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Abstract

Lagrangian submanifolds of symplectic manifolds are very central objects
in classical mechanics and microlocal analysis. These manifolds are frequently
singular (integrable systems, bifurcations, reduction). There has been a lot
of works on singular Lagrangian manifolds initiated by Arnold, Givental and
others. The goal of our paper is to extend the classical and semi-classical
normal forms of completely integrable systems near non degenerate (Morse-
Bott) singularities to more singular systems. It turns out that there is a nicely
working way to do that, leading to normal forms and universal unfoldings. We
obtain this way natural Ansatz’s extending the WKB-Maslov Ansatz. We give
more details on the simplest non Morse example, the cusp, which corresponds
to a saddle-node bifurcation®.
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Introduction

In the papers [11], [12], [13], [10], [34] and [15], we studied semi-classical completely
integrable Hamiltonian systems whose singularities are of Morse-Bott type using
normal forms of Birkhoff type. In the nice paper [29] which was an important
source of inspiration for us, Frédéric Pham showed the universality of solutions
of semi-classical Schrédinger equations with polynomial potentials. Our goal is to
extend this analysis allowing (more general) canonical transformations in order to
study for example

e the saddle-node bifurcation

e the Birkhoff normal form in case of k£ : 1 resonances with k¥ > 3 in the spirit
of [15]

e the bifurcation of periodic orbits of a Hamiltonian system where the Poincaré
map of a periodic orbit admits an eigenvalue which is a cubic root of 1

¢ the adiabatic limit or the Born-Oppenheimer approximation with crossings of
more than 2 eigenvalues.

This way, we propose a general setting inspired by “Thom’s catastrophe theory”
(see [3]) and present a sketchy study of the saddle-node bifurcation (the cusp)
e +23=0.

A more algebraic (co-homological approach) is presented in [37].

The subject is really the study of the singularities of Lagrangian manifolds, of
their deformations (or bifurcations) and of the associated semi-classical Ansatz’s.
Building up classical and semi-classical normal forms leads to study model problems
depending on a finite number of parameters among whose the simplest were already
described in the litterature: cubic oscillators (see [9], [8], [19]), quartic oscillators
(see [30], and polynomial potentials (see [39])). A remarquable fact is that we can
use the same methods for the classical and the semi-classical bifurcations and in
particular the codimension of the singularities are the same. Of course, the study
of the classical Hamiltonian dynamic in a 2D phase space is trivial, but this is no
more the case for the semi-classical case which we reduce to special functions.

The reader should take care of the fact that caustic singularities is a differ-
ent problem for which Lagrangian manifolds usually are smooth. We strongly use
canonical transformations which eliminate the problem of caustics.

The main idea is to forget the equations of the manifolds and to focus on the ideal
of functions which vanish on it. The same idea turned out to be very important
in algebraic geometry. On the quantum side, we do the same change of point
of view: we consider left ideals of pseudo-differential operators. We can do that
because any solution of Pu = 0 satisfies also BPu = 0 for any operator B. It
appears that usual singularities, at least for 1 degree of freedom, do admit normal
forms and their deformations have a universal model depending of a finite number
of parameters. The solutions of this model are the ad’hoc special functions: the
smooth case corresponds that way to the BKW-Maslov Ansatz, the Morse-Bott
case corresponds to Lagrangian intersections (hyperbolic case) or to coherent states
(elliptic case)... An important part of the programme is the study of these special
functions.

In the case of the cusp €243 = 0, it is enough to study the differential equation
(cubic Schrédinger equation):

—u" + (2 + Az + B)u=0.

We give the general definitions for any dimension and we restrict after section
2 to the case of a 2 dimensional phase space.



The main non trivial result is theorem 6 which is an holomorphic versal defor-
mation result for all quasi-homogeneous isolated singularities of curves.
The semi-classical results follow then from the techniques already developped in
[13].
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1 Singular Lagrangian manifolds

1.1 Definitions

There are several possible definitions of germs of singular Lagrangian manifolds.
The most appropriate context is the real analytic one. We will denote by (Z2¢,w; 2)
a germ of non-singular real analytic symplectic manifold of dimension 2d which, by
Darboux theorem, can be identified with (T*R%, " d¢; A dz;;0). € will denote the
algebra of germs of real valued analytic functions (or smooth functions).

Definition 1 1. A (germ of) singular Lagrangian manifold L in Z2? is a germ
of real analytic variety (ie complexr variety invariant by complex conjugation)
of dimension d which is Lagrangian near all smooth points. We will denote
by L or Ly, the ideal of £ of functions vanishing on L. If F;, j=1,--- ,n is
a system of generators of L we will denote L =< Fy,--- ,F,, >. This ideal is
involutive meaning that {L,L} C L.

2. A (germ of )singular Lagrangian manifold L is a complete intersection if the
ideal Ly, is generated by d functions.

3. A (germ of ) singular Lagrangian manifold L is a singular leaf of a Lagrangian
foliation if L1, admits a set of generators F;, j =1,--- ,d such that {F;, Fj,} =
0 for all j,k.

In the first case we will speak about a (germ of) singular Lagrangian manifold,
in the second of a (germ of) singular Lagrangian manifold which is a complete
intersection and in the third of a (germ of) singular leaf of a completely integrable
system.

We can ask the

Question 1 Are cases 2 and 3 really distinct: does every singular Lagrangian
manifold which is a complete intersection admits Poisson commuting generators
F, j=1,---,d?

1.2 Examples

Example 1.1 Letd =1 and f : Z*> = R a proper map. If 0 is a critical value of
f, the curve {f = 0} is a Lagrangian singular manifold with respect to all possible
definitions. If f is a Morse function the level sets L = f~1(E) are smooth except
for a discrete set of energies.

Example 1.2 Let us start with an anharmonic oscillator with only one resonance,
like H = |z1]? + |z2|* + 2?23 wjlz;i|? + O(|z]®) where (1,ws,--- ,wq) are linearly
independent over the rationals. We get an integrable system using the truncated
Birkhoff normal form. The Hamiltonians are F1 = |z1|?> + |22]2, F» = |23]%, Fy4_1 =
|za|%, Fn = K where K = O(|2|?) is a polynomial. Reducing by the action of T? !
given by the d — 1 first hamiltonians we get a projective line depending of d — 1
parameters; K can be seen as a function on this projective line depending of d — 1
parameters and hence the Lagrangian foliation admits generically all singularities
of codimension < d of functions of 2 variables (this example was described to me by
Marc Joyeuz, see section 4.2).

Example 1.3 The normal bundle L of the cusp 9z? — 8y®> = 0 is a singular La-
grangian manifold parametrized by

m(u,v) = (u®/3,u?/2;v, —uv) .



The ideal L of functions vanishing on L is minimally generated by:
Fy =92° — 8y°, F> = 3x€+2yn, F5 =n° — 298, Fy = 3an + 4y°¢
(as computed by Marcelo Morales) hence it is not a complete intersection.

Example 1.4 The (open) swallowtail S (see [1]) can be defined as the subset S of
the set Z of polynomials

P=s+ar® +bs®> +cz+d

admitting a zero of order at least 3. We can write P = (x —u)®(2? + 3uzx +v) which
give o parametrization of S. There exists a natural symplectic structure on Z for
which S is Lagrangian. This manifold is obtained in a generic way in the following
problem: if X C R® is a surface and V a vector field on X whose integral curves
are geodesics, the set of affine lines generated by the vectors V(m), m € X is a
(singular) Lagrangian manifold in the symplectic manifold of affine lines in R®. It
can be shown that S is not a complete intersection?®.

1.3 Reduction

If Z C X is a co-isotropic manifold of a symplectic manifold X and Z° the isotropic
foliation of Z, Xg = Z/Z° is the reduced symplectic manifold. If L is a Lagrangian
submanifold of X, Lg = LN Z/Z° is the reduced Lagrangian manifold in Xg. It
is well known that the reduced Lagrangian manifold Lg is a smooth Lagrangian
manifold if some clean intersection property (Morse-Bott) is satisfied (see [24] p
291-292). Otherwise, Lg can be singular.

In semi-classical analysis, singular reductions occur in the trace formula; the
classical Lagrangian submanifold of 7*R = {(¢,7)} is obtained from the classical
flow ¢; of an Hamiltonian H in the following way: L C T*(R x M x M) = X is
defined by

L= {(t7 %, 57 Y, 77)|7' = H(Z', £)7 ($,§) = (pt(ya _77)}
and we reduce using the co-normal bundle to the diagonal:
Z=N*{(t,z,z)|t€R, x € M} .

We obtain the reduced Lagrangian manifold Lg which is the microsupport of the
spectral density of the Schrédinger operator H

LR = {(T7 E)|E|(.CL',£),H(.Z‘,§) = E;‘PT('T:f) = (1'75)} -

Singularities of Ly corresponds to bifurcations of periodic orbits of the Hamiltonian
flow.

Reduced Lagrangian manifolds are obtained locally from generating functions
(Hérmander’s phase functions): if ¢ : X x RY — R (the phase function), Z =
{(z,6;£,0)} C T*(X x RN), Zr = T*X and L is the graph of dp. Semi-classical
objects (WKB-Maslov Ansatz) are then given by the following oscillatory integrals:

up(x) =/ e @0/hg(z 0)do
RN

whose microsupport is the reduced Lagrangian manifold

L, = {(z,0:) | 9pp = 0} .

21 thank very much Marcelo Morales for the computations of these examples




Question 2 Give a characteristic property of singular germs of Lagrangian mani-
folds which are obtained by reduction of a smooth Lagrangian manifold.

With respect to this question, we propose the 2 following examples:

Example 1.5 If L C T*R? is the graph of dp with p(z,y) = y(x? — y?/3) and
Z ={n =0}, we get Lg = {(z,2zy) | y = £z} = {£€* — 4z* = 0}.

Example 1.6 We have the following (see also [35]) :

Proposition 1 The germ at 0 of the normal bundle of the cusp (example 1.3)
cannot be obtained by reduction of a germ of smooth Lagrangian manifold.

Proof.—

The Maslov index of any closed curve inside the smooth part of the
germ would be zero. Let us consider the curve

v(0) = m(cos b, sin 9)

The Lagrangian vector space tangent to L at the point y(6) is generated
by the vectors (0,0;1, — cos), (cos? 8,cos8;0,—sinf) and by reduction
with respect to & = 0, we get the curve § — [(cosf; — sin )] inside the
Lagrangian Grassmanian of T*R whose Maslov index is +2.

2 Infinitesimal deformations

We propose below a very naive approach, restricting ouself to 2D phase spaces: a
more precise and algebraic approach in any dimension can be found in [37].
‘We reduce in what follows to the case d = 1.

Definition 2 We will say that the germs (< Fy >,wp) and (< F >,w) are equiva-
lent if there exists a germ of diffeomorphism x such that F o x = EFy (E(0) #0)
and x*(w) = wo. By Darboux theorem, we will often restrict ourself to w = wy.

By the codimension of (< Fy >,wp), we mean the codimension of the set of
germs equivalent to (< Fy >, wp).
More explicitely:

Definition 3 Given a singular germ of curve L in T*R given by Fy = 0, the space
of infinitesimal deformations (as a Lagrangian manifold) of L =< Fy > is the space
of all germs of functions £.

A general deformation of (Fp,wp) is given by (Fi,w;). Using Darboux, we can
reduce to deformations (Fy +tK + O(t%),wp). K is an arbitrary germ of real valued
function.

Definition 4 A deformation Ly =< Fy > is trivial if there exists a smooth family
Xt of canonical transformations and a smooth family of functions E; € £, such that:

Fioxi = EyFy .

This implies that there exists germs of functions X andY such that the infinitesimal

deformation K = %u:o satisfies:

K={X,F,} +YF,.



We can now give the definition of a finite codimensional singular germ of curve:

Definition 5 We will say that L =< Fy > is of finite codimension p if

dim(&/ ({€, Fo} +€.Fy)) =p< o, (1)

where {.|.} is the Poisson bracket,

A basis K, € Dp, a=1,-+- ,u, of a supplementary space of {€,Fo} + E.Fy in

Dy, will be called a (uni)versal deformation of L.

More precisely, we ask that equation (1) is true with £(U;) for a basis U; of

neighbourhoods of O (with the same functions K, ).

Question 3 Give a natural extension of the definition 1.1 to the case of systems
of operators, i.e. matriz valued germs of functions (see [7]).

3

Examples

. The smooth case: the differentials dF; are linearly independent in some

neighbourhood of the origine. Then £ is a germ of smooth Lagrangian mani-
fold. This £ is of codimension 0. Moreover Darboux theorem implies that up
to canonical transformation £ =< &1,--- , &g >.

. The Morse (d = 1) case: let F. = Fy + O(g) where Fp is a non degenerate

quadratic form on T*R. By the lemme de Morse isochore (see [14]), there
exists x. a germ of canonical transformations smoothly depending of € and a
smooth function ®. such that

F.o Xe = b 0 Fy
and ®((0) # 0. Hence ®. admits a non degenerate zero t(¢) and we have
Fe o xe(2,€) = Ec(x,£)(Fo(x, &) — t())

from which it is clear that < Fy — t > is a versal deformation of < Fy >.

. The Eliasson case ([21] or the non degenerate case of [33], définition 2.1.).

It is an extension of the previous case to several quadratic forms. Let

a1, 4qa

be d independent commuting quadratic forms on T*R? where (g1, - - ,qq) is of
type (me, mp, my) and d = m, +my +2my where m, is the number of elliptic
forms, my, the number of hyperbolic one’s and m; the number of focus-focus
one’s. We have pu = d. This value is minimal for rank 0 singular point of an
integrable system.

. Cusp (A2): Fp =& +2° (d=1) and p = 2:

K1=]., KQZZ'.

We will see that up to canonical transformation any F' which admits a non
degenerate cusp is equivalent to the standard example &2 + 23.

. Quartic oscillator (A7) Fp = &2 +2* (d=1)andp=3: K; =1, K, =

Z, K3 = 2.

. Quartic anti-oscillator (4;) Fy = &2 — 2! or Fy = z(z — ¢%) (d = 1) and

p=3.



7. Triple crossing (D;) Fo =z{(x — &) (d =1) and p = 4:

KIZ]-a K2:$a K3:€a K4:$C€

8. Hyperbolic umbilic (D]) Fy = z(2? + ¢2) (d=1) and pu = 4.

Question 4 Describe all singular Lagrangian manifolds of small codimension.

4 Integrable systems

4.1 Singularities of integrable systems

Definition 6 An integrable Hamiltonian system is given by a map (the momentum

map):
F=(F, - ,F):2% 5 R?

where the Poisson brackets {F;, F;} all vanish identically. We assume that the
differentials dF;(z) are linearly independent almost everywhere in Z.

A singular point zo is a point where the rank r(zg) of the dF;(z) is < d.

A singular point is reduced if his rank vanishes.

4.2 Singularities of integrable systems and deformations of
Lagrangian manifolds

Let < F(z,6&t) = 0 >, (t € RY) be a deformation of the germ of curve <
F(z,£,0) = 0 > and assume

OF
(%) 57 (0,0:0) #0

We can associate to it a germ of completely integrable system in T*RYN where
(t,z) € RN in the following way: we choose coordinates t = (#,tx) such that
O F # 0. Then we can rewrite F(x,&,t) = E(x,&,t)(Hny(z,&t") —tn). We take
the commuting Hamiltonians ¢1,- -+ ,tx_1, Hy which define an integrable germ.

We can go back to the deformation in the following way: we start with the
integrable germ with a singularity of rank N — 1 and choose ¢1,--- ,tx_1 integrals
whose differential at the singular point are independent. We reduce the systems
and we get for each a € RV 1 a 2-dimensional curve < Hy(z,&,a) —b > which give
the previous deformation.

Proposition 2 The previous correspondence is an isomorphism between germs of
integrable systems of rank N —1 (modulo canonical diffeomorphisms) and N param-
eters deformations of curves (modulo canonical diffeomorphisms) satisfying (*).

Moreover, we get that way a correspondence between universal deformations
(deformations containing the versal deformation) and stable germs of integrable
systems. A germ of integrable systems will sid to be stable if the singularity is
moved into an equivalent one by a small perturbation of the germ of integrable
system.

In other words, deformations of codimension y < N corresponds to generic sin-
gularities of integrable systems with IV degrees of freedoms and associated separatrix
for the momentum map in RV are of codimension N — p.



4.3 Generic singularities of integrable systems with 2 degrees
of freedom

From the previous sections, we get the following list of locally stable singularities
of integrable systems with 2 degrees of freedom (see [22] for pictures of these sepa-
ratrices for classical systems).

1. Rank 1:
E (elliptic) (] +&f, &) (n=1)
H (hyperbolic) (z1&, &) (u=1)
C (cusp) (& + &1f,&) (0=2)
2. Rank 0:

EE (elliptic-elliptic), EH (elliptic-hyperbolic), HH (hyperbolic-hyperbolic),
L (loxodromic) (u = 2).

2 tori
1 torus

Figure 1: Typical bifurcation diagramm for a 2 degrees of freedom system

Question 5 Are there other stable singularities? Find the corresponding list for
d=3,4,---.

5 The symplectic codimension of curves with iso-
lated singularities

For the d = 1 case, Bernard Malgrange 3, using the Gauss-Manin connection and
results of Sebastiani (see [26]), showed me the following result (see [29] for the
hyperelliptic case), also observed in [37]:

Theorem 1 If F : (T*R = R?,0) — (R,0) is a germ of analytic function and
admits an isolated singularity at 0 whose multiplicity is p, < Fy > is of codimension
-

30ral communication




Recall that the multiplicity u (see [27]) of a germ F : (C2,0) — (C,0) of isolated
singularity is the C—dimension of £/Jac(F) where Jac(F) is the ideal generated by
the two partial derivatives of F.. The germs of the non singular curves {F = ¢}
(e # 0 and small) have the homotopy type of a bouquet of y circles (the “vanishing
cycles”).

Proof.—

Let us denote by Q7 the germs of differential forms of degree j near 0
in C2. From the results of Sebastiani (see [26] p.416), we know that

Q*/dFy A dQ°
is a free module of rank u over C{Fy}. We get the consequence that:
0%/ (dFy A dQ° + Fo?)

is of dimension p over C. The result follows from the natural identifica-
tions of the 2-forms with the functions and of the wedge product df Adg
with the Poisson bracket.

O

A simple proof of theorem 1 in the quasi-homogeneous case will be given in
section 7.

Theorem 1 admits a very nice geometrical interpretation which we can derive
from the paper [29]. If x is a germ of canonical transformation near the origin, ac-
tions integrals over small cycles are preserved. Hence any (uni)versal deformation
should be able to reproduce the variations of the action integrals over the vanish-
ing cycles. This is strongly consistent with the fact that p is also the number of
vanishing cycles as shown in [27]. This is exactly the way things work in the quasi-
homogeneous case as shown in section 8; we will show there how to get the versal
deformation theorem for quasi-homogeneous singularities.

If the singularity is not quasi-homogeneous, EFy + {&, Fo} is no more the Ja-
cobian ideal; indeed Saito proved in [32] that: (F € Jac(F)) implies (F quasi-
homogeneous). In other words, there are deformations which are trivial as singu-
larities of functions, but not for the symplectic version. There is always a choice of
a versal deformation which is valid for both problems: a pair of vector subspaces of
the same codimension always admit a commun supplementary subspace.

For example of a non quasi-homogeneous singularity, we can take the singularity
called Z1; (p = 11) in [3], which is given by F, = 3¢ + €5 + ax¢&*. Different values
of a give non-equivalent singularities of functions, but equivalent ideals.

If Fy = 0 is a germ of singular curve, we can associate to it a de Rham complex
as in [23]:

0= QYK -0

where the non trivial arrow is d and K is the set of 1-form which vanish on the
tangent vectors to the smooth stratum of Fy = 0. Then

Hj, pham(< Fo >) = QY/(K +dE) .

There is a subspace of the space of infinitesimal deformations which we can identify
with H}, pram(< Fo >). If a € Q' is a germ of 1-form, it gives a deformation of
(Fo,wg) defined by (Fo,wo + eda). It is equivalent to fix wp and to deform Fy by
Fy + edFy(X,) where X, is defined by ¢(X4)wo = a. It is easy to check that, if
a — dh vanishes on Cy, the deformation is trivial and conversely if the deformation
is trivial the cohomology class of a vanishes.

We can summarize the situation as follows (see also [37]):

10



Theorem 2 We have a decomposition of the infinitesimal versal deformation space
into a direct sum of H}p, and the space of deformations of the ideal < Fy > whose
dimension 7 is called the Tyurina number. We have:

H:T+b1.

This decomposition is easily obtained by looking for a deformation (< F; >,w;) of
a pair of a germ of curve and a symplectic form.

6 Versal deformations: the formal case

Theorem 3 Let Lo =< Fy > (d = 1) be a singular Lagrangian manifold of codi-
mension p and let us denote by Fo + > b _ 2,K, a versal deformation of Fy.
Let L. =< F. > with F. = Y2 e"Fy + O(e>) be a smooth deformation of
Lo =< Fy >.

Then there exists a smooth family of canonical transformations x., a smooth
invertible function E.(z,£) and smooth functions as(€) = O(g) such that

F, 0 Xe = EE(FO + i aa(E)Ka) + O(EOO)) .

a=1
Question 6 We may conjecture on the basis of the Morse case and of the proof
that the formal series an(€) are uniquely defined.

Proof.—-

We assume that

"
F.=F+ Z aq(e)Ky + "R, + O(e™)

a=1

We need to find x. = Id+ O(e™) = exp(e"Z) + O(e™+!) where Z is the
Hamiltonian vector field of X such that

F.ox. =(1+e"E)(Fo + i aa(e) Ko + En(z baKa)) + O(En+1) .

a=1

By identification of terms in €”, we get the following equation:
{Fo,X}—EFy=—Rn+ Y baKa,

which can be solved in a fixed open set by the hypothesis of finite codi-
mension.

g
We assume that < Fy > is of codimension u. Let < F. > be a smooth deforma-
tion of < Fy >. A basic question is the following one:
do there exists a smooth canonical deformation of the identity x., a smooth
deformation E. of the function 1 and smooth functions a,(e) = O(g) such that

FE°X5=E5(FO+Zaa(5)Ka) ? (2)

The transformations . move then the deformation < F, > of < Fy > into the
universal one < Fy + > aq(e) K4 >. The condition of finite codimension allows to
solve the linearized problem, so it is natural to ask the following;:

Question 7 Does there exists in this context an implicit function theorem “d la
Mather”?

The answer is yes for quasi-homogeneous singularities in the holomorphic case (see
section 8.1).

11



7 The quasi-homogeneous case

7.1 Definitions
We give the:

Definition 7 F = F(z,£) is (a,b,n)—quasi-homogeneous, where a,b and n are
integers with a and b coprime, if F is a polynomial satisfying the identity:

F(toz,t°€¢) = t"F(z,¢€) .
We denote by £, this space of polynomials.

Any monomial zP£? is in Ef,’zﬂb. The algebra R[[z,&]] of formal series with the
usual products is gradued by

Rl[z, €] = @nZo&ap -
Concerning Poisson brackets, we have:
{Eapm el C &m0

If < F > is quasi-homogeneous (F' € £;) of finite codimension, we can choose
quasi-homogeneous K, and for any k:

Ertk = {gkett Py b P+ Y RE, .
Koceltt

7.2 Normal forms
The main result of this section is the following one (see [23]):

Theorem 4 Let < F > a singular germ of (smooth or analytic curve) such that
there ezists a diffeomorphism ¢ with < F o ¢ >=< Fy >, where Fy is a quasi-
homogeneous polynomial with an isolated singularity, then (< F >,w) is symplecti-
cally equivalent to (< Fy >, twp).

Proof.—

We can assume that F' = Fj and we have 2 symplectic forms w and wy.

Depending on the value at 0 of w the path w; = w + t(ewo — w) where
€ = £1 is a path of symplectic forms. We need to find a diffeomorphism
1 such that ¢ preserves the curves Fy = 0 and ¥*(w) = ewg. We can
use the homotopy (Moser) trick, following [23]: if w — ewy = da, it is
enough to find f such that df — a = 0 on every vector tangent to the
curve Fy = 0. Let us assume that Fy(t%z, t°¢) = tFy(x, €) (a,b > 0) and
introduce the vector field V' = axd, + byd, which is tangent to Fy = 0.
The flow of V is ¢4(z,y) = (e*x, e’ y) and we define f by

fay) = /_ " At eyt

where A(z,y) = a(V(z,y)). Because A(0

,0) = 0, we see easily that f
is analytic (smooth). Moreover df (V (z,y)) =

A(z,y) = a(V(z,y)).

12



7.3 Using Euler identity
Theorem 5 If F is a quasi-homogenous isolated singularity of Milnor number u,
o dim (£/Jac(F)) = p ,
then < F > is of codimension u. More precisely
Jac(F) =EF +{&,F}

Proof.—

Let us denote A = 0F/0z, B = OF/0¢, we have by Euler identity:

adtA+bEB=F,
with @’ = a/n and b’ = b/n. We want to solve:

{X,F}+YF =XA+vB

where A, v are given and X,Y € £ are unknown functions. We get

0X 0X
A(— '2Y) + B(——=— +b'€Y) = \A +vB
(66 +ad'zY) + B( a:c+b§ =M +v
and it is now enough to solve
0X , 0X
—=- Y, — =X—-dzY .
o v+ by, 9€ A—azx

The integrability condition is:
oY oY 90X  Ov
! bl Y bl il 1.7 - - -,
(@ +0b)Y + §6£+am6$ 6:1:+3§
which admits an unique solution Y: we solve first inside formal series,
then inside flat functions. We can take for the U;’s a basis of neighbour-
hoods star-shaped with respect to quasi-homogeneous dilatations.

O

8 Versal deformations for quasi-homogeneous sin-
gularities

8.1 Holomorphic case

We will prove the versal deformation theorem for all quasi-homogeneous singulari-
ties.

Lemma 1 Let F,(x,) (a € C*) be a versal deformation of a quasi-homogeneous
singularity and v; a locally constant basis of the vanishing homology. Then the
Jacobian determinant J(a) of a — (f%‘(a) &dx) which is well defined outsise the
discriminant set (the set of a’s for which the curve F, = 0 is singular) extends
to C* as a non vanishing holomorphic function. If we take the versal deformation

generated by monomials, J is constant.

As a corollary we get that there exists a canonical measure on the versal de-
formation (because the vanishing homology has a canonical Lebesgue measure). It
would be nice to have a geometric definition of that measure.

Proof.—

13



o We first check that:

9 / ¢de = / K, dt
daa Jo(a) ~(a)

where dt is the time for the dynamics induced by the Hamiltonian
Hy + Y aq K, on the surface Ho + > aq K, = 0.

e We then prove using Picard-Lefschetz formula that J is univalent:
the Poincaré group of the complement of the discriminant is gen-
erated by small loops around the stratum corresponding to 1 van-
ishing cycle say 1. Following such a loop will add to the lines of
the Jacobian determinant a linear combination of the first one.

e J is bounded near the codimension 1 stratum of the discriminant.
Hence J is holomorphic near the codimension 1 strata and by Har-
togs everywhere. J is clearly quasi-homogeneous. Being nonva-
nishing by [5] p.95, J is quasi-homogeneous of degree 0, hence a
non-zero constant.

O
Using the strategy of Pham in [29], we can prove the following:

Theorem 6 Let < Fy > a quasi-homogeneous singularity with F, = Fo 4+ > ao K4
(K, monomials) as a versal deformation. Let < F; > be any analytic deformation
of < Fy >. There exists an analytic family of germs of canonical diffeomorphisms
X¢ such that

< Fyox >=< Fyy >

where the functions a;(t) are analytic.
Proof.—-

We will give the proof for A (the cusp), it is then trivial to see how to
extend the proof to the general case.

Using Moser’s method, the idea is to fit the action integrals. The
details run as follows:

e We can assume, using the versal deformation theorem (see [3]), that
we start with F, = Fy + a1z + a2 and w. = wg + O(c) and think as
t = (a,c). We choose A, such that d\. = w. — wp an assume that
Ae = O(|¢]).-

e Let § = {4a} + 27a3 = 0} the discriminant set. We want to define
a smooth family of holomorphic diffeomorphisms a = ¢.(a) = o’
such that ¢o = Id and for all cycles v; of Z, = {F, = 0} we have

/ &dx =/ Edx +/ Ae
vi(a") vi(a) vi(a)

e This implicit equation can be uniquely solved for ¢ small enough
outside & because the Jacobian determinant of a — ( fw (a) &dz) j=1,2
is a nonzero constant (see lemma 1).

e Near the stratum of the discriminant where the vanishing cycle is
7, the integrals [ and [ & [ log[ ~are univalent and holo-

morphic, thanks to the Picard-Lefschetz formula and the Jacobian
determinant is the same: so we can also solve.

14



e Now we have solved the equation outside a set of codimension 2
and we conclude by the fact that holomorphic functions have no
singularities of codimension > 2 (Hartog’s theorem).

o Performing the reparametrization of the versal deformation we need
to show that (< F, >, (¢, 1)*(dé Adz)) and (< F, >,déAdz+d),)
are equivalent. The difference of these 2 symplectic forms is dg.
where the integral of 3. over all vanishing cycles of all Z,’s vanish.

o It remains now to find f, .(z,§) whose differential on Z, is .. We
define f,c = ga,,c. The restriction of g, . to all Z,, s is obtained
by integration from a point mg, 5 € Zg, 5 N {||2|| = 1} which can
be choosen an analytic function of (aq,b) of the forms S.. The
smoothness of f outside § is clear. Moreover f is holomorphic
outside 0 and bounded hence holomorphic everywhere.

e We can then apply Moser’s method.

8.2 Smooth case

The same result (versal deformation, theorem 6) is probably true in the smooth
case. The strategy could be to use first the formal case, then to use an induction
argument on u.

9 Semi-classics

In this section, we will quantize everything in order to get semi-classical objects.

9.1 Semi-classical normal forms

Theorem 7 Let < Ho > be of finite codimension p with a (classical) real versal
deformation generated by Ko, o = 1,--- , . Let Hbea pseudo-differential oper-
ator on R whose principal symbol is Ho. There exists then some elliptic pseudo-
differential operators U and V and formal series ao(h) = O(h) such that we have
microlocally near 0

UHV =Ho+ Y aa(h) Ko + O(h%)
where @ is the Weyl quantization of Q). If H is self-adjoint, we can choose U and

V so that the ay’s are real valued.

The proof by induction on the powers of h is similar to that of section 6.

9.2 Mixed case

We consider now a smooth family f/I\E of semi-classical Hamiltonians and denote by
Hy the principal symbol of Hy. We assume that < Hy > is of finite codimension p.
The following result is an extension of theorems 3 (h = 0) and 7 (¢ = 0).

Theorem 8 There exist elliptic pseudo-differential operators (/J: and f/: and formal
series aq(g,h) = O(|h| + |e]) such that

U.H.V. = Ho+ ) aale, N Ko + 0(=™ + 1) .

The proof is by induction on the powers of h and for each power of h by induction
on the powers of ¢.

15



9.3 The holomorphic quasi-homogeneous case

In the holomorphic quasi-homogeneous case, using the tools of section 8.1, we get
a much better result:

Definition 8 We will say that Hg = Opyy, (Y W/ H;(E;x,€)) 4s an analytic family
of pseudo-differential operators near 0, if, for all indices j, H;(E,x,£) extends to
an holomorphic function in some complex neighbourhood Q2 of 0 independent of j.

Theorem 9 If Hg is an analytic family of pseudo-differential operators of order O
such that Ho(0;x,&) is an isolated quasi-homogeneous singularity, there exists, for
E small enough, an analytic family of unitary Fourier integral operators Ug, an
analytic family of elliptic pseudo-diffential operators Fr and symbols (analytic w.r.
to E) an(E, h) such that we have, microlocally near 0:

UtHgUg = Fg o (ﬂo +3 aa(B WKL) + O(hw)) .

Proof.—

Proceeding by induction on the powers of h, we get the following equa-
tion to solve where X (E;z,£), Y(E;x,£), co(E) are the unknown func-
tions:

{Ho+)»_ aa(E)Ka, X}+Y (Ho+) _ aa(E)Kao) = R(E;7,8)— ) ca(E)Ka(,€)

This equation express that on the Riemann surface Ho+ Y ao(E) K, =
0, R(E;2,8)=>" ca(E)Kq(z, €) is the derivative with respect to the time
of the function X. We need first to choose ¢, (E) so that the integrals

/ PRUCELED SR EAERY

all vanish. This is possible outside the discriminant set because of the
non vanishing of the determinant f%‘ (B) K,dt (see lemma 1). The so-
lution is bounded near the discriminant, hence can be extended to an
holomorphic function. The proof is then finished using the same argu-
ments as in the proof of theorem 6.

O

10 Singular Bohr-Sommerfeld rules: the general
scheme

From the local model and the WKB solutions, we define the scattering matrices and
singular holonomies. We show how one can take the principal part of the regular
holonomies in order to get the singular holonomies. We can then derive the Bohr-
Sommerfeld rules using the same combinatorial recipe as in [13] (maximal trees

).

10.1 The context

We will assume that H g is a pseudo-differential operator of order 0 on the real
line and denote by Hg his principal symbol. H is supposed to be real valued and

16



we assume that the energy surface Z = H;'(0) admits only finite codimension

singularities z;, j = 1,--- , N with normal forms
UiHV; = Hj + ) _ aja(B,W)Kja +O(h™), ®3)
a=1

with a;o(E,h) symbols in h and I?;l are Weyl quantizations of the real versal
deformation.

10.2 Local models and scattering matrices

In this section we want to describe the solutions of the local model which is mapped
on our problem near the singular point z;.
We will omit the index j in this section.

We fix a neighbourhood Q of 0 in the (y, ) symplectic plane. We denote by H, =
Hy + > an K, the versal deformation of the model and fI\a his (Weyl)-quantized
version. We will denote y;, | = 1,---,L = 2L' (L > 2) the real branches of the
germ Z, = H;1(0). We chose to orient the ,’s according to the dynamics of H,.
There are now L' ingoing and L' outgoing branches. We choose open sets ; C
with empty mutual intersections and such that ; N ~; is a nonempty connected
arc. We assume that a is small enough so that ; N Z, with Z, = H;1(0) is also a
nonempty connected arc.

Figure 2: the model problem: L =6

We are looking for the following equation
(ﬁ:) + Zaaf{\a)u = O(hoo) ) (4)

where u is a microfunction in Q. It is in general not difficult to prove that the space
of microfunctions solutions of equation (4) in Q is a free module of rank L' = L/2
over the moderate growth functions of h. We choose microlocal solutions u;(a) of
equation (4) inside (; smoothly dependent of a of the form (in case of no caustics):

w(a; z) ~ (ch,l(a, x)hk)etSi(asm)/h (5)
k=0

with ¢y and S; smoothly depending on a. Any solution u of equation (4) in Q
restricts to zju;(a) in ;. Given (1) = (Zin, Tout) We can express the condition that
zjuy(a) are the restrictions to € of some solution u of equation (4) by a matrix

Tout = S(a; h)xzn , (6)
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where S(a, h)) is called the scattering matriz.

10.2.1 Unitarity

We assume that the operator H,is formally self-adjoint. Let us choose IT a pseudo-
differential operator of order 0 compactly supported in 2 and equal to Id near the
origin. More precisely, we assume that

ZoN{II(Id - TI) # 0} C Uy (Y N Z,)

We define the following inner products on microfunctions in {2:
Jo(u,v) = % < [IL, HJu,v >

It is clear that
1. If u,v € ker(H,), J(u,v) = O(h*)
2. If ujg, = myuy and v, = yiuy, we have: J(u,v) = >, mgJ (ur, )

3. If the principal symbol of u; is |dt|2, we have J(u;,u;) = +£1 + O(h) where we
have a + sign if the arc +; is ingoing and a — sign if it is outgoing.

From that we deduce that S(a, h) is unitary (with maybe some domain).

10.3 Singular holonomies

Let o be a cycle of Zg, we want to define the singular holonomy (of I/{;) along v and
compute it. For simplicity we will assume that there exists only one singular point
z1 in o at which we have a normal form given by equation (3). We can therefore
omit the index j. We first cover the cycle v by open sets Uy, - - - U, such that we can
find WKB solutions v; of Hov = O(h®) inside Uj;, points (; = (a;,b;) € U; NUjp
and such that the Q;’s covering the singular point zo (j = 1,n) are the image by
the canonical transformation x of some open sets (%, I = 1,2 introduced in the
previous section. We choose v1 = Viu; and v, = Vi (u2). We define then then the
singular holonomy HolS(I/-I\O, ) by

(7)

It is clear from the theory of WKB-Maslov Ansatz that HolS(fIB, vo) = e (2k= Buh®)
so that we go to some Log scale and put

oo
LHolS = —ilog HolS ~ Z Bih* .
k=-1

It is easily checked that singular holonomies are independent of all choices (in-
cluding x and the associated FIO’s) except for the choosen WKB solutions u; of
the model problem. As we will see singular holonomies and scattering matrices are
enough to derive Bohr-Sommerfeld rules.
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Figure 3: singular holonomy

10.4 Regularisation

We will now choose a deformation Hy, E > 0, of H such that H;'(0) = Zp is
smooth and a cycle vg of Zg such that yg = v as E — 0F. The goal is to derive
LHolS(H,~o) as a regularisation of the usual holonomy (the log of) LHol(Hg,vg) ~
> e, Ak(E)h*. In general the A;’s are divergent as E — 0T but we can substract
the divergent part using the scattering matrix. More precisely, assume E > 0, we
have then v, = s1,,(E,h)vi where s1, is the corresponding entry of the local
scattering matrix. We deduce:

1
LHol(E, h) = LHolS(E, h) + A log s1,,(E, h) .
For fixed E > 0, we have then
Ay(E) = Bx(E) + of ,(E) ,

where
oo

1
~10g 51,n(E, h) ~ > o1a(E)RE
k=-—1
We get that way:
By(0) = lim (Ayx(E) —of ,(E)) .

E—0t

10.5 Singular Bohr-Sommerfeld rules

Once the singular holonomies are defined, the Bohr-Somerfeld rules follow the same
combinatorial picture as in [13].

11 The cusp

The saddle-node bifurcation occurs generically for a 1-dimensional system depend-
ing on some extra parameter: it is the generic way to change the number of critical
points for a Morse function.

Definition 9 We will say that the planar curve L =< H > admits at zo a non
degenerate cusp if 29 is a degenerate (non Morse) critical point of H such that
H"(z) is of rank 1 and the polynomial of degree 3 in the Taylor expansion does not
vanish on the kernel of H" (2).
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11.1 Classics

Theorem 10 Let H be an Hamiltonian such that < H > admits at zg a non
degenerate cusp, there exists a canonical transformation x and a smooth function
E non vanishing at 29 such that H o x = EHy with Hy = €2 + 23:

<Hox>=H,y.

By theorem 4, it is enough to know that H and ¢2 + 2® are equivalent germs. This
result can be proved easily as follows: apply first Morse lemma, we get &2 + f(x)
where the third derivative of f does not vanish. See [3] chapter 2.

11.2 Semi-classics

Let fI\tu = 0 be an analytic family of semi-classical equations such that the principal
symbol Hy of Hy vanishes at zg with a non degenerate cusp. Using theorems 6, 8
and 10, we get the following pseudo-differential equation as a microlocal normal
form:

—h*u" + (2 + a(t, h)x + b(t, h))u = O(h™)

where a ~ 3772 a;(t)h? and b ~ 3272 b;(t)h? are formal series in h.

11.3 Computation of the first coefficients a, et b
Let us start with Fy having a cusp at 0. By a rotation, we can assume that
Fy = A% + B2® + O(7)

where f = O(N) means F(t3¢,tz) = O(t"Y). By a canonical diagonal linear
transformation, we get

Fy = (A3Bz)1/5(£2 + 2% + ax?é 4 Bxe® + vzt + 0(9)) ,

and then, removing the constant prefactor:

Ro= €+ (a+ 20" + (8- S)a 72"+ 000)

and putting §; =&, 1 =z + &

2
Fo=8+a% + (8 - 2)a1 &2 +vyat + 0(9)) .

3
We want to find x so that:
Foox = (1+ex1)(& +ai) + 0(9)

We compute easily
. 4 . .
T = gw(§2 + %) + {5, +2°},2" = ?x(Ez +2%) + {5, & + z*}

and we get that way
1
e= ?(3ﬂ + 4y — a?)

We have now:

Kox
(Fo +tK) o x = (1 + exy) <§f+m§+t1+ewl))+0(9)
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and we get by projecting the deformation onto the versal deformation
(Fo + tK) o x¢ = Ey(z1,61) (& + 23 + t(ar,0m1 + biyo)) + O(F) .
We put ko = K(0), k1 = 0, K(0) and we get
a1,0 = k1 —eko, bio=ko .

The same formulae holds for ag,; and bg,; be replacing K by the subprincipal symbol
of ﬁo.

O

DZ(%

Figure 4: bifurcation diagramm of the cusp

11.4 The model problem

Let Pu(y) = —v"(y) + (y® + Ay + B)u(y) with 4,B € R. We may define the
reflexion coefficient R(A, B) in the following way: the equation Pv = 0 admits
2 exact solutions v (y), smoothly depending on A and B, which admits WKB
expansions at infinity (v_(y) = v4+(y)) and, as y — —o0 :

_8 (2y5/2 1/2 > —a —o
vy (y) = ly| =5 GVITHAMED (143 a0 (4, B)Jy|=*/2) + O( [y|=>);

a=1

existence of solutions with a given asymptotic expansion is a classical fact. They are
clearly unique (for a general approach concerning asymptotic solutions, see [6], [31],
[36]). There exists an unique function R(A, B) (of modulus 1), called the reflexion
coefficient or scattering matriz, such that v = v_ + R(A, B)vy € L2([0,4+o0[, dy).
This function R(A, B) is the special function of our problem. It can be related with
Stokes multipliers.

Question 8 Describe as much as possible the function R(A, B).
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11.5 The semi-classical bifurcation
11.5.1 The scattering matrix
We choose exact solutions ut 4 of equation
—h*u" + (23 + az + b)u = O (8)

(with a and b real valued) which admit the following WKB expansions:

Ut g p(2, h) = eis“"’(z)/h Z (z;a,b)h?) + O(h™)

normalized by S,p(—1) = 0 and ) ° —1;a,b)h? = 1. We obtain that way
the semi-classical scatterzng matric U(]a b; h Well defined modulo O(h*°) by asking
that u4 44 + o(a,b; h)u_ 4 extends to an admissible function.

11.5.2 Renormalisation

Let us start with the semi-classical model problem given by equation (8) and assume
that a and b can be h dependent. We will denote by

lla, bl = (Jaf® +%)>/12
And we will measure the distance to the bifurcation using 7 defined by:
lla, bll = hT =17
We can now use the renormalisation z = 5*/®y which gives:
-7l + (y® + Ay + B)jv =0

with a = An*/5, b= By%/®. Now A and B are of order 1. We have 3 domains:

1. The domain where 7 is bounded (w.r. to h) where the bifurcation really takes
place and there is no further asymptotics.

2. The Log domain where 1 << 7 = O(|logh|) where we can use the semi-
classical asymptotics w.r. to 7 including tunneling effect which is not O(h*°).

3. The domain where 7 >> |logh| where we can apply usual formulae without
looking at the bifurcation problem: the semi-classical spectrum splits into 2
parts; one associated to the real vanishing circle, the other to the bigg closed
cycle.

11.5.3 The bifurcation domain

In this domain (||a, b|]| = O(h)), 7 is bounded.
If we use a = Ah*/®, b = Bh®/5, the renormalized equation is

—v" 4+ (@*+ Az +Bw =0 9)
where A and B are bounded.
In this domain, we have the following relationship between R and o:
o(a,b;h) = R(A, B)e #(3+24n"") (1 +> va(A,B))ha“) +O(h®),  (10)
a=1

with A = ah=*/5, B = bh=%/% and the ~,’s can be computed from the ay’s .
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11.5.4 The Log domain

In this domain we can compute the 7 semi-classical solution using tunneling effect
(see [20], [16]).

11.6 Bohr-Sommerfeld rules

From the previous sections, we can compute the singular holonomy using the asymp-
totic behaviour of o(a, b; h) for (a,b) non zero and h — 0. We can then derive the
Bohr-Sommerfeld rules from R(A, B) using equation (10).
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Résumé et mots-clés en francais pour ’article ”Singular Lagrangian
manifolds and semi-classical analysis” (”Variétés lagrangiennes singuliéres
et analyse semi-classique”).

Résumé :

Les sous-variétés lagrangiennes des variétés symplectiques sont des objets fondamen-
taux en mécanique classique et en analyse microlocale. Ces variétés sont souvent sin-
gulitres (systémes intégrables, bifurcations, réduction). De nombreux travaux leurs sont
consacrés en particulier par Arnold et Givental. Le but de cet article est d’étendre les
formes normales classiques et semi-classiques des systémes complétement intégrables prés
de singularités non dégénérées (au sens de Morse-Bott) & des systémes plus singuliers. 11
se trouve qu’il y a une fagon agréable de faire cela conduisant & des formes normales et
a leurs déploiements versels. Nous obtenons ainsi des Ansatz naturels qui généralisent
I’Ansatz ”BKW-Maslov”. Nous donnons plus de détails dans ’exemple le plus simple qui
n’est pas de Morse, le cusp, qui correspond & une bifurcation noeud-col.

Mots Clés: variétés lagrangiennes singuliéres, systémes hamiltoniens intégrables, bi-
furcations, régles de Bohr-Sommerfeld, BKW, semi-classique, formes normales, déformations
verselles.
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