Résolution du $\overline{\partial}$ pour les courants prolongeables définis dans un anneau

Salomon SAMBOU

Prépublication de l'Institut Fourier n° 537 (2001)

http://www-fourier.ujf-grenoble.fr/prepublications.html

Introduction

Soient X une variété analytique complexe de dimension n et $\Omega\subset\subset X$ un domaine relativement compact à bord \mathscr{C}^∞ de X. Posons $D=X\setminus\overline{\Omega}$. Un courant T défini sur D est dit prolongeable, si T est la restriction à D d'un courant \widetilde{T} défini sur X. Supposons que X est une extension q-convexe de Ω . On veut résoudre $\overline{\partial}U=T$ sur D, où T est un courant prolongeable $\overline{\partial}$ -fermé. Ce problème entre donc dans le cadre généréal de la résolution du $\overline{\partial}$. On sait que pour les formes différentielles de classe \mathscr{C}^∞ sur D, cette équation n'a pas toujours une solution. Même dans le cas où l'on sait résoudre, on ignore parfois si pour une donnée de classe \mathscr{C}^∞ jusqu'au bord, on a une solution \mathscr{C}^∞ jusqu'au bord. D'après l'isomorphisme de Dolbeault si le $\overline{\partial}$ admet une solution pour les formes différentielles de classe \mathscr{C}^∞ $\overline{\partial}$ -fermées sur D, alors il admet une solution pour les courants $\overline{\partial}$ -fermés sur D. Les courants prolongeables sont pour les courants ce que les formes différentielles de classe \mathscr{C}^∞ définies jusqu'au bord sont pour les formes différentielles de classe \mathscr{C}^∞ définies dans un domaine. Il est donc naturel de se demander si T est un courant prolongeable $\overline{\partial}$ -fermé sur D, il existe un courant prolongeable U défini sur U, solution de $\overline{\partial}U=T$. Ce problème a déjà été étudié dans [13] dans le cas d'un domaine complètement strictement U-convexe à bord U.

Sous l'hypothèse $\overline{D}=D$, on sait d'après [11] que l'espace $\widecheck{\mathcal{D}}_D^{\prime\,p,r}(X)$ des courants prolongeables de bidegré (p,r) définis sur D est le dual topologique de l'espace $\mathscr{D}^{n-p,n-r}(\overline{D})$ des (n-p,n-r)-formes différentielles de classe \mathscr{C}^{∞} , à support compact dans \overline{D} . On va donc comme dans [13] résoudre le $\overline{\partial}$ avec conditions de support et obtenir par dualité la résolution du $\overline{\partial}$ pour les courants prolongeables. Mais contrairement au cas convexe, $\mathscr{D}^{n-p,n-r}(\overline{D})$ n'est pas un espace de Fréchet mais simplement une limite inductive d'espaces de Fréchet, d'où des difficultés à appliquer le théorème de l'application ouverte. Grâce à des artifices d'analyse

Math. classification: 32F10, 32F20.

Keywords: Courants prolongeables, équation de Cauchy-Riemann, domaine complètement strictement *q*-convexe, extension *q*-convexe et *q*-concave généralisée.

fonctionnelle, on parvient à surmonter ce problème pour prouver le théorème suivant :

Théorème . — Soient X une variété de Stein de dimension n, $\Omega \subset\subset X$ un domaine relativement compact à bord \mathscr{C}^{∞} de X tels que X soit une extension q-convexe de Ω , $1\leqslant q\leqslant n-1$. Alors

i) Pour $1 \leqslant r \leqslant q$ et $r \leqslant n-2$,

$$\overline{\partial} \check{\mathscr{D}}_{X \setminus \overline{\Omega}}^{\prime \, p, r-1}(X) = \check{\mathscr{D}}_{X \setminus \overline{\Omega}}^{\prime \, p, r}(X) \cap \ker \overline{\partial}.$$

ii) Siq = n - 1,

$$\overline{\partial} \check{\mathcal{D}}_{X \smallsetminus \overline{\Omega}}^{\prime \, p, n-2}(X) = \left\{ T \in \check{\mathcal{D}}_{X \smallsetminus \overline{\Omega}}^{\prime \, p, n-1}(X) \mid \langle \, T, \varphi \rangle = 0, \forall \, \varphi \in \mathscr{D}^{n-p, 1}(X \smallsetminus \Omega) \cap \ker \overline{\partial} \right\}.$$

Ce théorème est pour les courants prolongeables l'analogue du corollaire 2.2.13 de [8] sur les formes différentielles définies jusqu'au bord dans un anneau local *q*-concave.

Notons $\check{H}^{p,r}(D)$ respectivement $H^{p,r}_{\mathrm{cour}}(D)$ le $(p,r)^{\mathrm{ième}}$ groupe de cohomologie de Dolbeault des courants prolongeables respectivement des courants. On a comme conséquence du théorème 4.1 de [13] et du théorème ci-dessus, les relations entre $\check{H}^{p,r}(D)$ et $H^{p,r}_{\mathrm{cour}}(D)$ suivantes :

Théorème . — Soient X une variété analytique complexe de dimension n et D un domaine à bord \mathscr{C}^{∞} de X . Supposons que :

a) bD est strictement q-concave, $1 \le q \le n-1$, alors l'application induite par restriction:

et
$$\check{\mathscr{G}}: \check{H}^{0,r}(D) \longrightarrow H^{0,r}_{\mathrm{cour}}(D)$$
 est un isomorphisme pour $0 \leqslant r \leqslant q-1$ $\check{\mathscr{G}}: \check{H}^{0,q}(D) \longrightarrow H^{0,q}_{\mathrm{cour}}(D)$, est injective.

b) bD est strictement q-convexe, $1 \le q \le n-1$, l'application induite par restriction :

et
$$\check{\mathcal{Y}}: \check{H}^{0,r}(D) \longrightarrow H^{0,r}_{\operatorname{cour}}(D)$$
 est un isomorphisme si $r > n-q$ $\check{\mathcal{Y}}: \check{H}^{0,n-q}(D) \longrightarrow H^{0,n-q}_{\operatorname{cour}}(D)$ est surjective.

La partie b) du théorème a été démontrée dans [9], théorème 3.13 pour un domaine à bord \mathscr{C}^{∞} par morceaux.

Si $H^{0,r}_\infty(\overline{D})$ respectivement $H^{0,r}_\infty(D)$ désigne le (0,r)-ième groupe de cohomologie de Dolbeault pour les formes différentielles de classe \mathscr{C}^∞ sur \overline{D} respectivement sur D, on a sous les hypothèses du théorème ci-dessus les mêmes conclusions pour l'application induite par restriction $\mathscr{S}: H^{0,r}_\infty(\overline{D}) \to H^{0,r}_\infty(D)$.

On applique ces différentes relations entre groupe de cohomologie à l'étude de l'isomorphisme de Dolbeault dans les hypersurfaces réelles. On sait que pour une variété analytique complexe X, l'application naturelle entre le $H^{p,r}_{\infty}(X)$ et $H^{p,r}_{\rm cour}(X)$ est un isomorphisme. Dans le cas d'une hypersurface réelle S de X, à cause de l'absence du lemme de Poincaré pour le $\overline{\partial}_S$

dans les degrés intermédiaires, l'application naturelle entre $H^{p,r}_{\infty}(S)$ et $H^{p,r}_{\rm cour}(S)$ semble ne pas être toujours un isomorphisme. On montre :

Théorème. — Soient X une variété analytique complexe de dimension n et S une hypersurface réelle de classe \mathscr{C}^{∞} de X. Si la forme de Lévi de S admet en chaque point de S:

- i) q valeurs propres de même signe $q \geqslant \frac{n+1}{2}$, l'application naturelle de $H^{0,r}_{\infty}(S) \to H^{0,r}_{\mathrm{cour}}(S)$ est surjective si $n-q \leqslant r \leqslant q-1$, et $H^{0,r}_{\infty}(S) \to H^{0,r}_{\mathrm{cour}}(S)$ est injective si $n-q+1 \leqslant r \leqslant q$.
- ii) q paires de valeurs propres de signe contraire, $1 \leqslant q \leqslant \frac{n-1}{2}$, l'application naturelle de $H^{0,r}_{\infty}(S) \to H^{0,r}_{\text{cour}}(S)$ est un isomorphisme si $0 \leqslant r \leqslant q-1$ et $n-q+1 \leqslant r \leqslant n-1$,

et
$$H^{0,q}_\infty(S) \longrightarrow H^{0,q}_{\rm cour}(S) \ \ \text{est injective}$$

$$H^{0,n-q}_\infty(S) \longrightarrow H^{0,n-q}_{\rm cour}(S) \ \ \text{est surjective}.$$

Le cas *ii*) correspond au cas de la codimension 1 dans [9]. Ces résultats ont été annoncés dans [14].

1. Préliminaires

Notations 1.1. — Soient X une variété analytique complexe de dimension n et $\Omega \subset X$ un domaine de X. Posons $D = X \setminus \overline{\Omega}$). On note $\mathscr{D}^{p,r}(X \setminus \Omega)$ l'espace des (p,r)-formes différentielles de classe C^{∞} sur X et à support compact dans $X \setminus \Omega$. On munit $\mathscr{D}^{p,r}(X \setminus \Omega)$ de sa topologie usuelle de limite inductive d'espace de Fréchet. $\widecheck{\mathcal{D}}_D^{(p,r)}(X)$ désigne l'espace des courants de bidegré (p,r) dans D prolongeables à X. D'après [11], si $\overline{D} = D$, alors $\widecheck{\mathcal{D}}_D^{(p,r)}(X)$ est le dual topologique de $\mathscr{D}^{n-p,n-r}(X \setminus \Omega)$.

Définition 1.2. — Une fonction ρ de classe \mathscr{C}^{∞} sur X est dite q-convexe, $1 \leqslant q \leqslant n$, si sa forme de Lévi possède au moins q valeurs propres strictement positives. ρ est dite q-concave si $-\rho$ est q-convexe.

Définition 1.3. — Soient X une variété analytique complexe de dimension n et $\Omega\subset\subset X$ un domaine relativement compact de X. Ω est complètement strictement q-convexe, $0\leqslant q\leqslant n-1$, s'il existe une fonction $\varphi(q+1)$ -convexe, définie dans un voisinage $U_{\overline{\Omega}}$ de $\overline{\Omega}$ telle que $\Omega=\{z\in U_{\overline{\Omega}}\mid \varphi(z)<0\}$.

S'il existe une fonction φ qui est (q+1)-convexe dans un voisinage $U_{b\Omega}$ du bord de Ω , telle que $\Omega \cap U_{b\Omega} = \{z \in U_{b\Omega} \mid \varphi(z) < 0\}$, on dit alors que Ω est strictement q-convexe.

X est une extension q-convexe de Ω , $0\leqslant q\leqslant n-1$, s'il existe une fonction $\varphi(q+1)$ -convexe, définie sur un voisinage U de $X\smallsetminus\Omega$ telle que $\Omega\cap U=\{z\in U\mid \varphi(z)<0\}$ et pour tout réel α , $0<\alpha<\sup_{z\in U}\varphi(z)$, l'ensemble $\{z\in U\mid 0\leqslant \varphi(z)\leqslant \alpha\}$ est compact.

Remarque 1. — Puisque si U est un voisinage de $X \setminus \Omega$, U est aussi un voisinage du bord $b\Omega$ de Ω , alors si X est une extension q-convexe de Ω , Ω est stricement q-convexe.

2. Résolution du $\overline{\partial}$ avec conditions de support

Nous allons d'abord résoudre le $\overline{\partial}$ pour les formes différentielles appartenant à $\mathcal{D}^{p,r}(X \setminus \Omega)$.

Théorème 1. — Soient X une variété de Stein de dimension n et $\Omega \subset X$ un domaine relativement compact à bord \mathscr{C}^{∞} de X tel que X soit une extension q-convexe de Ω , $1 \leqslant q \leqslant n-1$. Alors,

- i) $\sin n q + 1 \le r \le n 1$, $\overline{\partial} \mathcal{D}^{p,r-1}(X \setminus \Omega) = \mathcal{D}^{p,r}(X \setminus \Omega) \cap \operatorname{Ker} \overline{\partial}$.
- ii) $\overline{\partial} \mathcal{D}^{p,n-1}(X \setminus \Omega)$ est fermé dans $\mathcal{D}^{p,n}(X \setminus \Omega)$.
- iii) $si \ r = n q \ et \ q \leqslant n 2$, $soit \ f \in \mathcal{D}^{p,n-q}(X \setminus \Omega) \cap \operatorname{Ker} \overline{\partial}$, $alors \ pour \ tout \ \epsilon > 0 \ et \ tout \ \ell \in \mathbb{N}$, $il \ existe \ g_{\varepsilon} \in \mathcal{D}^{p,n-q-1}(X)$ $tels \ que \ \overline{\partial} \ g_{\varepsilon} = f \ et \ |g_{\varepsilon}|_{\ell,\overline{\Omega}} < \varepsilon$, $où \ | \ |_{\ell,\overline{\Omega}} < \varepsilon$, $où \ | \ |_{\ell,\overline{\Omega}} \ désigne \ la \ norme \ C^{\ell} \ sur \ \overline{\Omega}$.

Démonstration.

i) Soit $f \in \mathcal{D}^{p,r}(X \setminus \Omega) \cap \operatorname{Ker} \overline{\partial}$, $f \in \mathcal{D}^{p,r}(X) \cap \operatorname{Ker} \overline{\partial}$. Puisque X est de Stein, il existe $h \in \mathcal{D}^{p,r-1}(X)$, $1 \leqslant r \leqslant n-1$, telle que $\overline{\partial}h = f \operatorname{sur} X$. Comme X est une extension q-convexe de Ω , Ω est strictement q-convexe dans une variété de Stein, donc complètement strictement q-convexe, cf. [3], théorème 5.14.

Puisque $2 \leqslant n-q+1 \leqslant r$, c'est-à-dire $1 \leqslant n-q \leqslant r-1$ et $\overline{\partial} h=0$ sur Ω complètement strictement q-convexe, il existe (cf. [10], théorème 2) une (p,r-2)-forme différentielle de classe \mathscr{C}^{∞} θ sur $\overline{\Omega}$ telle que $\overline{\partial}\theta=h$ sur Ω . Soit $\widetilde{\theta}$ une extension \mathscr{C}^{∞} à support compact dans X de θ , $u=h-\overline{\partial}\widetilde{\theta}$ convient.

ii) Pour montrer que $\overline{\partial}\mathscr{D}^{p,n-1}(X\smallsetminus\Omega)$ est fermé dans $\mathscr{D}^{p,n}(X\smallsetminus\Omega)$, il suffit de montrer que :

$$\overline{\partial} \mathscr{D}^{p,n-1}(X \smallsetminus \Omega) = \big\{ f \in \mathscr{D}^{p,n}(X \smallsetminus \Omega) \mid \int_X f \wedge g = 0 \text{ , pour toute } (n-p) \text{-forme } g \text{ holomorphe dans } X \big\} \, .$$

D'après le théorème de Stokes,

$$\overline{\partial} \mathscr{D}^{p,n-1}(X \smallsetminus \Omega) \subset \big\{ f \in \mathscr{D}^{p,n}(X \smallsetminus \Omega) \mid \int_X f \wedge g = 0 \text{ , pour toute } (n-p) \text{-forme } g \\ \text{holomorphe dans } X \big\} \ .$$

Soit $f \in \mathcal{D}^{p,n}(X \setminus \Omega)$ telle que $\int_X f \wedge g = 0$, pour toute (n-p)-forme g holomorphe dans X. D'après la proposition 20.2 de [3] et la régularité du $\overline{\partial}$, cf. [7], chapitre 5, corollaire 4.5, il existe $h \in \mathcal{D}^{p,n-1}(X)$ telle que $\overline{\partial} h = f$. On termine alors comme dans i). Par conséquent $f \in \overline{\partial} \mathcal{D}^{p,n-1}(X \setminus \Omega)$, d'où l'inclusion dans l'autre sens, ce qui donne l'égalité.

iii) Si $f \in \mathcal{D}^{p,n-q}(X \setminus \Omega) \cap \operatorname{Ker} \overline{\partial}$, alors $f \in \mathcal{D}^{p,n-q}(X) \cap \operatorname{Ker} \overline{\partial}$. Il existe $h \in \mathcal{D}^{p,n-q-1}(X)$ telle que :

$$\overline{\partial}h = f \operatorname{sur} X$$
.

 $\overline{\partial}h = 0$ sur Ω et h est une (p, n-q-1)-forme différentielle $\overline{\partial}$ -fermée sur Ω . On ne sait pas résoudre $\overline{\partial}U = h$ dans Ω .

Pour compléter iii) nous allons utiliser le lemme ci-dessous qui est une version \mathscr{C}^{∞} du théorème 12.11 de [3].

Lemme 2.1. — Soient X une variété analytique complexe de dimension n et $D \subset X$ un domaine strictement q-convexe tel que X soit une extension q-convexe de D, $0 \leqslant q \leqslant n-1$. Alors pour tous $n-q-1 \leqslant r \leqslant n$ et $\ell \in \mathbb{N}$, l'image de l'application restriction de $Z_{0,r}^{\ell}(X) \to Z_{0,r}^{\ell}(\overline{D})$ est dense pour la norme $|\cdot|_{\ell,\overline{D}}$.

 $D\'{e}monstration\ du\ lemme.$ — Elle est analogue à celle du théorème 12.11 de [3], où les résultats locaux avec estimations uniformes de Henkin et Leiterer sont remplacés par des résultats locaux correspondants avec estimations c^ℓ de Lieb et Range [10].

D'après le lemme 2.1, il existe une famille $(\varphi_{\mathcal{E}})_{\mathcal{E}>0}$ de formes différentielles dans $X, \overline{\partial}$ -fermées qui convergent vers $h_{|\overline{\Omega}}$ pour la topologie de la convergence uniforme des formes différentielles et de leurs dérivées d'ordre inférieur ou égal à ℓ sur $\overline{\Omega}$. Puisque $q\leqslant n-2$, il existe une famille $(\psi_{\mathcal{E}})_{\mathcal{E}>0}$ de (p,n-q-2) formes différentielles de classe \mathscr{C}^{∞} sur X telles que $\overline{\partial}\psi_{\mathcal{E}}=\varphi_{\mathcal{E}}$ sur X.

Soit χ une fonction dans $\mathscr{C}^{\infty}(X)$ à support compact dans X qui vaut 1 dans $\overline{\Omega}$. Posons $\theta_{\varepsilon} = \chi \psi_{\varepsilon}$ et $g_{\varepsilon} = h - \overline{\partial} \theta_{\varepsilon}$. $f = \overline{\partial} g_{\varepsilon}$, g_{ε} est une (p, n - q - 1) forme différentielle à support compact dans X avec $|g_{\varepsilon}|_{\ell,\overline{\Omega}} < \varepsilon$.

Notons que pour les assertions i) et ii) il suffit que D soit complètement strictement q-convexe. Le fait que X soit une extension q-convexe de D ne sert que pour iii).

Remarque 2. — Le théorème 1 reste vrai sous les hypothèses légèrement plus faibles suivantes : X est une variété analytique complexe de dimension n et $\Omega \subset\subset X$ est un domaine relativement compact à bord \mathscr{C}^{∞} de X. On suppose que X est une extension q-convexe de Ω et qu'il existe un ouvert de Stein U tel que $\Omega \subset\subset U \subset X$.

3. Résolution du $\overline{\partial}$ pour les courants prolongeables

Comme conséquence de la résolution à support compact et de la dualité entre $\check{\mathscr{D}}_D^{\prime p,r}(X)$ et $\mathscr{D}^{n-p,n-r}(X \setminus \Omega)$, nous avons le théorème suivant :

Théorème 2. — Soient X une variété de Stein de dimension $n, \Omega \subset X$ un domaine relativement compact à bord \mathscr{C}^{∞} de X tels que X soit une extension q-convexe de Ω , $1 \leqslant q \leqslant n-1$. Alors,

i) Pour $1 \leqslant r \leqslant q$ et $r \leqslant n-2$,

$$\overline{\partial} \check{\boldsymbol{\mathcal{D}}}_{X \smallsetminus \overline{\Omega}}^{\prime \, p,r-1}(X) = \check{\boldsymbol{\mathcal{D}}}_{X \smallsetminus \overline{\Omega}}^{\prime \, p,r}(X) \cap \operatorname{Ker} \overline{\partial} \, .$$

$$ii)$$
 $Si q = n - 1$,

$$\overline{\partial} \check{\mathscr{D}}_{X \smallsetminus \overline{\Omega}}^{\prime \, p, n-2}(X) = \left\{ T \in \check{\mathscr{D}}_{X \smallsetminus \overline{\Omega}}^{\prime \, p, n-1}(X) \mid \langle T, \varphi \rangle = 0 \; , \; \forall \varphi \in \mathscr{D}^{n-p, 1}(X \smallsetminus \Omega) \cap \operatorname{Ker} \overline{\partial} \right\}.$$

Pour faire la démonstration du théorème, on a besoin de deux lemmes :

Lemme 3.1. — Sous les hypothèses de la remarque 2, soit K un compact d'intérieur non vide de $U \setminus \Omega$. Si T est un courant de bidegré (p,r) sur $U \setminus \overline{\Omega}$, $\overline{\partial}$ -fermé et prolongeable à U, il existe un courant $S^{(K)}$ défini dans $U \setminus \overline{\Omega}$ prolongeable à U tel que $\overline{\partial}S^{(K)} = T$ dans K, pour $1 \leqslant r \leqslant q$ et $r \leqslant n-2$.

$$Si\,q=n-1\,\,pour\,tout\,T\in\big\{F\in\check{\mathcal{D}}_{U\smallsetminus\overline{\Omega}}^{\prime\,p,n-1}(U)\mid\langle F,\varphi\rangle=0,\forall\,\varphi\in\mathscr{D}^{n-p,1}(U\smallsetminus\Omega)\cap\ker\overline{\partial}\big\}\,,$$

il existe un courant $S^{(K)}$ défini dans $U \setminus \overline{\Omega}$ prolongeable à U tel que $\overline{\partial} S^{(K)} = T$ dans $\overset{\circ}{K}$.

Démonstration du lemme. — D'après la remarque 2, $\overline{\partial} \mathcal{D}^{n-p,n-r}(U \setminus \Omega)$ est fermé dans $\mathcal{D}^{n-p,n-r+1}(U \setminus \Omega)$ pour $2 \leqslant n-q+1 \leqslant n-r+1 \leqslant n$, c'est-à-dire $1 \leqslant r \leqslant q$.

Donc si $1\leqslant r\leqslant q$, pour un compact K de $U\smallsetminus\Omega$, notons $\mathscr{D}_K^{n-p,n-r+1}(U\smallsetminus\Omega)$ le sous-espace des formes différentielles appartenant à $\mathscr{D}^{n-p,n-r+1}(U\smallsetminus\Omega)$ et qui ont leur support dans K.

 $\mathscr{D}_{K}^{n-p,n-r+1}(U \smallsetminus \Omega) \cap \overline{\partial} \mathscr{D}^{n-p,n-r}(U \smallsetminus \Omega)$ est fermé dans $\mathscr{D}_{K}^{n-p,n-r+1}(U \smallsetminus \Omega)$ qui est un espace de Fréchet, c'est donc un espace de Fréchet.

$$\mathscr{D}_{K}^{n-p,n-r+1}(U \smallsetminus \Omega) \cap \overline{\partial} \mathscr{D}^{n-p,n-r}(U \smallsetminus \Omega) = \bigcup_{v \in \mathbb{N}} \left(\mathscr{D}_{K}^{n-p,n-r+1}(U \smallsetminus \Omega) \cap \overline{\partial} \mathscr{D}_{K_{v}}^{n-p,n-r}(U \smallsetminus \Omega) \right);$$
 où $(K_{v})_{v \in \mathbb{N}}$ est une suite exhaustive de compacts de $U \smallsetminus \Omega$. Il existe v_{0} tel que $\mathscr{D}_{K}^{n-p,n-r+1}(U \smallsetminus \Omega) \cap \overline{\partial} \mathscr{D}_{K_{v_{0}}}^{n-p,n-r}(U \smallsetminus \Omega)$ soit de deuxième catégorie de Baire. L'opérateur $\overline{\partial}$ est alors un opérateur fermé de domaine de définition $\{\varphi \in \mathscr{D}_{K_{v_{0}}}^{n-p,n-r}(U \smallsetminus \Omega) \mid \overline{\partial} \varphi \in \mathscr{D}_{K}^{n-p,n-r+1}(U \smallsetminus \Omega)\}$ entre les espaces de Fréchet $\mathscr{D}_{K_{v_{0}}}^{n-p,n-r}(U \smallsetminus \Omega)$ et $\mathscr{D}_{K}^{n-p,n-r+1}(U \smallsetminus \Omega) \cap \overline{\partial} \mathscr{D}^{n-p,n-r}(U \smallsetminus \Omega)$ dont l'image est de seconde catégorie de Baire. Le théorème de l'application ouverte implique alors que cet opérateur est surjectif et ouvert. Donc

$$\overline{\partial} \mathscr{D}^{n-p,n-r}_{K_{\nu_0}}(U \smallsetminus \Omega) \cap \mathscr{D}^{n-p,n-r+1}_{K}(U \smallsetminus \Omega) = \mathscr{D}^{n-p,n-r+1}_{K}(U \smallsetminus \Omega) \cap \overline{\partial} \mathscr{D}^{n-p,n-r}(U \smallsetminus \Omega) \; .$$

Posons $\widetilde{K} = K_{\nu_0}$. L'application

$$L_T^K: \mathcal{D}_K^{n-p,n-r+1}(U \setminus \Omega) \cap \overline{\partial} \mathcal{D}_{\widetilde{K}}^{n-p,n-r}(U \setminus \Omega) \to \mathbb{C}$$
$$\overline{\partial} \varphi \to \langle T, \varphi \rangle$$

est bien définie. En effet, si $\overline{\partial} \varphi = \overline{\partial} \varphi'$, on a $\overline{\partial} (\varphi - \varphi') = 0$. $\varphi - \varphi'$ est une (n - p, n - r) forme différentielle, $\overline{\partial}$ -fermée à support compact dans \widetilde{K} , en particulier dans $U \setminus \Omega$.

* Si $r \leqslant q-1$, d'après i) du théorème 1 et la remarque 2, il existe $\theta \in \mathcal{D}^{n-p,n-r-1}(U \smallsetminus \Omega)$ tel que $\varphi - \varphi' = \overline{\partial}\theta$ car $n-r \geqslant n-q+1$. Par densité de $\mathcal{D}^{n-p,n-r-1}(U \smallsetminus \overline{\Omega})$ dans

 $\mathscr{D}^{n-p,n-r-1}(U \setminus \Omega)$, il existe une suite $(\theta_j)_{j \in \mathbb{N}}$ d'éléments de $\mathscr{D}^{n-p,n-r-1}(U \setminus \overline{\Omega})$ qui convergent uniformément vers θ dans $\mathscr{D}^{n-p,n-r-1}(U \setminus \Omega)$ et par conséquent $\langle T, \varphi \rangle = \langle T, \varphi' \rangle + \langle T, \overline{\partial} \theta \rangle = \langle T, \varphi' \rangle$ car T étant $\overline{\partial}$ -fermé, $\langle T, \overline{\partial} \theta \rangle = \lim_{j \to +\infty} \langle T, \overline{\partial} \theta_j \rangle = 0$. Donc

$$L_T^K(\overline{\partial}\varphi)=L_T^K(\overline{\partial}\varphi')\;.$$

** Si r=q et $r\leqslant n-2$, soit \widetilde{T} une extension de T à U. $\overline{\partial}\widetilde{T}$ est un courant à support compact sur $\overline{\Omega}$, donc $\overline{\partial}\widetilde{T}$ est d'ordre fini ℓ . Puisque $\varphi-\varphi'\in \mathscr{D}^{n-p,n-q}(U\smallsetminus\Omega)\cap \operatorname{Ker}\overline{\partial}$ pour tout $\varepsilon>0$, on a d'après iii) du théorème 1 et la remarque 2, une (n-p,n-q-1) forme différentielle h_{ε} de classe \mathscr{C}^{∞} à support compact dans U telle que $\varphi-\varphi'=\overline{\partial}h_{\varepsilon}$ et $|h_{\varepsilon}|_{\ell,\overline{\Omega}}\leqslant \varepsilon$.

$$|\langle \widetilde{T}, \overline{\partial} h_{\varepsilon} \rangle| = |\langle \overline{\partial} \widetilde{T}, h_{\varepsilon} \rangle| \leqslant c |h_{\varepsilon}|_{\rho \cdot \overline{\Omega}}.$$

 $\operatorname{Donc} |\langle \widetilde{T}, \overline{\partial} h_{\varepsilon} \rangle| \underset{\varepsilon \to 0}{\longrightarrow} 0, \operatorname{d'où} \langle T, \varphi \rangle = \langle T, \varphi' \rangle, \operatorname{ainsi} L_T^K(\overline{\partial} \varphi) = L_T^K(\overline{\partial} \varphi').$

 $*** \text{ Si } q = n-1 \text{ et } T \in \{F \in \widecheck{\mathcal{D}}_{U \smallsetminus \overline{\Omega}}^{'p,n-1}(U) \mid \langle F, \varphi \rangle = 0, \forall \varphi \in \mathscr{D}^{n-p,1}(U \smallsetminus \Omega) \cap \operatorname{Ker} \overline{\partial} \} \text{ , } \\ \varphi - \varphi' \in \mathscr{D}^{n-p,1}(U \smallsetminus \Omega) \cap \operatorname{Ker} \overline{\partial} \text{ et d'après l'hypothèse sur } T, \langle T, \varphi - \varphi' \rangle = 0. \text{ D'où } L_T^K(\overline{\partial} \varphi) = L_T^K(\overline{\partial} \varphi') \text{ . }$

L'application L_T^K est linéaire, mais également continue comme composée de deux applications continues :

$$T: \mathcal{D}^{n-p,n-r}_{\widetilde{K}}(U \smallsetminus \Omega) \longrightarrow \mathbb{C}$$

et

$$\delta: \mathcal{D}_K^{n-p,n-r+1}(U \smallsetminus \Omega) \cap \overline{\partial} \mathcal{D}_{\widetilde{K}}^{n-p,n-r}(U \smallsetminus \Omega) \longrightarrow \mathcal{D}_{\widetilde{K}}^{n-p,n-r}(U \smallsetminus \Omega)$$

qui vérifie $\overline{\partial} \circ \delta = I$ et qui est obtenue par application du théorème de l'application ouverte appliqué à

$$\begin{split} \overline{\partial} : \big\{ \varphi \in \mathscr{D}_{\widetilde{K}}^{n-p,n-r}(U \smallsetminus \Omega) \mid \overline{\partial} \varphi \in \mathscr{D}_{K}^{n-p,n-r+1}(U \smallsetminus \Omega) \big\} \subset \mathscr{D}_{\widetilde{K}}^{n-p,n-r}(U \smallsetminus \Omega) \\ & \longrightarrow \mathscr{D}_{K}^{n-p,n-r+1}(U \smallsetminus \Omega) \cap \overline{\partial} \mathscr{D}_{\widetilde{K}}^{n-p,n-r}(U \smallsetminus \Omega) \; . \end{split}$$

D'après le théorème de Hahn-Banach, on peut étendre L_T^K à une application $\widetilde{L}_T^K: \mathscr{D}^{n-p,n-r+1}$ $(U \smallsetminus \Omega) \to \mathbb{C}$ qui est linéaire et continue. Donc \widetilde{L}_T^K est un courant prolongeable défini dans $U \smallsetminus \overline{\Omega}$ et $\overline{\partial} \widetilde{L}_T^K = (-1)^{p+r} T$ sur $\overset{\circ}{K}$ car si supp $\varphi \in K$, $\overline{\partial} \varphi \in \mathscr{D}_K^{n-p,n-r+1}((U \smallsetminus \Omega))$ et $\langle \widetilde{L}_T^K, \overline{\partial} \varphi \rangle = (-1)^{p+r} \langle T, \varphi \rangle$. On pose $S^{(K)} = (-1)^{p+r} \widetilde{L}_T^K$.

Lemme 3.2. — Sous les hypothèses du théorème 2, soient K_1 , K_2 , K_3 trois compacts d'intérieur non vide tels que $K_1 \subset K_2 \subset K$ et $K_i \cup \overline{\Omega} = \{z \in X \setminus \rho(z) < \eta_i\}$, i = 1,2,3, où ρ est une fonction d'exhaustion strictement plurisousharmonique qui existe du fait que X est de Stein. Soit T un courant prolongeable sur $X \setminus \overline{\Omega}$ tel qu'il existe S_2 et S_3 deux (p,r-1) courants définis sur K_2 et K_3 et prolongeables à X tels que, pour tout indice i = 2,3, $\overline{\partial}S_i = T$ sur K_i et soit E > 0, alors il existe un courant prolongeable S_3 défini sur S_3 tel que : S_3 = S_3 =

i)
$$\widetilde{S}_3 \underset{K_1}{\circ} = S_2 \underset{K_1}{\circ} si \ 2 \leqslant r \leqslant q;$$

$$ii) \ |\langle \widetilde{S}_3 - S_2, \varphi \rangle| < \varepsilon |\varphi|_{0,K_1}, pour \ toute \ \varphi \in \mathcal{D}^{n-p,n}(\mathring{K}_1 \cup b\Omega) \ si \ r = 1.$$

Démonstration du lemme.

i) Comme $\overline{\partial}S_2 = T$ sur \mathring{K}_2 et $\overline{\partial}S_3 = T$ sur \mathring{K}_3 , $\overline{\partial}(S_2 - S_3) = 0$ sur \mathring{K}_2 . Puisque sur \mathring{K}_2 , on peut résoudre le $\overline{\partial}$ pour les formes différentielles à support compact dans $\mathring{K}_2 \cup b\Omega$ de bidegré (p,r) avec $2 \leqslant n-q+1 \leqslant r \leqslant n-1$ et $\overline{\partial}\mathscr{D}^{n-p,n-1}(\mathring{K}_2 \cup b\Omega)$ est fermé dans $\mathscr{D}^{n-p,n}(\mathring{K}_2 \cup b\Omega)$, cf. Remarque 2, on a d'après le lemme 3.1 et pour K un compact tel que $\mathring{K}_1 \subset K \subset \mathring{K}_2$ un courant $\mathring{S}^{(K)}$ sur \mathring{K} prolongeable à $\mathring{K}_2 \cup \overline{\Omega}$ tel que $\mathring{S}_2 - \mathring{S}_3 = \overline{\partial} \mathring{S}^{(K)}$ sur \mathring{K} .

Soient χ une fonction dans $\mathscr{C}^{\infty}(X)$ à support compact dans $\overset{\circ}{K} \cup \overline{\Omega}$ qui vaut 1 dans K_1 et $\widetilde{S}^{(K)}$ une extension de $S^{(K)}$ à X

$$S_3 + \overline{\partial}(\chi \widetilde{S}^{(K)}) = S_2 - \overline{\partial}((1 - \chi)\widetilde{S}^{(K)}) \text{ sur } \overset{\circ}{K_1}.$$

On pose

$$\widetilde{S}_3 = S_3 + \overline{\partial}(\chi \widetilde{S}^K)$$
.

ii) Si r=1, comme $\overline{\partial}S_2=T$ sur $\overset{\circ}{K_2}$ et $\overline{\partial}S_3=T$ sur $\overset{\circ}{K_3}$, $\overline{\partial}(S_2-S_3)=0$ sur $\overset{\circ}{K_2}$. Il existe θ une p-forme holomorphe sur $\overset{\circ}{K_2}$ telle que $S_3-S_2=\theta$ sur $\overset{\circ}{K_2}$.

 $\mathring{K}_2 \cup \overline{\Omega}$ est une variété de Stein, $\overline{\Omega}$ est un compact de $\mathring{K}_2 \cup \overline{\Omega}$ et $\mathring{K}_2 = (\mathring{K}_2 \cup \overline{\Omega}) \setminus \overline{\Omega}$ est connexe. Par le phénomène de Hartogs, toute p-forme holomorphe sur \mathring{K}_2 se prolonge holomorphiquement à $\mathring{K}_2 \cup \overline{\Omega}$. Soit $\widetilde{\theta}$ un tel prolongement de θ à $\mathring{K}_2 \cup \overline{\Omega}$. Il existe alors, cf. [5], théorème 5.2.8, une suite $(\theta_j)_{j \in \mathbb{N}}$ de p-formes holomorphes dans $\mathring{K}_3 \cup \overline{\Omega}$ qui convergent uniformément vers $\widetilde{\theta}$ sur $K_1 \cup \overline{\Omega}$. Il existe j_0 tel que $\sup_{K_1 \cup \overline{\Omega}} |\theta_{j_0} - \widetilde{\theta}| < \varepsilon$.

Posons
$$\widetilde{S}_3 = S_3 - \theta_{j_0}$$
, on a $|\langle \widetilde{S}_3 - S_2, \varphi \rangle| \leqslant \varepsilon \sup_{K_1 \cup \overline{\Omega}} |\varphi|$, pour tout $\varphi \in \mathcal{D}^{n-p,n}(\mathring{K}_1 \cup b\Omega)$. \square

Démonstration du théorème. — Considérons une suite exhaustive $(K_j)_{j\in\mathbb{N}}$ de compacts de $X \smallsetminus \Omega$. Supposons que $\overset{\circ}{K_j} \cup \overline{\Omega} = \{z \in X \mid \rho(z) < \eta_j\}$ où $(\eta_j)_{j\in\mathbb{N}}$ sont des réels tels que $\eta_j < \eta_{j+1}$ et ρ est une fonction d'exhaustion strictement plurisousharmonique de X. Pour $2 \leqslant r \leqslant q$, on associe à $(K_j)_{j\in\mathbb{N}}$ grâce aux lemmes 3.1 et 3.2 une suite de courants $(S_j)_{j\in\mathbb{N}}$ définis dans K_j et prolongeables à X telle que $\overline{\partial}S_j = T$ sur $\overset{\circ}{K_j}$ et si j, j+1, j+2 sont trois indices consécutifs, $S_{j+2} = S_{j+1}$ sur $\overset{\circ}{K_j}$.

La suite $(S_j)_{j\in\mathbb{N}}$ converge vers un courant S défini sur $X\setminus\overline{\Omega}$ et prolongeable. De plus, S est solution de l'équation $\overline{\partial}U=T$ dans $X\setminus\overline{\Omega}$.

Pour r=1, soit $\varepsilon>0$, il existe d'après les lemmes 3.1 et 3.2, une solution \widetilde{S}_3 de $\overline{\partial}S=T$ dans $\overset{\circ}{K}_3$, une solution S_2 de $\overline{\partial}S=T$ dans $\overset{\circ}{K}_2$ telles que $|\langle \widetilde{S}_3-S_2,\varphi\rangle|\leqslant \varepsilon|\varphi|_{0,K_1}$, pour toute $\varphi\in \mathscr{D}^{n-p,n}(\overset{\circ}{K}_1\cup b\Omega)$. On construit ainsi une suite $(\widetilde{S}_j)_{j\in\mathbb{N}}$ de courants définis sur $\overset{\circ}{K}_j$ et prolongeables à X tels que si $j,\ j+1,\ j+2$ sont trois indices consécutifs, $|\langle \widetilde{S}_{j+2}-\widetilde{S}_{j+1},\varphi\rangle|<\frac{\varepsilon}{2j}|\varphi|_{0,K_j}$ pour toute $\varphi\in \mathscr{D}^{n-p,n}(\overset{\circ}{K}_j\cup b\Omega)$. La suite $(\widetilde{S}_j)_{j\in\mathbb{N}}$ est une suite de Cauchy pour la topologie faible. En effet, soit $\varphi\in \mathscr{D}^{n-p,n}(X\setminus\Omega)$, il existe $N\in\mathbb{N}$ tel que supp $\varphi\subset \overset{\circ}{K}_N\cup b\Omega$ et pour tout m>N et p>0

$$|\langle \widetilde{S}_{m+p} - \widetilde{S}_m, \varphi \rangle| \leqslant \left(\frac{\varepsilon}{2^{m-1}} + \cdots + \frac{\varepsilon}{2^{m+p-1}}\right) |\varphi|_{0,K_N},$$

par conséquent $\langle \widetilde{S}_{m+p} - \widetilde{S}_m, \varphi \rangle \underset{m \to +\infty}{\longrightarrow} 0$. Donc $(\widetilde{S}_j)_{j \in \mathbb{N}}$ converge faiblement vers S. S est linéaire. En effet, soient $\varphi, \psi \in \mathcal{D}^{n-p,n}(X \setminus \Omega)$. $\varphi + \psi \in \mathcal{D}^{n-p,n}(X \setminus \Omega)$. Il existe K_N tel que $\sup \varphi$, $\sup \psi$, $\sup (\varphi + \psi)$ soient inclus dans K_N .

$$\langle S, \varphi + \psi \rangle = \lim_{j > N} \langle S_j, \varphi + \psi \rangle = \lim_{j > N} \langle S_j, \varphi \rangle + \lim_{j > N} \langle S_j, \psi \rangle = \langle S, \varphi \rangle + \langle S, \psi \rangle \,.$$

Soit $(\varphi_{\mathcal{V}})_{\mathcal{V}\in\mathbb{N}}$ une suite d'éléments de $\mathscr{D}^{n-p,n}(X\smallsetminus\Omega)$ avec $\varphi_{\mathcal{V}}\underset{\mathcal{V}\to+\infty}{\longrightarrow}0$ dans $\mathscr{D}^{n-p,n}(X\smallsetminus\Omega)$. Il existe un compact K_N tel que pour tout \mathcal{V} , supp $\varphi_{\mathcal{V}}\subset K_N$. $|\langle S,\varphi_{\mathcal{V}}\rangle|=|\lim_{j>N}\langle S_j,\varphi_{\mathcal{V}}\rangle|$ et

$$|\langle S_j, \varphi_{\nu} \rangle| \leqslant \varepsilon \sum_{k=N}^{j-1} \frac{1}{2^k} |\varphi_{\nu}|_{0, K_N} + |\langle S_{N+1}, \varphi_{\nu} \rangle|.$$

 S_{N+1} est un courant donc $\langle S_{N+1}, \varphi_{\nu} \rangle \underset{\nu \to +\infty}{\longrightarrow} 0$ et par hypothèse $\varphi_{\nu} \underset{\nu \to +\infty}{\longrightarrow} 0$, donc $|\varphi_{\nu}|_{0,K_{N}} \underset{\nu \to +\infty}{\longrightarrow} 0$. D'où $\langle S_{j}, \varphi_{\nu} \rangle \underset{\nu \to +\infty}{\longrightarrow} 0$. S est alors continu et est un courant prolongeable solution de l'équation $\overline{\partial} U = T$ dans $X \setminus \overline{\Omega}$.

4. Invariance de la cohomologie pour les extensions q-concaves et q-convexes

Soient X une variété analytique complexe de dimension n et D un domaine de X. On note $H^{p,r}_{\infty}(D)$ respectivement $H^{p,r}_{\mathrm{cour}}(D)$ le $(p,r)^{\mathrm{l\`{e}me}}$ groupe de cohomologie de Dolbeault des formes différentielles de classe \mathscr{C}^{∞} dans D respectivement des courants dans D.

Si $\check{Z}^{p,r}(D)$ désigne l'espace des courants de bidegré (p,r) sur D prolongeables, $\overline{\partial}$ -fermés et $\check{E}^{p,r}(D) = \overline{\partial} \check{\mathscr{D}}_D^{'p,r-1}(X)$, alors on note

$$\check{H}^{p,r}(D) = \frac{\check{Z}^{p,r}(D)}{\check{E}^{p,r}(D)},$$

le $(p,r)^{i$ ème groupe de cohomologie de Dolbeault des courants prolongeables définis sur D.

Nous étudions dans ce paragraphe l'injectivité et la surjectivité de l'application induite par restriction :

$$\check{\mathscr{G}}: \check{H}^{0,r}(D) \longrightarrow H^{0,r}_{\text{cour}}(D)$$
.

Définition 4.1. — Un domaine $D \subset X$ est dit à bord strictement q-convexe, respectivement q-concave, si :

- i) bD rencontre toutes les composantes connexes de X.
- ii) Il existe un voisinage U de bD, une fonction $\rho:U\to\mathbb{R}$, (q+1)-convexe, respectivement (q+1)-concave, tels que

$$D \cap U = \{ z \in U \mid \rho(z) < 0 \}$$
.

X est dit extension q-convexe généralisée, respectivement q-concave généralisée, de D si :

- 1) D rencontre toutes les composantes connexes de X.
- 2) Il existe une application $\rho: [0, +\infty[\times U \to \mathbb{R} \text{ où } U \text{ est un voisinage de } X \setminus D \text{ telle que}:$

- a) Pour tout $t \in [0, +\infty[$, $\rho(t, \cdot)$ est (q+1)-convexe, respectivement (q+1)-concave.
- b) Pour tout $z \in U$, $\rho(\cdot,z)$ est une fonction décroissante.
- c) L'application $t \to \rho(t,\cdot)$ est continue de $[0, +\infty[$ dans $\mathscr{C}^{\infty}(U,\mathbb{R})$.
- d) $D \cap U = \{z \in U \mid \rho(0,z) < 0\}$ et pour tout t > 0, $\{z \in U \mid \rho(t,z) < 0\} \cap \complement \overline{D}$ est relativement compact dans X.

Soit G un domaine de X. Supposons que G est une extension q-concave généralisée de D, $1 \le q \le n-1$. On a d'après [6] les résultats suivants : l'application induite par restriction

$$\mathscr{S}: H^{0,r}_{\infty}(G) \to H^{0,r}_{\infty}(D) \text{ est un isomorphisme pour } 0 \leqslant r \leqslant q-1, \ \ \text{(th\'eor\`eme 1.1.3)}.$$

$$\mathcal{S}: H^{0,q}_{\infty}(G) \to H^{0,q}_{\infty}(D)$$
 est injective, (théorème 1.1.4).

De plus, pour tout domaine Ω de X, l'application naturelle de $H^{0,r}_{\infty}(\Omega) \to H^{0,r}_{\mathrm{cour}}(\Omega)$, $0 \leqslant r \leqslant n$, est un isomorphisme appelé isomorphisme de Dolbeault. On en déduit l'équivalent pour les courants de l'invariance de la cohomologie pour les extensions q-concaves suivant : l'application induite par restriction

$$\mathscr{S}': H^{0,r}_{\mathrm{cour}}(G) \to H^{0,r}_{\mathrm{cour}}(D)$$
 est un isomorphisme pour $0 \leqslant r \leqslant q-1$,

$$\mathscr{S}': H^{0,q}_{\mathrm{cour}}(G) \to H^{0,q}_{\mathrm{cour}}(D)$$
, est injective.

Dans le cas convexe, on a l'analogue suivant du lemme 1.1.2 de [6].

LEMME 4.2. — Soit $\rho: [0, +\infty[\times X \to \mathbb{R} \text{ une application vérifiant les propriétés suivantes}:$

- a) Pour tout $t \in [0, +\infty[, \rho(t, \cdot) \text{ est } (q+1) \text{-convexe.}]$
- b) Pour tout $z \in X$, $\rho(\cdot,z)$ est une fonction décroissante.
- c) L'application $t \to \rho(t,\cdot)$ est continue de $[0, +\infty[$ dans $\mathscr{C}^{\infty}(X,\mathbb{R})$.
- d) ρ n'a pas de point critique dégénéré.

Posons $D_{\alpha} = \{z \in X \mid \rho(\alpha,z) < 0\}$ pour tout $\alpha \in \mathbb{R}$ et on suppose qu'il existe α_0 tel que $\alpha < \alpha_0, \alpha' < \alpha_0, \alpha' < \alpha$ et $D_{\alpha} \setminus \overline{D}_{\alpha'}$, est relativement compact dans X. Il existe alors un réel $\varepsilon > 0$ tel que pour tout α,β vérifiant $0 \le \alpha \le \beta \le \varepsilon$, il existe un nombre fini de domaines $(A_i)_{i=0}^N$ tels que: $D_{\alpha} = A_0 \subset A_1 \subset \cdots \subset A_N = D_{\beta}$ et pour tout $j, 1 \le j \le N$, A_j se déduit de A_{j-1} à l'aide d'un élément d'extension q-convexe de X.

Démonstration. — Elle est identique à celle de [6], on définit A_k par

$$A_k = \{ z \in X \mid \rho(\alpha, z) - (\rho(\beta, z) - \rho(\alpha, z)) \sum_{j=1}^k \chi_j < 0 \}$$

où χ_i est comme dans la preuve du lemme 12.3 de [3].

En utilisant le lemme 4.2, le lemme 12.4 de [3] et en procédant comme dans le paragraphe 12 de [3], on a

Théorème 3. — Soient X une variété analytique complexe de dimension n, q un entier, $0 \le q \le n-1$ et D un domaine de X. On suppose que X est une extension q-convexe généralisée de D. Alors l'application induite par restriction :

et
$$\mathcal{S}: H^{0,r}_\infty(X) \longrightarrow H^{0,r}_\infty(D) \ \ \text{est un isomorphisme si} \ r > n-q$$

$$\mathcal{S}: H^{0,n-q}_\infty(X) \longrightarrow H^{0,n-q}_\infty(D), \ \ \text{est surjective}.$$

Si D est relativement compact, alors $\mathscr{S}: H^{0,n-q}_{\infty}(X) \to H^{0,n-q}_{\infty}(D)$, est en plus injective.

Dans le cas compact le théorème 3 correspond au théorème 12.14 de [3].

Тне́опѐме 4. — Soient X une variété analytique complexe de dimension n, D un domaine à bord $bD \, \mathscr{C}^{\infty} \, de \, X$. Supposons que :

a) bD est strictement q-concave, $1 \le q \le n-1$, alors l'application induite par restriction:

et
$$\check{\mathscr{G}}: \check{H}^{0,r}(D) \longrightarrow H^{0,r}_{\mathrm{cour}}(D)$$
 est un isomorphisme pour $0 \leqslant r \leqslant q-1$ $\check{\mathscr{G}}: \check{H}^{0,q}(D) \longrightarrow H^{0,q}_{\mathrm{cour}}(D), \ 1 \leqslant q \leqslant n-1, \ \ \text{est injective}.$

b) bD est strictement q-convexe, $1 \le q \le n-1$, l'application induite par restriction

et
$$\check{\mathcal{G}}: \check{H}^{0,r}(D) \longrightarrow H^{0,r}_{\mathrm{cour}}(D) \ \ \textit{est un isomorphisme si} \ r > n-q$$

$$\check{\mathcal{G}}: \check{H}^{0,n-q}(D) \longrightarrow H^{0,n-q}_{\mathrm{cour}}(D) \ \ \textit{est surjective}.$$

Si de plus D est relativement compact, on $a: \check{\mathscr{Y}}: \check{H}^{0,n-q}(D) \to H^{0,n-q}_{\mathrm{cour}}(D)$ qui est en plus injective.

Démonstration.

a) Soient ρ une fonction définissante de D et $(K_{\nu})_{\nu \in \mathbb{N}}$ une suite exhaustive de compacts de X. Considérons une fonction $\chi_1 \in \mathcal{D}(X)$ à support dans K_2 qui vaut 1 dans K_1 . Il existe $t_1 > 0$ tel que $\rho_1 = \rho - t_1 \chi_1$ soit (q+1)-concave dans un voisinage de $\{\rho_1 = 0\}$.

Posons $D_1 = D \cup \{\rho_1 < 0\}$. D_1 est un domaine de X à bord \mathscr{C}^{∞} strictement q-concave. $D_1 \setminus D = \{0 \leqslant \rho < t_1\chi_1\}$ est relativement compact et D_1 est une extension q-concave généralisée de D.

Soit $\chi_2 \in \mathcal{D}(X)$ à support dans K_3 qui vaut 1 dans K_2 . Il existe $t_2 > 0$ tel que $\rho_2 = \rho_1 - t_2 \chi_2$ soit (q+1)-concave dans un voisinage de $\{\rho_2 = 0\}$. $D_2 = D_1 \cup \{\rho_2 < 0\}$ est un domaine à bord \mathscr{C}^{∞} strictement q-concave, $D_2 \setminus D_1 = \{0 \leqslant \rho_1 < t_2 \chi_2\}$ est relativement compact et D_2 est une extension q-concave généralisée de D_1 . On construit ainsi une suite de domaines $(D_v)_{v \in \mathbb{N}}$ avec $D_0 = D$, $D_v \subset D_{v+1}$, $D_{v+1} \setminus D_v$ est relativement compact et D_{v+1} est une extension q-concave généralisée de $D_v \cdot \widetilde{D} = \bigcup_{v \in \mathbb{N}} D_v \supset \overline{D}$ et est une extension q-concave généralisée de D.

• Surjectivité de
$$\check{\mathscr{Y}}$$
 : $\check{H}^{0,r}(D) \to H^{0,r}_{\mathrm{cour}}(D), 0 \leqslant r \leqslant q-1.$

Nous voulons montrer que pour tout $[T] \in H^{0,r}_{cour}(D)$, il existe $[\check{T}] \in \check{H}^{0,r}(D)$ tel que $\check{\mathscr{S}}[\check{T}] = [T]$. Si $1 \leqslant r \leqslant q-1$, cela revient à montrer qu'il existe \check{T} un courant $\bar{\partial}$ -fermé sur D, prolongeable et θ un (0,r-1) courant dans D tels que :

$$\check{T} = T + \overline{\partial}\theta$$
 dans D.

De la surjectivité de l'application $\mathscr{S}': H^{0,r}_{\mathrm{cour}}(\widetilde{D}) \to H^{0,r}_{\mathrm{cour}}(D), 0 \leqslant r \leqslant q-1$, il existe un courant T' défini dans $\widetilde{D}, \overline{\partial}$ -fermé et θ' un (0,r-1) courant dans D tels que :

$$T' - T = \overline{\partial}\theta'$$
 dans D pour $1 \leqslant r \leqslant q - 1$.

Il suffit de choisir $\check{T}=T'_{|D|}$ d'où la surjectivité de $\check{\mathscr{S}}$ pour $1\leqslant r\leqslant q-1$. De même

où $\mathscr{O}(D)$ désigne l'espace des fonctions holomorphes dans D. Si $T \in \mathscr{O}(D)$, T est la restriction d'une fonction holomorphe T' définie dans \widetilde{D} . On pose là aussi $\check{T} = T'_{|D|}$.

Ainsi $\check{\mathscr{S}}: \check{H}^{0,r}(D) \to H^{0,r}_{\operatorname{cour}}(D)$ est surjective pour $0 \leqslant r \leqslant q-1$.

• Injectivité de $\check{\mathscr{Y}}$: $\check{H}^{0,r}(D) \to H^{0,r}_{\mathrm{cour}}(D)$, $0 \leqslant r \leqslant q$.

Pour
$$r = 0$$
, $\check{\mathscr{G}}$: $\check{H}^{0,0}(D) \to \mathscr{O}(D)$.

Soit $[\check{T}] \in \check{H}^{0,0}(D)$ tel que $\check{\mathscr{S}}[\check{T}] = 0$ dans $D \cdot \check{T}_{\mid D} = 0$ et est un courant prolongeable. \check{T} appartient au dual topologique de $\mathscr{D}^{n,n}(\overline{D})$. Soit $\varphi \in \mathscr{D}^{n,n}(\overline{D})$, il existe une suite $(\varphi_j)_{j \in \mathbb{N}} \in \mathscr{D}^{n,n}(D)$ qui converge vers φ dans $\mathscr{D}^{n,n}(\overline{D})$.

$$\langle \check{T}, \varphi \rangle = \lim_{i \to 0} \langle \check{T}, \varphi_j \rangle = 0 \text{ car } \check{T}_{\mid D} = 0.$$

Ainsi $\langle \check{T}, \varphi \rangle = 0$ pour toute $\varphi \in \mathcal{D}^{n,n}(\overline{D})$, d'où $\check{T} = 0$. Donc $\check{\mathscr{Y}} : \check{H}^{0,0}(D) \to H^{0,0}_{\mathrm{cour}}(D)$ est injective.

Pour montrer l'injectivité de $\check{\mathscr{Y}}$: $\check{H}^{0,r}(D) \to H^{0,r}_{\mathrm{cour}}(D)$ pour $1 \leqslant r \leqslant q$, nous avons besoin de deux lemmes.

Lemme 4.3. — Soient X une variété analytique complexe de dimension n et D un domaine à bord \mathscr{C}^{∞} strictement q-concave. Pour tout $\xi \in bD$, il existe un voisinage θ de ξ , tel que pour tout domaine D_1 à bord \mathscr{C}^{∞} suffisamment proche de D au sens de la topologie \mathscr{C}^2 et pour tout $\check{T} \in \check{\mathscr{D}}_{D_1}^{\prime 0,r}(X) \cap \ker \overline{\partial}, \overline{\partial}$ -exact dans D_1 , avec $1 \leqslant r \leqslant q$, il existe un courant $S \in \check{\mathscr{D}}^{\prime 0,r-1}(D_1 \cap \theta)$ tel que $\overline{\partial}S = \check{T}$ dans $D_1 \cap \theta$.

Avant de faire la preuve du lemme donnons d'abord une définition.

DÉFINITION 4.4. — Un domaine local q-concave dans \mathbb{C}^n $(1 \leqslant q \leqslant n-1)$, cf. [8], est un triplet $[U,D,\rho]$ qui vérifie les propriétés suivantes :

i) $U \subset \mathbb{C}^n$ est un ouvert convexe.

- *ii)* ρ est une fonction réelle de classe \mathscr{C}^{∞} définie dans un voisinage de U qui est strictement convexe par rapport aux (q+1) premières coordonnées $z_1 \cdots z_{q+1}$ de $z \in U$.
- *iii*) $\{\rho < 0\} \neq \emptyset$ et $\{\rho < 1\} \subset\subset U$.
- *iv*) $D = \{0 < \rho < 1\}$ et $d\rho(z) \neq 0$ pour tout $z \in bD$.
- ν) ρ est strictement convexe sur un voisinage de $\{ρ \ge 1\}$.

Démonstration du lemme. — Puisque *D* est à bord strictement *q*-concave, pour tout 1 ≤ r ≤ q, *D* est aussi à bord strictement *r*-concave. Il suffit de faire la preuve pour *q*.

D'après le lemme 2.1.4 de [8], il existe un système de coordonnées (W,h) autour de ξ , un domaine local q-concave $[U,\widetilde{D},\rho]$ tels que :

- a) h(W)=U, $\{\rho<0\}\subset h(W\cap\{\varphi<0\})$ où φ est une fonction définissante de $X\setminus\overline{D}_1$.
- b) Il existe un voisinage $V \subset U$ de $h(\xi)$ pour lequel on a $V \cap \{\rho < 0\} = h(W \cap \{\varphi < 0\})$.

Posons $\tilde{\rho} = \rho \circ h$, $\Delta = \{0 < \tilde{\rho} < 1\} = h^{-1}(\tilde{D})$ vérifie les hypothèses du théorème 2. Posons $S_0 = \{\tilde{\rho} = 0\}$ le bord intérieur de Δ et $S_1 = \{\tilde{\rho} = 1\}$ le bord extérieur de Δ . Soient $\Omega = \{\tilde{\rho} < 1\}$ et $V_1 \subset\subset V_2 \subset\subset V_3 \subset\subset V_4 \subset\subset V_5$ des voisinages dans Ω de ξ tels que $V_5 \cap \mathbb{C}D_1 \subset\subset \{\tilde{\rho} < 0\}$. Considérons une fonction χ de classe \mathscr{C}^{∞} à support compact dans Ω , à valeurs dans [0,1] qui vaut 1 dans $V_3 \setminus \overline{V}_2$ et 0 dans $V_5 \setminus (V_4 \setminus \overline{V}_1)$. Pour ε suffisamment petit, $\tilde{\rho} - \varepsilon \chi$ est (q+1)-convexe dans un voisinage de S_0 et $\tilde{\rho} - \varepsilon \chi = \rho$ dans un voisinage de S_1 .

 $\Delta'=\{0<\tilde{\rho}-\epsilon\chi<1\}\subset\Delta$ vérifie encore les hypothèses du théorème 2.

Puisque $\check{T} \in \check{\mathscr{D}}_{D_1}^{\prime 0,q}(X) \cap \ker \overline{\partial}$ et \check{T} est $\overline{\partial}$ -exacte dans D_1 , il existe un courant y défini dans D_1 tel que $\check{T} = \overline{\partial} y$ dans D_1 . Soient $D_2 \subset D_1$ un domaine de X et χ_1 une fonction de classe \mathscr{C}^{∞} à support dans D_1 qui vaut 1 dans D_2 . Posons $\widetilde{T} = \check{T} - \overline{\partial}(\chi_1 y)$. \widetilde{T} est un (0,q) courant défini sur D_1 prolongeable, $\overline{\partial}$ -fermé et à support dans $D_1 \setminus D_2$. Choisissons D_2 suffisamment proche de D_1 de sorte que $(D_1 \setminus D_2) \cap \Delta'$ ait deux composantes connexes.

$$T' = \begin{cases} \widetilde{T} & \text{sur } \Delta' \cap D_1 \cap V_3 \\ 0 & \text{sur } \Delta' \setminus (D_1 \cap V_2) \end{cases}$$

est un (0,q) courant défini sur Δ' , nul au voisinage de S_1 , prolongeable à Ω et $\overline{\partial}$ -fermé.

Si $q \leqslant n-2$, d'après le théorème 2, il existe un courant w défini dans Δ' prolongeable à Ω tel que $T' = \overline{\partial} w$ dans Δ' .

Si q = n - 1, posons $S_0' = {\tilde{\rho} - \varepsilon \chi = 0}$. D'après le théorème2, ii),

$$\overline{\partial} \check{\mathcal{D}}_{\Lambda'}^{\prime 0, n-2}(\Omega) = \left\{ T \in \check{\mathcal{D}}_{\Lambda'}^{\prime 0, n-1}(\Omega) \mid \langle T, \varphi \rangle = 0, \ \forall \varphi \in \mathscr{D}^{n, 1}(\Delta' \cup S_0') \cap \ker \overline{\partial} \right\}.$$

Donc pour montrer que $T'\in\overline{\partial} \check{\mathscr{D}}_{\Delta'}^{\prime 0,n-2}(\Omega)$, il suffit de montrer que $\langle T',\varphi\rangle=0$ pour toute $\varphi\in\mathscr{D}^{n,1}(\Delta'\cup S_0')\cap\ker\overline{\partial}$.

Considérons T_0 une extension de T' à Ω . Puisque T' est nul au voisinage de S_1 , T_0 est à support compact dans Ω . Il appartient au dual des formes différentielles de classe \mathscr{C}^{∞} sur Ω . Puisque T' est $\overline{\partial}$ -fermé dans Δ' , on a $\overline{\partial} T_0$ qui est à support dans $\Omega \setminus \Delta'$. $\overline{\partial} T_0$ est d'ordre fini ℓ .

Soit $\varphi \in \mathscr{D}^{n,1}(\Delta' \cup S_0') \cap \ker \overline{\partial}$, $\varphi \in \mathscr{D}^{n,1}(\Omega) \cap \ker \overline{\partial}$ et Ω est complètement strictement (n-1)-convexe. Donc il existe $\alpha \in \mathscr{D}^{n,0}(\Omega)$ telle que $\varphi = \overline{\partial}\alpha$ où $\alpha_{|\Omega \smallsetminus \Delta'}$ est une n-forme \mathscr{C}^{∞} dans $\Omega \smallsetminus \Delta'$, holomorphe dans $\Omega \smallsetminus \overline{\Delta}'$. Puisque Ω est une extension q-convexe de $\Omega \smallsetminus \overline{\Delta}'$, il existe une suite $(\alpha_j)_{j \in \mathbb{N}}$ de n-formes holomorphes définies dans Ω qui converge pour la topologie C^{ℓ} vers α dans $\Omega \smallsetminus \Delta'$.

$$|\langle T', \varphi \rangle| = |\langle T_0, \varphi \rangle| = |\langle \overline{\partial} T_0, \alpha - \alpha_i \rangle| \leqslant C |\alpha - \alpha_i|_{\ell, \Omega \setminus \Delta'}$$

pour tout $j \in \mathbb{N}$. D'où $\langle T', \varphi \rangle = 0$ pour toute $\varphi \in \mathcal{D}^{n,1}(\Delta' \cup S'_0) \cap \ker \overline{\partial}$. Il existe donc $w \in \widecheck{\mathcal{D}}_{\Delta'}^{(0,n-2)}(\Omega)$ tel que $\overline{\partial} w = T'$ dans Δ' . On pose $\theta = V_1$. Pour tout $q, 1 \leqslant q \leqslant n-1$, $\check{T} = \overline{\partial}(\chi \gamma + w)$ dans $D_1 \cap \theta$ et $\chi \gamma + w$ est un courant prolongeable défini sur $D_1 \cap \theta$.

LEMME 4.5. — Soient X une variété analytique complexe de dimension n et D un domaine à bord $bD \mathscr{C}^{\infty}$ strictement q-concave $(1 \leqslant q \leqslant n-1)$. Soient \check{T} un (0,r) courant, $1 \leqslant r \leqslant q$, $\overline{\partial}$ -exact dans D, prolongeable et S un compact de bD. Il existe un courant v_1 défini sur D, prolongeable, un courant T_1 défini dans $D \cup W_S$, $\overline{\partial}$ -fermé, où W_S est un voisinage de S dans X tels que :

$$\check{T} = \overline{\partial} v_1 + T_1 \ dans \ D$$
.

Démonstration du lemme. — Soit Γun fermé de S. On dit que Γ satisfait à la condition Ex, s'il existe $U \in \check{\mathscr{D}}_D^{(0,r-1)}(X)$ tel que $\check{T} - \overline{\partial}U$ admet une extension $\overline{\partial}$ -fermée à $D \cup W_{\Gamma}$, où W_{Γ} est un voisinage de Γ dans X.

Notons que d'après le lemme 4.3, si $\xi \in bD$, il existe $\Gamma \subset bD$ tel que Γ satisfait à la condition Ex. En effet, soit $\Gamma \subset\subset \theta \cap bD$, où θ est comme dans le lemme 4.3. Si χ_1 est une fonction \mathscr{C}^{∞} sur V_2 à support compact qui vaut 1 dans un voisinage de $\overline{\theta}$, $U = \chi \gamma + \chi_1 w$ est un courant défini dans D qui est prolongeable. $\check{T} - \overline{\partial} U$ admet une extension $\overline{\partial}$ -fermée à $D \cup \theta$.

Pour faire la démonstration du lemme, il suffit de montrer que S satisfait à la condition Ex. Puisque S est compact, il suffit de montrer que pour tout $\xi \in bD$, il existe Λ un voisinage de ξ dans X tel que si $\Gamma \subset S$ satisfait à la condition Ex, alors $\Gamma \cup (\overline{\Lambda} \cap S)$ satisfait aussi à la condition Ex.

Fixons $\xi \in S$ et choisissons deux voisinages Λ et θ de ξ , $\Lambda \subset\subset \theta$, où θ est comme dans le lemme 4.3. Soit $\Gamma \subset S$ qui vérifie la condition Ex. Il existe v un courant prolongeable défini sur D, un voisinage W_{Γ} de Γ dans X tels que $\check{T} - \overline{\partial} v$ admet une extension \widetilde{T} , $\overline{\partial}$ -fermée dans $D \cup W_{\Gamma}$. On choisit D_1 suffisamment proche de D au sens du lemme 4.3 tel que $D \subset D_1$, $\Gamma \subset\subset D_1 \subset\subset D \cup W_{\Gamma}$. D'après le lemme 4.3, il existe w un courant prolongeable défini sur $D_1 \cap \theta$ tel que $\widetilde{T} = \overline{\partial} w$ dans $D_1 \cap \theta$.

Soit $\chi \in \mathcal{D}(X)$ à support dans θ et $\chi \equiv 1$ dans un voisinage $U_{\overline{\Lambda}}$ de $\overline{\Lambda}$. Posons $U = v + \chi w$ sur D. U est un courant prolongeable, $\check{T} - \overline{\partial} U$ est nul dans un voisinage $U_{\overline{\Lambda}}$ de $\overline{\Lambda}$. $\check{T} - \overline{\partial} U = (\check{T} - \overline{\partial} v) - \overline{\partial}(\chi w)$ admet un prolongement $\overline{\partial}$ -fermé dans un voisinage $D_1 \cup U_{\overline{\Lambda}}$ de $\Gamma \cup \overline{\Lambda}$.

Comme conséquence du lemme 4.5, nous allons montrer que si sous les hypothèses du lemme 4.5, il existe un domaine D_1 de X à bord \mathscr{C}^{∞} strictement q-concave tel que : $D \cup S \subset D_1 \subset D \cup W_S$ et D_1 est une extension q-concave généralisée de D, alors il existe un courant U_1 défini dans D_1 tel que $\check{T} = \overline{\partial} U_1$ dans D.

D'après le lemme 4.5, il existe un courant U défini sur D prolongeable tel que $\check{T} - \overline{\partial}U = \widetilde{T}$ dans D où \widetilde{T} est un courant $\overline{\partial}$ -fermé défini dans $D \cup W_S$. $\widetilde{T}_{\mid D_1} \in Z^{0,r}_{\mathrm{cour}}(D_1)$ et puisque par hypothèses $\check{T} = \overline{\partial}\psi$ dans D, $\widetilde{T} = \overline{\partial}(\psi - U)$ dans D. Donc \widetilde{T} représente la classe nulle dans $H^{0,r}_{\mathrm{cour}}(D)$. De l'injectivité de l'application induite par restriction $\mathscr{S}': H^{0,r}_{\mathrm{cour}}(D_1) \to H^{0,r}_{\mathrm{cour}}(D)$, $0 \leqslant r \leqslant q$, on déduit que T représente la classe nulle dans $H^{0,r}_{\mathrm{cour}}(D_1)$. Il existe $\widetilde{\psi}$ un courant dans D_1 tel que $\widetilde{T} = \overline{\partial}\widetilde{\psi}$. Ainsi $\check{T} = \overline{\partial}(U + \widetilde{\psi}_{\mid D})$. Il suffit de poser $u_1 = \widetilde{u} + \widetilde{\psi}$, où \widetilde{u} est une extension de U à D_1 .

Fin de la démonstration de la partie a) du théorème. Soit $[\check{T}] \in \check{H}^{0,r}(D)$ tel que $\check{\mathscr{S}}[\check{T}] = 0$ dans $H^{0,r}_{\operatorname{cour}}(D)$. Pour montrer l'injectivité de $\check{\mathscr{S}}: \check{H}^{0,r}(D) \to H^{0,r}_{\operatorname{cour}}(D), \ 1 \leqslant r \leqslant q, \ \text{on va construire une suite } (D_j, T_j)_{j \in \mathbb{N}}, \ \text{où } D_j \ \text{est un domaine de } X \ \text{tel que } D_{j+1} \supset D_j, \ D_{j+1} \ \text{est une extension } q\text{-concave généralisée de } D_j, \ D_{j+1} \setminus D_j \ \text{est relativement compact,} \ \widetilde{D} = \bigcup_{j \in \mathbb{N}} D_j \supset \overline{D}$ et T_j est un courant défini sur D_j , prolongeable, $\overline{\partial}$ -exact dans D_j tel que $T_{j+1} = T_j$ dans D_j .

Supposons que la suite $(D_j,T_j)_{j\in\mathbb{N}}$ construite. $\widetilde{T}=\lim_j T_j$ est un courant défini dans \widetilde{D} , $\overline{\partial}$ -fermé et $\widetilde{T}=\check{T}$ dans D. Puisque par hypothèses \check{T} est $\overline{\partial}$ -exact dans D, \widetilde{T} représente la classe nulle dans $H^{0,r}_{\mathrm{cour}}(D)$. Par invariance de la cohomologie pour les extensions q-concaves généralisées, \widetilde{T} représente la classe nulle dans $H^{0,r}_{\mathrm{cour}}(\widetilde{D})$. Il existe donc un courant $\widetilde{\psi}$ défini dans \widetilde{D} tel que $\widetilde{T}=\overline{\partial}\widetilde{\psi}$ dans \widetilde{D} . $\check{T}=\overline{\partial}(\widetilde{\psi}_{\mid D})$, d'où $[\check{T}]=0$ dans $\check{H}^{0,r}(D)$ pour $0\leqslant r\leqslant q$.

Construction de la suite $(D_j,T_j)_{j\in\mathbb{N}}$. Considérons une suite exhaustive $(S_j)_{j\in\mathbb{N}^*}$ de compacts de bD. Posons $D_0=D$ et $T_0=\check{T}$. Supposons (D_k,T_k) construit pour $k\leqslant j$, D_j est un domaine à bord \mathscr{C}^∞ strictement q-concave. T_j est un courant défini sur D_j , prolongeable à travers bD_j et $\overline{\partial}$ -exact dans D_j . Soit S'_{j+1} un compact de bD_j tel que :

$$bD_j \smallsetminus S'_{j+1} = bD \smallsetminus S_{j+1} \,.$$

D'après le lemme 4.5 appliqué à S'_{j+1} , D_j et T_j , il existe un courant v_{j+1} défini dans D_j prolongeable, un courant T'_j défini dans $D_j \cup W_{S'_{j+1}}$ (où $W_{S'_{j+1}}$ est un voisinage dans X de S'_{j+1}), $\overline{\partial}$ -fermé tels que $T_j = \overline{\partial} v_{j+1} + T'_j$ dans D_j . Considérons D_{j+1} et D'_{j+1} deux domaines de X, obtenus par une déformation C^2 de la fonction définissante de D_j . Supposons que D_{j+1} et D'_{j+1} vérifient : $D_j \cup S'_{j+1} \subset D_{j+1} \subset D'_{j+1} \subset D_j \cup W_{S'_{j+1}}$, D'_{j+1} est une extension q-concave généralisée de D_j , $D'_{j+1} \setminus D_{j+1}$ et $D_{j+1} \setminus D_j$ sont relativement compacts.

 $T'_{j|D'_{j+1}} \in Z^{0,r}_{\mathrm{cour}}(D'_{j+1}). \text{ Puisque } T_j = \overline{\partial} \psi_j \text{ dans } D_j, T'_j = \overline{\partial} (\psi_j - v_{j+1}) \text{ dans } D_j. T'_j \text{ représente la classe nulle dans } H^{0,r}_{\mathrm{cour}}(D_j) \text{ d'où } T'_j \text{ représente la classe nulle dans } H^{0,r}_{\mathrm{cour}}(D'_{j+1}) \text{ [6], } \text{ théorème (1.1.3) et isomorphisme de Dolbeault. Il existe un courant } v'_j \text{ dans } D'_{j+1} \text{ tel que } T'_j = \overline{\partial} v'_j \text{ dans } D'_{j+1}. \text{ On pose } T_{j+1} = \overline{\partial} ((v'_j + v'_{j+1})_{\mid D_{j+1}}) \text{ où } v'_{j+1} \text{ est une extension de } v_{j+1} \text{ à } D'_{j+1} \text{ ce qui donne } (D_{j+1}, T_{j+1}) \text{ avec les propriétés requises.}$

Preuve de b) C'est une répétition de la démarche de la démonstration de la partie a); du théorème 3 et de l'isomorphisme de Dolbeault, on a une version courant du théorème 3 d'où l'on déduit la surjectivité de $\check{\mathscr{Y}}$: $\check{H}^{0,r}(D) \to H^{0,r}_{\mathrm{cour}}(D)$, $n-q \leqslant r \leqslant n$. Pour l'injectivité de $\check{\mathscr{Y}}$: $\check{H}^{0,r}(D) \to H^{0,r}_{\mathrm{cour}}(D)$, r > n-q respectivement $r \geqslant n-q$ si D est relativement compact,

on remplace le lemme 4.3 par le lemme suivant :

Lemme 4.6. — Soient X une variété analytique complexe de dimension n et D un domaine de X à bord \mathscr{C}^{∞} strictement q-convexe. Soit \check{T} un courant sur D, prolongeable et $\overline{\partial}$ -exact dans D. Pour tout $\xi \in bD$, il existe un voisinage θ de ξ dans X, un courant \check{U} sur $\theta \cap D$, prolongeable tel que $\check{T} = \overline{\partial} \check{U}$ dans $\theta \cap D$.

Démonstration du lemme. — Puisque bD est strictement q-convexe, D est localement biholomorphe à un domaine linéairement q-convexe. Pour tout $\xi \in bD$, on choisit un ouvert de coordonnées (U,h) autour de ξ , où U est biholomorphe à un convexe de \mathbb{C}^n . $U \cap D$ est un domaine complètement strictement q-convexe. Par les fonctions \max_{β} de [3], on peut construire un domaine $D_1 \subset U \cap D$, complètement strictement q-convexe à bord \mathscr{C}^∞ tel que $\xi \in bD_1$. \check{T}_{D_1} est un courant prolongeable, $\bar{\partial}$ -fermé. D'après le théorème 4.1 de [13], il existe \check{U} un courant prolongeable sur D_1 solution de $\bar{\partial}S = \check{T}$ dans D_1 . Il suffit de choisir θ tel que $\bar{\theta} \cap \bar{D} \subset \bar{D}_1$.

Dans le cas des fonctions on a la relation suivante entre $H^{0,r}_{\infty}(\overline{D})$ et $H^{0,r}_{\infty}(D)$:

Тнéоrèме 5. — Soient X une variété analytique complexe de dimension n et D un domaine de X à bord $bD\mathscr{C}^{\infty}$. Supposons que :

a) bD est strictement q-concave, alors l'application induite par restriction:

et
$$\mathscr{S}: H^{0,r}_{\infty}(\overline{D}) \longrightarrow H^{0,r}_{\infty}(D) \ \ \text{est un isomorphisme si} \ 0 \leqslant r \leqslant q-1$$

$$\mathscr{S}: H^{0,q}_{\infty}(\overline{D}) \longrightarrow H^{0,q}_{\infty}(D) \ \ \text{est injective}.$$

b) Si bD est strictement q-convexe, alors l'application induite par restriction

et
$$\mathscr{S}: H^{0,r}_{\infty}(\overline{D}) \longrightarrow H^{0,r}_{\infty}(D) \ \ \text{est un isomorphisme si } n-q < r \leqslant n$$

$$\mathscr{S}: H^{0,n-q}_{\infty}(\overline{D}) \longrightarrow H^{0,n-q}_{\infty}(D) \ \ \text{est surjective}.$$

 $D\'{e}monstration.$ — C'est une répétition de la preuve du théorème 4. Pour l'injectivité de $\mathscr{S}: H^{0,r}_\infty(\overline{D}) \to H^{0,r}_\infty(D), 1 \leqslant r \leqslant q$ dans a) on utilise le lemme 3.2 de [8]. Pour l'injectivité de $\mathscr{S}: H^{0,r}_\infty(\overline{D}) \to H^{0,r}_\infty(D), n-q < r \leqslant n$ dans b), on remplace dans le lemme 4.6 le courant \check{T} par une forme différentielle $f \in Z^{0,r}_\infty(\overline{D}), \overline{\partial}$ -exacte dans D et le théorème 4.1 de [13] par le théorème 2 de [10].

COROLLAIRE 4.7. — Soient X une variété analytique complexe de dimension n et D un domaine de X à bord \mathscr{C}^{∞} . Supposons que :

a) bD est strictement q-concave. Alors l'application naturelle de :

et
$$H^{0,r}_{\infty}(\overline{D}) \longrightarrow \check{H}^{0,r}(D) \ \ \textit{est un isomorphisme si} \ 0 \leqslant r \leqslant q-1$$

$$H^{0,q}_{\infty}(\overline{D}) \longrightarrow \check{H}^{0,q}(D) \ \ \textit{est injective}.$$

b) bD est strictement q-convexe. Alors l'application naturelle de :

et
$$H^{0,r}_{\infty}(\overline{D}) \longrightarrow \check{H}^{0,r}(D) \ \ est \ un \ isomorphisme \ si \ r > n-q$$

$$H^{0,n-q}_{\infty}(\overline{D}) \longrightarrow \check{H}^{0,n-q}(D) \ \ \ est \ surjective.$$

Démonstration.

a) C'est une conséquence de l'isomorphisme de Dolbeault et des théorèmes 4, *a*), et 5, *a*). Pour r = q on a le diagramme commutatif suivant :

$$\check{H}^{0,q}(D) \hookrightarrow H^{0,q}_{\mathrm{cour}}(D)$$

$$\uparrow \qquad \qquad \uparrow \wr \qquad \qquad \downarrow \wr \qquad \qquad \qquad \downarrow \iota$$

$$H^{0,q}_{\infty}(\overline{D}) \hookrightarrow H^{0,q}_{\infty}(D) .$$

D'où $H^{0,q}_{\infty}(\overline{D}) \to \check{H}^{0,q}(D)$ est injective.

b) C'est une conséquence de l'isomorphisme de Dolbeault et des théorèmes 4, b) et 5, b). Pour r=n-q, \widetilde{D} un voisinage de \overline{D} qui est en plus une extension q-convexe généralisée de D, on a d'après le lemme 3 de [4], la surjectivité de l'application restriction de : $H^{0,n-q}_{\infty}(\widetilde{D}) \to H^{0,n-q}_{\infty}(\overline{D})$. Du diagramme commutatif suivant :

$$H^{0,n-q}_{\infty}(\widetilde{D}) \quad + \hspace{-0.2cm} + \hspace{-0.2cm} H^{0,n-q}_{\infty}(\overline{D})$$

$$\downarrow \wr \qquad \qquad \downarrow$$

$$H^{0,n-q}_{\mathrm{cour}}(\widetilde{D}) \quad + \hspace{-0.2cm} + \hspace{-0.2cm} \check{H}^{0,n-q}(D) ,$$

on a la surjectivité de l'application naturelle de : $H^{0,n-q}_{\infty}(\overline{D}) \longrightarrow \check{H}^{0,n-q}(D)$.

5. Application à l'étude de l'isomorphisme de Dolbeault dans les hypersurfaces réelles

Nous allons utiliser dans cette partie les relations entre la $\overline{\partial}$ -cohomologie et la $\overline{\partial}_b$ -cohomologie établies par [1], [2] pour les formes différentielles et [12], [2] pour les courants afin d'étudier l'isomorphisme de Dolbeault dans les hypersurfaces réelles. On sait que l'application naturelle de $H^{0,r}_\infty(X) \to H^{0,r}_{\mathrm{cour}}(X)$ est un isomorphisme appelé isomorphisme de Dolbeault. Si S est une hypersurface réelle, nous allons nous intéresser à l'application naturelle de $H^{0,r}_\infty(S) \to H^{0,r}_{\mathrm{cour}}(S)$, où $H^{0,r}_\infty(S)$ respectivement $H^{0,r}_{\mathrm{cour}}(S)$, est le $(0,r)^{\mathrm{ème}}$ groupe de $\overline{\partial}_b$ -cohomologie des formes différentielles \mathscr{C}^∞ définies sur S respectivement des courants définis sur S.

Théorème 6. — Soient X une variété analytique complexe de dimension n et S une hypersurface réelle de classe \mathscr{C}^{∞} de X. Si la forme de Lévi de S admet en chaque point de S;

i) q valeurs propres de même signe, $q\geqslant \frac{n+1}{2}$, l'application naturelle de

$$H^{0,r}_{\infty}(S) \longrightarrow H^{0,r}_{\mathrm{cour}}(S)$$
 est surjective si $n - q \leqslant r \leqslant q - 1$

et

$$H^{0,r}_{\infty}(S) \longrightarrow H^{0,r}_{\text{cour}}(S)$$
 est injective si $n-q+1 \leqslant r \leqslant q$.

ii) q paires de valeurs propres de signe contraire, $1 \leqslant q \leqslant \frac{n-1}{2}$, l'application naturelle de :

$$H^{0,r}_{\infty}(S) \longrightarrow H^{0,r}_{\mathrm{cour}}(S)$$
 est un isomorphisme si $0 \leqslant r \leqslant q-1$ et $n-q+1 \leqslant r \leqslant n-1$, $H^{0,q}_{\infty}(S) \longrightarrow H^{0,q}_{\mathrm{cour}}(S)$ est injective $H^{0,n-q}_{\infty}(S) \longrightarrow H^{0,n-q}_{\mathrm{cour}}(S)$ est surjective.

Remarque. — Le cas ii) correspond au cas de la codimension 1 dans [9].

Démonstration.

et

i) On peut supposer sans perte de généralité que X^- se situe du côté concave de S. D'après le corollaire 4.7, a), l'application naturelle de :

et
$$H^{0,r}_\infty(\overline{X}^-) \,\longrightarrow\, \check{H}^{0,r}(X^-) \ \ \text{est un isomorphisme si} \ 0\leqslant r\leqslant q-1$$

$$H^{0,q}_\infty(\overline{X}^-)) \,\longrightarrow\, \check{H}^{0,q}(X^-) \ \ \text{est injective}.$$

D'après le corollaire 4.7, b), l'application naturelle de :

et
$$H^{0,r}_\infty(\overline{X}^+) \longrightarrow \check{H}^{0,r}(X^+) \ \text{ est un isomorphisme si } r>n-q$$

$$H^{0,n-q}_\infty(\overline{X}^+)) \longrightarrow \check{H}^{0,n-q}(X^+) \ \text{ est surjective}.$$

On applique ces informations au diagramme commutatif:

$$\rightarrow H^{0,r}_{\infty}(X) \rightarrow H^{0,r}_{\infty}(\overline{X}^{+}) \oplus H^{0,r}_{\infty}(\overline{X}^{-}) \rightarrow H^{0,r}_{\infty}(S) \rightarrow H^{0,r+1}_{\infty}(S) \rightarrow \downarrow c_{r} \qquad \downarrow a_{r} \qquad \downarrow b_{r} \qquad \downarrow c_{r+1} \qquad \qquad \downarrow c_{r$$

où les flèches verticales sont des applications naturelles.

Pour $q-1 \ge r \ge n-q+1$, a_r , c_r , c_{r+1} sont des isomorphismes et a_{r+1} injective. D'après le lemme des quatre, b_r est un isomorphisme.

De même, pour r=q, a_q est injective, c_q et c_{q+1} sont des isomorphismes. Par le lemme des quatre, b_q est injective.

Pour r = n - q, c_{n-q} , c_{n-q+1} , a_{n-q+1} sont des isomorphismes et a_{n-q} est surjective. b_{n-q} est surjective par le lemme des quatre.

ii) Si la forme de Lévi de S admet q paires de valeurs propres de signe contraire, alors

$$\check{\mathscr{G}}:\check{H}^{0,r}(X^\pm)\longrightarrow H^{0,r}_{\mathrm{cour}}(X^\pm)$$
 est un isomorphisme pour $0\leqslant r\leqslant q-1$ et $n-q+1\leqslant r\leqslant n$,

$$\check{\mathcal{G}}: \check{H}^{0,q}(X^{\pm}) \longrightarrow H^{0,q}_{\mathrm{cour}}(X^{\pm})$$
 est injective et

$$\check{\mathscr{G}}: \check{H}^{0,n-q}(X^{\pm}) \longrightarrow H^{0,n-q}_{\mathrm{cour}}(X^{\pm})$$
 est surjective.

De même

$$\begin{split} \mathscr{S}: H^{0,r}_\infty(\overline{X}^\pm) & \longrightarrow & H^{0,r}_\infty(X^\pm) & \text{est un isomorphisme pour } 0 \leqslant r \leqslant q-1 \text{ et } \\ & n-q+1 \leqslant r \leqslant n \text{ ,} \\ \mathscr{S}: H^{0,q}_\infty(\overline{X}^\pm) & \longrightarrow & H^{0,q}_\infty(X^\pm) & \text{est injective et } \end{split}$$

 $\mathscr{G}: H^{0,n-q}_{\infty}(\overline{X}^{\pm}) \longrightarrow H^{0,n-q}_{\infty}(X^{\pm})$ est surjective.

Donc l'application naturelle de :

$$H^{0,r}_{\infty}(\overline{X}^+) \oplus H^{0,r}_{\infty}(\overline{X}^-) \longrightarrow \check{H}^{0,r}(X^+) \oplus \check{H}^{0,r}(X^-)$$
 est un isomorphisme pour $0 \leqslant r \leqslant q-1$ et $n-q+1 \leqslant r \leqslant n$,

$$\begin{split} &H^{0,q}_{\infty}(\overline{X}^+) \oplus H^{0,q}_{\infty}(\overline{X}^-) \longrightarrow \check{H}^{0,q}(X^+) \oplus \check{H}^{0,q}(X^-) \quad \text{est injective et} \\ &H^{0,n-q}_{\infty}(\overline{X}^+) \oplus H^{0,n-q}_{\infty}(\overline{X}^-) \longrightarrow \check{H}^{0,n-q}(X^+) \oplus \check{H}^{0,n-q}(X^-) \quad \text{est surjective.} \end{split}$$

On conclut alors par l'utilisation du lemme des quatre comme dans i).

COROLLAIRE 5.1. — Soient X une variété analytique complexe de dimension n et S une hypersurface réelle de classe \mathscr{C}^{∞} de X. Supposons que pour tout $z \in S$, la forme de Lévi de S à ℓ valeurs propres d'un même signe et q paires de valeurs propres des signes opposés avec $q \leqslant \ell$. Alors

- i) Si $\ell \leqslant \frac{n}{2}$, l'application naturelle de : $H^{0,r}_{\infty}(S) \longrightarrow H^{0,r}_{\mathrm{cour}}(S)$ est un isomorphisme pour $0 \leqslant r \leqslant q-1$ et $n-q+1 \leqslant r \leqslant n-1$, est injective si r=q et est surjective si r=n-q.
- ii) Si $\ell = \frac{n+1}{2}$, l'application naturelle de : $H^{0,r}_{\infty}(S) \to H^{0,r}_{\text{cour}}(S)$ est un isomorphisme pour $0 \le r \le q-1$ et $n-q+1 \le r \le n-1$, injective si r=q et ℓ , surjective si $r=n-\ell$ et n-q.
- iii) $Si \ell \geqslant \frac{n}{2} + 1$, l'application naturelle $de: H^{0,r}_{\infty}(S) \longrightarrow H^{0,r}_{\mathrm{cour}}(S)$ est un isomorphisme pour $0 \leqslant r \leqslant q-1$, $n-\ell+1 \leqslant r \leqslant \ell-1$ et $n-q+1 \leqslant r \leqslant n-1$. Elle est injective si r=q et ℓ , surjective si $r=n-\ell$ et n-q.

Bibliographie

[1] Andreotti A., Hill D.C., E. E. Levi convexity and the Hans Lewy Problem I, Ann. norm. super. Pisa (1972), 325–363.

- [2] Andreotti A., Hill D.C., Lojasiewicz S. and Mackichan B., *Complexes of differential operators: the Mayer-Vietoris sequence*, Inventiones Math. **26** (1976), 43–86.
- [3] Henkin G.M., Leiterer J., Andreotti-Grauert theory by integrals formulas, Birkhäuser, 1986.
- [4] HILL C.D., NACINOVICH M., *On the Cauchy problem in complexe analysis*, Annali di Matematica pura ed applicata (IV), Vol. CLXXI (1996), 159–179.
- [5] HORMANDER L., *Introduction to analysis of several complex variables*, (IV edition) North-Holland company Publishing (1973).
- [6] Laurent-Thiébaut Ch., Phénomène de Hartogs-Bochner relatif dans une hypersurface réelle 2-concave d'une variété analytique complexe, Math. Z. 212 (1993), 511–523.
- [7] Laurent-Thiébaut Ch., *Théorie des fonctions holomorphes de plusieurs variables*, Inter-Editions et CNRS Editions, 1997.
- [8] Laurent-Thiébaut Ch. et Leiterer J., Andreotti-Vesentini separation theorem with C^k estimates and extension of CR forms, Mathematical Notes, **38**, Princeton University (1993), 416–436.
- [9] Laurent-Thiébaut Ch. et Leiterer J., *Dolbeault isomorphism for CR manifolds*, Prépublication de l'Institut Fourier n° 521, Grenoble (2000).
- [10] Lieb I., Range R.M., Lösungsoperatoren für den Cauchy-Riemann komplex mit C^k Abschätzungen, Math. Ann. **253** (1980), 145–165.
- [11] Martineau A., Distributions et valeurs au bord des fonctions holomorphes, Strasbourg RCP 25 (1966).
- [12] Nacinovich M., Valli G., *Tangential Cauchy-Riemann complexes on distributions*, Ann. di Matematica pura ed applicata (IV) vol. CXLVI (1987), 123–160.
- [13] Sambou S., *Résolution du* $\overline{\partial}$ *pour les courant prolongeables*, Prépublication de l'Institut Fourier n° 486, Grenoble (1999), à paraître aux Math. Nachrichten.
- [14] Sambou S., Équation de Cauchy-Riemann pour les courants prolongeables Applications, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 497–500.

INSTITUT FOURIER Laboratoire de Mathématiques UMR5582 (UJF-CNRS) BP 74 38402 St MARTIN D'HÈRES Cedex (France)