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Abstract

In this article, we consider the conjecture that a Q-homology plane

with constant Makar-Limanov invariants is isomorphic to either the
affine plane A2 or the complement of a smooth conic on the projective

plane P2. Though the conjecture is not fully solved yet, we can show
strong evidences to support the conjecture. Furthermore, it is shown

that such a Q-homology plane is a quotient of a hypersurface xy = p(z)
by a cyclic group Z/mZ, where the hypersurface was investigated in

[1] by Bandman and Makar-Limanov.

0 Introduction

A Q-homology plane is, by definition, a smooth algebraic surface X defined
over the complex field C such that Hi(X; Q) = (0) for every i > 0 [11]. It
is known that X is affine and rational [5]. If there is a nontrivial action of
the additive group scheme Ga on X, the orbits will form the fibers of an
A1-fibration ρ : X → A1. Hence X has log Kodaira dimension κ(X) = −∞.
Write A = Γ(X,OX). Then there is a well-known bijective correspondence
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between the set of Ga-actions on X and the set of locally nilpotent deriva-
tions on A. The correspondence is given by assigning to a locally nilpotent
derivation δ on A an algebra homomorphism ϕ : A → A⊗ � C[t] giving rise
to the coaction :

ϕ(a) =
∞∑

i=0

1

n!
δn(a)tn.

The set of invariant elements of A under the given Ga-action is obtained as
Ker δ consisting of elements annihilated by δ. Then Ker δ is isomorphic to a
polynomial ring in one variable and the base curve of the A1-fibration which
is isomorphic to A1 is obtained as the spectrum of Ker δ.

The Makar-Limanov invariant ML (X) for X is then introduced by Kali-
man and Makar-Limanov [6] as the set

⋂
Ker δ, where δ ranges over all

possible locally nilpotent derivations of A. Then it is shown that ML (X) for
a Q-homology plane X is the coordinate ring A, a polynomial ring in one vari-
able C[x] or C. We are particularly interested in such Q-homology planes X
that the Makar-Limanov invariant ML (X) is equal to C. We shall consider
two algebraically independent Ga-actions σ, σ′ and define the intertwining
number ι(σ, σ′) associated with these Ga-actions. It is then shown that the
intertwining number is actually a multiple of m2, where m = |H1(X; Z)|. We
define a minimal pair {σ, σ′} of algebraically independent Ga-actions as such
with ι(σ, σ′) = m2. We show that there are no minimal pairs of Ga-actions
if m ≥ 3.

Recently, Bandman and Makar-Limanov [1] considered a problem of char-
acterizing in terms of the boundary divisors the smooth affine rational sur-
faces with trivial Makar-Limanov invarinats. They succeeded in obtaining a
characterization in the case where the surfaces are embedded into A3 as hy-
persurfaces. Furthermore, the hypersurfaces are defined by the equations of
the form xy = p(z) with respect to a suitable system of coordinates {x, y, z},
where p(z) is a polynomial in z such that p(z) = 0 has distinct roots.

1 Intertwining number

Let X be a smooth affine surface defined over the ground field k = C. We
assume always that Γ(X,OX )∗ = k∗. The Makar-Limanov invariant ML(X)
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is defined as the intersection

ML (X) =
⋂

δ

Ker δ,

where δ runs over all locally nilpotent derivations δ on the coordinate ring
A = Γ(X,OX), where δ corresponds in a bijective way to an algebraic Ga-
action σ on X. We assume that X is rational and A∗ = k∗. Then it is known
that Ker δ = k[t] a polynomial ring in one variable for any locally nilpotent
derivation δ.

We begin with the following result.

Lemma 1.1 We have one of the following three cases.

(1) ML (X) = A and there are no nontrivial Ga-actions on X. In particu-
lar, κ(X) ≥ 0.

(2) ML (X) = k[t], and any two locally nilpotent derivations δ, δ′ on A are
conjugate to each other in the sense that aδ = a′δ′ for nonzero elements
a, a′ ∈ ML(X). The surface X has a unique A1-fibration defined by the
inclusion ML (X) ↪→ A.

(3) ML (X) = k, and there are two non-conjugate locally nilpotent deriva-
tions on A.

Proof. Our proof consists of several steps.
(I) Suppose that X has a nontrivial Ga-action σ. Let δ be the corre-

sponding locally nilpotent derivation. Let A0 = Ker δ. Then A0 is a normal
rational algebra of dimension one with A∗

0 = k∗. Hence A0 = k[t]. The
Ga-action σ gives rise to an A1-fibration. Hence κ(X) = −∞. Conversely, if
κ(X) = −∞, X has an A1-fibration ρ : X → A1 = Spec A0.

(II) Suppose that δ and δ′ are locally nilpotent derivations on A. Then
Ker δ = k[t] and Ker δ′ = k[u]. If t and u are algebraically independent
over k, we have k[t] ∩ k[u] = k. In this case, we say that δ and δ′ (or
the corresponding Ga-actions σ and σ′) are algebraically independent over k.
Then ML(X) = k.

(III) Suppose that u is algebraic over k(t). Then there exists an algebraic
equation

a0(t)u
n + a1(t)u

n−1 + · · · + an−1(t)u + an(t) = 0, (1)
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where ai(t) ∈ k[t], and we may assume that (1) is minimal. Since Kerδ = k[t],
we have

{
na0(t)u

n−1 + (n− 1)a1(t)u
n−2 + · · · + an−1(t)

}
δ(u) = 0. (2)

Since (1) is minimal, na(t)u
n−1+· · ·+an−1(t) 6= 0. This implies that δ(u) = 0.

Hence k[u] ⊆ k[t], and t is then algebraic over k(u). By the same reasoning
as above, we infer that k[t] ⊆ k[u]. So, k[t] = k[u]. The A1-fibrations
associated with σ and σ′ coincide with the morphism X → A1 defined by the
inclusion k[t] = k[u] ↪→ A. By (1) above, A[a−1] = k[t, a−1][ξ] = k[u, a−1][ξ]
for a ∈ k[t] and an element ξ ∈ A which is algebraically independent over
k(t). Then a1δ = b1

∂
∂ξ

and a2δ
′ = b2

∂
∂ξ

for a1, a2, b1, b2 ∈ k[t]. By adjusting

the coefficients, we have aδ = a′δ′ for some nonzero elements a, a′ ∈ k[t].
Namely, δ and δ′ are conjugate to each other. These observations yields the
assertions (2) and (3). Q.E.D.

Remark. Note that there exists an A1-fibration ρ : X → B if and only if
there exists an algebraic Ga-action on X. In fact, if there exists a nontrivial
Ga-action σ, then there is an A1-fibration as in the above proof of the as-
sertion (1). Suppose that there is an A1-fibration ρ : X → B ∼= A1. Write
B = Spec k[t] and X = Spec A. Then there exists an element a ∈ k[t] such
that ρ−1(U) ∼= U ×A1, where U = Speck[t, a−1]. Hence A[a−1] = k[t, a−1][ξ],
where we can take ξ to be an element of A. Consider a derivation δ = aN ∂

∂ξ

with N > 0. This is a locally nilpotent derivation on k[t, a−1][ξ]. Since A is
finitely generated over k, it follows that δ(A) ⊆ A if N � 0. Then δ defines
a Ga-action σ and the associated A1-fibration consisting of σ-orbits is the
given A1-fibration ρ.

We consider first the case where ML(X) = k. In this case, there are
two Ga-actions σ, σ′ which are algebraically independent over k. Let T, T ′ be
general Ga-orbits with respect to the actions σ, σ′, respectively. We have the
following result.

Lemma 1.2 There exists a non-empty open set U of X such that, for P ∈ U
and the σ-orbit T and σ′-orbit T ′ passing through P , the number

ι(σ, σ′;P ) =
∑

Q∈T∩T ′

i(T, T ′;Q)

is independent of the choice of P . Furthermore, T and T ′ meet transversally
in each point Q ∈ T ∩ T ′.
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Proof. Let ρ : X → B ∼= A1 and ρ′ : X → B ′ ∼= A1 be the A1-fibrations
defined by σ and σ′, respectively. Then there exists a smooth compactifica-
tion V of X such that the A1-fibrations ρ, ρ′ are extended to the P1-fibrations
p : V → B and p′ : V → B

′
, respectively, where B and B

′
are isomorphic

to P1. Let T and T
′
be respectively the closures of T and T ′. Consider the

restriction p
T

′ : T
′
→ B of p. Since T

′
has only one place outside of X, which

must dominate the point of T
′
where T

′
intersects the fiber of p lying over the

point at infinity of B, the restriction ρT ′ : T ′ → B is a finite morphism. Then
ρT ′ is unramified over an open set W of B. This means that the intersection
of T ′ and a fiber ρ−1(Q) with Q ∈ W is transversal and consists of the same
number of points.

Similarly, there exists an open set W ′ of B ′ such that the intersection of
T and a fiber ρ′−1(Q′) with Q′ ∈ W ′ is transversal and consists of the same
number of points. Now choose an open set U so that U ⊆ ρ−1(W )∩ρ′−1(W ′).
Then, for P ∈ U , the fibers T := ρ−1(ρ(P )) and T ′ := ρ′−1(ρ′(P )) are
respectively the σ-orbit and σ′-orbit passing through P . Hence we have the
property for T, T ′ as required in the statement. Q.E.D.

We call ι(σ, σ′;P ) the intertwinig number of σ and σ′, and denote it by
ι(σ, σ′). By the abuse of the notations, we denote it by (T · T ′) if we choose
T, T ′ as in the above proof and treat it as the intersection number of divisors
on a smooth projective surface.

Choose a point P ∈ U as above and defines a morphism ΦP : A2 → X by
ΦP (g, g′) = σ(g)σ′(g′)P , where (g, g′) ∈ A2 ∼= Ga × Ga. Then we have the
following result.

Lemma 1.3 The morphism ΦP has degree ι(σ, σ′).

Proof. For (g, g′) = (0, 0), we have ΦP (0, 0) = P . With the above nota-
tions, any point of T ∩T ′ is written as σ(gi)(P ) = σ′(g′i)(P ), 1 ≤ i ≤ n, where
n = |T ∩ T ′| = ι(σ, σ′). Conversely, Φ−1

P (P ) consists of the (g, g′) such that
σ(g)σ′(g′)P = P , i.e., σ(g−1)P = σ′(g′)P .

Let Q be a general point of X, say Q ∈ U . Then Φ−1(Q) consists of the
(g, g′) ∈ A2 such that σ(g)σ′(g′)P = Q, i.e., σ(g−1)Q = σ′(g′)P . Suppose
σ(g1)σ

′(g′1)P = σ(g)σ′(g′)P . Then we have

σ′(g′1)P = σ(g−1
1 g)σ′(g′)P ∈ σ(Ga)(σ

′(g′)P ) ∩ σ′(Ga)P.

This implies that Φ−1
P (Q) corresponds bijectively to the set of intersection
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points of the σ-orbit σ(Ga)(σ
′(g′)P ) and the σ′-orbit σ′(Ga)P . So, Φ−1

P (Q)
consists of ι(σ, σ′) points. Q.E.D.

As an immediate consequence of Lemma 1.3, we have:

Corollary 1.4 With the notations and assumptions, π1(X) is a finite group
of order less than or equal to ι(σ, σ′).

Let σ, σ′ be algebraically independent Ga-actions on X and let δ, δ′ be
the corresponding locally nilpotent derivations on A. We can interpret the
intertwining number ι(σ, σ′) in terms of δ, δ′. Write Ker δ = k[t] and Ker δ′ =
k[t′] for two elements t, t′ of A which are algebraically independent over k.
Then we have:

Lemma 1.5 With the notations as above, the following equalities hold:

ι(σ, σ′) = min {n | δn(t′) = 0} − 1

= min
{
n | δ′

n
(t) = 0

}
− 1.

Proof. By [8], there exist a ∈ Ker δ and ξ ∈ A such that A[a−1] =
k[t, a−1][ξ]. Then t′ is written as

t′ = c0ξ
N + c1ξ

N−1 + · · · + cN ,

where ci ∈ k[t, a−1] and c0 6= 0. We may assume, after replacing t′ by t′ + λ
with λ ∈ k, that t′ = 0 defines a general σ′-orbit T ′. Similarly, we can take
µ ∈ k so that ci(µ) is defined for 0 ≤ i ≤ N , c0(µ) 6= 0 and the curve t = µ
is a general σ-orbit T . Then the intersection number (T · T ′) is equal to the
number of roots of the equation

c0(µ)ξN + c1(µ)ξN−1 + · · · + cN(µ) = 0,

where each root is counted with multiplicity. Namely (T · T ′) = N . On
the other hand, since δ is equivalent to the derivation ∂/∂ξ, it follows that
N = min {n | δn(t′) = 0} − 1. So, we have the assertion. Q.E.D.

2 Q-homology planes and the Makar-Limanov

invariants

In this section, X denotes a Q-homology plane, that is, a smooth algebraic
surface defined over the complex field such that Hi(X; Q) = (0) for every
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i > 0. In particular, X is affine and rational [5]. Furthermore, π1(X) ∼=
H1(X : Z) ∼= Pic (X). We consider the existence of Ga-actions on X and the
structure of X when X has enough Ga-actions.

We recall the following result [11, Th.1.2].

Lemma 2.1 Let X be a Q-homology plane with an A1-fibration ρ : X → B.
Then every fiber ρ−1(P ) is irreducible and ρ−1(P )red is isomorphic to A1. Let
m1A1, . . . , mnAn exhaust all multiple fibers with Ai

∼= A1. Then H1(X; Z) ∼=∏n

i=1 Z/miZ.

We need the following result.

Lemma 2.2 Let X = Spec A be an affine variety defined over k and let
f : Y → X be an étale finite morphism. Suppose that there exists a Ga-
action σ on X. Then σ lifts up uniquely to a Ga-action σ̃ on the variety
Y .

Proof. Let δ be the locally nilpotent derivation associated with σ. Let
A0 = Ker δ. Then A[a−1] = A0[a

−1][ξ] for some element a ∈ A0, and δ is
conjugate to ∂/∂ξ, i.e., a0δ = a1

∂
∂ξ

for nonzero elements a0, a1 ∈ A0. Let

B = Γ(Y,OY ). Then the derivation δ extends uniquely to a derivation δ̃ on
B because Derk(B,B) ∼= Derk(A,A)⊗AB, which follows from the hypothesis
that B is étale over A. On the other hand, δ extends uniquely to a derivation
δ on the function field Q(A) and to a derivation on Q(B) which must coincide

with the extension of δ̃ on Q(B). Since f : Y → X is étale and finite and since
D(a) ∼= SpecA0[a

−1] × A1, it follows that f−1(D(a)) ∼= SpecB0 × A1, where
f |f−1(D(a)) is induced by an étale finite morphism f0 : SpecB0 → SpecA0[a

−1]
via the fiber product f = f0×A1. Hence B[a−1] = B0[ξ]. Then the derivation

δ̂ = a1

a0

∂
∂ξ

is a derivation on Q(B) which is zero on Q(B0). Since δ̂ is clearly an

extension of δ on Q(B), the uniqueness of the extension implies that δ̂ = δ̃.

In particular, δ̂ is zero on B0. This implies that δ̂ is a locally nilpotent
derivation on B, and δ̃ defines a Ga-action σ̃ on Y which extends σ on X.

Q.E.D.

The existence of two algebraically independentGa-actions on a Q-homology
plane gives a strong restriction on the structure of X. Namely we have:

Lemma 2.3 Let X be a Q-homology plane with algebraically independent
Ga-actions σ, σ′. Then each of the A1-fibrations ρ : X → B and ρ′ : X → B ′
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associated respectively with σ and σ′ has a unique multiple fiber of multiplicity
m, where m = |H1(X; Z)|. Furthermore, ι(σ, σ′) is a multiple of m2.

Proof. Consider the A1-fibration ρ : X → B. Let m1A1, . . . , mnAn ex-
haust all multiple fibers of ρ. Then there is a Galois covering π : C → B
which ramifies over the points P1 = ρ(A1), . . . , Pn = ρ(An) and P∞ with
respective multiplicities m1, . . . , mn and m∞, where B is the smooth com-
pactification of B and {P∞} = B−B. By [2]and [3], such a covering exists for
a suitable choice of m∞ > 1 provided n ≥ 1. The genus g of C is computed
by the Riemann-Hurwitz formula

2g − 2 = −2d +
n∑

i=1

d

mi

(mi − 1) +
d

m∞

(m∞ − 1)

= d

{
(n − 1) −

(
1

m1
+ · · · +

1

mn

+
1

m∞

)}
,

where d is the degree of the morphism π. Hence g ≥ 1 if and only if

n− 1 ≥
1

m1
+ · · · +

1

mn

+
1

m∞

.

Since mi ≥ 2 (1 ≤ i ≤ n) and m∞ ≥ 2, it follows that g = 0 only if
n− 1 < (n+ 1)/2, i.e., n ≤ 2. If n = 2, then g = 0 only if

1

m1
+

1

m2
+

1

m∞

> 1.

If n = 1, then g = 0 always. The above observation implies that we can
choose {m1, . . . , mn, m∞} to make the genus g > 0 unless one of the following
cases takes place:

(1) n = 1

(2) {m1, m2} = {2, 2}.

Suppose we can take C to have genus g ≥ 1. Let C0 = C− π−1(P∞). Let
Y be the normalization of the fiber productX×BC0 and let f : Y → X be the
composite of the normalization morphism and the projection X×BC0 → C0.
Then f is a finite etale morphism. Hence the A1-fibration ρ lifts up to the
A1-fibration ρ̃ : Y → C0. Let T ′ be a general orbit of the Ga-action σ′.
Then π−1(T ′) splits into a disjoint union of the affine lines T̃ ′

1, . . . , T̃
′
d, where
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d = deg π. Since T ′ is transversal to ρ, each of T̃ ′
1, . . . , T̃

′
n is transversal to

the A1-fibration ρ̃. Then ρ̃ : T̃ ′
j → C0 is dominant. Since the genus of C is

positive by the assumption, this is a contradiction.
In the case (2) above, we have H1(X; Z) ∼= Z/2Z×Z/2Z. By Lemma 2.1,

the A1-fibration ρ′ then has also two multiple fibers of multiplicity two. Let
2A1, 2A2 be the multiple fibers of ρ and let 2A′

1, 2A
′
2 be the multiple fibers

of ρ′. Since ι(σ, σ′) = (2A1, 2A
′
1) = 4(A1, A

′
1), write ι(σ, σ′) = 4d. Consider

the restriction ρ′1 : A′
1 → B of ρ′ onto A′

1. Since A′
1 has only one place point

lying over the point P∞ := B −B, the Riemann-Hurwitz formula applied to
ρ′1, which has degree 2d, yields

−2 = −4d + (2d− 1) + {contributions from ramifying points over B}

≥ −4d + (2d− 1) + d+ d,

which is a contradiction, where we obtain the above inequality by counting
the ramifications at the intersection points of A′

1 with A1 and A2. This
implies that the case (2) does not occur.

In the case (1), let mA1 (resp. mA′
1) be a unique multiple fiber of ρ

(resp. ρ′), where m = m1. Then ι(σ, σ′) = (mA1, mA
′
1) = m2(A1, A

′
1).

Hence ι(σ, σ′) is a multiple of m2. Q.E.D.

A pair (σ, σ′) of two algebraically independentGa-actions on a Q-homology
plane X is minimal if ι(σ, σ′) = m2, where m = |H1(X; Z)|. The following
result guarantees the existence of a minimal pair of Ga-actions in the case
m = 2.

Lemma 2.4 Let C be a smooth conic on P2 and let X = P2 − C. Then the
following assertions hold:

(1) X is a Q-homology plane with m = 2.

(2) Let Q be a point on C and let `Q be the tangent line of C at Q. Let
ΛQ be the linear pencil spanned by C and 2`Q. Then the pencil ΛQ

defines an A1-fibration ρQ : X → A1, and hence the conjugate class of
Ga-actions σQ on X.

(3) If Q,Q′ are distinct points on C, then σQ, σQ′ are algebraically inde-
pendent. Furthermore, ι(σQ, σQ′) = 4. Hence (σQ, σQ′) is a minimal
pair.
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Proof. All the assertions are verified by a straightforward argument. Note
that there is an infinite family of mutually algebraically independent Ga-
actions on X. Q.E.D.

On the contrary, the following result denies the existence of minimal pairs
of Ga-actions in the case m ≥ 3.

Theorem 2.5 There are no minimal pairs of two algebraically independent
Ga-actions on a Q-homology plane with m = |H1(X; Z)| ≥ 3.

Proof. Suppose that (σ, σ′) is a minimal pair of two algebraically indepen-
dent Ga-actions on a Q-homology plane X with m ≥ 3. We consider the
associated A1-fibrations ρ : X → B and ρ′ : X → B ′. With the previous
notations, let mA1 and mA′

1 be the unique multiple fibers of ρ and ρ′, re-
spectively. Since ι(σ, σ′) = m2 by the hypothesis, we have (A1 · A′

1) = 1.
We consider the normalization Y of X ×B C0, where C0 → B ∼= A1 is
a finite covering of degree m totally ramifying over the point P1 = ρ(A1)
and the point at infinity P∞. Let π : Y → X be a Galois covering with
Galois group G ∼= Z/mZ, which is a composite of the normalization mor-
phism Y → X ×B C0 and the second projection X ×B C0 → C0. Then
π∗(A1) = E1 + · · · + Em and π∗(A′

1) = B1 + · · · +Bm, where the Ei and the
Bj are mutually disjoint and isomorphic to A1. Furthermore, we may assume
that (Ei · Bj) = 1 if i = j and 0 otherwise. In fact, Yi := Y −

⋃
j 6=iEj is iso-

morphic to the affine plane and Y is obtained by glueing the Yi (1 ≤ i ≤ m)
along the open set Y −

⋃
iEi.

Let T ′ be a general fiber of the A1-fibration ρ′. Then π∗(T ′) splits into

a disjoint sum of T̃ ′
1, . . . , T̃

′
m which are isomorphic to A1. In fact, when T ′

ranges over the fibers of ρ′, the family of curves consisting of the connected
components of the π∗(T ′) defines an A1-fibration ρ̃′ : Y → B̃ ′ ∼= A1, which is
different from the A1-fibration ρ̃ : Y → C0 induced by the lifting of ρ.

Claim. For 1 ≤ i ≤ m, T̃ ′
i meets each of the Ej in one point transversally.

Indeed, we may consider T̃ ′
i as a general fiber of ρ̃′. Then it follows that the

intersection number (T̃ ′
i ·Ej) is independent of the choice of T̃ ′

i and Ej. Since

(π∗(T ′) · π∗(A1)) = m2, we obtain (T̃ ′
i · Ej) = 1.

Hence each of the curves Ej is considered as a cross-section of the A1-
fibration ρ̃′. Similarly, each of the Bj is a cross-section of the A1-fibration
ρ̃. Consider Y1 := Y −

⋃
i6=1Ei which is isomorphic to the affine plane as
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remarked above. Let ρ̃′1 : Y1 → B̃ ′ be the fibration induced by the restriction
of ρ̃′ onto Y1. Then E1 and B1 are two affine lines meeting in one point
transversally, and we can choose E1 and B1 as the coordinate axes. Fur-
thermore, the general fibers of ρ̃′1 are generically rational polynomial curves
of simple type with m places at infinity (see [10] for the definition and the
relevant results). The fibration ρ̃′1 has a unique reducible fiber consisting of
B1

∼= A1 and B0
j
∼= A1

∗ (2 ≤ j ≤ m).
We may choose a system of coordinates {x, y} on Y1 in such a way that

B1 (resp. E1) is defined by x = 0 (resp. y = 0). Suppose m ≥ 3. Set
n = m − 1. By [10, Th.3.3], the fibration ρ̃′1 is defined by a polynomial f
which has one of the following forms, where the symbol ∼ means that f is
given upto constant multiples by the polynomial on the right hand side:

(1)

f ∼

(
n∏

j=1

(x− dj)
αj

)
·

(
y ·

n∏

j=1

(x− dj)
εj + P (x)

)
+ 1,

where d1, . . . , dn are mutually distinct elements in k and P (x) ∈ k[x],
αj > 0 and εj ≥ 0 for 1 ≤ j ≤ n; P (dj) 6= 0 if εj > 0.

(2)

f ∼ x ·
n∏

j=1

(
x`
(
xty + P (x)

)
− dj

)αj
+ 1,

where ` > 0, t ≥ 0 and P (x) ∈ k[x]; deg P (x) < t and P (0) 6= 0 if t > 0
and P (x) = 0 if t = 0; the αj and the dj are as in the case (1).

(3)

f ∼ xβyα1 ·
n∏

j=2

(
x`y − dj

)αj
+ 1,

where d2, . . . , dn are mutually distinct elements in k∗; β > 0, ` > 0 and
αj > 0 for 1 ≤ j ≤ n; β − α1` = ±1.

(4)

f ∼ xβ ·
(
xty + P (x)

)α1 ·
n∏

j=2

(
x`
(
xty + P (x)

)
− dj

)αj
+ 1,
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where t > 0 and P (x) ∈ k[x] with degP (x) < t and P (0) 6= 0; β, `, the
αj and the dj are as in the case (3).

Note that the unique reducible fiber of ρ̃′1 is defined by f = 1. Then, in

the case (1) for example, ρ̃′1
−1

(1) consists of n ≥ 2 components isomorphic
to A1 and one component isomorphic to A1

∗. Hence the case (1) is ruled

out. Similarly, the case (3) is ruled out. In the case (2), ρ̃′1
−1

(1) consists
of one component isomorphic to A1 and n components isomorphic to A1

∗.
Meanwhile, a general fiber, say H, of ρ̃′1 meets the curve E1 = {y = 0} in
the points given by the equation

x ·
n∏

j=1

(
x`P (x) − dj

)αj
+ 1 = 0.

Namely, H meets E1 in not less than two points. So, the case (2) is ruled

out. Consider the case (4). The singular fiber ρ̃′1
−1

(1) consists of one com-
ponent isomorphic to A1 and n components isomorphic to A1

∗. The points of
intersection where H meets E1 are given by

xβ · P (x)α1

n∏

j=2

(
x`P (x) − dj

)αj
+ 1 = 0.

So, H meets E1 in not not less than two points. This case is thus ruled out.
Hence the case m ≥ 3 does not occur in our settings. Q.E.D.

Remark. On the affine plane A2, a minimal pair of the Ga-actions (σ, σ′)
has ι(σ, σ′) = 1. Hence the general orbits T, T ′ of σ, σ′ respectively meets
in one point transversally. Consider, for example, the Ga actions σ, σ′ such
that the associated A1-fibrations ρ, ρ′ are given respectively by the inclusions
k[y] ↪→ k[x, y] and k[y + P (x)] ↪→ k[x, y], where P (x) ∈ k[x]. Then σ
corresponds to a locally nilpotent derivation ∂/∂x. Hence the intertwining
number ι(σ, σ′) is equal to degP (x). Hence there exist non-minimal pairs of
Ga-actions on A2.

Let X be a Q-homology plane with two algebraically independent Ga-
actions σ, σ′. Suppose that |H1(X; Z)| = m > 1. Embed X into a smooth
projective surface V in such a way that the following conditions are satisfied:

(1) There exists a P1-fibration p : V → B which restricts to the A1-fibration
ρ : X → B associated with σ, where B is isomorphic to P1.

12



(2) The boundary divisor D := V − X is a divisor with simple normal
crossings.

(3) The divisor D is written as D = F∞ + S + G, where F∞ is a smooth
fiber of p lying over the point P∞ = B − B, S is a cross-section of p
and G together with the closure A0 of a unique multiple fiber mA0 of
ρ supports a fiber of p lying over the point P0 := ρ(A0).

(4) The connected component G contains no (−1) components.

We consider the linear pencil Λ′ on V generated by the closures of σ′-
orbits. Then we have the following result.

Lemma 2.6 We may furthermore assume that the following conditions are
satisfied:

(5) Λ′ has a unique base point Q on F∞, which is different from the point
Q0 = S ∩ F∞.

(6) (S2) = −1.

Proof. Let T
′
be the closure of a general σ′-orbit T ′. If T

′
∩ F∞ = ∅, then

the A1-fibrations ρ, ρ′ associated respectively with σ, σ′ coincide with each
other, which is impossible. Thence it follows that T

′
∩ F∞ 6= ∅. Suppose

that Λ′ has no base points. Since T
′

has a single one-place point on F∞,
this implies that F∞ is a cross-section of Λ′. This implies that ι(σ, σ′) = 1,
which is impossible because ι(σ, σ′) is a multiple of m2 by Lemma 2.3 and
m > 1 by the hypothesis. So, Λ′ has a unique one-place base point Q on F∞.
Suppose that Q = Q0. Then blow up the point Q0 to obtain an exceptional
(−1) curve E and the proper transform E ′ of F∞ with (E ′2) = −1. Then
contract E ′ to obtain a smooth projective surface V ′. We call this process of
obtaining V ′ from V the elementary transformation with center Q0. By this
process we have a new compactification X ↪→ V ′ which satisfies the same
conditions (1) ∼ (4) as above. By applying the elementary transformations
with center Q0 several times, the proper transform of Λ′ will have no base
points on the proper transform of S. We may assume that this situation is
already realized on the surface V at the beginning.

Then the components of S+G are contained in one and the same member
M0 of Λ′. Since these components are untouched until the base points of Λ′

are eliminated, it follows that (S2) ≤ −1. Suppose that (S2) ≤ −2. Let µ be

13



the multiplicity of T
′
at the point Q. Let ι(σ, σ′) = m2d. Suppose µ = m2d.

Blow up the point Q. Let E be the exceptional curve and let F ′
∞ be the

proper transform of F∞. Then E is a component of the member M ′
0 of the

proper transform of Λ′ corresponding to M0. Otherwise, E is a cross-section
and m2d = µ = 1, which is impossible. By contracting F ′

∞, we obtain a new
compactification of X with the same property but with (S2) increased by
1. Hence we may assume that m2d > µ. Then (S2) = −1. For otherwise,
the member M0 of Λ′ containing S +G will have no (−1) components when
the base points of Λ′ are eliminated and the last (−1) curve arising from the
elimination process gives rise to a cross-section. This is impossible. Q.E.D.

Lemma 2.6 has the following consequence (cf. [9]).

Theorem 2.7 With the notations as in Lemma 2.6, the dual graph of G
is a linear chain. In particular, if C is a projective plane curve defined by
an equation X0X

m−1
1 = Xm

2 with m > 2, then the surface X := P2 − C
has a unique Ga-action up to equivalence which is associated with the pencil
generated by C and m`0, where `0 is the line X1 = 0.

Proof. Let ϕ : Ṽ → V be the shortest sequence of blowing-ups to eliminate
the base points of the pencil Λ′ and let Λ̃′ be the proper transform of Λ′ by ϕ.
Let M̃0 be the member of Λ̃′ containing S +G, where we denote the proper
transforms of S,G by the same symbols. Then S is a unique (−1) curve in

M̃0 because m2d > µ with the notations in the proof of Lemma 2.6. One
can obtain a smooth member by a sequence of blowing-downs which starts
with the contraction of S. If the dual graph of G contains a branch point,
then there appears in the course of the above sequence of blowing-downs a
(−1) component meeting three or more components, one of which might be
replaced by the cross-section. Hence the dual graph of G must be a linear
chain. The second assertion is a straightforward consequence if one notices
that a smooth compactification V of X satisfying the conditions (1) ∼ (6)
as listed above is obtained by blowing up the point (1, 0, 0) and its infinitely
near points and that the dual graph of D is then as given in [9, Figure 1,
p.23], where r = m > 2 and n = 1. Hence the dual graph of the component
G is not linear. Q.E.D.

Another consequence of Lemma 2.6 (and also Theorem 2.7) is the follow-
ing result.

Theorem 2.8 Let X be a Q-homology plane with H1(X; Z) = Z/2Z. Sup-

14



pose that X has two algebraically independent Ga-actions. Then X is iso-
morphic to P2 −C, where C is a smooth conic.

Proof. With the notations in Lemma 2.6, we consider the fiber F0 which
restricts onX a unique multiple fiber 2T0. The fiber F0 is supported by T 0+G
and T 0 is a unique (−1) component. By Theorem 2.7, the dual graph of G is
a linear chain. Then it is readily verified that G consists of three irreducible
components G1 +G2 +G3 which are all (−2) curves. Furthermore, T 0 meets
the component G2, and we may assume that G1 meets the cross-section S
of the P1-fibration p : V → B. Now contract S + G1 + G2 + G3. Then we
obtain a projective plane P2 and the proper transforms of F∞, T 0 become
respectively a smooth conic C and a line tangent to the conic. Hence X is
isomorphic to P2 −C . Q.E.D.

We assume that the conditions (1) ∼ (6) are satisfied. By Theorem 2.7,
the dual graph of G is a linear chain. The linear pencil Λ′ has a base point Q
on F∞ which is different from the point S ∩F∞. Let T

′
be a general member

of Λ′. As in the proof of Lemma 2.6, we may assume that µ < m2d, where
m2d = i(T

′
, F∞;Q) and µ = mult QT

′
. The pencil contains a member mA

′
,

where mA′ with A′ := A
′
∩ X is a unique multiple fiber of the A1-fibration

ρ′ : X → B ′ which is induced by Λ′. Let µ′ := mult QA
′
. Let ϕ : Ṽ → V be

the shortest sequence of blowing-ups which eliminates the base points of Λ′

and let Λ̃′ be the proper transform of Λ′ by ϕ. Let E be the last (−1) curve
appearing in the process ϕ and write ϕ−1(Q) = Γ+E+∆, where Γ (resp. ∆)
is the connected component of ϕ−1(Q)−E which meets the proper transform

F̃∞ (resp. Ã′) of F∞ (resp. A
′
). Theorem 2.7 applied to the σ′-action implies

that the dual graph of ∆ is a linear chain.

Lemma 2.9 The following assertions hold true.

(1) mµ′ ≥ µ.

(2) Suppose that mµ′ > µ. Then the dual graph of Γ is either an emptyset
or a linear chain. Furthermore, mµ′ − µ = 1.

(3) Suppose that mµ′ = µ. Then the dual graph of Γ has a branch point.

Proof. (1) This is clear because the multiplicity mult QT
′
= µ is the mini-

mum of the multiplicities which the members of Λ′ take at the point Q.
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(2) Let ϕ1 be the first blowing-up in the process ϕ and let E1 be the
exceptional curve. Then we have

ϕ∗
1(mA

′
) = mϕ′

1(A
′
) +mµ′E1

ϕ∗
1(T

′
) = ϕ′

1(T ) + µE1.

Hence in the proper transform Λ′
1 of Λ′ by ϕ1, the (−1) curve E1 belongs to

the member containing ϕ′
1(A

′
). If the dual graph ϕ−1(Q) = Γ +E+ ∆ has a

branching point, the member M̃ ′
0 of Λ̃′ containing S+G has to coincide with

the member containing ϕ′(A
′
), which is a contradiction. So, the dual graph

of Γ is a linear chain. Under the assumption mµ′ > µ, the proper transform
of E1 by ϕ ·ϕ−1

1 is the end component of ∆. Since ∆ +ϕ′(A
′
) is contractible

to a smooth fiber of a P1-fibration, it follows that mµ′ − µ = 1.
(3) With the above notation, E1 belongs to the member M̃ ′

0. Let ψ : V̂ →
V be the oscilating sequence of blowing-ups with the data (md, µ′) (cf. [11])
and let E ′ be the last (−1) curve. Since the proper transforms of E1 and F∞

by ϕ are contained in the member M̃ ′
0, all the exceptional curves of ψ are

also contained in M̃ ′
0. In order to eliminate the base points of Λ′, we have

therefore to blow up a point on E ′. Hence the dual graph of Γ has a branch
point which represent the proper transform of E ′. Q.E.D.

Lemma 2.10 The following assertions hold.

(1) Suppose µ′ = 1 and mµ′ > µ. Then m = 2.

(2) Suppose µ′ ≤ d and mµ′ > µ. Then µ′ = 1.

Proof. (1) By Lemma 2.9 and the hypothesis µ′ = 1, we have µ = m− 1.

Then the curve A
′
touches F∞ with multiplicity md. Let ψ : V ′ → V be

a sequence of md blowing-ups with centers Q and its infinitely near points
lying on the proper transforms of F∞. Let E1, . . . , Emd be the irreducible
exceptional curves. Then ψ′(F∞) + Emd + · · · + E1 is a linear chain and

ψ′(A
′
) meets Emd transversally. Let M ′

0 (resp. M ′
1) be the member of ψ′(Λ′)

containing ψ′(F∞) (resp. ψ′(A
′
)). Then we have

M ′
0 = (m− 1)ψ′(F∞) + a divisor supported by ψ′(S) + ψ∗(G)red

M ′
1 = mψ′(A

′
) + E1 + 2E2 + · · · +mdEmd.
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The general member ψ′(T
′
) passes the point Q′ := ψ′(F∞) ∩ Emd with

i(ψ′(F∞), ψ′(T
′
);Q′) = m2d− (m− 1)md = md,

i(ψ′(T
′
), Emd;Q

′) = m− 1.

Let ϕ : Ṽ → V be the sequence of blowing-ups as above which eliminates
the base points of Λ′. Then the member M̃1 of ϕ′(Λ′) containing ϕ′(A

′
) is a

degenerate fiber of a P1-fibration which contains only one (−1) curve ϕ′(A
′
).

Since the coefficient of ϕ′(A
′
) in M̃1 is m, it is the largest coefficient among

those for the components of M̃1. This implies that md ≤ m. Hence d = 1.
So, the pair (σ, σ′) is a minimal pair, and Theorem 2.5 implies that m = 2.

(2) Suppose on the contrary that µ′ ≥ 2. Write

md = c1µ
′ + µ′

1, 0 ≤ µ′
1 < µ′.

Then

m2d = m(c1µ
′ + µ′

1) = c1µ + (c1 +mµ′
1).

Since µ′ ≤ d, we have c1 ≥ m. In the case c1 > m, we abuse the notations
to denote by ψ : V ′ → V a sequence of c1 blowing-ups with center Q and
its infinitely near points lying on F∞. It produces the member M ′

1 of ψ′(Λ′)
such that

M ′
1 = mψ′(A

′
) + E1 + 2E2 + · · · + c1Ec1 ,

which leads to a contradiction as in the proof of the previous assertion.
Consider the case c1 = m. Suppose µ′

1 > 0. Then we have

i(ψ′(F∞), ψ′(A);Q′) = µ′
1,

i(ψ′(A
′
), Ec1;Q

′) = µ′,

whereQ′ = ψ′(F∞)∩Ec1 . Then, after the base points of Λ′ are removed by ϕ :

Ṽ → V , ϕ′(A
′
) does not meet any one of the proper transforms ofE1, . . . , Ec1.

This implies that a component of the member M̃1 has coefficient greater than
m, where M̃1 is a member of the proper transform ϕ′(Λ′) containing ϕ′(A

′
).

This is a contradiction. So, we must have µ′
1 = 0. Then c1 = m and µ′ = d.

Since µ′ ≥ 2, ψ′(A
′
) meets Em in a single point with multiplicity µ′, and this
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point is untouched in the further process of eliminating the base points of Λ′.
This is a contradiction. Q.E.D.

We continue the analysis of the case mµ′ > µ and keep the same notations
as above. In particular, we abuse the notations M ′

0 and M ′
1 to denote respec-

tively the members of Λ′ such that SuppM ′
0 = F∞ + S +G and M ′

1 = mA
′
,

while T
′
denotes a general member of Λ′. Let ϕ : Ṽ → V be the shortest se-

quence of blowing-ups with centers at the base point Q of Λ′ and its infinitely
near points such that the proper transform Λ̃′ of Λ′ has no base points. We
denote by M̃ ′

0 and M̃ ′
1 the members of Λ̃′ corresponding to M ′

0 and M ′
1 re-

spectively. Let ϕ−1(Q) = Γ + E + ∆ as before, where Γ ∩ ϕ′(F∞) 6= ∅ and

∆ ∩ ϕ′(A
′
) 6= ∅. We assume that mµ′ > µ. Then Γ is a linear chain and

mµ′ − µ = 1 by Lemma 2.9.
By the Euclidean algorithm with respect to md and µ′, we introduce the

integers ci, µ
′
i for 1 ≤ i ≤ s as follows:

md = c1µ
′ + µ′

2, 0 < µ′
2 < µ′

µ′
1 = c2µ

′
2 + µ′

3, 0 < µ′
3 < µ′

2

· · · · · ·
µ′

s−2 = cs−1µ
′
s−1 + µ′

s, 0 < µ′
s < µ′

s−1

µ′
s−1 = csµ

′
s, cs ≥ 2,

where we set µ′
1 = µ′. Let ψ : V̂ → V be an oscilating sequence of blowing-

ups with respect the data (md, µ′) (cf. [11]). Then we have the following
exceptional dual graph of ψ−1(Q). See also [8] for similar dual graphes and
relevant explanations.
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−2
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Case s is even

Lemma 2.11 The following assertions hold true.

(1) ψ′(A
′
) meets the component E(s, cs) in one point transversally and does

not meet any other components of ψ−1(Q). In particular, µ′
s = 1.

(2) The components located on the rught side of E(s, cs), i.e., E(1, 1), . . . ,
E(s, 1), . . . , E(s− 1, cs−1) if s is odd and E(1, 1), . . . , E(s− 1, cs−1),

E(s, cs − 1) if s is even, are contained in the member M̂ ′
1 of ψ′(Λ′)

corresponding to M ′
1 of Λ′.
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(3) ψ′(T
′
) passes through the point E(s, cs) ∩E(s− 1, cs−1) if s is odd and

the point E(s, cs) ∩ E(s, cs − 1) if s is even.

(4) The components located on the left side of E(s, cs) are contained in the

member M̂ ′
0 of ψ′(Λ′), where M̂ ′

0 corresponds to M ′
0 of Λ′.

Proof. Let M̂ ′
0 and M̂ ′

1 be respectively the members of the proper transform

ψ′(Λ′) of Λ′ such that M̂ ′
0 (resp. M̂ ′

1) contains ψ′(F∞) (resp. ψ′(A
′
)). Since

every member of ψ′(Λ′) is connected, M̂ ′
1 contains a connected linear chain

ψ′(A
′
) + E(s, cs) + · · · + E(1, 1), which contains the lower half of the whole

chain. We note that ψ′(A
′
) meets E(s, cs) in one point with multiplicity µ′

s

which is different from the points of E(s, cs) where E(s, cs) meets the other
components E(i, j)’s.

The member M̂ ′
0 contains some connected part of the linear chainE(2, 1)+

· · · + E(s − 1, cs−1) if s is odd (resp. E(2, 1) + · · · + E(s, cs − 1) if s is

even). We claim that M̂ ′
0 contains all of this linear chain and hence the point

E(s−1, cs−1)∩E(s, cs) (resp. E(s, cs−1)∩E(s, cs)) is the base point of ψ′(Λ′)
if s is odd (resp. if s is even). Suppose on the contrary that the rightmost

component E of M̂ ′
0 is not E(s−1, cs−1) (resp. E(s, cs−1)) if s is odd (resp.

if s is even). Then, from the mid-stage of ψ onward when E was the last (−1)

curve, the general member T
′
(or precisely, its proper transform) keeps meet-

ing the component E. Namely, the process ϕ is branched at this stage and
should constitute of the blowing-ups with centers at the intersection point
of E and T

′
and its infinitely near points. This implies that the component

ϕ′(A
′
) in the corresponding member M̃ ′

1 of ϕ′(Λ′) has a singular point or
meets two other components in a point. This is a contradiction. Hence our
claim is ascertained. Furthermore, the point Q1 = E(s − 1, cs−1) ∩ E(s, cs)
if s is odd (resp. Q1 = E(s, cs − 1) ∩ E(s, cs) if s is even) is a base point of
the pencil ψ′(Λ′).

Now the process ϕ is a sequence of blowing-ups with centers Q1 and its
infinitely near points. Let ψ1 = ψ−1 · ϕ : Ṽ → V̂ be the necessary process of
eliminating the base points of ψ′(Λ′). Since Q1 6= ψ′(A

′
)∩E(s, cs), it follows

that µ′
s = 1 because the proper transforms of ψ′(A

′
) and E(s, cs) in M̃ ′

1 meet
each other transversally. All the assertions of Lemma 2.11 follows from these
observations. Q.E.D.

Now let ψ−1
1 (Q1) = Γ1 +E1 + ∆1, where E1 is the last (−1) curve and Γ1
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(resp. ∆1) is contained in M̃ ′
0 (resp. M̃ ′

1). Then

∆1 + ϕ′(A
′
) + ψ′

1(E(s, cs) + · · · + E(1, 1))

is contracted to a smooth P1-fiber, and the dual graph of ∆1 (hence Γ1)
is therefore uniquely determined. In fact, the dual graph of ∆1 coincides
with the dual graph F∞ + E(2, 1) + · · · + E(s − 1, cs−1) if s is odd (resp.
F∞ + E(2, 1) + · · · + E(s, cs − 1) if s is even).

We shall determine the multiplicity of ψ′
1(E(s, cs)) as a component of a

degenerate P1-fiber supported by ∆1 + ϕ′(A
′
) + ψ′

1(E(s, cs) + · · · + E(1, 1)).
For this purpose, identify ∆1 with F∞ +E(2, 1) + · · · +E(s− 1, cs−1) (resp.
F∞ +E(2, 1)+ · · ·+E(s, cs−1)) if s is odd (resp. if s is even), and let µ(i, j)
be the multiplicity of E(i, j) for 1 ≤ i ≤ s and 1 ≤ j ≤ ci, where µ(1, 1) = 1
and the multiplicity of F∞ is 1. Then we have the following relations:

µ(1, j) = j, 1 ≤ j ≤ c1
µ(2, j) = 1 + jµ(1, c1), 1 ≤ j ≤ c2
µ(3, j) = µ(1, c1) + jµ(2, c2), 1 ≤ j ≤ c3

· · · · · ·
µ(t, j) = µ(t− 2, ct−2) + jµ(t− 1, ct−1), 1 ≤ j ≤ ct

· · · · · ·
µ(s, j) = µ(s − 2, cs−2) + jµ(s− 1, cs−1), 1 ≤ j ≤ cs.

Thence we have

µ(s, cs)

µ(s− 1, cs−1)
= cs +

1

cs−1 +
1

cs−2 +
1

. . . −
1

c1

= [cs, cs−1, . . . , c1],

while md/µ′ = [c1, . . . , cs]. Note that µ′
s = 1 implies gcd(md, µ′) = 1. Then

it follows that µ(s, cs) = md. Meanwhile, the multiplicity of ϕ′(A
′
) (and

hence the one of ψ′
1(E(s, cs))) is m. So, we conclude that d = 1 and that the

pair (σ, σ′) is minimal. Then m ≥ 3 is impossible by Theorem 2.5. Hence we
have the following result.

Theorem 2.12 Suppose that mµ′ > µ. Then the pair (σ, σ′) is minimal,
and hence m = 1 or 2.
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3 Observations in the case mµ′ = µ

Inheriting the notations in the previous section, we shall explain the elim-
ination process ϕ : Ṽ → V of the base points of the pencil Λ′ in the case
mµ′ = µ. Let ϕ1 : V1 → V be the oscilating sequence of blowing-ups with
center Q and data (md, µ′). With the observations before Lemma 2.11 taken
into account, the proper transform ϕ′

1(Λ
′) has a base point Q1 on the last

exceptional curve E1 := E(s, cs), which does not lie on any other components
of ϕ−1

1 (Q). Note that the following assertions hold:

(1) Every component of ϕ−1
1 (Q) belongs to the member M ′

0(1) of ϕ′
1(Λ

′)
which corresponds to the member M ′

0 of Λ′.

(2) Write ϕ−1
1 (Q) = Γ1 + E1 + ∆1, where Γ1 and ∆1 are the connected

components of ϕ−1
1 (Q) − E1 such that Γ1 ∩ ϕ′

1(F∞) 6= ∅ and ∆1 ∩
ϕ′

1(F∞) = ∅. Then ϕ′(G + S + F∞) + Γ1 contracts to a smooth point.

(3) The general member ϕ′
1(T

′
) of ϕ′

1(Λ
′) satisfies

i(E1, ϕ
′
1(T

′
);Q1) = mult Q1

ϕ′
1(T

′
) = µs = mµ′

s.

Let ψ1 : V ′
1 → V1 be a sequence of blowing-ups such that ψ−1(Q1) has

the dual graph

d d p p p p p p d

−2 −2 −1

ψ′
1(E1) E ′

1

where the proper transform Λ′
1 := (ϕ1ψ1)

′(Λ′) has a base point Q′
1 lying

only on the last (−1) curve E ′
1 and not on the other components, and

where

mµ′
s = i(E ′

1, (ϕ1ψ1)
′(T

′
);Q′

1) > µ(2) := mult Q′

1
(ϕ1ψ1)

′(T
′
).

We note that m(ϕ1ψ1)
′(A

′
) is the member of Λ′

1 and hence passes
through the point Q′

1 with

µ′
s = i(E ′

1, (ϕ1ψ1)
′(A

′
);Q′

1) ≥ µ′(2) := mult Q′

1
(ϕψ1)

′(A
′
).

Here mµ′(2) ≥ µ(2).
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Suppose µ(2) = mµ′(2). The the next process is similar to the sequence
ϕ1 above. We let ϕ2 : V2 → V ′

1 be the oscilating sequence of blowing-ups

with center Q′
1 and data (µ′

s, µ
′(2)). Let E2 be the last (−1) curve of ϕ2.

Then the pencil (ϕ1ψ1ϕ2)
′(Λ′) has a base point Q2 on E2 not lying on any

other components of ϕ−1
2 (Q′

1). Write (ψ1ϕ2)
−1(Q1) = Γ2 + E2 + ∆2, where

Γ2 and ∆2 are the connected components of (ψ1ϕ2)
−1(Q1) − E2 such that

Γ2 ∩ (ψ1ϕ2)
′(E1) 6= ∅.

(4) Then (ψ1ϕ2)
′ (ϕ′

1(G+ S + F∞) + Γ1 + E1 + ∆1) + Γ2 contracts to a
smooth point.

After a possible sequence of blowing-ups ψ2 : V ′
2 → V2 like ψ1 whose dual

graph is a (−2) sequence

d d p p p p p p d

−2 −2 −1

ψ′
2(E2) E ′

2

the proper transform Λ′
2 := (ϕ2ψ2)

′(Λ′
1) has a base point Q′

2 lying only on
the last (−1) curve E ′

2 and not lying on the other components. Furthermore,

i(E ′
2, (ϕ1ψ1ϕ2ψ2)

′(T
′
);Q′

2) > µ(3) = mult Q′

2
((ϕ1ψ1ϕ2ψ2)

′(T
′
)).

We note that m(ϕ1ψ1ϕ2ψ2)
′(A

′
) is the member of Λ′

2 and passes through the
point Q′

2 with

i(E ′
2, (ϕ1ψ1ϕ2ψ2)

′(A
′
);Q′

2) ≥ µ′(3) = mult Q′

2
((ϕ1ψ1ϕ2ψ2)

′(A
′
)),

where mµ′(3) ≥ µ(3).
After this process repeated several times, we reach to the t-th stage where

mµ′(t) > µ(t). As in Lemma 2.9, it then follows that mµ′(t) − µ(t) = 1. As
in the proof of Lemma 2.11 and the subsequent arguments, the oscilating
sequence of blowing-ups with center Q′

t−1 and data (i(E ′
t−1, T̂

′;Q′
t−1), µ

(t))

eliminates the base points of the pencil Λ′
t−1, where T̂ ′ is the proper trans-

form of T
′
. Hence Vt = Ṽ . Let Et be the last (−1) curve of ϕt and write

(ψt−1ϕt)
′(Q′

t−1) = Γt +Et +∆t as above, where Γt is connected to the proper
transform of F∞. Then we have:
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(5) All the components lying on the left side of Et, i.e., the connected
component containing Γt and the proper transform of G + S + F∞

contracts to a smooth P1-fiber.

(6) ∆t together with the proper transform of A
′

contracts to a smooth

P1-fiber. In fact, the component of ∆t where A
′
meets is the proper

transform of the (−1) curve which appears as the last exceptional curve
of the oscilating sequence of blowing-ups with center Q′

t−1 and data

(i(E ′
t−1, Â

′;Q′
t−1), µ

′(t)), where Â′ is the proper transform of A
′
on V ′

t−1.

(7) The same argument as the one leading to Theorem 2.12 shows that

(i(E ′
t−1, Â

′;Q′
t−1), µ

′(t)) = m.

We do not know if such a pencil Λ′ exists as satisfying all the above con-
ditions. But the following example shows that the dual graph of exceptional
curves of ϕ : Ṽ → V together with the proper transform of G + S + F∞ is
realizable.

Example 3.1 Let m = 7, d = 76, µ′ = 31, µ = mµ′, s = 5, µ′
s = 7, t =

1, µ(1) = 27, µ′(1) = 4. The dual graph is as given as follows.

d

d

d

tp p p p p p d

d

d

d

−3

−2

−2

−2 A

−4

−2
S

−1
d d d d d d d d d d d d

−3

F∞

−2 −6 −3 −2 −2 −3 −2 −2 −2 −4 −2

d

d

d

d

d

−3

−6

−2

−3

−1
d d t

p
p
p
p
p
p

d

d d d

−2 −4 −2

A
′

−2 −2 −3

Although we have this example, we have an impression that the linear
pencil Λ′ does not exist. Hence we propose the following
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Conjecture Let X be a Q-homology plane with an A1-fibration ρ : X → B.
Suppose that ρ has a single multiple fiber of multiplicity m ≥ 3. Then the
Makar-Limanov invariant of X is not constant.

We shall include here a remark made by a doctoral student Adrien Dubouloz
of the Université de Grenoble, which gives a relation between the Q-homology
planes with trivial Makar-Limanov invariants and the hypersurfaces xy =
p(z) in [1].

Theorem 3.2 Let X be a Q-homology plane with trivial Makar-Limanov
invariant and let ρ : X → B be an A1-fibration with a unique multiple fiber
mA of multiplicity m > 1. Let B ′ → B be a cyclic Galois covering of order m
ramifying totally over the point P0 = ρ(A) and let Y be the normalization of
the fiber product X×BB

′. Then Y is isomorphic to a hypersurface xy = p(z),
where p(z) is a polynomial of degree m in z with distinct linear factors. The
given Q-homology plane X is regained as the quotient of X with respect to a
Z/mZ-action.

Proof. We shall give a rough sketch of the proof, leaving the details to a
paper by A. Dubouloz. We use the projective embedding X ↪→ V considered
in Lemmas 2.6 and 2.7. In particular, the fiber F0 of p : V → B over the
point P0 is supported by G + A, where the dual graph is a linear chain and
A is the closure of A in V . Let G1 be the irreducible component of G such
that (G1 · A) = 1. Let σ : B

′
→ B be a cyclic Galois covering of order

m ramifying totally over the points P0 and P∞ = p(F∞). Let W ′ be the
normalization of V in the function field of V and let τ ′ : W ′ → V be the
normalization morphism. Then the branch locus of τ ′ contains F∞ and is
contained in the sum F∞ + G. Hence W ′ has a P1-fibration q′ : W ′ → B

′
.

The singularity of W ′ are at most cyclic quotient singularities which arise
from the intersection points of the branch locus and lie on the fiber q′−1(P ′

0),

where P ′
0 is the point of B

′
lying over P0. Let ν : W → W ′ be the minimal

resolution of the singular points of W ′ and let τ = τ ′ · ν : W → V . Then
there is an induced P1-fibration q : W → B

′
, which satisfies σ · q = p · τ .

Remind that the component A splits into a disjoint union of m affine lines
B1, . . . , Bm. This implies that the component G1 is not contained in the
branch locus of τ ′ and hence τ . Let H1 be the irreducible component of
q−1(P ′

0) lying over G1. Then τ |H1
: H1 → G1 is a cyclic covering of order

m, and there are m irreducible components B1, . . . , Bm of q−1(P ′
0) such that

(H1 · Bi) = 1 and Bi ∩ Y = Bi for 1 ≤ i ≤ m. Since B1, . . . , Bm are
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reduced in q−1(P ′
0), the multiplicity of H1 in q−1(P ′

0) is accordingly equal
to 1. So, we can contract all the components of q−1(P ′

0) except for H1 and

B1, . . . , Bm. Let W̃ be the surface thus obtained from W . Then W̃ has a
P1-fibration q̃ : W̃ → B and Y is embedded into W̃ as an open set, and the
boundary divisor D̃ := W̃ − Y consists of the cross-section S̃ of q̃, the fiber
F̃∞ lying above the point at infinity Q∞, and the fiber F̃0 = H̃1 +

∑m

i=1 B̃i,

where Q∞ is a unique point lying above P∞, S̃ is the inverse image of S and
H̃1, B̃1, . . . , B̃m are respectively the proper transforms of H1, B1, . . . , Bm.
Then it is straightforward to see that the canonical divisor KY , that is to
say, the restriction of K �

W
onto Y , is trivial. On the other hand, since all the

Ga-actions on X lifts up to Y by Lemma 2.2, Y is a smooth affine surface with
trivial Makar-Limanov invariant. Hence the Makar-Limanov invariant of Y
is trivial by [1, Lemma 4], and Y is isomorphic to a hypersurface xy = p(z)
with deg p(z) = m. Q.E.D.

4 Etale endomorphisms of Q-homology planes

In [4], the generalized Jacobian conjecture for Q-homology planes is consid-
ered. It is shown that any étale endomorphism of a Q-homology plane X is
an automorphism if one of the following conditions is satisfied:

(1) κ(X) = 2 or 1.

(2) κ(X) = −∞ and X has an A1-fibration ρ : X → B with at least two
multiple fibers.

In this section, we shall consider the generalized Jacobian conjecture for
a Q-homology plane X with an action of the additive group, which has
accordingly κ(X) = −∞. We shall rectify some of the arguments in [4]. We
recall the following two lemmas (cf. [4, Lemma 6.1] and [4, 7, Lemma 3.1]).

Lemma 4.1 Let ρ : X → B be an A1-fibration on a Q-homology plane.
Suppose that ρ has at least two singular fibers. Let g : A1 → X be a non-
constant morphism. Then the image of g is a fiber of ρ.

Lemma 4.2 For i = 1, 2, let ρi : Xi → Bi be A1-fibrations on Q-homology
planes. Let φ : X1 → X2 and β : B1 → B2 be dominant morphisms such
that ρ2 · φ = β · ρ1. Let mΓ be an irreducible fiber of ρ2 lying over a point
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p ∈ B2 with m ≥ 1 and Γ reduced, and let q ∈ B1 be a point such that
β(q) = p. Suppose ρ∗1(q) = `∆, where ∆ is reduced and irreducible and `
is its multiplicity. Suppose furthermore that φ is an étale morphism. If the
ramification index of β at q is e then `e = m. In particular, if m = 1 then
` = e = 1.

Applying these lemmas, we shall show the following result.

Lemma 4.3 Let X be a Q-homology plane with an A1-fibration ρ : X → B.
Let m1A1, . . . , mnAn exhaust all multiple fibers of ρ. Let φ : X → X be an
étale endomorphism. Then the following assertions hold:

(1) If n ≥ 2, then there exists an endomorphism β of B such that ρ·φ = β·ρ.

(2) The above endomorphism β is an automorphism provided n ≥ 3 or
n = 2 and {m1, m2} 6= {2, 2}.

Proof. The first assertion is an immediate consequence of Lemma 4.1. So,
we consider the second assertion. We employ the arguments in [7, Lemmas
3.1 and 3.2]. Note that β : B → B is a finite morphism because B is the
affine line. By Lemma 4.1, the set {p1, . . . , pn} is mapped to itself by β,
where pi = ρ(Ai). Suppose, furthermore, that the points q1, . . . , qs, none
of which belongs to {p1, . . . , pn}, are mapped to {p1, . . . , pn}. Then, by
Lemma 4.2, the ramification index of β at qj, say ej, is larger than 1. In fact,
if β(qj) = pi then ej = mi.

Since β induces an étale finite morphism

β : B − {p1, . . . , pn, q1, . . . , qs} −→ B − {p1, . . . , pn},

the comparison of the Euler numbers gives rise to an equality

1 − (n+ s) = d(1 − n), (1)

where d = deg β. On the other hand, by summing up the ramification indices,
we have an inequality

2s+ n ≤ dn. (2)

So, by combining (1) and (2) together, we have an inequality

2(d− 1)(n − 1) = 2s ≤ (d− 1)n. (3)
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Suppose d > 1. Then n ≤ 2. Hence, if n ≥ 3 then d = 1 and β is an
automorphism. Suppose that d > 1 and n = 2. Then the equality occurs
in (3), and hence the equality occurs in (2). Namely, the ramification index
ej at qj is two for all j, and s = d − 1. Since d > 1 implies s > 0, we
may assume that q1 is mapped to p1. Then m1 = 2. Suppose d ≥ 3. Then
2s = 2(d − 1) > d. Hence one of the qj is mapped to p2, . . . , pn, say p2.
Hence m2 = 2. In this case, after a suitable change of indices, one of the
following two cases is possible:

(1) s = s1 + s2 = d− 1, and q1, . . . , qs1
, p1 (or p2) (resp. qs1+1, . . . , qsp2 (or

p1) are mapped to p1 (resp. p2).

(2) s = s1+s2, d = 2s1 = 2s2+2, and q1, . . . , qs1
(resp. qs1+1, . . . , qs, p1, p2)

are mapped to p1 (resp. p2).

Finally, suppose that d = n = 2 and s = 1. Then we may assume that
β(q1) = p1 and β(p1) = β(p2) = p2. Then m2 = 2 as well by Lemma 4.2. So,
if {m1, m2} 6= {2, 2}, then d = 1 and β is an automorphism. Q.E.D.

As a consequence of Lemma 4.3, we can prove the following result, which
rectifies Theorem 6.1 in [4].

Theorem 4.4 Let X be a Q-homology plane with an A1-fibration ρ : X →
B. Let m1A1, . . . , mnAn exhaust all multiple fibers of ρ. Suppose that either
n ≥ 3 or n = 2 and {m1, m2} 6= {2, 2}. Then any étale endomorphism
φ : X → X is an automorphism.

Proof. By Lemma 4.3, there exists an automorphism β of B such that
ρ · φ = β · ρ. Since β is an automorphism, Lemma 4.2 implies that β induces
a permutation of the finite set {p1, . . . , pn}. By replacing β by its suitable
iteration βr, we may assume that β induces the identity on {p1, . . . , pn}.
Since n ≥ 2 and β ( or rather an induced automorphism of the smooth
compactification B of B) fixes the point at infinity p∞. Hence β is then the
identity automorphism.

Let K = k(B) be the function field of B and let XK be the generic fiber
of ρ. Then XK is isomorphic to the affine line over K, and φ induces an étale
endomorphism φK of XK . Since φK is then finite, φK is an automorphism.
Hence φ is birational. Then Zariski’s Main Theorem implies that φ is an
open immersion. Note that Pic (X) � = 0 and Γ(OX)∗ = C∗. Suppose that
X 6= φ(X). Then X − φ(X) has pure codimension one. Since Pic (X) � = 0,
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there exists a regular function h on X such that the zero locus (h)0 of h is
supported by X−φ(X). Then φ∗(h) is a non-constant invertible function on
X, which contradicts the property Γ(OX)∗ = C∗. So, φ is an automorphism.

Q.E.D.

In the case {m1, m2} = {2, 2}, d = n = 2 and s = 1, there exists the
following counter-example to the generalized Jacobian conjecture.

Example 4.5 Let V0 = P1 × P1. Let M0 be a cross-section and let `0, `1, `∞
be distinct three fibers with respect to the second projection π2 : P1×P1 → P1.
Let ϕ : V → V0 be q sequence of blowing-ups with centers at `0 ∩M0, `1 ∩M0

and their infinitely near points such that ϕ∗(`0) = `′0 + E1 + 2E2 + 2E3 and
ϕ∗(`1) = `′1 + F1 + 2F2 + 2F3, where (`′0

2) = (`′1
2) = (Ei

2) = (Fi
2) = −2 for

i = 1, 2 and (E3
2) = (F3

2) = −1. Let

X := V − (`∞ +M ′
0 + `′0 + `′1 + E ′

1 + F ′
1 + E ′

2 + F ′
2) .

Hence X has an A1-fibration ρ : X → B with two multiple fibers 2E3 ∩
X, 2F3 ∩ X of multiplicity 2. Then X has a degree two, non-finite étale
endomorphism.

In fact, let σ : B ′ → B be a degree two covering ramifying over the point
at infinity p∞ and p0, where p0 = ρ(E3 ∩X). Let X̃ be the normalization of

X ×B B ′, let τ : X̃ → X be the composite of the normalization morphism
and the first projection X×BB

′ → X and let ρ̃ : X̃ → B ′ be the A1-fibration
induced naturally by ρ. Then ρ̃∗(q0) is a disjoint sum G1 + G2 of two affine

lines and τ : X̃ → X is a finite étale morphism, where q0 is a point of B ′

lying over p0. Then X̃−G1
∼= X̃−G2

∼= X, and τ | �X−G1
and τ | �X−G2

induce
a non-finite étale endomorphism of X.
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