prove the
statement for the Poincaré bundle. Let d > g be an integer. We will use the following
notation: P — X X Picy(X) the Poincaré universal bundle, p; : X X Picy(X) — X,
and py : X X Picg(X) — Picy(X) the canonical projections,

Ny = {£ € Picy(X), h'(X,Pe) =0},
and, for any positive integer p,
Zp,d = {f S Nd, Kp71(X, Pg) 7é 0}

We aim to prove that Z, 4 is closed in Ny.

For a positive integer ¢, set E, := ps.(P%®?)|n,; for ¢ = 1 we use the notation
E instead of E;. By Riemann-Roch, and Grauert, the sheaves E, are all vector
bundles on Ny, and the fiber over a point & € N,, which corresponds to a degree—d
line bundle P, over X, is canonically isomorphic to H%(X,¢P¢). For any ¢, the
natural multiplication maps, defined over open sets U in N,

H’(p, ' (U), P) @ H(p, ' (U), P V) — H°(p, ' (U), P*9)
induce multiplication morphisms of sheaves:
E® B,y — E,.
By standard arguments (cf. [Grl]), mixing the morphisms above with the duals of
the natural morphisms
p p+1
E*® /\ E* — /\ E*,
we obtain further morphisms, for any p:

p+1 P

E,1 9 NE— E,® \E.
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Obviously, on each fiber over a point £ € Ny, these morphisms induce the Koszul
complexes of the curve X with respect to the line bundle P;. In particular, we

see that, for any p, the set Z, 4 is closed, as being the locus where the morphism
EQ N E — E,® AP E drops rank.

(4.2) Lemma. If Ly is a nonspecial line bundle on X of degree d > g, which
satisfies (My), and g is a point of X such that L = Ly + xq is globally generated,
then L satisfies (My,).

Proof. We make use of the Abel-Jacobi embedding X < Picy(X), given by x +—
L — z, and intersect the two sets of previous Lemma with X. Then X N N, is open
in X, and, since it contains the point xy, which corresponds to Lg, it is moreover
nonempty. Besides, for any positive integer p, the set

XN Zpg={z€XNNy Kpi(X,L—2)#0}

is closed in X N N,.

Let p > 1 an integer such that K, 1(X, L) # 0. It follows directly from (3.3)
that K,1(X,L — x) # 0 for a generic point x € X, hence X N Z,, contains a
nonempty open set of X N Ny. In this case it must be the whole X N Ny, and, since
g € X N Ny, we see that K, (X, Ly) # 0. From the hypothesis, it follows that
p+1 < h®Ly — k. This inequality implies, via Riemann-Roch applied for Ly, and L,
that p+1 < h°L — k — 1, which eventually shows that (X, L) satisfies (Mj},).

Proof of Theorem 1. It is well-known that, for any effective divisor, D, Ly + D
is nonspecial and globally generated, as soon as Lg itself is nonspecial and globally
generated. This remark allows us to proceed by induction on the degree of D, and
to reduce to the simpler case of a divisor of degree 1, which is a particular case of
(4.2).

For the last part of the statement, observe that H°(X, L — Ly) # 0, and thus L
itself is of type Ly + D.

In a similar manner, and making use of Theorem 1, we can prove the following:

(4.3) Corollary. Let X be a smooth complex projective curve of genus g > 1, Ly
be a nonspecial globally generated line bundle on X and k > 0 be an integer such
that the pair (X, Ly) satisfies the property (My). Then, for any effective divisor D,
any integer 0 < § < deg(D), and x1,...,x5 generic points of X, the pair (X, Lo +
D — xy — ... — x5) also satisfies the property (Mj).

Proof. Using the Abel-Jacobi map defined on the /-fold symmetric power of X,
Xs — Pics(X), (z1,...,25) = Lo+ D — 21 — ... — x5, and (4.1), we see that the set
of those (z1,...,xs), for which Ly + D — z; — ... — x5 is nonspecial, globally gener-
ated and satisfies (M), is open. Since D is effective and 0 < ¢ < deg(D), there
exists a set of points of X, {x1, ..., x5}, such that D —z; — ... — z; is effective, hence
Ly + D — z; — ... — x5 is nonspecial, globally generated and satisfies the property
(My). Therefore, the above-mentioned open set is nonempty.
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Proof of Theorem 3. Firstly, let us remark that if z is a point of X, and
Ly = Kx + z, then L; is nonspecial, and H°(X, Kx) =& H%(X, L;). In particu-
lar, for any p, K, 1(X, Kx) = K,1(X, Lo), and thus L, satisfies (Mj). Then one can
apply (4.2) for L.

5. Syzygies of plane curves

One of the main results of [Lo| shows that Green’s canonical conjecture is true for
a plane curve. The key point of his proof was the knowledge of the syzygies of
the projective plane, and of their relations, derived from some long cohomology
sequence, to the syzygies of the curve. As for the gonality conjecture, is seems
natural to try to follow a similar strategy, and to verify it first for some suitable
line bundles coming from the plane; Corollary 2 would show then that the gonality
conjecture is valid for such a curve. It is the aim of this Section to prove that this
idea works indeed.
We begin by pointing out the following useful fact:

(5.1) Lemma. For any integers k > 2, and p > 1, K,1(P? Op:(k)) = 0 if and
only if p > N(k) := h°Op:(k) — k.

Proof. Let 1 = h®Op2(k) — 1. Green’s duality ([Grl], Corollary 2.c.10) in this case
translates into

Ky (P?, Op2(k)) = K;—p_3(P?, Op2(=3), Op2(k))".

For p > N(k), we have r —p — 2 < —3 + k, so we can apply Theorem 2.2 of [Gr2],
or Theorem 4.1 of [Gr3] to get the vanishing of K, ;(P?, Op2(k)). The fact that this
bound is sharp easily follows from [GL1], by decomposing Op:(k) = Op2(k — 1) ®
Op:(1).

Let X C P2 be a smooth plane curve of degree k +1 = d > 3. We prove:
(5.2) Proposition. The pair (X, Ox(k)) satisfies the property (My_1).
Proof. We start with the exact sequences, for any integer q:

0 — Op2(—d + gk) — Op2(gk) — Ox(gk) — 0,

denote V = H°Op:(k) = H°Ox(k), and consider the exact sequence of graded
SV-modules:

0 — P H Op2(—d + gk) — P HOp2(qk) — P H’Ox(gk) — 0,

>0 >0 q¢>0

which leads us to the long cohomology sequence (cf. [Grl], Corollary 1.d.4):
. = K1 (P2, Op2(—d), Op: (k) = K1 (P2, Op2(k)) = K1 (X, Ox(k)) —
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— Kpfl’Q(PZ, Opz(—d), 0P2 (k)) — ...

By means of Green’s Vanishing Theorem (cf. [Grl], Theorem 3.a.1), we see that
K, 1(P% Op2(—d), Op2(k)) = 0 as soon as p > h%Op:(—d + k) = h°Op2(—1) = 0.
The same for K,_1 5(P?, Op2(—d), Op2(k)): it vanishes for all p > h°Op2(—d+2k) +
1 = N(k); in particular, for all p > N(k), we have isomorphisms K, ; (P?, Op2(k)) =
K,1(X,Ox(k)). At this point, (5.2) is a direct consequence of (5.1).

In this special case, Corollary 2 applied to Ox(k) translates into the following
(the first part of the statement has been known for a long time: see, for example,
[ACGH] p.56)

(5.3) Corollary. The curve X is k-gonal, a pencil of minimal degree being obtained
by projecting from a point of the curve, and the gonality conjecture is valid for X.

The property (My 1) is fulfilled for any line bundle Ox (n), with n > k, and it
fails for Ox(k—2) = Kx. We can inquire about Ox (k—1), and address the question
of whether it satisfies (My_1) or not. The answer is NO: since the canonical maps
K,1(P% Op2(k—1)) = K,1(X, Ox(k — 1)) are injective, for all positive p (Green’s
vanishing and the long exact sequence, as above), the second part of (5.1) applied
for (k — 1) shows that the property (M ) fails for (X, Ox(k — 1)). It is natural
then to ask about intermediate line bundles (see also (6.4) below):

(5.4) Problem. Find the least ¢ such that, for any colinear points z1,...,xz5 € X,
the property (Mj 1) fails for the line bundle Ox (k) ® Ox(—x1 — ... — x5).

6. Curves on a Hirzebruch surface

Let ¥, be the Hirzebruch surface of invariant e, and denote by Cy the minimal
section of Y., and by f a fiber of the ruling. For any integers a, and b, we consider
the line bundle on ¥, H,p = (a —1)Cy + (b — 1) f, to whom we attach the integer
N(a,b) := h’Ox, (H,p) —a. We choose two integers k > 2, and m > max{ke, k+ e},
and a smooth curve X € |Hgiqm41]; its genus is computed by the formula g =
(k—1)(m—1—ke/2).

We will show that the pair (X, Hy,,|x) satisfies the property (Mj_1). For this,
we need two preliminary Lemmas.

(6.1) Lemma. We have a natural isomorphism K, 1(X., Hgm) = Kp1(X, Himlx),
for any p > N(k,m).

Proof. As in the case of plane curves, we use the exact sequence, for any integer ¢:

0— Oze(—X + QHk,m) — Oze (qu’m) — Oze(qu,m)LX — 0.
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Denote by V = HOs, (Hym) = H°(X, Os, (Hgm)|x), and consider the graded SV-
modules: B'= @ HOs (—X +qHy.), B= @ H°Os_(qHgm), and A = B/B' We
q>0

q>0 2
have then an exact sequence of graded SV -modules:

0—B —B—A—0,

leading us to the long exact sequence:
e —> Kp,l(Ze, —X, Hk,m) — prl(Ze, Hk,m) — Kp,l(A, V) —

— Kpfl,g(ze, —X, Hk,m) — ...

Since Ag = C, A; = H*(X, Os,, (Hkm)|x), and Ay C H(X, Os, (2Hym)|x), we also
have K, 1(A, V) = K, 1(X, Os, (Hkm)|x) (cf. (1.3)).

We apply again Green’s Vanishing Theorem ([Grl], Theorem 3.a.1), which im-
plies that K, 1(X, —X, Hgm) = 0 as soon as p > h%Os_ (—X + Hy,,) = 0, and
Ky 19(%e; =X, Hyn) = 0 for all p > h°Og, (=X + 2Hy ) + 1. Since —X +2Hy, =
Hy_1m-1, we have N(k,m) > h°Os (—X + 2H,,) + 1. In particular, for all
p > N(k,m), we have isomorphisms K, 1 (X., Hgm) = K,1(X, Hk,m|x), as stated.

(6.2) Lemma. For all p > N(k,m), we have K, (3., Hm) = 0.

Proof. Tt suffices to prove vanishing for p = N(k, m) only, so we stick to this case.

We consider Y a smooth curve in the linear system |Hj,,| on .. In this case,
(Y, Himly) = h°(Ze, Hem) — 1, and the surjection V- — H®(Y, Hy,|y) corre-
sponds to the hyperplane of PV* which cuts out the curve Y on the image of
Y. Since we work on a rational surface, (1.8) applies, and we get an isomorphism
KN(k,m),l (Ee: Hk,m) = KN(k,m),l(K Hk,m|Y)-

We prove the Lemma by induction on k; the first step is £k = 2. In this case,
N(2,m) = h°(Y, Hym|y) — 1; by the general theory of syzygies (apply, for example,
Theorem 3.c.1 (1) of [Grl]), we know that Kyory,m,,,[y)-1,1(Ys Haml|y) = 0.

The induction step: for k& > 3 we know Ky (x—1,m-1),1 (e, Hx—1,m—1) = 0, and we
wish to prove that Ky m)1(Ze, Hem) =0, i.e. Kn(km),1 (Y, Hemly) = 0.

Lemma (6.1) applied for Y yields an isomorphism Ky x—1,m-1),1 (Y Hk—1,m-1ly) =
Kn(k—1,m-1),1(Ze, Hy—1,m—1), which shows that Kyu—1,m-1)1(Y, He—1m-1]y) = 0.
The induction step is completed by means of the following facts: Hy_1m;m-1.Y
29(Y) + 1, [(Hem — He—1,m-1)|y| # 0, so there exists D € |(Hgm — Hi—1,m-1)lv|
N(k,m) — N(k —1,m — 1) = (Hgm — Hi-1,m—1)-Him = deg(D), which alto-
gether permit us to apply Theorem 1 for Y, and the line bundles Ly = Hy_1 1]y,
L =Hyply =Lo+ D.

v

The obvious inequality Hy ,,.X > 2g+1, together with the existence of a g given
by the ruling, show that the gonality conjecture is verified for X (the fact that X is
k-gonal was previously proved in [Mal], by using completely different methods):

(6.3) Theorem. Lete >0, k> 2, and m > max{ke, k+ e} be three integers, and
X = kCy+mf be a smooth curve on the Hirzebruch surface ¥.. Then X is k-gonal,
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a pencil of minimal degree being given by the ruling, and for any L € Pic(X) with
h*(X,L ® Os, (—Hgm)|x) # 0 the property (Mg_1) holds for (X, L).

In the particular case e =1, m = k 4 1, the curve X is the strict transform of a
smooth plane curve X, of degree k + 1, which passes through the center x, of the
blowup. Via the natural isomorphism between X and X, the line bundle Hy 11| x
corresponds to Ox, (k) ® Ox,(—xo). This shows that (6.3) does a bit better than
(5.2).

7. The gonality conjecture for nodal curves

The aim of this Section is to prove that the gonality conjecture is valid for a nodal
curve on P! x P! whose singular points are in general position, fact which makes the
proof of Theorem 4 be straightforward; this idea was inspired by the work [Sch2].
We freely use the notation of the previous Sections.

We consider three integers k > 3, m >k, 0 <6 <k —2,Y € |Hy,,| a smooth
curve of genus (k —2)(m —2) on P* x P, Ly = Hy_y 41|y, and L = Hy ,|y. Then
(6.3) applies for Y, hence the pair (Y, Ly) satisfies (My_2). In this case, for a set of
general points {z1, ..., 25} C Y the line bundle L — z; — ... — x5 satisfies the property
(My—2) (cf. (4.3)). Without loss of generality, this set can be chosen such that the
points {z1, ..., 75} are in general position in P! x P!, in the sense that any two of
them are not colinear. We consider furthermore ¥ % P! x P! the blowup of the
points {z1, ..., 25}, E the exceptional divisor, H = ¢*(k—1,m—1)—E, and Y € |H|
the strict transform of the curve Y.

Proposition 1 of [Sch2] ensures the existence of a smooth connected curve in the
linear system |0*(k,m) — 2E]; let us denote it by X. The curve X is k-gonal (see
below), its genus equals g = (k —1)(m — 1) — 6, and its projection on P! x P! is an
irreducible curve of type (k,m), with assigned ordinary nodes at {z1, ..., zs}-

(7.1) Proposition. The pair (X, H|x) satisfies the property (Mg_1).

Proof. Tt is easy to see that h'Ox(H — X) = 0 for all . Then we denote V =
H0Ox(H) = H(X, Ox(H)|x), and compute dim(V)—k = k(m—1)—4. In a similar
way as in the Proof of (6.1), we can check that dim(V) — k > h°Ox(2H — X) + 1,
thence K, 1 (3, H) = K, 1(X, H|x) for all p > dim(V')—k. Moreover, (1.8) applied to
this case shows that K, 1(%, H) = K, (Y, H|3). Now, the restriction of o to Y gives
a natural isomorphism to Y’; the line bundle H|;; on Y corresponds to the line bundle
L—x1—...—z5 on Y. Besides, Riemann-Roch implies h°(Y, L—xz1—...—x5)—(k—1) =
dim(V) —k. Since L —xy — ... — x4 satisfies (My_2), i.e. Kp (Y, L—21—...—25) =0
for p > hO(Y,L — x; — ... — x5) — (k — 1), we are done.

Consequently, as H. X > 2g + 1, and X carries a g;, the gonality conjecture is
verified for X, and thus Theorem 4 is true.
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8. Application: Smooth curves on Hirzebruch surfaces satisfy Green’s
canonical conjecture

Green’s canonical onjecture starts with a corollary of the Green-lazarsfeld nonvan-
ishing result (cf. [GL1])

(8.1) Theorem. Let X be a smooth complez projective curve of genus g endowed
with a g, withr > 1 andd < g—1. Then K, (4 9r42),1(X, Kx) # 0.

In [Grl], Green conjectured the converse of this fundamental fact were also true.
More precisely, if one denotes by ¢ the Clifford index of the curve X (we refer to
[Ma2] for a precise definition) all the K, ; (X, Kx) vanish for p > g — ¢ — 1. In other
words, the line bundle Kx satisfies the property M..

We show next that smooth curves on Hirzebruch surfaces satisfy Green’s canon-
ical conjecture (we use the same notation as in Section 6).

(8.2) Theorem. Let ¥, be the Hirzebruch surface of invariant e, and X be
a smooth curve on X., numerically equualent to kCy + mf, with k > 3 and m >
max{ke+1,k+1,k+2e}. Then the Clifford dimension of X equals one, and Green’s
canonical conjecture is valid for X.

Proof. We start with the exact sequence
0— O, (—X) — Oy, — Ox — 0,
and twist it by multiples of H = Ky_+ X. We obtain an exact sequence, for any ¢:
0—0Os,(¢H—X) — Os_ (¢H) — Kx — 0.

Observe that H°Oyx, (H — X) = H'Ox,(H — X) = 0, and thus H°Os, (H)
H°(X, Kx). Obviously, their dimension equals the genus of X. We get next a long
exact sequence (see (1.3), and [Grl] 1.d.4):

e 7 Kp,l(Ee, - X, H) — KpJ(Ee, H) — Kp,l(X, Kx) — Kp_l,Q(Ee, -X, H) — ...

By means of Green’s vanishing theorem ([Grl] 3.a.1), Kp_12(X., —X, H) equals zero
for p > h°Ox, (2H—X)+1. From the inequality m > max{k+2e, ke+1}, we see that
Lemma (6.2) applies, therefore K, 1 (., H) = 0 for allp > h°Oy, (H)—(k—1) = g—
k+1. To finish the proof, we remark that, on the one hand, %Oy, (2H — X) < g—k,
which implies the vanishing of K, (X, Kx) for all p > g — k + 1, and, on the other
hand, the curve X naturally carries a g;.

(8.3) The role of the vanishing result (6.2) is similiar to the one of Green’s vanishing
[Gr2] 2.2 for the case of plane curves, studied in [Lo].

(8.4) By following a similar strategy, one can easily prove that Green’s canonical
conjecture is true for certain nodal curves on P! x P!. To do that, we simply apply
(7.1), and addapt the proof of (8.1) to the new framework. This also provides a new
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proof of the main result of [Schl], which says that Green’s canonical conjecture is
true for generic curves whose genera are sufficiently large compared to the gonality.
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