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Résumé. Le but de ce papier est d’étudier les déterminants de quelques
familles de matrices reliées au triangle de Pascal.
Abstract': The aim of this paper is to study determinants of matrices
related to the Pascal triangle.

1 The Pascal triangle

Let P be the infinite symmetric “matrix” with entries p; ; = (“ZLJ) for 0 <
1,j € N. The matrix P is hence the famous Pascal triangle yielding the
binomial coefficients and can be recursively constructed by the rules pg; =
pio =1 fori>0and p;; = pi—1j + pij—1 for 1 <4, 7.

In this paper we are interested in (sequences of determinants of finite)
matrices related to P.

The present section deals with determinants of some minors of the above
Pascal triangle P, perhaps slightly perturbed.

Sections 2-6 are devoted to the study of matrices satisfying the Pascal
recursion rule m; ; = m;_1j +m;j—1 for 1 <4,j < n (with various choices
for the first row mg ; and column m; ). Our main result is the experimental
observation (Conjecture 3.3 and Remarks 3.4) that given such an infinite
matrix whose first row and column satisfy linear recursions (for instance
given by the Fibonacci sequence), then the determinants of a suitable se-
quence of minors seem also to satisfy a linear recursion. We give a proof if
all linear recursions are of length at most 2 (Theorem 3.1).

Section 7 is seemingly unrelated since it deals with matrices which are
“periodic” along strips parallel to the diagonal. If such a matrix consists
only of a finite number of such strips, then an appropriate sequence of de-
terminants satisfies a linear recursion (Theorem 7.1).
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Section 8 is an application of section 7. It deals with matrices which are
periodic on the diagonal and off-diagonal coefficients satisfy a different kind
of Pascal-like relations. o

We come now back to the Pascal triangle P with coefficients p; ; = (*17).
Denote by P(n) the n x n minor defined by the first n rows and columns of
P. One has then the following well-known result.

Proposition 1.1. (i) The matrix P(n) has determinant 1 for alln > 0.

First proof. Subtract row number n — 2 (rows and columns of P(n)
are indexed from 0 to n — 1) from row number n — 1. Subtract then row
number n — 3 from row number n — 2 and keep on going until subtracting
row number 0 from row number 1. Do the same operations on columns.
The result is essentially P(n — 1) which implies the result by induction on
n. QED

Second proof. The matrix T with coefficients ¢; ; = (;), 0<i,57<mn
is an inferior triangular matrix of determinant 1. The classical and easy

identity ., : , W+
= ()0) -5 ()0.) - (0

implies then T' T* = P(n). QED

Proposition 1.1 has the following easy generalization. Let Q(z,y) €
Q[z,y] be a polynomial in two variables z,y and let Pg(n) be the matrix
with coefficients p; ; = (“:7) +Q(4,7), 0 <4,j < n. Write the polynomial

Q(z,y) in the form
o= o))

where (?) = 3z(z — 1)+ (z — s + 1). Let Cg(n) be the square matrix of
order n with coefficients c; ; for 0 <4, 5 < n.

Elementary operations on rows and columns similar to those in the first
proof above show the following result.

Proposition 1.2. One has for all n
det(Pg(n)) = det(Cq(n) + Idy)

where Id,, denotes the identity matrix of order n.
In particular, the sequence of determinants

det(Pp(0)) = 1,det(Pg(1)) = 1 + ¢, det(Pg(2)),. ..

becomes constant for n > p where i = min(degree,(Q), degree,(Q)) with
degree, (Q)) (respectively degree,(Q))) denoting the degree of () with respect
to x (respectively y).

What about other minors of the infinite matrix P? Denote by P;;(n)
the n x n minor of P with coefficients (i+gi:+t), 0 <4,j < n and denote by
D, ¢(n) = det(Ps4(n)) its determinant.



Theorem 1.3. We have

s—1

Ds,t(n) = H
k

- n+k—|—t)
=0

("
(k+t) ,8,t,n>0.
t

This Theorem follows for instance from the formulas contained in section
5 of [GV] (a beautiful paper studying mainly determinants of finite minors
of the matrix T" with coefficients t; ; = (z) ). We give briefly a different proof.

Proof of Theorem 1.3. Proposition 1.1 and elementary row-operations
establish the Theorem for s = 0 and all ¢. Multiplying the matrix P, (n) at
the left with the diagonal matrix having entries s!, (s + 1)!,...,(s +n —1)!
and at the right by a diagonal matrix with entries ¢!, (t+1)!,...,(t+n—1)!
yields a matrix with entries (1 + s+ j +t)!, 0 < i,7 < n (this matrix has
determinant []%_, 4! (i+s+1)! as can fairly easily be checked) which implies
the equality

(s +n)! t! Dgy14(n) =s! (t+n)! Dsypi(n) .

A small computation shows that the formula of Theorem 1.3 for Dy (n)
satisfies the same identity which proves the result. QED

Remarks 1.4. (i) For s,t > 1, let f)s,t(n) be the determinant of the
matrix with entries a;; = (Zﬂzjr'j”) —1, 0 <4,5 < n. The function n —
f)s,t(n), n > 1 seems then to be polynomial of degree st — 1.

(ii) (Cf. Proposition 1.2.) More generally, consider a matrix A(n) hav-
ing coefficients a; j = (iﬂf:ft’) +Q(1,7) with Q(z,y) € C[z,y] a polynomial.
Then the function

n — det(A(n))

seems to be polynomial of degree < st for n big enough.
(iii) Consider the symmetric matrix G of order k with coefficients
gi; = Ykl ) (;) for 0 <i,j < k. Theorem 1.3 implies det(G) = Dy, x(n).

Let us now consider the following variation of the Pascal triangle. Recall
that a complex matrix of rank 1 and order n x n has coefficients «;; (for
0 <14, < n) where @ = («g,...,ap—1) and 8 = (Bo,...,0n—1) are two
complex sequences, well defined up to Aa, %ﬁ for A € C*.

Given two infinite sequences o = (g, aq,...) and 8 = (B, f1,...) con-
sider the n x n matrix A(n) with coefficients a; ; = a;,—1,; + a; j—1 + a;0; for
0 <1i,j < n (where we use the convention a; 1 =a_1; =0 for all 7).

Proposition 1.5. (i) The coefficient a; ; (for 0 <i,j < n) of the matrix
A(n) is given by

i J
ai; = Z Z i st <8 _: t) .
s=01¢=0

(ii) The matrix A(n) has determinant (co/fBp)".
Proof. Assertion (i) is elementary and left to the reader.



Assertion (ii) obviously holds if &y = 0 or Sy = 0. We can hence suppose
Bo = 1. Proposition 1.1 and elementary operations on rows establish the
result easily for arbitrary o and 8 = (1,0,0,0,...). The case of an arbitrary
sequence 3 with 8y = 1 is then reduced to the previous case using elementary
operations on columns. QED

Determinants of matrices with coefficients among (‘;) ~! seem also to have
interesting properties: Given three integers s,t,n > 0 let d, ;(n) denote the
determinant of the n x n matrix M with coefficients

its+jtt
Mg = 1+ 8

-1
) for0<i,j<n.
Conjecture 1.6. One has

ds1(n) = (_1)(2 HZ;é (Zk’;:_s:t) (2k—1k+s+t) :

Remark 1.7. For 0 < k € N introduce the symmetric matrix Ag(n) of
order n with coefficients a; ; = m, 0 <14,7 < n. A small computation
shows then that conjecture 1.6 is equivalent to

det(Ax(n)) = H n+k+z—1)

i=0
(with k = s + t).

Another variation on theme of Pascal triangles is given by onsidering
the n x n matrix A(n) with coefficients a; o = p*, ap; = 0%, 0 <i < n and
a;; = ai—1;+0ij—1+Ta—1;-1, 1 <1, <n. Settingz =0, p=0=1we
get hence the matrix defined by binomial coefficients considered above. Cf.
Problem 77 in Am. Math. Monthly, 7?7 for the case p =0 = 1.

Conjecture 1.8. One has

n—1

det(A(n)) = 1+ 2)("2) (z +p+ 0o — po)"! .

Let now A(n) be the symplectic (antisymmetric) n X n matrix defined
by aii =0, 0 <i<n,ai0=—ap;i=p" ' 1<i<n,a;=a1;+a,; 1+
z a;-1,5-1, 1 <14,j <n. One seems to have

det(A(2n)) = (14 2)°"D" (p+ 2)>72

Finally, consider the symplectic n x n matrix A(n) defined by a0 =
—ap; =1, 0<i<mn,a;;=0a;1;+a,; 1+xa 151, 1<4,7<n. One
seems then to have

det(A(2n)) = (1 +)*(5) |



Let us close this introduction by mentioning a somewhat trivial gener-
alisation of the Pascal triangle: Given a power series F(z) = .22, 52"
consider the n x n matrix A(n) with coefficient

a;; = coeflicient of Zin (F(2))", 0<i,j<n.

It is straightforward to check that F(z) = ﬁ = 3"2°, 2" yields the Pascal
triangle. )
Similarly, considering the matrix A(n) defined by

a; j = coefficient of 27 in (F(2))", 0<i,j<n.

Theorem 1.9. Given F(z) = 3332, spz® the matrices A(n) = Ap(n)
and A(n) defined as above have determinants

det(A(n)) = sg sgg) and det(A(n)) = sgg) .

Sketch of proof. The formula for det(A(n)) is easily seen to hold if
sos1 = 0 for F(z) = 352 skz¥. Otherwise, the coefficients a; ; of the j—th
column are polynomial in ¢ with leading coefficient (?)sgfj s7. This shows
that det(A(n)) depends only on sp and s;. Proposition 1.1 shows that A(n)
has determinant 1 if sy = s; = 1. The general case follows now easily.

The proof for A(n) is similar. QED

2 Generalized Pascal triangles

Let a = (ap,1,...) and 8 = (8o, S1,...) be two sequences starting with
a common first term vy = ag = fBy. Define a matrix P, g(n) of order n
with coefficients p; ; by setting p;0 = i, po; = B; for 0 < ¢ < n and
Pij = Pi—1,j + pij—1 for 1 <4,5 <n.

It is easy to see that the coefficient p; ; of P, g(n) is also given by the
formula

o= V) (e (7)) (Lo (7).

We call the infinite “matrix” P, g(co) the generalized Pascal triangle
associated to «, S.
We will mainly be interested in the sequence of determinants

(det(Pa,(1)) = 70, det(Fa,5(2)) = v0(a1+B1) =1 i, ..., det(Pas(n)),...) .

Example 2.1. Take an arbitrary sequence a = (ag,a,...) and let
B be the constant sequence 8 = (ay, ap, g, .-.). Proposition 1.5 implies



det(A(ag,a1,...),(a0,00,-) (7)) = af (using perhaps the convention 0 = 1).
This yields an easy way of writing down matrices with determinant 1 by
choosing a sequence a = (ap = 1, @1, . ..). The finite sequence o = (1,—2,5,11)
for instance yields the determinant 1 matrix

1 1 1 1
-2 -1 0 1
5 4 4 5

11 15 19 24

3 Linear recursions

This section is devoted to general Pascal triangles constructed from se-
quences satisfying linear recursions. Conjecturally, the sequence of determi-
nants of such matrices satisfies then again a (generally much longer) linear
recursion. We prove this in the particular case where the defining sequences
are of order at most 2.

Definition. A sequence o = (09,01, 09,...) satisfies a linear recursion
of order d if there exist constants Dy, Ds,..., Dy such that

d
Op = ZDi Op_; forallm>d.
i=1

The polynomial
24— Z D; P
i=1

is then called the characteristic polynomial of the linear recursion.

Let us first consider generalized Pascal triangles defined by linear recur-
sion sequences of order at most 2:

Given 7y, a1, 81, A1, As, B1, By we set ag = By = 9 and consider the
square matrix M (n) of order n with entries

m;0 = a;, 0 <4 <n where o = Arag_1 + Agag_o, k> 2,
mo,; = Bi, 0 <1 <n where By = B1Sy—1 + Befk—2, k> 2,
myj = Mi—1,5 + M -1, 1<4,5<n.

The matrix M (3) for instance is hence given by

Yo B B151 + Bayo
M(3) = a a1 + B a1 + B+ BB + Bayo
Ajar + Ay ar + B+ Arag + Az ms3,3

where m33 = 2c1 + 201 + Aoy + B + AQ’)/() + By7p.
We have hence M(n) = P, g(n) where P, g is the generalized Pascal
triangle introduced in the previous section.



We set d(n) = det(M(n)) for n > 1 and introduce the constants

Dy = —(A181 + Biags —2(a1 + B1) + 70 (A1Ba + Aa By — (Ag + Bg) + A3 By))
Dy = — (A2yo + a1 + (1 — Ay — A2)fB1) (Bayo + f1 + (1 — By — Bo)ay) -

Theorem 3.1. The sequence d(n), n > 1 defined as above satisfies the
following equalities

d(1) =0 »
d(2) = v(a1 + 1) —aufr,
d(n) =D1d(n—1)+ Dy d(n—2) for alln >3 .

Theorem 3.1 will be proven below.
Example 3.2 (a) The sequence (det(Py,3(n)))n=1,,.. of determinants
associated to two geometric sequences

a=(1,A,4A%,... ap = A¥ ..)
B=(1,B,B%...,0, = B*,..)

is given by
det(Pyp(n)) = (A+ B — AB)" 1.

Let a = (ag,1,...) and B = (By, f1,---) be two sequences satisfying
agp = By = 7o and linear recursions

op =>4 1 Ajay_; forn>a,
Bn = Y4_1 Biffui for n>b

of order a and b.
Theorem 3.1 and computations suggest that the following might be true.
Conjecture 3.3. If two sequences a = (ag,aq,...),0 = (6o, 01,--.)
satisfy both linear recurrence relations then there exist a natural integer
d € N and constants D1, ..., D, (depending on «, 3) such that

d
det(Pa,s(n)) =>_ D; det(Pag(n—i)) foralln>d.
=1

Remarks 3.4. (i) Generically, (ie. for @ and 8 two generic sequences
of order a and b such that oy = ffy) the integer d of Conjecture 3.3 seems to
be given by d = (*}*7?).

(ii) Generically, the coefficient D; seems to be a homogeneous form (with
polynomial coefficients in A4, ..., As, B1, By) of degree i in 7y, a1, @g—1, 81, - - - Bp—1-
For non-generic pairs of sequences (try f = —a with a = (0, a1, . ..) satisfy-
ing a linear recursion of order 3) the coefficients D; may be rational fractions
in the variables.



(iii) If a = b > 1 and the recursive sequences «, 3 are generic, then the
coefficients Dy = —1,D,..., D4 of the linear recursion in Conjecture 3.3
seem to have the symmetry

Dy_i = ¢“=*/2p;

where ¢ is a quadratic form in g, a;, 8; factorizing into a product of two
linear forms which are symmetric under the exchange of parameters «a; with
B; and A; with B; (this corresponds to transposing P, g).

Theorem 3.1 shows that the generic quadratic form g working for a =
b =2 is given by

g2 = (A270 + a1 + (1 — A1 — A2)61) (Bayo + f1 + (1 — B1 — Bo)aur) .
The generic quadratic form g3 working for a = b = 3 seems to be

3 = (Asyv+o+ar+(1—-A—Ay— A3)ph)
(B3vo+B1+ P2+ (1 — By — By — B3)ay) -

Example 3.5. Consider the 3—periodic sequence a = (ag, a1, @9, . .., 0 =
ag_3,...). The sequence d(n) = det(P,(n)) seems then to satisfy the re-
cursion relation

d(n) = Dy d(n—1) + Dy d(n —2) — (ap + a1 + a2) Dy d(n — 3)
—(ag + a1 + @2)3Dy d(n —4) + (g + a1 + az)® d(n — 5)
where

Dy = 11aq + bas
Dy = —(3a3 + 3702 + 303 + 15apa; + bagas + 24a1as) .

In the general case

a= () =7,01,Q2,...,0Q = Qf_3,-..)

/B: (160 :70’1817162""’1619 :,Bk_g,---)

of two 3— periodic sequences (starting with a common value 7)) one seems
to have

d(n) = D1d(n—1)+Dyd(n—2)+D3d(n—3)4+qDad(n—4)+¢>D1d(n—5)—¢*d(n—6)
where
g= (70 +o1+a)(vn+ L+ P)
Dy =y +6(aq + B1) + 3(az + B2)

Dy = — (372 +12(a2 + 2) + 13y9(a1 + B1) + 5y0(a2 + B2)
+9(a1ag + B152) + 11(a1 P2 + azfr) + 2400 1 + 8aw )



D3 =673 +73(18(a1 + B1) + 8(az + B2)) +70(25(e + B2) + 3(a + 53)
+18(arag + B162) + 5da1 B + 26(a1 B2 + azf1) + 10a232)
+9(af + B7) + 9(afas + A7 B2) + 28(af B + a1 BF) + 22(af B2 + 2f3?)
+3(c1 83 + a31) + 3(a3 P2 + a2f33) + 30(a1aofy + a18182) + 24(cr B + 251 52)

Let us briefly explain how Conjecture 3.3 can be tested on a given pair
a, (@ of linear recurrence sequences.

First Step. Guess d.

Second step. Compute at least 2d + 1 terms of the sequence

wi = det(Po (1)), ws = det(Py 5(2)),... .

Third step. Check that the so-called Hankel matriz

w1 w9 w3 oo WdH41
wy ws W4 e We42

Hyp(w) =
Wg+1 Wg+2 Wg+3 - W2d+1

of order d + 1 has zero determinant (otherwise try again with a higher value
for d) and choose a vector of the form

L= (DdaDdflaDdea--- ,D27D15_1)

in its kernel. One has then by definition

d
det(Pyg(n)) = Z D; det(P, g(n — 1))
i=1
ford+1<n<2d+1.

Finally, check (perhaps) the above recursion for a few more values of
n>2d+ 1.

3.1 Proof of Theorem 3.1.

The assertions concerning d(1) and d(2) are obvious. One checks (using for
instance a symbolic computation program on a computer) that the recursion

relation holds for d(3), d(4) and d(5).
Introduce now the lower and upper triangular square matrices

1 0 0 0

-A; 1 0 0

To=| 42 -4 1 0
—-A; 1

0 —A



T =

of order n and set M = T4 M Tp. The entries mij, 0 < 4,7 < nof M
satisfy m; j = m;_1; + mij—1, (4,7) # (2,2) for 2 <4,j <n. One has

Y0 pr—Bivw O 0 0
v a1 — A1y 1,1 mio 13 M1y
- 0 ma2,1 M2 o3 Moy

where

mi11 = a1+ B1 — A1 — Birag + A1 Biyo

Mg =m13="m14=...= (1 —=B1—By)oy+ 1+ Bayo

Mg =31 =mg1=...=(1— A1 — A2)B1 + a1 + A2y

Mmoo = (2— Bi)ar + (2 — A1)B1 + (A2 + By — A1 By — A2 By — A3Bo)

Developping the determinant d(n) = det(M) along the second row of M one
obtains

d(n) = (vo(a1 + B1) — a1 pr)d(n — 2) + o det(P(n — 1))

where d(n — 2) = det(M(n — 2)) with coefficients m; j = ;2,42 for 0 <
i,j <n—2 (ie. M(n —2) is the principal minor of M obtained by erasing
the first two rows and columns of M) and where P(n — 1) is the square
matrix of order (n — 1) with entries pog = 0 and p; ; = Mq1,j4+1 for 0 <
ij<n—1,(,4) # (0,0).

The matrix M(m) (m < n—2) is a generalized Pascal triangle associated
to the linear recursion sequences @ = (@, a,...) and 8 = (By, B1,...) of
order 2 defined by

@ = o= (2—Br)ar + (2 - A1)B1 + (A2 + By — A1 By — A2 By — A2 Ba)o,
gl = (3 — Bl)oq + (3 — 241 — Ag)ﬂl + (2A2 + By — A1By — A3 B — AQBQ)’)’O
B1=(3—2B1 — Ba)ay + (3 — A1)B1 + (A2 + 2By — A1Ba — A2B1 — A2Ba2)%o
a, =20p_1 —Qp_g forn>2,

By =20,_1—Bp_o forn>2.

Induction on 7 and a computation (with A; = By = 2, Ay = By = —1)
shows the equality

d(m) = Dy d(m — 1) + Dy d(m — 2)

for 3 < m < n where Dy and Dy are as in the Theorem.

10



Introducing the (n — 1) x (n — 1) lower triangular square matrix

1 0 0
1 1 0
Tr=1 0 -1 1

we get P =Tp P(n — 1) T with coefficients $; ;, 0 <4,j <n — 1 given by

P00 = Pio = Po,; =0 for 2 <i <n—1,

po, = (1 — B1 — Ba)ai + B + Bayo

P10 =(1— A1 — A2)B1 + a1 + A2y

P1i = Po, for 2 < i <n—1,

Pi1=p1o for2<i<n-—1,

P22 =(2— Bi)a1 + (2 — A1)B1 + (A2 + By — A1 By — A3 B1 — A2 Ba) o
Pij = Pi—1; +Pij—1,2<i,j<n—1, (i,5) # (2,2) .

Let P(n — 3) denote the square matrix of order (n — 3) with coefficients
Pij = Pit2,j+2 ,0 <4,j <n—3 (ie. P(n—3) is obtained by erasing the first
two rows and columns of P(n — 1)). One checks the equality

P(n—3)=M(n-—3)
where M (n — 3) is defined as above. This implies the identity

d(n) = (yo(ar + f1) —e1f1)d(n - 2) B
70 ((1 — By — Ba)ay + B1 + Bayo)((1 — Ay — A)B1 + a1 + Ayo)d(n —3) .

Using the recursion relation d(m) = Dy d(m — 1) 4+ Do d(m — 2) (which
holds by induction for 3 < m < n) we can hence express d(n) as a linear
function (with polynomial coefficients in 7y, a1, 81, A1, Ag, By, By) of d(m —
4) and d(m — 5).

Comparison of this with the linear expression in d(m — 4) and d(m — 5)
obtained similarly from D; d(n — 1) + Dy d(n — 2) finishes the proof.

4 Symmetric matrices

Take an arbitrary sequence o = (g, a1, . ..). The generalized Pascal triangle
associated to the pair of identical sequences «, « is the generalized symmetric
Pascal triangle associated to o and yields symmetric matrices P, o(n) by
considering principal minors consisting of the first n rows and columns of
Py

The main example is of course the classical Pascal triangle obtained
from the constant sequence o = (1,1,1,...). Other sequences satisfying
linear recursions like for instance the Fibonacci sequence

(0,1,1,2,3,5,8,...)

11



and shifts of it yield also nice examples.

Conjecture 3.3 should of course also hold for symmetric matrices ob-
tained by considering the generalised symmetric Pascal triangle associated
to a sequence satisfying a linear recurrence relation.

The generic order ds(a) (where a denotes the order of the defining linear
sequence) of the linear recursion satisfied by det(P,(n)) seems however
usually to be smaller than in the generic non-symmetric case. Examples
yield the following first values

4 5 6
14 41 122

a= 1 23
ds(a) = 1 25
and suggest that perhaps d, = (3971 +1)/2.

The coefficients D; seem still to be polynomial in «; and A;.

The symmetry relation has also an analogue (in the generic case) which
is moreover somewhat simpler in the sense that it is given by a linear form
p (in ap,...,aq—1) and we seem to have

Dy,—; = p* %" D;

(where Dy = —1).
Example 4.1. If a sequence

a=(ag,a1,qs,...,ap = Ajag 1 + Agay o + Azay_3,...)

satisfies a linear recursion relation of order 3, then the sequence d(n) =
det(Pp,q(n)) (the matrix P, o(n) has coefficients po; = pig =i, 0<i<n
and p; j = pi—1,; + pij—1 for 1 < 4,5 < n) of the associated determinants
seems to satisfy

d(l) = Qg ,

d(2) = 2apa1 — af

d(3) = (201 — a2) (@201 + ag) — 203)) ,

d(n) = Dy d(n — 1) + Dy d(n — 2) + pDg d(n — 3) + p® Dy d(n — 4) — p° d(n — 5)

p= —Agao + (—2 + 2A1 + AQ + A3)Oé1 — Qg ,

Dy = A3(1 — 24 — 249 — Ag)ao + (10 — 1041 — Ay + A3 + 414% + 2A1A2)041
+(5 — 44, — 2A2)a2 s

Dy = Co,oa% + C1,1OA% + 62,2043 + ¢o,1p01 + Co20p2 + C1 2001 02

12



with

coo = —A3(2—24; + 245 + A3 + A?) |
c1,1 = —40+ 8041 + 1645 + 4A5
—64A2 —2A3 — A2 — 2841 A5 — 20A1 A5 — 2A2A3
+2A1(2A1 + Ag + A3) (641 + Ag + A3) — A2(24; + Ag + A3)?,
C90 = —10+ 12A; + 642 + 843 — (2A1 + Ao + A3)2 ,
Co,1 = —A3(16 — 284 + 16A% — 2A% - Ag +2A1 A3 — 3A2A3
—24%(24; + Ay + A3))
€02 = —A3(8 — 104, — 343 + 24, (2A1 + Ao + A3)) ,
C1,2 = 2 (—20 + 32A1 + 10A2 + 9A3 — ISA% — A% — A%
—11A1A45 —12A1 A3 — 2A5A5 + A (2A1 + Ao + A3)2)

We conclude this section by mentionning the following more exotic ex-
ample:
Example 4.2. (Central binomial coefficients) Consider the sequence

2k
a = (1,2,6,20,70,252,924, 3432, 12870, 48620, 184756, . . . , vy, = (k ) )

of central binomial coefficients. For 1 < n < 36 the values of det(Pq (1))
are zero except if n = 1,3 (mod 6) and for n = 1,3 (mod 6) the values
of det(Py,q(n)) have the following intriguing factorisations:

n: det(Pa,a(n)) n: det(Paa(n))

1: 1 3. =22

7. =26 9. 2832

13: 216 36 15: —2%6 36

19: —230 32 1034 21: 224103% 42292

25: 224 3% 314 4314 42292 27 —226 36 314 592 4314 117012
31: —230310 592 117012 p* 33: 232 312 112 20172 283492 p*

where p = 4893589.
The matrix P, (n) seems to have rank n if n = 1,3 (mod 6), rank
n—1ifn=0 (mod2)andrankn—2ifn=5 (mod 6).

5 Symplectic matrices

Given an arbitrary sequence o = (g, aq,...) with ap = 0, the matrices
P, _o(n) are symplectic (antilinear).

Determinants of integral symplectic matrices are squares of integers and
are zero in odd dimensions. We restrict hence ourself to even dimensions
and consider sometimes also the (positive) square-roots of the determinants.
Even if Conjecture 3.3 holds there is of course no reason that the square roots
of the determinants satisfy a linear recursion.
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The conjectural recurrence relation for symplectic matrices has the form

d(a)
det(Pa,—a(2n)) = > Didet(Py,—o(2n — 20)) .
i=1
However the coefficients D1, ..., Dg(,) seem no longer to be polynomial but

rational for generic a. Moreover, the nice symmetry properties of the coef-
ficients D; present in the other cases seem to have disappeared too.

Proposition 5.1. (i) The symplectic matrices P, __,(2n) associated
to the sequence o = (0,1,1,1,1,...) have determinant 1 for every natural
integer n.

(ii) The symplectic matrices P, _o(2n) associated to the sequence a =

(0,1,2,3,4,5,...) have determinant 1 for every natural integer n.

Both assertions follow of course from Theorem 3.1. We will however
reprove them independently.

Proof. Consider the generalized Pascal triangle

P = P(1,1,1,...,1,...),(1,—1,—1,...,—1,...)(OO)
-1 -1 -1 -1 -1 -1
O -1 -2 -3 -4 -5

1 0 -2 -5 -9 14
2 2 0 -5 —-14 -28

|
[ S g Y

The matrices P(m) given by retaining only the first m rows and columns of
P(00) are all of determinant 1 (compare the transposed matrix P(m)? with
Example 2.1).

Expanding the determinant along the first row one gets
1 = det(P(m))

= det(P(o,l,l,l,...),—(0,1,1,...) (m)) + det(P(0,1,2,3,4’___),_(0,1’2,3’_“) (m — 1)) .

The fact that symplectic matrices of odd order have zero determinant proves
now assertion (i) for even m and assertion (ii) for odd m. QED
Remark 5.2. The coefficients p; ; of the infinite symplectic matrix

P(0,1,1,1,...),—(0,1,1,1,...)(00)

have many interesting properties: One can for instance easily check that

itj—1 itj—1
bij = . — .
” j ji—1

(with the correct definition for (*)) given by (7]) = (') =1 and (*) =0
for k = 0,1,2,3,...). These numbers are closely related to the so-called
Temperley-Lieb algebras (see for instance [GHJ]).
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There are other matrices constructed using the numbers (“t771) — (ZJ;J_ )

whose determinants seem to have interesting properties: Let A(n) and B(n)
be the n X n matrices with entries

o (2(i+j)) - (2(i+j)> nd b — (2(i+j)+1) B (2(i+j)+1)
i = i—1 i = i i—1

for 0 < 4,5 < n. One seems then to have
det(A(n)) = det(B(n)) = 2(2) .

Similarly, considering A(n) and B(n) defined by

1

3 _(2(i+j+2)> <2(z’+j+2)> 1i _(2(i+j)+5> (2(z’+j)+5
Qj.5 = - . an i,j — — .

1+1 1+1 1
for 0 < i,j < n, ie. A(n) (respectively B(n)) is the minor obtained by
erasing the first row and column of A(n + 1) (respectively B(n + 1)) one

seems to have

@2n + 1)1 2(")
n! n! 2

n+1)

det(B(n)) = (n+1) 2("3

det(A(n)) =
Principal minors of P 111,.),(0,1,1,1,...)(00) consisting of 2n consecutive
rows and columns and starting at rows and columns of index k£ =0,1,2,...
seem also to have interesting properties as suggested by computations.
Conjecture 5.3. Denote by Ty(2n) the 2n x 2n symplectic matrix with
coefficients t; ; = (¥17H71) — (R4 for 0 < 4,§ < 2n. One has

k+j k+j—1
k-1 (2n+2t)
det(Ty(2n)) = H — ,n=0,1,2,... .
iz (%)
The first polynomials
k—1 (2n+2t)
Dy(n) =] (z’l) (= \/det(Ty(2n)) ?)
t=1 \¢

are given by

S 3

SISISESES,
TEEEE
Il

(
= 2n+3)(n+1)(n+2)/6
(2n+5)(2n + 3)(n + 3)(n +2)%*(n + 1)/180

Ny
S
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The sequences (Dy(n))k=0,1,2,... (for fixed n) seem also to be of interest
since they have appeared elsewhere. They start as follows:

(D0(0)7D1(0)7D2(0)a ) = (171a17 )

(Do(1),D1(1), Do(1),...) = (1,1,2,5,14,...) (Catalan numbers)
(Do(2),D1(2),D2(2),...) = (1,1,3,14,84,...) (cf A005700 in [IS])
(Do(3), D1(3), D2(3),...) = (1,1,4,30,330,...) (cf A006149 in [IS])
(Do(4), D1 (4), D2(4),...) = (1,1,5,55,1001,...) (ct A006150 in [IS])
(Do(5), D1 (5), Do(5),...) = (1,1,6,91,2548,...) (cf A006151 in [IS])

Geometric sequences provide other nice special cases of Theorem 3.1.
Example 5.4. (i) The sequence o = (0,1, 4,42, A3,...) (for A > 0)
yields det(P,,—_o(2n)) = A2=1).
(ii) The slightly more general example a = (0,1,A + B,...,a, =
AP=BY ) yields det(Pa,_(2n)) = (A — AB + B)Xn=1),
Finally, we would like to mention the following exotic example.
Example 5.5. The sequences

:(0, ,1,2,5,14,42,...)
5=1(0,1,2,6,20,70,...)

related to Catalan numbers and central binomial coefficients yield the se-

quences r¢(n \/det ne,—ac(2n)) and rg(n \/det g, —ag(2n)):
n= 1 2 3 4 5 6 7
re(n)= 1 2 6 31 286 4600 130664
rg(n)= 1 2-2 6-22 31-2% 286-2% 4600-2° 130664 - 25
n= 8 9 10
re(n) = 6619840 591478944 93683332808
rp(n) = 6619840 -27 591478944 - 28 93683332808 - 2°

suggesting the conjecture rg(n) = 2" lrg(n) for n > 1.

5.1 The even symplectic construction and the even symplec-
tic unimodular tree

Given an arbitrary sequence 8 = (0, 31, ...) we consider the sequence o =
(0, 5o, 0,01,0,02,...) defined by ag, = 0 and agp+1 = Bp. We call this
way of constructing a symplectic matrix P, _o(2n) out of a sequence 8 =
(Bo, B, - -.) the even symplectic construction (of Pascal triangles).
Example 5.1.1. The symplectic matrix of order 6 associated to the
the sequence § = (1,1,—1,...) by the even symplectic construction is the

16



following determinant 1 matrix

0O -1 0 -1 0 1
1 0 0 -1 -1 O
0O 0 0 -1 -2 -2
1 1 1 0 -2 -4
o 1 2 2 0 -4
-1 0 2 4 4 0

By elementary operations on rows and columns it is easy to check the
identity

det(P0,65,0,61,0,82,...),— (0,60,0,61,...) (27))
= det(P(O,ﬂO:,ﬁOaﬁl;ﬂl;ﬂ2,ﬂ2,---),—(0,ﬂ0,ﬂ0,ﬁ1,,61,---)(2n))
for all n and 8 = (B, f1,---)-
The main feature of the even symplectic construction is perhaps given
by the following result.
Theorem 5.1.2. (i) Let (8o, 1,---,0n—1) be a sequence of integers
such that

det(P((],/BOyO;/BIa---ao’ﬂnfl)!_(ozﬂo;ozﬂl7---705ﬁ’n71)(2n)) = 1 )

Then there exists a unique even integer By, such that

det(Pig 50 0.81,..0,8n-1.0,fn+1),—(0,00,0,81,0,6n-1,0,3nt1) (21 1 2)) =
det(Pg 50.0,61,...0,8n-1,0,5m)—(0,60.0,81,-0,8n1,0,30) (210 T 2)) = 0
det(Pg 50.0,61,..0,0n 1,05 —1)—(0,0,0,81 0,5 1,0,n—1) (270 +2))

(ii) If 8 = (Bo, B, B2,-..) and B = (By, B, B5,--.) are two infinite
sequences of integers satisfying the assumption of assertion (i) above for all
n, then there exists a unique integer m such that (; = Bi for i < m and
B = Bm + €, Bl = By — € with By, as in assertion (i) above and € € {£1}.

Proof. The determinant of the symplectic matrix

P(0’5070’51""10’/3n—1’Oaw)7_(01/30’07ﬂ17""01/3n—110’$) (2n + 2)

is of the form D(z) = (ax + b)? for some suitable integers a and b (which
are well defined up to multiplication by —1).

It is easy to see that it is enough to show that a = £1 in order to prove
the Theorem (the integer Brm equals then —ab and is even by a consideration
(mod 2)). This is of course equivalent to showing that the polynomial D(z)
has degree 2 and leading term 1.

Consider now the symplectic matrix M of order 2n+2 defined as follows:
The entries of M except the last row and column are given by the odd-order
(and hence degenerate) symplectic matrix

P(O,ﬂo,o,ﬂl,---,o,ﬁnfl,0),—(0,ﬂ0,0,,31,---,0,,37,,71,0) (277/ + 1) N
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The last row (which determines by antisymetry the last column) of M is
given by
1,1,1,...,1,1,0) .

It is obvious to check that det(M) is the coefficient of z? in the polynomial
D(z) introduced above.

Subtract now row number 2n — 1 from row number 2n of M (with rows
and columns of M indexed from 0 to 2n + 1), subtract then row number
2n — 2 from row number 2n — 1 etc. until subtracting row number 0 from
row number 1. Do the same operations on columns thus producing a sym-
plectic matrix M which is equivalent to M and whose last row is given by
(1,0,0,...,0,0). The determinant of M equals hence the determinant of
the minor of M obtained by deleting the first and last rows and columns in
M. This minor is given by

P(Oa/BOaOa/Bl5'-'507ﬂn—1)1_(05ﬂ0105ﬂ15'-'705/371.—1) (2n)

thus showing that det(M) = 1 = a?. QED
The set of sequences

{Oé = (0,,30,0,,31,0,,82, .. ) | det(Pa,_a(2n) = 1, n = 1,2,3,. . }

associated to unimodular symplectic matrices P, o(2n) consists hence of
integral sequences and has the structure of a tree. We call this tree the even
symplectic unimodular tree.

The beginning of this tree is shown below and is to be understood as
follows:

Column ¢ displays the integer ﬁz of the Theorem. Indices indicate if
B; = f3i +1 or f3; — 1. Hence the row

041 041 01 —841 6841 434748+
corresponds for instance to the sequence
(1,1,-1,-7,69)
implying G5 = 434748 (the sequence (1,1, —1,—7,69) can hence be extended
either to (1,1,—1,—7,69,434749) or to (1,1,—1,—7,69,434747)).

We have only displayed sequences starting with 1 since sequences starting
with —1 are obtained by a global sign change.
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Table 5.1.3. (Part of the even symplectic unimodular tree).

011 041 041 Opyg 041 0+
041 041 041 Ops 01 —100+
041 041 041 Oy —42,, 32658
041 041 041 Oy —42,  —39754,

041 041 Oy —841 684 434748
041 041 O_; —84;  68_;  —400344.
041 Opp 0. —8.; —254,, 12922350,
041 041 O_y —8_; —254_; —132589264

001 01 241 041 2404 13257990
001 01 241 041 240_, —12023278.
041 0_1 241 01 —Tdy 400664
001 01 241 0., —74,  —434420,
001 05 2, 04 364, 39594,
041 01 2.5 0. 36,  —328104
041 0_1 21 0 2.1 92,
01 01 27 0 2., 0+

6 A sympletric tree?

The construction of a generalized Pascal triangle P, g(co) needs two se-
quences o = (ag,a1,...) and 8 = (By, B1,...). Starting with only one
sequence a = (g, aq, . ..) and considering P, ,(00) we get generalized sym-
metric Pascal triangles and considering P, ,(c0) we get generalized sym-
plectic Pascal triangles. Since the sequence & = (&y = ap, &1 = —aq, G0 =
ag,...,a&; = (—1)'qy,...) is half-way between o and —a, we call the gener-
alized Pascal triangle P, 4(00) the generalized sympletric Pascal triangle.
The two sequences

a=1(0,1,1,2,3,5,8,13,...) Fibonacci
(0,1,1,0,—1,—1,0,1,1,0,—1, —1,...) 6 — periodic

«

and the associated sequences & satisfy all linear recursions of order 2. Theo-
rem 3.1 and a computation of the first few values show that both sequences
det(Pa,a(n)) equal 0,1,2,22,23 ... 272 .. All the following finite se-
quences yield matrices P,g(n) with determinants 0,1,2,4,8,16,32,64 (for
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n=1,23,...) too:

0112 &5 13 34 86+ 4
0112 5 13 28 79+4
0112 5 9 20 77 £ 38
0112 5 9 2 —-193+110
0112 3 5 10 19+6
0112 3 5 8 1241
0112 3 3 10 —3x6
0112 3 3 =2 9+30
0110 1 3 4 —31+38
0110 1 3 —-14 167+110
0110 1 -1 2 1+4
0110 1 -1 -4 —17+4
0110 -1 1 10 33+6
0110 -1 1 -2 —27+£ 30
0110 -1 -1 2 3L+6
0110 -1 -1 0 241

Problem 6.1. Has the set of all infinite integral sequences o = (0, 1,1, as, .. .)
such that det(P,a(n)) = (0, 1,2,4,...,2"‘2,...)n:1,27___ the structure of a
tree (ie. can every finite such sequence of length at least 3 be extended by
one next term in exactly two ways)?

7 Periodic matrices

In this section we are interested in matrices coming from a sort of “periodic
convolution with compact support on N”.

We say that an infinite matrix A with coefficients a;;, 0 < 4,5 is
(s,t)—bounded (s,t € N) if a; ; = 0 for (j — 1) & [—s,t].

We call a matrix with coefficients a;;, 0 < 4,5 p—periodic if a;; =
a;_pjpfori,j>p.

An infinite matrix P with coeflicients p; ;, 0 < 4,7 is a finite perturbation
if it has only a finite number of non-zero coefficients.

As before, given an infinite matrix M with coefficients m; ;, 0 < 1,5 we
denote by M (n) the matrix with coefficients m; j, 0 < ,j < n obtained by
erasing all but the first n rows and columns of M.

Theorem 7.1. Let A = A + P be a matrix where A is a p—periodic
(s,t)—bounded matrix and where P is a finite perturbation. Then there
exist constants N,d < (S;Lt),C'l, ...,Cyq such that

d
det(A(n)) = _ C; det(A(n — ip))
=1
forn > N.
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We will prove the theorem for p = 1, s = ¢ = 2 and then describe the
necessary modifications in the general case.

Proof in the case p =1, s =t = 2. Suppose n huge. The matrix
A(n) has then the form

A(n) =

Q o0
S0
O&QO"'

S o0

Developping the determinant possibly several times along the last row one
gets only matrices of the following six types

d e 0 d e 0 .d 00
T, = c d e T, = c d 0 Ty = c e 0

b ¢ d b ¢ e b d e

a b c a b d a c d

d e 0 d 00 d 00
T, = c d 0 Ty = c e 0 T = c 00

b ¢ 0 b d 0 b e O

a b e a c e a d e
and writing t;(m) = det(7T;(m)) we have the identity

t1(m) c =ba 0 00 ti(m—1)

to(m) d 0 0 —b a 0 ta(m — 1)

ts(m) | 1 0 d 0 — 0 a ts(m —1)

ta4m) | | e 0 0O 0 0 O ta(m —1)

ts(m) 0 e 0 0 0O ts(m —1)

te(m) 0 0 0 e 00O te(m — 1)

for m huge enough. Writing R the above 6 x 6 matrix relating ¢;(m) to
t;j(m — 1) we have t(n) = R""VNt(N) for n > N huge enough and for ¢(m)
the vector with coordinates t1(m), ..., ts(m). Choosing a basis of a Jordan
normal form of R and expressing the vector ¢(IN) with respect to this basis
shows now that the determinants ¢;(n) (and hence det(A(n)) = t1(n)) satisfy
for n > N a linear recursion with characteristic polynomial dividing

det(z Ids — R) .

Proof of the general case. Let us first suppose p = 1. There are
then (*1%) (count the possibilities for the highest non-zero entry in the last
s columns) different possible types T; obtained by developping the determi-
nant det(A(n)) for huge n several times along the last row and one gets hence
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a square matrix R of order (*!*) expressing the determinants det(T}(n)) lin-

early in det(7j(n—1)) for n huge enough. This shows that the determinants
det(T;(n)) satisfy for n huge enough a linear recursion with characteristic
polynomial dividing the characteristic polynomial of the square matrix R.

If p > 1, develop the determinant of det(A(n)) a multiple of p times
along the last row and proceed as above. One gets in this way matrices
Ry,...,Ry_1 according to n (mod p) with identical characteristic polyno-
mials yielding recursion relations between det(A(n)) and det(A(n — ip)).
QED

8 The diagonal construction

Let v = (y0,71,72,---,) be a sequence and let uy,ug, 11,2 be four constants.

I1,12)
D(UI,UQ, ;
Y

The diagonal-construction is the (infinite) matrix with entries

dii =" 0<34
dij =urdij-1+uadiy1;  0<i <
dij = lid; 15+ lad; j11 0<j<1

and we denote by D(n) = Df(yul’uz’ll’lz)(n) the n x n principal minor with
coefficients d; ;j, 0 < 4,7 < n obtained by considering the first n rows and
columns of Dgul’uz’ll’lz).

The cases where ujuslilo = 0 are degenerate. For instance, in the case

ug = 0 one sees easily that the matrix Dgul’uz’ll’b)(n) has determinant

n—1
Yo H (v —uwa(liyi-1 +l2yg)) -
j=1

The other cases are similar.

The following result shows that we loose almost nothing by assuming
Uy = ug = 1.

Proposition 8.1. For A, u two invertible constants we have

e (3)
D’%)\ulay‘lm’u 1l17)‘ llz)(n) — (%) 2 D’gul:u?all:l?)(n)

where
- A N2 - Ak
Y= (70’;71’?72""’7]6 = F’yka) .

~ -1 -1
Proof. Check that the coefficients d;; of D%)‘ul’“m’“ fLA l2)(n) are
given by d; ; = p~'N d; ; where d; j are the coefficients of Dgul’uz’ll’h)(n).

This implies the result easily. QED
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Proposition 8.2. For n > 1 the sequence

d( )_ det( (u1,’u2,l1,l2)(n))

3

associated to the geometric sequence v = (1,z,x2,23,...) is given by

1 e
d(n) = (—Ulll + (1 —uily —ugly)z — u212:1:2)n 231

A nice special case is given by u; = uo = I = lo = 1. The associated
matrix D, (4) = D(l’l’l’l)(4) for example is then given by

1 1+zx 142z 422 14 3z+ 322+ 2°
1+2 z T + x? z + 222 + 28
142z + 22 z + 2 z2 z? 4+ 3
143z + 3224+ 2% =4 222+ 23 z? + 23 z3

and the reader can readily check that the coefficient d; ; of D, (n) is given
by
d .7 :L-mln( J)(]_.'.:L-)‘Z .]‘

Proposition 8.2 shows that the determinant det(D,(n)) is given by

det(D(l’%wz,ws’“_) (n)) = (_1 oz :L_Q)n_l x(n;l)

forn > 1.

Setting = 1 in this special case u;1 = us = I1 = lo = 1, we get a matrix
M with entries m; ; = 2/°=9 for 0 <4,j < n. Its determinant is (—3)" 1. Tt
is easy to show that the matrix M, of order n with entries m; ; = a!"~J| for
0 <i,j < n has determinant (1 — a?)" .

A more involved computation shows that the determinant of the n x n
matrix N, with coefficients n; ; = a(i=3)? (0 <14,j <mn) is given by

1:[ ( g2(n—i )]
(cf. Problem ?? in Am. Math. Monthly).

A similar example is the special case —u; = ugo = —Il; = Il = 1 which
yields for instance the matrix D, (4) = Dg_l’l’_l’ (4) given by

1 ~1+4z 1-2z+2% —1+43z—32%+ 23
-1+ T —x + 22 z — 222 4 23
1—2z+4 22 —z+ 2 z2 —z% 4+ 23
—14+32—-32%2+2% z—-222+23 —z2+23 z3

23



and the reader can readily check that the coeflicient f; ; of D,(n) is given
by .
d; j = ™) (g — 1)

The determinant det(D; 4 42 43,..y(n)) is given by

det(D(l,z,EQ,msy...) (n)) = (—:C2 + 3x — 1)n71 x(ngl)

for n > 1.

Proof of Proposition 8.2. By continuity and Proposition 8.1 it is
enough to prove the formula in the case u; = us = 1.

This implies d; ; = z*(1 + z)U=% for i < j.

Subtracting (1 + ) times column number (n — 2) from column number
(n — 1) (which is the last one) etc. until subtracting (1 + z) times column
number 0 from column number 1 transforms the matrix D(n) into a lower
triangular matrix with diagonal entries

Lz—(1+4z)(l1+ex), z (x — (1 4+ 2) (1 + 1px)) 5 ..., & 2 (=l + (111 —lg)z—122?) .

Theorem 8.3. Let v = (Y0,---,Y%—1,705---+Yp—1,---) be a p—periodic
sequence and let
d(n) = det(Dgul’M’ll’lz)(n))

be the determinants of the associated matrices (for fixed (u1,u2,l1,12)).
Then there exist an integer d and constants C1,...Cy such that

d

d(n) = Z C; d(n —ip)

i=1

for all n huge enough.
Remark 8.4. Generically, the coefficients C; seem to display the sym-
metry
Cqi = p%2 ¢

(with Cy = —1) for some constant p which seems to be polynomial in
Y05 - - - a7p—1au1,u21l1712'

Proof of Theorem 8.3. For k > p add to the k—th row a linear
combination (with coefficients depending only on (u1,us,l1,12)) of rows k —
1,k—2,...,k—psuch that dj _; = 0 for s > p. Do the analogous operation
on columns and apply Theorem 7.1 to the resulting matrices. QED
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