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Abstracts.! Let M be a finitely generated module over a Noetherian local ring
(R,m) with dim M = d. Let (x1,---,z4) be a system of parameters of M and

(n1,-..,nq) a set of positive integers. Consider the length of generalized fraction
1/(xt,- -+, 254, 1) as a function in ny, - -+ ,ng. R. Y. Sharp and M. A. Hamieh [Sh-
H] asked that if this function is a polynomial for ny,--- ,ng4 large enough. In this

paper, we will give counterexamples to this question. We also study conditions for
the system of parameters z, in order to show that the length of generalized fraction
1/(zy*,--- ,x3?, 1) is not a polynomial for ny,... ,ng large enough.

1. Introduction

In this paper we always assume that (R, m) is a noetherian local ring and M is
a finitely generated R—module with dim M = d. Sharp and Zakeri [Sh-Z1] gave a
procedure for constructing so-called modules of generalized fractions which general-
izes the usual theory of localization of modules. The theory of generalized fraction
has a wide range of application in commutative algebra. Especially, the top local
cohomology modules HZ (M) may be viewed as a module of generalized fractions
of M with respect to a certain triangular subset of R?*!, and this is used to study
Hochster’s Monomial Conjecture.
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Let us recall briefly the main ingredients in the construction of modules of gen-
eralized fractions. Let k be a positive integer, denote by Dy (R) the set of all k x k
lower triangular matrices with entries in R; we use T to denote matrix transpose.
A triangular subset of RF is a non-empty subset U in RF such that (i) whenever

(u1,...,u) € U, then (ui?,...,up*) € U for all positive integer ny,... ,n;, and
(ii) whenever (uq,... ,u;) and (vy,... ,v) € U, then there exist (wy,... ,wg) € U
and H, H' € Dj(R) such that

H[ul,.. . ,'U,k]T = [wl,.. . ,wk]T = HI[’Ul,. . ,’Uk]T.

Given such a U, Sharp and Zakeri constructed an R—module U~*M and they call
it the module of generalized fractions of M with respect to U. Especially, the set

UM)g+1 ={(y1,---,yd4,1) € R: there exists j with 0 < j < d such that

(y1,---,y;) form a subset of a s.o.p of M and yj11 = ... =yq =1}
is a triangular subset of R*!. Let 2 = (1,...,24) be a s.o.p of M and n =
(n1,...,nq) a set of positive integers. We denote by M(1/(z7*,...,z;%,1)) the

submodule {m/(z}*,...,25%,1) : m € M} of U(M),{, ' M. This submodule is
annihilated by Ann M +(27", ... ,z}*)R. Therefore (M (1/(z7",... ,z%,1))) < oc.
Let

esm(n) = L(M(1/ (27", .. 257, 1))).

do;nr(n) is called the length of the generalized fraction 1/(x7*,...,x5%,1). Sharp
and Hamieh naturally asked the following question [Sh-H, Question 1.2]:

Open question: Does exist a polynomial F'(X) in d variables X7, ..., X with ra-
tional coefficients such that gz.r(n) = F(n1,... ,nq) forallng, ... ,ng large enough?

They have proved in that paper that the answer is positive when dim R < 2 or
R is generalized Cohen-Macaulay.

In this paper we give counterexamples to this question in the case where R has
any dimension d > 3 (Theorem 1.1). We also study conditions for a s.o.p z of
module M, in order to show that ggz;a(n) is not a polynomial for large n (Theorem
1.2).

Set

Jg;M(ﬂ) =n1...nqe(z; M) — qz;M(ﬂ)
In general we have J;p(n) > 0 (see [C-M1]). Especially, the least degree of all
polynomials in n bounding above the function Jgza(n) does not depend on the

choice of z. This invariant is denoted by pf(M). If d > 3 then pf(M) < d — 2 (see
[C-M2)).

Theorem 1.1. Letd > 3 and 0 < v < d — 2 be integers. Let S = K[xy,... x4,
the polynomial ring in variables x1,... ,xq over a field K. Let m = (z1,... ,24)S
and R = Sy, the localization of S with respect to m. Let M = (x1,... ,24—,)R and
R < M the idealization of M. Then we have

U(21424,0),(22,0)... ’(w,o);RocM(ﬂ) =2n1N2 ... NG — Nyt - - -Nd—1.min{ny,ng},

for all integers ny, ... ,nqg > 1. In particular, q(z,+42,,0),(22,0),... ,(za,0);RocM () 18 NOE
a polynomial for n large enough. Moreover, pf(R x M) = v.
Set

Lo (n) = (M [ (2T, ... ,2?) M) —ny ...nge(z; M).
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It was proved in [C2] that the least degree of all polynomials in n bounding above
the function I;p(n) does not depend on the choice of z. It is called polynomial
type of M and is denoted by p(M).

If we stipulate the degree of the polynomial 0 is —oo then M is Cohen-Macaulay
if and only if p(M) = —oo and M is generalized Cohen-Macaulay if and only if
p(M) < 0. In more general cases, the invariant p(M) makes an important role to
study structure of modules (see [C1,2] and [C-M1,2].

Theorem 1.2. (7). If p(M) < 2 and pf(M) > 0 then there exists a s.0.p x of M
such that gz m(n) is not a polynomial for n large enough.

(i). Suppose that R admits dualizing complexes. If p(M) = 3 and pf(M) > 0
then there exists o s.0.p x of M such that gz m(n) is not a polynomial for n large
enough.

2. Proof of Theorem 1.1
Let d > 3 and 0 < v < d — 2 be integers. Firstly we need the following lemmas.

Lemma 2.1. ([C-K, Lemma 2.3]). Let (R,m) be a Noetherian local ring and M
a finitely generated R—module with dim M = d. Let z = (z1,... ,%4) be a s.0.p of
M. Set
Qz; M) = U(a:i“,--- LaETYM gy 2t 2l
>0

Then we have
M/Q(z; M) = M(1/(z1,... ,2q4,1)).

Lemma 2.2. Let S = K|[z1,... ,24] be the polynomial ring in variables z1,. .. ,zq
over a field K and nq, ... ,nq positive integers. For any integer t > % we have
1
(apttm L ahd Y (o — wg, 3o, 4oy)S i TP L2 = (2.2l ?)S.
Proof. Set
a= (w’flt"'nl,. .. ,xde”d)(xl — T4, T2, , T4 y)S 5 :L"l“t . ..x;”"t.
Since (2}''t™ ... ,;vgdtJr"d)S is a monomial ideal, we have
a C (Pt it S g gt gl = (a2, 20)S.

Conversely, since d — v > 2, we can easily check that z;* € a, for all ¢ # 2. Let

_ nit+n ngt+n
b= (2", .z T ) (2 — T, T2,y ., Ta—y)S.
We have
not+ns _nit_nst ngt ___not+nso nit—1_nst ngt
xy iyt L xy = (®y —zq)2" 25" ..z
nat+ns _nit—1_nst ngt+1
+ zy T T3o ... T, .

nat+ne .nit, .nst nat : : not+ne nit—1_nsat nat+1
So, x5 M xy®t . xy? € b if and only if 2} A LS. ¥ €b. It

follows that, for any integer ¢ such that nit > ng, after nit steps we get

nat+nz nit, nat nat
T4 zMwytt L xptt €D
. na—1t
since zh2 2 zst g7 24T ™ € b. Therefore x> € a. a
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Lemma 2.3. Let S = K[x1,... ,24] be the polynomial ring in variables x1, ... ,zq

L . ng
over a field K and nq, ... ,ng positive integers. For any integer t > — we have
ni
t t t t, nat t
((z1 + mg)™ it gh2ttne o gl (g 24-4)S s (71 + @g) " 22t L2l
n: n
= (1 + zg)™, 252, ... ,25")S.

Proof. Let a be the ideal
((z1 +zg)™trm gh2ttne o gl ) (3 my)S s (21 + 3a) 2?2l

Clearly (z1 + xq)™,25°,... ,o;* € a. We need to prove z3> € a. Note that there
exist a polynomial f such that

nat+nsg (

nit,.nat ngt nat+ns _nszt ngt nat+ns _nszt ngt+nit
T4 32" . ey [y R ¥ .

T1+1q) Lt = @l xy xy
Therefore, for any integer ¢ such that n;t > ng we have 232 € a since both elements

nat+nz nat nat nat+na .nst nat+nit
2125 zy® .. xp? f and T T3 .. T belong to

t nat4+n ngt+n
((z1 + mg)™rttm gh2ttne LRt (T, Tgy).
Conversely, let f(z1,z2 ... ,z4) be an arbitrary polynomial in a. By replacing z; =
T1 — XTg; T2 = X2;...;Tq = Tq we have f(x1 — x4,22,... ,24) belongs to
t t t+ . t_nat t
(it ghattne o ghdttN) (o — w4, @0, ..., Ta_0)S 15 TP Rt
Therefore f(x1 — xq,22,...,2q) € (27", 25%,...,2,*)S by Lemma 2.2. Now by
replacing £1 = 21 + ©4; T2 = X2; ... ;X4 = T4, we have
n: n
f(@1,20,... ,2q) € ((x1 +24)™, 252,... ,25)S.
O
Lemma 2.4. Let S = K[z1,... ,24] be the polynomial ring in variables x1,. .. ,zq

over a field K. Let m = (x1,... ,24)S and R = Sy, the localization of S with respect
tom. Let M = (z1,... ,24_)R. Then we have

dri4z4,z2,... ,zd;M(ﬂ) =MN1.-.Ng —Ng—y41--- nd—l-mi"{nh nd};

for all integers na,... ,nqg > 1. In particular, ¢o,+z4.0s,... za;m (D) is ot a polyno-
mial for n large enough. Moreover, pf(M) = v.

Proof. By the flatness of the natural homomorphism S — Sy, we get by [Mat,
(3.H)] and by Lemma 2.3 that

Q((ml'l'md)nl ’ mgza s 7msd; M) = (xla s 7xd—v)‘s’mm(($1+xd)nl7xg27 .. axgd)sm-
It follows from this relation and Lemma 2.1 that

Qz1+zd,w2,m,zd;M(ﬂ)
=l((z1,.. ,Za—0)Sm/(@1,- .., Ta—v)Sm N (1 + za)™, 252, ... ,25%) )

= U((@1y- e s Baur 2y NS () 4 3a)™ 232, 20) ).
4



And since Sy, is Cohen-Macaulay, we get

Qortzaes,... waM (1) = LS /((z1 + za)™ 257, .. ,25*)Sm)
- E(Sm/(mlv s 7md—v,$3i;f11, ... ,xglm{"l’"d})sm)
= e((z1 + )™, 2%, .. 835 ) — €(@1, . By T G

=N1...Ng — Ng—yt1 - - -Ng—1.min{ny, ng},

it finishes the proof. O

Now we need the concept of principle of idealizations, which was introduced by
Nagata [Na, p.2]. Let (R, m) be a Noetherian local ring and M a finitely generated
R—module. We make the Cartesian product R x M into a commutative ring with
respect to componentwise addition and multiplication defined by (r,m).(r',m') =
(rr',rm' + r'm). We call this the idealization of M (over R) and denote it by
R « M. The idealization R o M is Noetherian local ring with identity (1,0), its
maximal ideal is m x M and its Krull dimension is dim R. There is a canonical
projection p : R « M — R defined by p((r,m)) = r and a canonical inclusion
0 : R — R x M defined by o(r) = (r,0). These maps are local homomorphisms
and we can regard any R—module (resp. R o« M —module) as an R o« M —module
(resp. R—module) by p (resp. o). Note that the structure of R—modules induced
by the composition po coincides with the original one.

Remark 2.5. Let ¢ be an ideal of R o« M. Then ¢ is m X M — primary if and
only if p(c) is m—primary. In particular if £ = (21, --,24) is a s.0.p of R then
(z,0) = ((1,0),---,(24,0)) is a s.0.p of R x M.

Lemma 2.6. Let dim M = dim R = d. Let z = (x1,--- ,24) be a s.0.p of R. Let
Q(z; R),Q(z; M) and Q((x,0); R x M) be defined as in Lemma 2.1. Then we have

{(R o M/Q((=,0); R < M)) = £(R/Q(z; R)) + £(M/Q(z; M)).

Proof. We have (z1,0)!...(z4,0)!(r,m) = (2} ... 24, 2% ... 2%m), for any element
(r,m) belongs to R o« M and any integer ¢ > 0. Moreover,

((mla 0)t+17 T ('Tah O)t+1))R x M = ($§+1’ e ,$3+1)R X (mt1+17 e ,$3+1)M,

for any integer ¢ > 0. It follows that Q((z,0);R «x M) = Q(z; R) x Q(z; M).
Therefore we have the exact sequence of R o« M —modules

0 — M/Q(x; M) - R o« M/Q((x,0); R o M) 25 R/Q(z; R) — 0,

where €' (resp. p') is deduced from the canonical inclusion € : M — R o« M with
e(m) = (0,m) for all m € M (resp. the projection p). These imply the result. O

Proof of Theorem 1.1. Since R is Cohen-Macaulay, (z1 + z4)"*, 25>, ... , 2% is

a regular R—sequence. It follows that

Q((z1 +zg)™, 252, ..., 25 R) = ((x1 + za)™, 252, ... ,2*)R.
5



Therefore, by Lemma 2.1 we have

q:c1+wd,m2,... ,.’Ed;R(n17 .- 7nd) = nl - nd'
Now the results follows easily by Lemmas 2.1, 2.4 and 2.6. a

3. Proof of Theorem 1.2

Firstly, we recall some basic notions and properties of Artinian modules. Follow-
ing [R] and [Kir], the Noetherian dimension of an Artinian R—module A, denoted
by N-dimpg A, is defined inductively as follows: when A = 0, put N-dimp A = —1.
Then by induction, for an integer d > 0, we put N-dimgp A = d if N-dimp A < d is
false and for every ascending sequence Ay C A; C ... of submodules of A, there
exists ng such that N-dimpg(A,/A4n+1) < d for all n > ny.

The theory of secondary representation of Artinian modules is a useful tool in
this section. Here we review some facts of this theory from [Mac] and [Sh-H]: Any
Artinian R—module A has a minimal secondary representation A = A1 +...+ A, of
p;—secondary submodules A;. The set {p1,p2,...,pn} is independent of the choice
of minimal representation of A and is denoted by Attz A. Note that N-dimg A =0
if and only if Att A = {m} and if and only if £(A) < co. Moreover, for any exact
sequence of Artinian R—module 0 — A’ — A — A” — 0, we have

N-dimg A = max{N-dimpg A’',N-dimg A”} and Att A" C Att A C Att A’ U Att A”.

From now on, we denote by s(A) the least integer s such that m*A = m™ A for
all n > s and by RI(A) the length of A/m*(4) A. Tt should be noticed that if z € m
and ¢ p for all p € Att A\ {m} then 2" A = m*“ A for all n > s(A).

Lemma 3.1. ([C-H-M]) (i). p(M) = i:o,ﬁ%dq{N_dimR Hi(M)}.
(#). Let p(M) > 0. Set

d—1
T(M) = (AssM | Att(H}(M)) \ {m}.

i=1
Let x € m such that ¢ p for allp € T(M). Then we have p(M/zM) = p(M) — 1.

Note that pf(M) < p(M) < d—1. Moreover, if pf(M) < 0 then g, pr(n) is always
a polynomial for n large enough, for any s.0.p z of M. In the case p(M) =1 = pf (M)
and R admits dualizing complexes, it was proved by [C-M1, Theorem 4.5] that
there exists a s.0.p z of M such that g a(n) is a polynomial for n large enough.
Howeover, Theorem 1.2 shows that this is not the case for any s.o.p of M.

Lemma 3.2. Let p(M) =1 =pf(M). Then there exists a s.o.p £ of M such that
gz M (n) is not a polynomial for n large enough.

Proof. Let T(M) as in Lemma 3.2, (ii). Let (21,y2,...,yd4) be a s.0.p of M such

that z1 ¢ p for all p € T(M). Since (z1,Y2,... ,ya) € p for all p € T(M), we can

choose by [K, Theorem 124] an element a € (z1,ys, ... ,yq) such that y» +a ¢ p

for all p € T(M). Set 22 = y2 + a. Set z; = y; for ¢ > 3. It is easily seen that

z = (z1,...,24) is a s.0.p of M. We will show that ¢,;s(n) is not a polynomial for
6



n large enough. Without loss of generality, we may assume that depth M > 0. Let
M = M/z7* M. By [Sh-H, Proposition 2.2] we have the exact sequence:

0 — HEN (M) /27 HEN (M) — UM ;%D 25 U(M) ;47 M,

where ¥4, is defined by U441 (m/(u2,. .. ,uq,1)) = m/(z7*,uz,... ,uq,1), for all
m € M and (us,...,uq,1) € U(M)y. Let s = s(HE"1(M)). It should be noticed
that Ker(¥g411) = HI"Y(M)/m*HI-1(M) is of finite length. Therefore it is gen-
erated by finitely many elements, say fi,..., fi- On the other hand, it follows by
[Sh-Z2] that

UMM = | MQA/(a5,...,25¢,1)).
n2,... ,ng>0
Moreover, we have M(1/(z32,... ,z'¢,1)) C M(1/(2%?,... ,2}%,1)) if n; > m;
for i = 2,... ,d. Therefore, given ny > s, there exists some integer r(n1) (depends

on ny) such that fi,..., fi € M(1/(232,...,25,1)) for all n, ... ,ng > r(n1). So,
the above exact sequence implies the following exact sequence

0 — Ker(¥qy1) — M(1/(z5?, ... ,25,1)) Yasy M@1/(z?,. .. ,254,1)) — 0,
for all ny > s, and all na, ... ,mg > r(ny). Therefore we have
(1) gz M (n) = Q... ’zd;ﬁ(ng, cea,Ng) — Rl(H:i_l(M))'

Note that e(zz, ... ,zq; M) = nie(z; M) and M is a generalized Cohen-Macaulay
by Lemma 3.1. Therefore for given n; > s, there exists by [Sh-H, Theorem 3.7] an
integer s(n1) (depends on only n1) such that

(2) Gy, ppar(M2s...,na) =n1...nge(z; M) — i (Zl: f) ((H: (M /27 M)),

i=1

for all ny,...,ng > s(n1). Now, assume that there exists a polynomial f(X) of
degree 1 in d variables X7, ... , X4 such that gz, p(n) =nq ...nge(z; M) — f(n) for
n large enough. Then by (1) and (2), for given n; > s and for all ny,... ,ng >
max{r(ni),s(n1)}, f(n) depends on only n;. Therefore all variables Xs,..., Xy
can not appear in any term of f(X). By repeating the above procees for z, all
variables X, X3,...,Xy can not appear in any term of f(X). Therefore f(X)
must be a constant. This give a contradiction because the degree of f(X)is 1. O

Example 3.3. Let R and M be as in Lemma 2.4 with d = 3 and v = 1. Let
T (M) as in Lemma 3.1. Then T(M) = {0, (x1,22)R}. Let (91, 92,93) is a s.o.p of
M. If there exist two elements g;, 95,7 # J,4,j = 1,2,3 such that g;,9; € (z1,22)R
then g, g;,95;m (N1, M2,n3) is a polynomial for nq,ne,ng large enough by [C-MI,
Theorem 4.5]. In other cases, there exist two elements g;,9;,7 # j,4,j = 1,2,3
such that g;,9; ¢ (21, 22)R. Therefore by Lemma 3.2, ¢z, 25,25;0 (71, N2, n3) is not
a polynomial for ni,nq,n3 large enough. In particular, for all ny,ny,ng > 1, we
have

le,wg,ws;M(nla na, ns) = Q$1,$1+w2,w3;M(nlan27n3) = Nina2ng — N3,

qw1+z3,$2,$3;M(n15 N2, 713) = qz1+$3,$2,$2+$3;M(n17 N2, 1’L3) = nina2ng — mln{nla ’I’L3}.
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Lemma 3.4. Let p(M) =2 and pf(M) > 0. Then there exists a s.0.p £ of M such
that ;0 (n) is not a polynomial for n large enough.

Proof. Let T(M) be as in Lemma 3.1 and (z1,%2 ... ,y4) be a s.o.p of M such that
xz1 ¢ pforall p e T(M). Let

d—2
T(zi; M) = ( | Ass(M/zpr M) () | A(HE (M /27 M) \ {m}.
n1>1 i=1mny2>1
We have by [B] that |J Ass(M/z7*M) is a finite set. Moreover, since 0 :py z7* is

ny>
of finite length, we get from the exact sequences

0— 0y — M — M/0:y2? —0
nq
0— M/0:y 2™ 2 M — M/ M — 0
the following exact sequences for i = 1,... ,d — 1,
0 — Hy(M)/27 Hyy (M) — Hy(M/27' M) — 0 iz 27" — 0.
Note that £(H{,(M)/zy" Hi,(M)) < oo and U Att(0 :yis15p) 277) is a finite set

m
n1>1
by [Sh]. Therefore, T'(z1; M) is a finite set. Because (z1,ya,...,yqs) € p for all
p € T(M)UT(x1; M), we can choose an element a € (r1,ys,--.,yq) such that
y2t+aé¢pforall peT(M)UT (z1;M). Set 2 = y2 + a. Let
d—2
T(xy; M) = ( | Ass(M/zy>M) () | Att(HE (M /252 M) \ {m}.
na>1 i=1 na>1

By similar reasons, T(x2; M) is a finite set. Therefore we can choose an element
b € (x1,%2,y4,.-. ,yq) such that y3 +b ¢ p for all p € T(z1; M) U T (x2; M). Set
23 =y3+0b. Let z = (x1,... ,24) with z; = y; for all ¢ > 4. Then z is a s.0.p of M.
Let s = s(HZ 1(M)). Similarly to the proof of Lemma 3.2, for given n; > s, there
exists an integer r(ni) such that for all na,... ,ng > r(ny1), we have

(3) q§7M(ﬂ) = ng,... ,a:d;M/w?IM(HQJ v ,nd) - Rl(Hgt_l(M))

Note that e(z2,... ,zq; M/27* M) = ny ...nqe(z; M) and p(M/27* M) = 1 by the
choice of z1. Let s(ny) = s(HL 2(M/x* M)). Similarly to the proof of Lemma 3.2,
for given ny > s and ny > max{r(ni1), s(n1)}, there exists an integer r'(ny,n2) such
that

Izs,... ,wd;M/w?IM(n% s ,TLd) =ni... nde(g; M) - Rl(Hg.‘_2(M/.Z';L1M))

d—3
d—3 .
(@) =X (520w rsar ),
=1
for all ng,...,nqg > r'(n1,ns). Now, assume that there exists a polynomial f(X)
in variables X1,..., Xy such that gza(n) = ny...nge(z; M) — f(n) for n large

enough. Then by (3) and (4), all variables X3,... , X4 can not appear in any terms
of f(X). Since z3 ¢ p for all p € T'(x1; M), we can repeat the above procees for two
elements x1,z3. It follows that all variables X», X4, ... , X4 can not appear in any
terms of f(X). Since z, ¢ p for all p € T(M) and z3 ¢ p for all p € T(x2; M), we
can also repeat the above procees for two elements xs,z3. Therefore all variables
X1, X4,...,X4 can not appear in any terms of f(X). These follow that f(X) must
be a constant. It give a contradiction because degree of f(X) is positive. O
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Lemma 3.5. Let p(M) =3 and pf(M) > 0. If R admits dualizing complexes then
there exists a s.0.p x of M such that g,;p(n) is not a polynomial for n large enough.

Proof. Let a(M) = ag(M)...ag_1(M), where a;(M) = Ann H: (M),i=0,... ,d—
1. Then we have by [C, Theorem 1.1] that p(M) = 3 = dim R/a(M). Therefore,
similarly to the proof of Lemma 3.4, we can choose a s.0.p (z1,Z2,Z3,Y4--- ,Yd)
of M such that (y4,...,yq)R C a(M), 21 ¢ p for all p € T (M), z2 ¢ p for
all p € T(IM)U T(z1; M) and z3 ¢ p for all p € T(x1; M) U T (z2; M), where
T(M),T(x1; M), T (z2; M) defined similarly to the proof of Lemma 3.4. Let z4 =
Y4 + 21 + T2 + 23 and x; = y; for 4 > 5. Let z = (x1,... ,24). Then z is a s.o.p of
M. Let s = s(H&™1(M)). Similarly to the proof of Lemma 3.2, for given n; > s,
there exist r(n1) such that

(5) qg,M(ﬂ) = qz2,... ,q:d;M/z;LlM(,n’?, v 5nd) - Rl(Hiil(M))’

for all na,...,ng > r(n1). Let s(ny) = s(HI"2(M/z}* M)). Similarly to the proof
of Lemma 3.2, for given ny > s and ny > max{r(n1), s(n1)}, there exists an integer
r(n1,n2) such that

dz,,... ,zd;M/z;LlM(n2J ree 7nd) = Gy, ... ,zd;M/(zyl,zEZ)M(n& v and)
(6) — RI(HG*(M /27" M),
for all ns,... ,ng > r(ni,ns). Let
d—3 )
T(M/(«}",a3?)M) = (Ass(M/ (2}, 252)M) | ) Att(H (M/(a]",252) M) \ {m}.
i=1

Since (%3, Y4,¥s,--- ,yq) is a s.o.p of M/(x7*,z5*)M and
(y4ay5a ce ayd)R - CL(M) - Rad(a(M/(a:?l,xSZ)M)),

we can easily check that x3 ¢ p for allp € T(M/ (27, 23?)M) and for all ny,ne > 1.
Let s(ny,ns) = s(HL 3(M/ (2}, 252)M)). Note that p(M/(z7*,z52)M) = 1 and

e(x3y... ,xq; M[ (2,252 M) =ny ...nqe(z; M).

So, similarly to the proof of Lemma 3.2, for given n; > s,ns > max{r(ni),s(n1)}
and ng > max{r(ni,ns2), s(n1,nq)}, there exists an integer r"'(ny,n2,n3) such that

Qzs,... ,zd;M/(zzl,z;w)M(n& s 7nd) =ny... nde(g; M) — Rl (Hi73(M/($?17x32)M))

d—4
d—4 ,
) =X (407 ),
i=1
for all ng,...,nqg > r'"(n1,n2,n3). Now, assume that there is a polynomial f(X)
in variables Xj,..., Xy such that g, (n) = ny...nge(z; M) — f(n) for n large

enough. Then by (5), (6) and (7), all variables Xy,..., X4 can not appear in any
terms of f(X). Define similarly the set T'(M /(27" ,25°)M). Since (Z4,Y4, Y5, .- 1 Ya)
is a s.o.p of M/(z7",25°)M and

(Y4,9Y5,- .. ,ya)R C a(M) C Rad(a(M/ (27", z5°)M)),
9



we can check that z4 ¢ p for all p € T'(M/(x7*,25°)M) and for all ny,ng > 1.
So, we can repeat the above procees for three elements 1,3, 24 and we get that
all variables X», X5,... , Xy can not appear in any terms of f(X). By the same
reasons, we can repeat the above procees for 1,2, 24 and z2, 3,24 and we get
that all variables X3, X5,..., Xy and all variables X;, X5,... , X4 can not appear
in any terms of f(X). Therefore f(X) must be a constant. It gives a contradiction
because pf(M) > 0. O

Proof of Theorem 1.2. Follows by Lemmas 3.2, 3.4 and 3.5. O

Remark 3.6. All our attempts to obtain an extension of Theorem 1.2 which
applies to the case where p(M) > 3 have failed. The difficulty is that for a subset
S.0.p T1,...,TLy of M with d—2 > u > 2, we do not know when the sets

U Ass(M/@,... a0 )M)and |  Att (0:g:ar) (@], ,22*)R)
N1 yene 3Ty >0 N1y Ny >0

are finite sets. It was proved in [B-R-Sh] that there are saveral special cases in which
the set U, . ,.soAss(M/(z7?,... ,z3*)M) is a finite. However, in general, this
problem is still open.
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