SPIN $^{\circ}$ -QUANTIZATION AND THE K-MULTIPLICITIES OF THE DISCRETE SERIES

PAUL-EMILE PARADAN

UMR 5582, Institut Fourier, B.P. 74, 38402, Saint-Martin-d'Hères cedex, France e-mail: Paul-Emile.Paradan@ujf-grenoble.fr

April 23, 2001

Prépublication de L'Institut Fourier n° 533 (2001) http://www-fourier.ujf-grenoble.fr/prepublications.html

ABSTRACT. We express the K-multiplicities of a representation of the discrete series associated to a coadjoint orbit $\mathcal O$ in terms of Spin^c -index on symplectic reductions of $\mathcal O$.

Contents

1.	Introduction	
2.	$\operatorname{Spin}^{\operatorname{c}}$ -quantization of compact Hamiltonian K -manifolds	
3.	Quantization of non-compact Hamiltonian K -manifolds	
4.	Quantization commutes with reduction	1
5.	Quantization and the discrete series	2
References		3

1. Introduction

The purpose of this paper is to show that the 'quantization commutes with reduction' principle of Guillemin-Sternberg [16] holds for the coadjoint orbits that parametrize the discrete series of a real connected semi-simple Lie group.

Consider a real connected semi-simple Lie group G with finite center, which admits a discrete series. Let K be a maximal compact subgroup, and let T be a maximal torus in K: then T is also a Cartan subgroup of G. Following Harish-Chandra, the discrete series of G are parametrized by a subset \widehat{G}_d in the dual \mathfrak{t}^* of the Lie algebra of T. For each $\lambda \in \widehat{G}_d$, let us denote Θ_λ the trace of the representation of G associated to the coadjoint orbit $G \cdot \lambda$: it is a generalized function on G, invariant by conjugation, and which admits a restriction to K denoted $\Theta_{\lambda}|_{K}$.

 $[\]textit{Keywords}: \text{moment map, reduction, geometric quantization, discrete series, transversally elliptic symbol.}$

 $^{{\}it 1991~Mathematics~Subject~Classification}:~58 F06,~57 S15,~19 L47.$

The following definition was first introduced by Cannas da Sylva, Karshon and Tolman [11].

Definition. Let (M, ω, Φ) be a Hamiltonian manifold for the action of a Lie group H. The manifold M is oriented by its symplectic form ω . We say that (M, ω, Φ) is Spin^{c} prequantized if M carries an H-equivariant Spin^{c} -structure with determinant line bundle $L_{2\omega}$ which is a prequantum line bundle over $(M, 2\omega)$.

We fix now $\lambda \in \widehat{G}_d$, and we consider the regular coadjoint orbit $G \cdot \lambda$ equipped with its Kirillov-Kostant-Souriau symplectic form ω . The action of G on $G \cdot \lambda$ is Hamiltonian with moment map $\Phi_G : G \cdot \lambda \hookrightarrow \mathfrak{g}^*$ equal to the inclusion. Here the orbit $G \cdot \lambda \simeq G/T$ is Spin^c prequantized: the corresponding determinant line bundle is $L_{2\omega} = G \times_T \mathbb{C}_{2\lambda}$. The action of K on $G \cdot \lambda$ is Hamiltonian, and the induced moment map $\Phi : G \cdot \lambda \to \mathfrak{k}^*$ is proper. Hence the reduced spaces $(G \cdot \lambda)_{\xi} = \Phi^{-1}(K \cdot \xi)/K$ are compact for all $\xi \in \mathfrak{k}^*$. The Convexity Theorem tells us also that $\Delta = \Phi(G \cdot \lambda) \cap \mathfrak{t}_+^*$ is a convex polyhedral subset of the Weyl chamber \mathfrak{t}_+^* containing λ [2, 15, 23, 26].

Let ρ_c be half the sum of the positive compact roots, and let $\mu \in \Lambda_+^*$ be an integral dominant weight, such that $\tilde{\mu} := \mu + \rho_c$ is a regular value of Φ . We show then that the symplectic quotient $((G \cdot \lambda)_{\tilde{\mu}}, \omega_{\tilde{\mu}})$ is Spin^c prequantized, and we define an integer $\mathcal{Q}((G \cdot \lambda)_{\mu+\rho_c})$ as the index of the corresponding Spin^c Dirac operator on $(G \cdot \lambda)_{\mu+\rho_c}$. Then we are able to define the number $\mathcal{Q}((G \cdot \lambda)_{\mu+\rho_c})$ for arbitrary μ by shift desingularization. In particular $\mathcal{Q}((G \cdot \lambda)_{\mu+\rho_c}) = 0$ if $\mu + \rho_c$ does not belong to the relative interior Δ^o of Δ .

The central result of this paper is

Theorem. We have the decomposition

$$\Theta_{\lambda}|_{K} = \sum_{\mu \in \Lambda_{+}^{*} \cap (\Delta^{\circ} - \rho_{c})} \mathcal{Q}\left((G \cdot \lambda)_{\mu + \rho_{c}}\right) \chi_{\mu}^{K} ,$$

where χ_{μ}^{K} is the character of the irreducible K-representation with highest weight μ .

We give now an outline of the proof. For the precise definitions, see section 2.

Let (M,ω,Φ) be a compact Hamiltonian K-manifold. Let J be an almost complex structure on M, and let κ be the canonical line bundle associated to J. In section 2, we extend the 'quantization commutes with reduction' principle when we tensor a prequantum line bundle L by the bundle of half forms $\kappa^{1/2}$. The product $\tilde{L} = L \otimes \kappa^{1/2}$ may exist even if neither L nor $\kappa^{1/2}$ exists. A complex line bundle \tilde{L} over M is referred as ' κ -prequantum' if $\tilde{L}^2 \otimes \kappa^{-1}$ is a prequantum line bundle over $(M,2\omega)$. If M carries a κ -prequantum line bundle \tilde{L} , (M,ω,Φ) is Spinc prequantized by the Spinc structure defined by J and twisted by \tilde{L} . Let $\mu \in \Lambda_+^*$ be a dominant weight, such that $\mu + \rho_c$ is a regular value of Φ . We show then that the symplectic quotient $(M_{\mu+\rho_c},\omega_{\mu+\rho_c})$ is Spinc prequantized, and we define $Q(M_{\mu+\rho_c}) \in \mathbb{Z}$ as the index of the corresponding Spinc Dirac operator. The number $Q(M_{\mu+\rho_c})$ is defined in the general case by shift desingularization. In particular $Q(M_{\mu+\rho_c}) = 0$ if $\mu + \rho_c$ does not belong to the relative interior Δ^o of the moment polytope $\Delta = \Phi(M) \cap \mathfrak{t}_+^*$.

Let $\varepsilon = \pm 1$ be the 'quotient' of the orientation o(J) defined by the almost complex structure and the orientation $o(\omega)$ defined by the symplectic form. If the infinitesimal stabilizers for the K-action on M are abelian, we show that

(1)
$$RR^{\kappa}(M, \tilde{L}) = \varepsilon \sum_{\mu \in \Lambda_{+}^{*} \cap (\Delta^{o} - \rho_{c})} \mathcal{Q}(M_{\mu + \rho_{c}}) \chi_{\mu}^{\kappa}.$$

The computation of the multiplicity of the trivial representation in $RR^{\kappa}(M, L \otimes \kappa^{1/2})$ was already known when K is a torus [18, 38].

In section 3, we extend (1) to a non-compact setting. First we define a generalized Riemann-Roch character $RR_{\Phi}^{\kappa}(M,-)$ when (M,ω,Φ) is an Hamiltonian manifold where the function $\parallel\Phi\parallel^2\colon M\to\mathbb{R}$ has a *compact* set of critical points (which is denoted $Cr(\|\Phi\|^2)$). If moreover the moment map is assumed proper, we prove in section 4 that Equality (1) extends to

(2)
$$RR_{\Phi}^{\kappa}(M, \tilde{L}) = \varepsilon \sum_{\mu \in \Lambda_{+}^{*} \cap (\Delta^{\circ} - \rho_{c})} \mathcal{Q}(M_{\mu + \rho_{c}}) \chi_{\mu}^{\kappa} ,$$

for every κ -prequantum line bundle, when the infinitesimal stabilizers are abelian. Here some additional assumptions are needed to control the data on the noncompact manifold M (see Assumption 3.4).

In the last section we consider, for $\lambda \in \widehat{G}_d$, the case of the coadjoint orbit $G \cdot \lambda \simeq G/T$ with the canonical K-action. The moment map Φ is proper and the critical set $Cr(\|\Phi\|^2)$ coincides with $K \cdot \lambda$, hence is compact. Thus the generalized Riemann-Roch character $RR_{\Phi}^{\kappa}(G\cdot\lambda,-)$ is well defined. On $G\cdot\lambda$, there is a (integrable) complex structure for which the line bundle $\tilde{L} := G \times_T \mathbb{C}_{\lambda-\rho} \to G/T$ is κ -prequantum¹. With the help of the Blattner formula we show that

(3)
$$RR_{\Phi}^{K}(M,\tilde{L}) = (-1)^{\frac{\dim(G/K)}{2}} \Theta_{\lambda|K}.$$

 $(3) \qquad RR_{\Phi}^{^{K}}(M,\tilde{L}) = (-1)^{\frac{\dim(G/K)}{2}} \; \Theta_{\lambda}|_{K} \; .$ Since $\varepsilon = (-1)^{\frac{\dim(G/K)}{2}}$ in this context, the Theorem follows from (2) and (3), if one verifies that Assumption 3.4 holds on $G \cdot \lambda$: this is done in the last subsection of this paper.

Notation

Throughout the paper K will denote a compact, connected Lie group, and \mathfrak{k} its Lie algebra. We let T be a maximal torus in K, and \mathfrak{t} be its Lie algebra. The integral lattice $\Lambda \subset \mathfrak{t}$ is defined as the kernel of $\exp : \mathfrak{t} \to T$, and the real weight lattice $\Lambda^* \subset \mathfrak{t}^*$ is defined by : $\Lambda^* := \hom(\Lambda, 2\pi\mathbb{Z})$. Every $\mu \in \Lambda^*$ defines a 1dimensionnal T-representation, denoted \mathbb{C}_{μ} , where $t = \exp X$ acts by $t^{\mu} := e^{i\langle \mu, X \rangle}$. We let W be the Weyl group of (K,T), and we fix the positive Weyl chambers $\mathfrak{t}_+ \subset \mathfrak{t}$ and $\mathfrak{t}_+^* \subset \mathfrak{t}^*$. For any dominant weight $\mu \in \Lambda_+^* := \Lambda^* \cap \mathfrak{t}_+^*$, we denote V_μ the K-irreducible representation with highest weight μ , and χ_μ^κ its character. We denote by R(K) (resp. R(T)) the ring of characters of finite-dimensional K-representations (resp. T-representations). We denote by $R^{-\infty}(K)$ (resp. $R^{-\infty}(T)$) the set of generalized characters of K (resp. T). An element $\chi \in R^{-\infty}(K)$ is of the form

¹Here ρ is half the sum of the positive roots for the T-action on the Lie algebra \mathfrak{g} of G. When $\lambda \in \widehat{G}_d$, $\lambda - \rho$ is integrable.

 $\chi = \sum_{\mu \in \Lambda_+^*} \mathrm{m}_{\mu} \, \chi_{\mu}^{\kappa} \,, \text{ where } \mu \mapsto \mathrm{m}_{\mu}, \Lambda_+^* \to \mathbb{Z} \text{ has at most polynomial growth. In the same way, an element } \chi \in R^{-\infty}(T) \text{ is of the form } \chi = \sum_{\mu \in \Lambda^*} \mathrm{m}_{\mu} \, t^{\mu}, \text{ where } \mu \mapsto \mathrm{m}_{\mu}, \Lambda^* \to \mathbb{Z} \text{ has at most polynomial growth. We denote by } w \circ \mu = w(\mu + \rho_c) - \rho_c \text{ the affine action of the Weyl group on the set of weights. The holomorphic induction map } \mathrm{Hol}_{T}^{\kappa} : R^{-\infty}(T) \longrightarrow R^{-\infty}(K) \text{ is characterized by the following properties by the following properties: i) } \mathrm{Hol}_{T}^{\kappa}(t^{\mu}) = \chi_{\mu}^{\kappa} \text{ for every dominant weight } \mu \in \Lambda_+^*; \text{ ii)} \\ \mathrm{Hol}_{T}^{\kappa}(t^{w \circ \mu}) = (-1)^{w} \mathrm{Hol}_{T}^{\kappa}(t^{\mu}) \text{ for every } w \in W \text{ and } \mu \in \Lambda^*; \text{ iii) } \mathrm{Hol}_{T}^{\kappa}(t^{\mu}) = 0 \text{ if } W \circ \mu \cap \Lambda_+^* = \emptyset. \text{ Some additional notation will be introduced later :}$

G: connected real semi-simple Lie group with finite center

 \mathbb{T}_{β} : torus generated by $\beta \in \mathfrak{k}$

 M^{γ} : submanifold of points fixed by $\gamma \in \mathfrak{k}$

 $\mathbf{T}M$: tangent bundle of M

 $\mathbf{T}_K M$: set of tangent vectors orthogonal to the K-orbits in M

 Φ : moment map

 $\Delta = \Phi(M) \cap \mathfrak{t}_+^* : \text{moment polytope}$

 \mathcal{H} : vector field generated by Φ

 $\operatorname{Char}(\sigma):\operatorname{characteristic}$ set of the symbol σ $\operatorname{Thom}_K^\Phi(M,J):\operatorname{Thom}$ symbol pushed by Φ

 $RR_{\Phi}^{\kappa}(M,-)$: generalized Riemann-Roch character

 $m_{\mu}(E)$: multiplicity of $RR_{\Phi}^{\kappa}(M,E)$ relatively to $\mu \in \Lambda_{+}^{*}$.

2. Spin c -Quantization of compact Hamiltonian K-manifolds

Let M be a compact Hamiltonian K-manifold with symplectic form ω and moment map $\Phi: M \to \mathfrak{k}^*$ characterize by the relation : $d\langle \Phi, X \rangle = -\omega(X_M, -)$ for all $X \in \mathfrak{k}$. In the process of quantization one tries to associate a unitary representation of K to these data. Here we associate to the data (M, ω, Φ) a virtual character of K, defined as the equivariant index of a Spin^c Dirac operator.

In this section, we recall first the known facts about $Spin^{c}$ -quantization, in particular the quantization commutes with reduction principle, and we give a modified version when M satisfies the corrected quantification condition (see [41], page 202). In the next section we extend these procedures to the setting where M is non-compact and the moment map is proper.

In the Kostant-Souriau framework, M is prequantized if there is a K-equivariant Hermitian line bundle L with a K-invariant Hermitian connection ∇^L of curvature $-\imath\omega$. The line bundle L is called a prequantum line bundle for the Hamiltonian K-manifold (M,ω,Φ) . Recall that the data (∇,Φ) are related by the Kostant formula

(2.1)
$$\mathcal{L}^{L}(X) - \nabla_{X_{M}}^{L} = i \langle f_{G}, X \rangle, \ X \in \mathfrak{k} .$$

Here $\mathcal{L}^L(X)$ is the infinitesimal action of X on the section of $L \to M$ and X_M is the vector field on M generated by $X \in \mathfrak{k} : X_M(m) := \frac{d}{dt} \exp(-tX).m|_{t=0}$, for $m \in M$.

When M is compact and prequantized by L, we can associate a virtual representation $RR^{K}(M,L)$ of K in the following manner. Choose an invariant almost complex structure J on M that is compatible with ω , in the sense that $\omega(-,J-)$

defines a Riemannian structure. The almost complex structure J defines a K-equivariant Spin^c-structure, which we twist by the line bundle L. Any choice of Hermitian connection on $\mathbf{T}M$ defines a Dirac operator \mathcal{D}_L^+ for the twisted Spin^c-structure and we define $RR^{\kappa}(M,L)$ as its equivariant index

$$RR^{\kappa}(M, L) := \operatorname{Index}_{M}^{G}(\mathcal{D}_{L}^{+})$$
 in $R(K)$.

Following [29], we call a point $\mu \in \mathfrak{k}^*$ a quasi-regular value of μ if all the K_{μ} -orbits in $\Phi^{-1}(\mu)$ have the same dimension. For any quasi-regular value $\mu \in \mathfrak{k}^*$ the reduced space $M_{\mu} := \Phi^{-1}(\mu)/K_{\mu}$ is a symplectic orbifold. For any dominant weight $\mu \in \Lambda_+^*$ which is a quasi-regular value of Φ ,

$$L_{\mu} := (L|_{\Phi^{-1}(\mu)} \otimes \mathbb{C}_{-\mu})/K_{\mu}$$

is a prequantum orbifold-line bundle over M_{μ} . The definition of Spin^c-index carries over to the orbifold case, hence $RR(M_{\mu}, L_{\mu}) \in \mathbb{Z}$ is defined. In [29], this is extended further to the case of singular symplectic quotients, using partial (or shift) desingularization. The following Theorem was conjectured by Guillemin-Sternberg [16] and is known as "quantization commutes with reduction" [28, 29].

Theorem 2.1. (Meinrenken, Meinrenken-Sjamaar). Let (M, ω, Φ) be a compact Hamiltonian K-manifold prequantized by L. Let $RR^K(M, -)$ be the quantization defined by means of a compatible almost complex structure on M. We have the following equality in R(K)

(2.2)
$$RR^{K}(M,L) = \sum_{\mu \in \Lambda^{*}} RR(M_{\mu}, L_{\mu}) \chi_{\mu}^{K} ,$$

where χ_{μ}^{κ} is the trace of the K-irreducible representation with highest weight μ .

Other proofs can be found in [33, 36]. For an introduction and further references see [34, 39].

Let us consider the basic example of coadjoint orbits for K. They are parametrized by the Weyl chamber \mathfrak{t}_+^* . For $a \in \mathfrak{t}_+^*$, the coadjoint orbit $\mathcal{O}^a := K \cdot a$ carries the Kirillov-Kostant-Souriau symplectic form and the canonical K-action is Hamiltonian with moment map equal to the inclusion map $\mathcal{O}^a \hookrightarrow \mathfrak{k}^*$. One can show that \mathcal{O}^a can be prequantized if and only if a is a real infinitesimal weight for the maximal torus, i.e. a belongs to the set of dominant weights Λ_+^* . Then the line bundle $\mathbb{C}_{[a]} := K \times_{K_a} \mathbb{C}_a$ is the unique prequantum line bundle over \mathcal{O}^a . Since a compatible almost complex structure on \mathcal{O}^a is integrable, the term $RR^K(\mathcal{O}^a, \mathbb{C}_{[a]})$ is computed by the Borel-Weil-Bott theorem:

$$(2.3) RR^{\kappa}(\mathcal{O}^a, \mathbb{C}_{[a]}) = \chi_a^{\kappa}$$

for any $a \in \Lambda_+^*$. We can also use (2.2) to compute $RR^K(\mathcal{O}^a, \mathbb{C}_{[a]})$ since for $M = \mathcal{O}^a$, the reduced space M_μ is empty for $\mu \neq a$, and equal to $\{pt\}$ for $\mu = a$.

For our purpose we need another version of the 'quantization commutes with reduction' principle when M satisfies the *corrected quantization condition* (see Definition 2.2). Now we do not assume that the almost complex structure is compatible with the symplectic form.

The tangent bundle $\mathbf{T}M$ endowed with J is a complex vector bundle over M, and we consider its complex dual $\mathbf{T}_{\mathbb{C}}^*M := \hom_{\mathbb{C}}(\mathbf{T}M, \mathbb{C})$. We suppose first that

the canonical line bundle $\kappa := \det \mathbf{T}_{\mathbb{C}}^*M$ admits a K-equivariant square root $\kappa^{1/2}$. If M is prequantized by L, a standard procedure in the geometric quantization literature is to tensor L by the bundle of half-forms $\kappa^{1/2}$ [41]. We consider the index $RR^K(M, L \otimes \kappa^{1/2})$ instead of $RR^K(M, L)$. In many contexts, the tensor product $\tilde{L} = L \otimes \kappa^{1/2}$ has a meaning even if L nor $\kappa^{1/2}$ exist.

Definition 2.2. An Hamiltonian K-manifold (M, ω, Φ) , equipped with an almost complex structure, is κ -prequantized by an equivariant line bundle \tilde{L} if $L_{2\omega} := \tilde{L}^2 \otimes \kappa^{-1}$ is a prequantum line bundle for $(M, 2\omega, 2\Phi)$.

The basic examples are the regular coadjoint orbits of K. Let ρ_c be half the sum of the positive roots relative to the choice of the Weyl chamber \mathfrak{t}_+^* . For any $\mu \in \Lambda_+^*$, consider the regular coadjoint orbit $\mathcal{O}^{\mu+\rho_c}:=K\cdot(\mu+\rho_c)$ with the compatible complex structure. The line bundle² $\mathbb{C}_{[\mu]}=K\times_T\mathbb{C}_\mu$ is the unique κ -prequantum line bundle over $\mathcal{O}^{\mu+\rho_c}$: here the hypothetic prequantum line bundle and bundle of half-forms $\kappa^{1/2}$ should be respectively $K\times_T\mathbb{C}_{\mu+\rho_c}$ and $K\times_T\mathbb{C}_{-\rho_c}$; both of them exist if and only if μ and ρ_c are integral. And we have

(2.4)
$$RR^{\kappa}(\mathcal{O}^{\mu+\rho_c}, \mathbb{C}_{[\mu]}) = \chi_{\mu}^{\kappa}$$

for any $\mu \in \Lambda_+^*$.

Definition 2.2 can be rewritten in the Spin^c setting. The almost complex structure induces a Spin^c structure P with determinant line bundle $\det_{\mathbb{C}} \mathbf{T}M$. If (M, ω, J) is κ -prequantized by \tilde{L} one can twist P by \tilde{L} , and then define a new Spin^c structure with determinant line bundle $\det_{\mathbb{C}} \mathbf{T}M \otimes \tilde{L}^2 = L_{2\omega}$.

Definition 2.3. A symplectic manifold (M, ω) is Spin^c -prequantized if there exists a Spin^c structure with determinant line bundle $L_{2\omega}$ which is a prequantum line bundle on $(M, 2\omega)$. If a compact Lie group acts on M, the Spin^c -structure is required to be equivariant. Here we take the symplectic orientation on M.

In this paper, we work under the assumption that the infinitesimal stabilizers for the K-action on M are abelian. Then the principal face of (M,Φ) is the interior of the Weyl chamber and it contains the relative interior Δ^o of the moment polytope $\Delta := \Phi(M) \cap \mathfrak{t}_+^*$ (see subsection 4.2). A quasi-regular value $\xi \in \Delta^o$ of Φ is called generic if $\Phi^{-1}(\xi)$ is of maximal dimension. The following Proposition is the central point for computing the K-multiplicities of $RR^K(M,\tilde{L})$ in terms of the reduced spaces $M_{\mu+\rho_c} := \Phi^{-1}(\mu+\rho_c)/T$, $\mu \in \Lambda_+^*$.

Proposition 2.4. Let (M, ω, Φ, J) be κ -prequantized by \tilde{L} , and let $\mu \in \Lambda_+^*$.

- If $\mu + \rho_c \notin \Delta^o$, we set $\mathcal{Q}(M_{\mu + \rho_c}) = 0$.
- If $\mu + \rho_c$ is a generic quasi-regular value of Φ , the reduced space $M_{\mu+\rho_c}$ inherits a canonical symplectic structure which is Spin^c -prequantized. We denote $\mathcal{Q}(M_{\mu+\rho_c}) \in \mathbb{Z}$ the index of the corresponding Spin^c Dirac operator.
- If $\mu + \rho_c \in \Delta^o$, we take ξ generic and quasi-regular sufficiently closed to $\mu + \rho_c$. The reduced space $M_{\xi} := \Phi^{-1}(\xi)/T$ inherits a Spin^c -structure with determinant line bundle $(L_{2\omega}|_{\Phi^{-1}(\xi)} \otimes \mathbb{C}_{-2(\mu+\rho_c)})/T$. The index $\mathcal{Q}(M_{\xi})$ of the corresponding Spin^c Dirac operator on M_{ξ} does not depend of ξ , when ξ is sufficiently closed to $\mu + \rho_c$: it is denoted $\mathcal{Q}(M_{\mu+\rho_c})$.

²Here we shall not confuse $\mathbb{C}_{[\mu]} \to \mathcal{O}^{\mu+\rho_c}$ which is isomorphic to the line bundle $K \times_T \mathbb{C}_{\mu} \to K/T$, with $\mathbb{C}_{[\mu]} \to \mathcal{O}^{\mu}$ which is isomorphic to the line bundle $K \times_{K_{\mu}} \mathbb{C}_{\mu} \to K/K_{\mu}$.

The following 'quantization commutes with reduction' Theorem holds for the κ -prequantum line bundles.

Theorem 2.5. Let (M, ω, Φ) be a compact Hamiltonian K-manifold equipped with an almost complex structure J. Let \tilde{L} be a κ -prequantum line bundle over M, and let $RR^K(M, -)$ be the quantization map defined by J. If the infinitesimal stabilizers for the action of K on M are abelian, we have the following equality in R(K)

(2.5)
$$RR^{K}(M, \tilde{L}) = \varepsilon \sum_{\mu \in \Lambda_{+}^{*}} Q(M_{\mu+\rho_{c}}) \chi_{\mu}^{K},$$

where $\varepsilon = \pm 1$ is the 'quotient' of the orientation o(J) defined by the almost complex structure and the orientation $o(\omega)$ defined by the symplectic form.

Theorem 2.5 will be proved in a stronger form in the next section.

Let us now give an example where the stabilizers for the action of K on M are not abelian, and where (2.5) does not hold. Suppose that the group K is not abelian, so we can consider a face $\sigma \neq \{0\}$ of the Weyl chamber. Let $\rho_{c,\sigma}$ be half the sum of the positive roots which vanish on σ , and consider the coadjoint orbit $M:=K.(\rho_c-\rho_{c,\sigma})$ equipped with its compatible complex structure. Since $\rho_c-\rho_{c,\sigma}$ belongs to σ , the trivial line bundle $M\times\mathbb{C}\to M$ is κ -prequantum³, and the image of the moment map $\Phi:M\to\mathfrak{k}^*$ does not intersect the interior of the Weyl chamber. So $M_{\mu+\rho_c}=\emptyset$ for every μ , thus the RHS of (2.5) is equal to zero. But the LHS of (2.5) is $RR^K(M,\mathbb{C})$ which is equal to 1, the character of the trivial representation. \square

Theorem 2.5 can be extended in two directions. First one can bypass the condition on the stabilizers by the following trick. Starting from a κ -prequantum line bundle $\tilde{L} \to M$, one can form the product $M \times (K \cdot \rho_c)$ with the coadjoint orbit through ρ_c . The Kunneth formula gives

$$RR^{\kappa}(M \times (K \cdot \rho_c), \tilde{L} \boxtimes \mathbb{C}) = RR^{\kappa}(M, \tilde{L}) \otimes RR^{\kappa}(K \cdot \rho_c, \mathbb{C}) = RR^{\kappa}(M, \tilde{L})$$

since $RR^K(K \cdot \rho_c, \mathbb{C}) = 1$. Now we can apply Theorem 2.5 to compute the multiplicities of $RR^K(M \times (K \cdot \rho_c), \tilde{L} \boxtimes \mathbb{C})$ since $\tilde{L} \boxtimes \mathbb{C}$ is a κ -prequantum line bundle over $M \times (K \cdot \rho_c)$, and the stabilizers for the K-action on $M \times (K \cdot \rho_c)$ are abelian. Finally we see that the multiplicity of the irreducible representation with highest weight μ in $RR^K(M, \tilde{L})$ is equal to $\varepsilon \mathcal{Q}((M \times (K \cdot \rho_c))_{\mu + \rho_c})$.

On the other hand, we can extend Theorem 2.5 to the Spin^c setting. It will be treated in a forthcoming paper.

3. Quantization of non-compact Hamiltonian K-manifolds

In this section (M, ω, Φ) denotes a Hamiltonian K-manifold, not necessarily compact, but with *proper* moment map Φ . Then the reduced spaces $M_{\mu+\rho_c}$ are *compact* symplectic orbifolds (after desingularization if it's necessary).

³Here the hypothetic prequantum line bundle and bundle of half-forms $\kappa^{1/2}$ should be respectively $K \times_{K_{\sigma}} \mathbb{C}_{(\rho_{c}-\rho_{c,\sigma})}$ and $K \times_{K_{\sigma}} \mathbb{C}_{-(\rho_{c}-\rho_{c,\sigma})}$

Let J be an almost complex structure over M, and let \tilde{L} be a κ -prequantum line bundle (see Def. 2.2). We prove in subsection 4.3 that Proposition 2.4 still holds in this context, so the infinite sum

(3.6)
$$\sum_{\mu \in \Lambda^*_{\perp}} \mathcal{Q}(M_{\mu+\rho_c}) \chi_{\mu}^{\kappa}$$

is a well defined element of $\widehat{R}(K) := \hom_{\mathbb{Z}}(R(K), \mathbb{Z})$.

The aim of this section is to realize this sum as the index of a transversally elliptic symbol naturally associated to the data (M, Φ, J, \tilde{L}) .

3.1. Transversally elliptic symbols. Here we give the basic definitions of the theory of transversally elliptic symbols (or operators) defined by Atiyah in [1]. For an axiomatic treatment of the index morphism see Berline-Vergne [9, 10] and for a short introduction see [33].

Let M be a compact manifold provided with an action of a compact connected Lie group K, with Lie algebra \mathfrak{k} . For any $X \in \mathfrak{k}$, we denote X_M the following vector field: for $m \in M$, $X_M(m) := \frac{d}{dt} \exp(-tX).m|_{t=0}$. Let $p: \mathbf{T}M \to M$ be the projection, and let $(-,-)_M$ be a K-invariant Riemannian metric.

If E^0 , E^1 are K-equivariant vector bundles over M, a K-equivariant morphism $\sigma \in \Gamma(\mathbf{T}M, \hom(p^*E^0, p^*E^1))$ is called a symbol. The subset of all $(m, v) \in \mathbf{T}M$ where $\sigma(m, v) : E_m^0 \to E_m^1$ is not invertible will be called the characteristic set of σ , and denoted $\mathrm{Char}(\sigma)$.

Let $\mathbf{T}_K M$ be the following subset of $\mathbf{T} M$:

$$\mathbf{T}_K M \ = \left\{ (m,v) \in \mathbf{T} M, \ (v,X_M(m))_{_M} = 0 \quad \text{for all } X \in \mathfrak{k} \right\}.$$

A symbol σ is *elliptic* if σ is invertible outside a compact subset of $\mathbf{T}M$ (Char(σ) is compact), and is *transversally elliptic* if the restriction of σ to \mathbf{T}_KM is invertible outside a compact subset of \mathbf{T}_KM (Char(σ) \cap \mathbf{T}_KM is compact). An elliptic symbol σ defines an element in the equivariant K-theory with compact support of $\mathbf{T}M$, which is denoted $\mathbf{K}_K(\mathbf{T}M)$, and the index of σ is a virtual finite dimensional representation of K [4, 5, 6, 7].

A transversally elliptic symbol σ defines an element of $\mathbf{K}_K(\mathbf{T}_K M)$, and the index of σ is defined (see [1] for the analytic index and [9, 10] for the cohomological one) and is a trace class virtual representation of K. Remark that any elliptic symbol of $\mathbf{T}M$ is transversally elliptic, hence we have a restriction map $\mathbf{K}_K(\mathbf{T}M) \to \mathbf{K}_K(\mathbf{T}_K M)$. We have the following commutative diagram

(3.7)
$$\mathbf{K}_{K}(\mathbf{T}M) \longrightarrow \mathbf{K}_{K}(\mathbf{T}_{K}M)$$

$$\operatorname{Index}_{M}^{K} \bigvee \qquad \qquad \operatorname{Index}_{M}^{K}$$

$$R(K) \longrightarrow R^{-\infty}(K) .$$

Using the excision property, one can easily show that the index map $\operatorname{Index}_{\mathcal{U}}^{K}$: $\mathbf{K}_{K}(\mathbf{T}_{K}\mathcal{U}) \to R^{-\infty}(K)$ is still defined when \mathcal{U} is a K-invariant relatively compact open subset of a K-manifold (see [33][section 3.1]).

3.2. Thom symbol pushed by the moment map. To a K-invariant almost complex structure J is associated the Thom symbol Thom_K(M, J), and the corresponding Riemann-Roch character RR^{K} [33]. Let us recall the definitions.

Consider a K-invariant Riemannian structure q on M such that J is orthogonal relatively to q, and let h be the Hermitian structure on $\mathbf{T}M$ defined by : h(v,w) = q(v,w) - iq(Jv,w) for $v,w \in \mathbf{T}M$. The symbol

$$\operatorname{Thom}_{\kappa}(M,J) \in \Gamma\left(M, \operatorname{hom}(p^*(\wedge_{\mathbb{C}}^{even}\mathbf{T}M), \, p^*(\wedge_{\mathbb{C}}^{odd}\mathbf{T}M))\right)$$

is equal, at $(m, v) \in \mathbf{T}M$, to the Clifford map⁴

(3.8)
$$\operatorname{Cl}_m(v) : \wedge_{\mathbb{C}}^{even} \mathbf{T}_m M \longrightarrow \wedge_{\mathbb{C}}^{odd} \mathbf{T}_m M,$$

where $\operatorname{Cl}_m(v).w = v \wedge w - c_h(v).w$ for $w \in \wedge_{\mathbb{C}}^{\bullet} \mathbf{T}_x M$. Here $c_h(v) : \wedge_{\mathbb{C}}^{\bullet} \mathbf{T}_m M \to \wedge^{\bullet-1} \mathbf{T}_m M$ denotes the contraction map relatively to h. Since the map $\operatorname{Cl}_m(v)$ is invertible for all $v \neq 0$, the symbol Thom_{κ}(M, J) is elliptic when M is compact.

The important point is that $\operatorname{Thom}_{K}(M,J)\otimes E$ corresponds, for any K-vector bundle E, to the *principal symbol* of the twisted $\operatorname{Spin}^{\operatorname{c}}$ Dirac operator \mathcal{D}_{E}^{+} [14]. So, when M is a *compact* manifold, the Riemann-Roch character $RR^{K}: \mathbf{K}_{K}(\mathbf{T}M) \to R(K)$ is defined by the following relation

(3.9)
$$RR^{K}(M, E) = \operatorname{Index}_{M}^{K}(\operatorname{Thom}_{K}(M, J) \otimes E) .$$

Consider now the case of a non-compact Hamiltonian K-manifold (M, ω, Φ) . We choose a K-invariant scalar product on \mathfrak{k}^* , and we consider the function $\|\Phi\|^2$: $M \to \mathbb{R}$. Let \mathcal{H} be the Hamiltonian vector field of $\frac{-1}{2} \|\Phi\|^2$: the contraction of the symplectic form by \mathcal{H} is equal to the 1-form $\frac{-1}{2}d\|\Phi\|^2$. The vector field \mathcal{H} is in fact defined only by Φ . The scalar product on \mathfrak{k}^* gives an identification $\mathfrak{k}^* \simeq \mathfrak{k}$, hence Φ can be consider as a map from M to \mathfrak{k} . We have then

$$\mathcal{H}_m = (\Phi(m))_M|_m, \quad m \in M ,$$

where $(\Phi(m))_M$ is the vector field on M generated by $\Phi(m) \in \mathfrak{k}$.

Definition 3.1. The Thom symbol pushed by the moment map, which is denoted $\operatorname{Thom}_{\kappa}^{\Phi}(M,J)$, is defined by the relation

$$\operatorname{Thom}_{\kappa}^{\Phi}(M,J)(m,v) := \operatorname{Thom}_{\kappa}(M,J)(m,v-\mathcal{H}_m)$$

for any $(x,v) \in \mathbf{T}M$. Likewise, any equivariant map $S: M \to \mathfrak{k}$ defines a Thom symbol $\mathrm{Thom}_{\kappa}^S(M,J)$ pushed by the vector field $S_M: m \to S(m)_M|_m: \mathrm{Thom}_{\kappa}^S(M,J)(m,v) := \mathrm{Thom}_{\kappa}(M,J)(m,v-S_M(m))$.

Atiyah first proposed to 'push' the symbol of an elliptic operator by the vector field induced by an S^1 -action to localize its index on the fixed point submanifold, giving then another proof of the Lefschetz fixed-point theorem [1][Lecture 6]. The idea was exploited afterwards by Vergne to give a proof of the 'quantization commutes with reduction' theorem in the case of an S^1 -action [38]. In [33], we extended this procedure for an action of a compact Lie group. Here, we use this idea to produce a transversally elliptic symbol on a non-compact manifold.

The characteristic set of Thom $_{K}^{\Phi}(M,J)$ corresponds to $\{(m,v)\in\mathbf{T}M,\ v=\mathcal{H}_{m}\}$, the graph of the vector field \mathcal{H} . Since \mathcal{H} belongs to the set of tangent vectors to the K-orbits, we have

Char
$$\left(\operatorname{Thom}_{K}^{\Phi}(M,J)\right) \cap \mathbf{T}_{K}M = \{(m,0) \in \mathbf{T}M, \ \mathcal{H}_{m} = 0\}$$

$$\simeq \{m \in M, \ d \parallel \Phi \parallel_{m}^{2} = 0\}.$$

⁴Here $(\mathbf{T}M, J)$ is considered as a complex vector bundle over M.

Hence the symbol Thom $_{\kappa}^{\Phi}(M,J)$ is transversally elliptic if and only if the set $\operatorname{Cr}(\parallel\Phi\parallel^2)$ of critical points of the function $\parallel\Phi\parallel^2$ is *compact*.

Definition 3.2. Let (M, ω, Φ) be a Hamiltonian K-manifold such that $\operatorname{Cr}(\parallel \Phi \parallel^2)$ is compact. For any almost complex structure J, the symbol $\operatorname{Thom}_{\kappa}^{\Phi}(M, J)$ is transversally elliptic. For any K-vector bundle $E \to M$, the tensor product $\operatorname{Thom}_{\kappa}^{\Phi}(M, J) \otimes E$ is transversally elliptic and we denote

$$RR_{\Phi}^{\kappa}(M, E) \in R^{-\infty}(K)$$

its index⁵. In the same way, an equivariant map $S:M\to\mathfrak{k}$ defines a transversally elliptic symbol $\operatorname{Thom}_K^S(M,J)$ if and only if $\{m\in M,S_M(m)=0\}$ is compact. If this holds one defines the localized Riemann-Roch character $RR_S^K(M,E):=\operatorname{Index}_M^K(\operatorname{Thom}_K^S(M)\otimes E)$.

Remark 3.3. If M is compact the symbols $\operatorname{Thom}_{\kappa}(M,J)$ and $\operatorname{Thom}_{\kappa}^{\Phi}(M,J)$ are homotopic as elliptic symbols, hence the maps $RR^{\kappa}(M,-)$ and $RR_{\Phi}^{\kappa}(M,-)$ coincide (see section 4 of [33]).

The sum (3.6) is defined under the assumption that Φ is proper. On the other hand the generalized index $RR_{\Phi}^{\kappa}(M,\tilde{L})$ is defined when $\operatorname{Cr}(\parallel\Phi\parallel^2)$ is compact. We will prove in section 4 that these quantities coincide under another assumption including the two previous ones. In subsections 3.3 and 3.4, we set up the technical preliminaries that are needed to compute the K-multiplicity of $RR_{\Phi}^{\kappa}(M,\tilde{L})$.

In section 4, we show that the multiplicity of $RR_{\Phi}^{\kappa}(M, \tilde{L})$ relatively to the highest weight μ can be computed in a neighborhood of $\Phi^{-1}(\mu + \rho_c)$.

3.3. Counting the K-multiplicities. Let E be a K-vector bundle over the Hamiltonian manifold (M, ω, Φ) and suppose that $\operatorname{Cr}(\parallel \Phi \parallel^2)$ is compact. One wants to compute the K-multiplicities of $RR_{\Phi}^K(M, E) \in R^{-\infty}(K)$, which are the integers $\operatorname{m}_{\mu}(E) \in \mathbb{Z}, \mu \in \Lambda_+^*$ such that

$$RR_{\Phi}^{\kappa}(M,E) = \sum_{\mu \in \Lambda_{+}^{\kappa}} m_{\mu}(E) \chi_{\mu}^{\kappa}.$$

For this purpose one can use the classical 'shifting trick'. By definition, one has

$$\mathbf{m}_{\mu}(E) = \left[RR_{\Phi}^{K}(M, E) \otimes V_{\mu}^{*} \right]^{K},$$

where V_{μ} is the irreducible K-representation with highest weight μ , and V_{μ}^{*} is its dual. We know from (2.4) that the K-trace of V_{μ} is $\chi_{\mu}^{K} = RR^{K}(\mathcal{O}^{\tilde{\mu}}, \mathbb{C}_{[\mu]})$, where

$$\tilde{\mu} = \mu + \rho_c \ .$$

Hence the K-trace of the dual V_{μ}^* is equal to $RR^{K}(\overline{\mathcal{O}^{\tilde{\mu}}},\mathbb{C}_{[-\mu]})$, where $\overline{\mathcal{O}^{\tilde{\mu}}}$ is the manifold $\mathcal{O}^{\tilde{\mu}}$ with opposite symplectic structure and opposite complex structure.

 $^{^5\}mathrm{Here}$ we take a K-invariant relatively compact open subset $\mathcal U$ of M such that $\mathrm{Cr}(\parallel\Phi\parallel^2)\subset\mathcal U.$ Then the restriction of $\mathrm{Thom}_K^\Phi(M)$ to $\mathcal U$ defines a class $\mathrm{Thom}_K^\Phi(M,J)|_{\mathcal U}\in \mathbf K_K(\mathbf T_K\mathcal U).$ Since the index map is well defined on $\mathcal U,$ one take $RR_\Phi^K(M,E):=\mathrm{Index}_\mathcal U^K(\mathrm{Thom}_K^\Phi(M,J)|_{\mathcal U}\otimes E|_{\mathcal U}).$ A simple application of the excision property shows us that the definition does not depend on the choice of $\mathcal U.$ In order to simplify our notation (when the almost complex structure is understood), we will write $RR_\Phi^K(M,E):=\mathrm{Index}_M^K(\mathrm{Thom}_K^\Phi(M)\otimes E).$

Let Thom_K $(\overline{\mathcal{O}}^{\overline{\mu}})$ be the equivariant Thom symbol on $\overline{\mathcal{O}}^{\overline{\mu}}$. Then the trace of V_{μ}^* is equal to $\operatorname{Index}_{\mathcal{O}^{\overline{\mu}}}^{K}(\operatorname{Thom}_{K}(\overline{\mathcal{O}}^{\overline{\mu}})\otimes \mathbb{C}_{[-\mu]})$, and finally the Kunneth formula gives

$$\mathrm{m}_{\mu}(E) = \left[\mathrm{Index}_{M \times \mathcal{O}^{\tilde{\mu}}}^{K} \left((\mathrm{Thom}_{K}^{\Phi}(M) \otimes E) \odot (\mathrm{Thom}_{K}(\overline{\mathcal{O}^{\tilde{\mu}}}) \otimes \mathbb{C}_{[-\mu]}) \right) \right]^{K}$$

See [1, 33], for the definition of the exterior product $\odot : \mathbf{K}_K(\mathbf{T}_K M) \times \mathbf{K}_K(\mathbf{T}\mathcal{O}^{\tilde{\mu}}) \to \mathbf{K}_K(\mathbf{T}_K (M \times \mathcal{O}^{\tilde{\mu}})).$

The moment map relative to the Hamiltonian K-action on $M \times \overline{\mathcal{O}^{\tilde{\mu}}}$ is

$$\begin{array}{cccc} \Phi_{\tilde{\mu}} : M \times \overline{\mathcal{O}^{\tilde{\mu}}} & \longrightarrow & \mathfrak{k}^* \\ (3.13) & (m, \xi) & \longmapsto & \Phi(m) - \xi \end{array}$$

For any $t \in \mathbb{R}$, we consider the map $\Phi_{t\tilde{\mu}} : M \times \overline{\mathcal{O}^{\tilde{\mu}}} \to \mathfrak{k}^*, \ \Phi_{t\tilde{\mu}}(m,\xi) := \Phi(m) - t \xi$.

Assumption 3.4. There exists a compact subset $K \subset M$, such that, for every $t \in [0,1]$, the critical set of $\|\Phi_{t\tilde{\mu}}\|^2$ is contained in $K \times \mathcal{O}^{\tilde{\mu}}$.

If M satisfies Assumption 3.4 at $\tilde{\mu}$, one has a generalized quantization map $RR_{\Phi_{\tilde{u}}}^{\kappa}(M \times \overline{\mathcal{O}^{\tilde{\mu}}}, -)$ since $Cr(\parallel \Phi_{\tilde{\mu}} \parallel^2)$ is compact.

Proposition 3.5. If M satisfies Assumption 3.4 at $\tilde{\mu}$, then

$$\mathrm{m}_{\mu}(E) = \left[RR_{\Phi_{\tilde{\mu}}}^{^{\mathrm{K}}}(M \times \overline{\mathcal{O}^{\tilde{\mu}}}, E \boxtimes \mathbb{C}_{[-\mu]})\right]^{K} \ .$$

Proof: One has to show that the transversally elliptic symbols $\operatorname{Thom}_{K}^{\Phi}(M) \odot \operatorname{Thom}_{K}(\overline{\mathcal{O}^{\tilde{\mu}}})$ and $\operatorname{Thom}_{K}^{\Phi_{\tilde{\mu}}}(M \times \overline{\mathcal{O}^{\tilde{\mu}}})$ define the same class in $\mathbf{K}_{K}(\mathbf{T}_{K}(M \times \mathcal{O}^{\tilde{\mu}}))$ when M satisfies Assumption 3.4 at $\tilde{\mu}$.

Let σ_1, σ_2 be respectively the Thom symbols $\operatorname{Thom}_{\kappa}(M)$ and $\operatorname{Thom}_{\kappa}(\overline{\mathcal{O}^{\tilde{\mu}}})$. The symbol $\sigma_I = \operatorname{Thom}_{\kappa}^{\Phi}(M) \odot \operatorname{Thom}_{\kappa}(\overline{\mathcal{O}^{\tilde{\mu}}})$ is defined by

$$\sigma_I(m, \xi, v, w) = \sigma_1(m, v - \mathcal{H}_m) \odot \sigma_2(\xi, w)$$
,

where $(m,v) \in \mathbf{T}M$, $(\xi,w) \in \mathbf{T}\mathcal{O}^{\tilde{\mu}}$, and \mathcal{H} is defined in (3.10). Let \mathcal{H}^t be the vector field on $M \times \mathcal{O}^{\tilde{\mu}}$ generated by the map $\Phi_{t\tilde{\mu}} : M \times \mathcal{O}^{\tilde{\mu}} \to \mathfrak{k}$. For $(m,\xi) \in M \times \mathcal{O}^{\tilde{\mu}}$, we have $\mathcal{H}^t_{(m,\xi)} = (\mathcal{H}^{a,t}_{(m,\xi)}, \mathcal{H}^{b,t}_{(m,\xi)})$ where $\mathcal{H}^{a,t}_{(m,\xi)} \in \mathbf{T}_m M$ and $\mathcal{H}^{b,t}_{(m,\xi)} \in \mathbf{T}_{\xi}\mathcal{O}^{\tilde{\mu}}$. The symbol $\sigma_{II} = \operatorname{Thom}_{\kappa}^{\Phi_{\tilde{\mu}}}(M \times \overline{\mathcal{O}^{\tilde{\mu}}})$ is defined by

$$\sigma_{II}(m,\xi,v,w) = \sigma_1(m,v-\mathcal{H}_{m,\xi}^{a,1}) \odot \sigma_2(\xi,w-\mathcal{H}_{(m,\xi)}^{b,1}) .$$

We connect σ_I and σ_{II} through two homotopies. First consider the symbol A on $[0,1] \times \mathbf{T}(M \times \mathcal{O}^{\tilde{\mu}})$ defined by

$$A(t; m, \xi, v, w) = \sigma_1(m, v - \mathcal{H}_{m,\xi}^{a,t}) \odot \sigma_2(\xi, w - \mathcal{H}_{(m,\xi)}^{b,t}) ,$$

for $t \in [0,1]$, and $(m, \xi, v, w) \in \mathbf{T}(M \times \mathcal{O}^{\tilde{\mu}})$. We have $\mathrm{Char}(A) = \{(t; m, \xi, v, w) \mid v = \mathcal{H}_{m,\xi}^{a,t}, \text{ and } w = \mathcal{H}_{(m,\xi)}^{b,t}\}$ and

$$\begin{split} \operatorname{Char}(A) \bigcap [0,1] \times \mathbf{T}_K(M \times \mathcal{O}^{\tilde{\mu}}) &= \{(t; m, \xi, 0, 0) \mid (m, \xi) \in \operatorname{Cr}(\parallel \Phi_{t\tilde{\mu}} \parallel^2) \} \\ &\subset [0,1] \times \mathcal{K} \times \mathcal{O}^{\tilde{\mu}} \ , \end{split}$$

where $\mathcal{K} \subset M$ is the compact subset of Assumption 3.4. Hence A defines an homotopy of transversally elliptic symbols. The restriction of A to t=1 is equal to σ_{II} . The restriction of A to t=0 defines the following transversally elliptic symbol

$$\sigma_{III}(m,\xi,v,w) = \sigma_1(m,v-\mathcal{H}_m) \odot \sigma_2(\xi,w-\mathcal{H}_{(m,\xi)}^{b,0})$$

since $\mathcal{H}_{m,\xi}^{a,0} = \mathcal{H}_m$ for every $(m,\xi) \in M \times \mathcal{O}^{\tilde{\mu}}$. Now consider the symbol B on $[0,1] \times \mathbf{T}(M \times \mathcal{O}^{\tilde{\mu}})$ defined by

$$B(t; m, \xi, v, w) = \sigma_1(m, v - \mathcal{H}_m) \odot \sigma_2(\xi, w - t \mathcal{H}_{(m,\xi)}^{b,0}).$$

We have $\operatorname{Char}(B) = \{(t; m, \xi, v, w) \mid v = \mathcal{H}_m, \text{ and } w = t \mathcal{H}_{(m,\xi)}^{b,0}\}$ and

$$\operatorname{Char}(B)\bigcap[0,1]\times\mathbf{T}_K(M\times\mathcal{O}^{\tilde{\mu}})\subset$$

$$\left\{ (t; m, \xi, v = \mathcal{H}_m, w = t \,\mathcal{H}^{b,0}_{(m,\xi)}) \quad , \quad \| \,\mathcal{H}_m \,\|^2 + t \,\| \,\mathcal{H}^{b,0}_{(m,\xi)} \,\|^2 = 0 \,\right\} .$$

In particular $\operatorname{Char}(B) \cap [0,1] \times \mathbf{T}_K(M \times \mathcal{O}^{\tilde{\mu}})$ is contained in $\{(t; m, \xi, 0, w = t \mathcal{H}^{b,0}_{(m,\xi)}), m \in \operatorname{Cr}(\parallel \Phi \parallel^2)\}$ which is compact since $\operatorname{Cr}(\parallel \Phi \parallel^2)$ is compact. So, B defines an homotopy of transversally elliptic symbols between $\sigma_I = B|_{t=0}$ and $\sigma_{III} = B|_{t=1}$. We have finally proved that $\sigma_I, \sigma_{II}, \sigma_{III}$ define the same class in $\mathbf{K}_K(\mathbf{T}_K(M \times \mathcal{O}^{\tilde{\mu}}))$. \square

In our shifting trick procedure, when $E = \tilde{L}$ is a κ -prequantum line bundle over M, the line bundle $L \boxtimes \mathbb{C}_{[-\mu]}$ is a κ -prequantum line bundle over $M \times \overline{\mathcal{O}^{\mu+\rho_c}}$. Then Proposition 3.5 tells us that under Assumption 3.4 the K-multiplicities of $RR_{\Phi}^{\kappa}(M,\tilde{L})$ have the form

$$\left[RR_{\Phi}^{^{K}}(\mathcal{X},\tilde{L}_{\mathcal{X}})\right]^{K},$$

where $(\mathcal{X}, \omega_{\mathcal{X}}, \Phi)$ is a Hamiltonian K-manifold with $\operatorname{Cr}(\|\Phi\|^2)$ compact, and $\tilde{L}_{\mathcal{X}}$ is a κ -prequantum line bundle over \mathcal{X} relative to a K-invariant almost complex structure.

To compute the quantity (3.14), we exploit the technique of localization developed in [33].

3.4. Localization of the map RR_{Φ}^K . For a detailed account on the procedure of localization that we use here, see sections 4 and 6 of [33]. We first state general facts about the symbol $\operatorname{Thom}_{\kappa}^S(M,J)$ associated to an equivariant map $S:M\to \mathfrak{k}$. Let \mathcal{U} be a K-invariant open subspace of M. The restriction $\operatorname{Thom}_{\kappa}^S(M,J)|_{\mathcal{U}}=\operatorname{Thom}_{\kappa}^S(\mathcal{U},J)$ is transversally elliptic if and only if $\{m\in M,\,S_M(m)=0\}\cap\mathcal{U}$ is compact. Let $j^{u,v}:\mathcal{U}\to\mathcal{V}$ be two K-invariant open subspaces of M, where $j^{u,v}$ denotes the inclusion. If $\{m\in M,\,S_M(m)=0\}\cap\mathcal{U}=\{m\in M,\,S_M(m)=0\}\cap\mathcal{V}$ is compact, the excision porperty tells us that

$$j_*^{u,v}\left(\operatorname{Thom}_{\kappa}^S(\mathcal{U},J)\right) = \operatorname{Thom}_{\kappa}^S(\mathcal{V},J)$$
,

where $j_*^{u,v}: \mathbf{K}_K(\mathbf{T}_K \mathcal{U}) \to \mathbf{K}_K(\mathbf{T}_K \mathcal{V})$ is the pushforward map (see [33][Section 3]).

Lemma 3.6. (1) Let $S^0, S^1: M \to \mathfrak{k}$ be two equivariant maps. Suppose there exist an open subset $\mathcal{U} \subset M$, and a vector field θ on \mathcal{U} such that $(S_M^0, \theta)_M$ and $(S_M^1, \theta)_M$ are > 0 outside a compact subset \mathcal{K} of \mathcal{U} . Then, the equivariant symbols $\operatorname{Thom}_K^{S^1}(\mathcal{U}, J)$ and $\operatorname{Thom}_K^{S^0}(\mathcal{U}, J)$ are transversally elliptic and define the same class in $\mathbf{K}_K(\mathbf{T}_K\mathcal{U})$.

⁶Then, $Thom_{\kappa}^{S}(M,J)|_{\mathcal{U}}$ defines a class in $\mathbf{K}_{K}(\mathbf{T}_{K}\mathcal{U})$.

(2) Let J^0, J^1 be two almost complex structures on \mathcal{U} , and suppose that $\{m \in M, S_M(m) = 0\} \cap \mathcal{U}$ is compact. The transversally elliptic symbols $\operatorname{Thom}_K^S(\mathcal{U}, J^0)$ and $\operatorname{Thom}_K^S(\mathcal{U}, J^1)$ define the same class if there exists an homotopy $J^t, t \in [0, 1]$ of K-equivariant almost complex structures between J^0 and J^1 .

Proof: The proof of (1) is similar to our deformation process in [31]. Here we consider the maps $S^t := tS^1 + (1-t)S^0$, $t \in [0,1]$, and the corresponding symbols $\operatorname{Thom}_K^{S^t}(\mathcal{U},J)$. The vector field θ , insures that $\operatorname{Char}(\operatorname{Thom}_K^{S^t}(\mathcal{U},J)) \cap \mathbf{T}_K\mathcal{U} \subset \mathcal{K}$ is compact. Hence $t \to \operatorname{Thom}_K^{S^t}(\mathcal{U},J)$ defines an homotopy of transversally elliptic symbols. The proof of (2) is identical to the proof of Lemma 2.2 in [33]. \square

In the remaining of this section $(\mathcal{X}, \omega_{\mathcal{X}}, \Phi)$ is a Hamiltonian K-manifold with $\operatorname{Cr}(\|\Phi\|^2)$ compact, and which is equipped with a κ -prequantum line bundle $\tilde{L}_{\mathcal{X}}$ associated to a K-invariant almost complex structure. Our aim here is to give a condition under which $[RR_{\Phi}^{K}(\mathcal{X}, \tilde{L})]^{K}$ only depends of the data in the neighborhood of $\Phi^{-1}(0)$.

For any $\beta \in \mathfrak{k}$, let M^{β} be the symplectic submanifold of points of M fixed by \mathbb{T}_{β} . Following Kirwan [22], the critical set $\operatorname{Cr}(\parallel \Phi \parallel^2)$ admits the decomposition

(3.15)
$$\operatorname{Cr}(\parallel \Phi \parallel^2) = \bigcup_{\beta \in \mathcal{B}} C_{\beta}^{\kappa}, \quad \text{with} \quad C_{\beta}^{\kappa} = K.(\mathcal{X}^{\beta} \cap \Phi^{-1}(\beta)),$$

where \mathcal{B} is the subset of \mathfrak{t}_+^* defined by $\mathcal{B} := \{\beta \in \mathfrak{t}_+^*, \ \mathcal{X}^\beta \cap \Phi^{-1}(\beta) \neq \emptyset\}$. Since $\operatorname{Cr}(\|\Phi\|^2)$ is supposed to be compact, \mathcal{B} is finite.

For each $\beta \in \mathcal{B}$, let $\mathcal{U}^{\beta} \hookrightarrow \mathcal{X}$ be a K-invariant relatively compact open neighbourhood of C_{β}^{K} such that $\overline{\mathcal{U}^{\beta}} \cap \operatorname{Cr}(\parallel \Phi \parallel^{2}) = C_{\beta}^{K}$. The restriction of the transversally elliptic symbol $\operatorname{Thom}_{K}^{\Phi}(\mathcal{X})$ to the subset \mathcal{U}^{β} defines $\operatorname{Thom}_{K}^{\Phi}(\mathcal{U}^{\beta}) \in \mathbf{K}_{K}(\mathbf{T}_{K}\mathcal{U}^{\beta})$.

Definition 3.7. For every $\beta \in \mathcal{B}$, we denote $RR_{\beta}^{\kappa}(\mathcal{X}, -)$ the Riemann-Roch character localized near C_{β}^{κ} , which is defined by

$$RR_{\beta}^{^{K}}(\mathcal{X},E) = \operatorname{Index}_{\mathcal{U}^{\beta}}^{K} \left(\operatorname{Thom}_{^{K}}^{\Phi}(\mathcal{U}^{^{\beta}}) \otimes E|_{\mathcal{U}^{\beta}} \right) \ ,$$

for every K-vector bundle $E \to \mathcal{X}$.

By Section 4 of [33], we have

(3.16)
$$RR_{\Phi}^{\kappa}(\mathcal{X}, E) = \sum_{\beta \in \mathcal{B}} RR_{\beta}^{\kappa}(\mathcal{X}, E)$$

for every K-vector bundle $E \to \mathcal{X}$. Fix now a non-zero element $\beta \in \mathcal{B}$. For every connected component \mathcal{Z} of \mathcal{X}^{β} , let $\mathcal{N}_{\mathcal{Z}}$ be the normal bundle of \mathcal{Z} in \mathcal{X} . Let $\alpha_1^{\mathcal{Z}}, \dots, \alpha_l^{\mathcal{Z}}$ be the real infinitesimal weights for the action of \mathbb{T}_{β} on the fibers of $\mathcal{N}_{\mathcal{Z}} \otimes \mathbb{C}$. The infinitesimal action of β on $\mathcal{N}_{\mathcal{Z}} \otimes \mathbb{C}$ is a linear map with trace equal to $\sqrt{-1} \sum_i \langle \alpha_i^{\mathcal{Z}}, \beta \rangle$.

Definition 3.8. Let us denote $\mathbf{Tr}_{\beta}|\mathcal{N}_{\mathcal{Z}}|$ the following positive number

$$\mathbf{Tr}_{eta}|\mathcal{N}_{\mathcal{Z}}| := \sum_{i=1}^{l} |\langle lpha_i^{\mathcal{Z}}, eta
angle|$$

where $\alpha_1^{\mathcal{Z}}, \dots, \alpha_l^{\mathcal{Z}}$ are the the real infinitesimal weights for the action of \mathbb{T}_{β} on the fibers of $\mathcal{N} \otimes \mathbb{C}$. For any \mathbb{T}_{β} -equivariant real vector bundle $\mathcal{V} \to \mathcal{Z}$ (resp. real \mathbb{T}_{β} -equivariant real vector space E), we define in the same way $\mathbf{Tr}_{\beta}|\mathcal{V}| \geq 0$ (resp. $\mathbf{Tr}_{\beta}|E| \geq 0$).

Remark 3.9. If $\mathcal{V} = \mathcal{V}^1 + \mathcal{V}^2$, we have $\operatorname{Tr}_{\beta}|\mathcal{V}| = \operatorname{Tr}_{\beta}|\mathcal{V}^1| + \operatorname{Tr}_{\beta}|\mathcal{V}^2|$, and if \mathcal{V}' is an equivariant real subbundle of \mathcal{V} , we get $\operatorname{Tr}_{\beta}|\mathcal{V}| \geq \operatorname{Tr}_{\beta}|\mathcal{V}'|$. In particular one see that $\operatorname{Tr}_{\beta}|\mathcal{N}_{\mathcal{Z}}| = \operatorname{Tr}_{\beta}|\operatorname{TM}|_{\mathcal{Z}}|$, and then, if $E_m \subset \operatorname{T}_m M$ is a \mathbb{T}_{β} -invariant real vector subspace for some $m \in \mathcal{Z}$, we have $\operatorname{Tr}_{\beta}|\mathcal{N}_{\mathcal{Z}}| \geq \operatorname{Tr}_{\beta}|E_m|$.

The following Proposition and Corollary give us an essential condition under which the number $[RR_{\Phi}^{\kappa}(\mathcal{X}, \tilde{L}_{\mathcal{X}})]^{K}$ only depends on data localized in a neighborhhood of $\Phi^{-1}(0)$.

Proposition 3.10. Let $\tilde{L}_{\mathcal{X}}$ be a κ -prequantum line bundle over \mathcal{X} . Let ρ_c be half the sum of the positive roots. The multiplicity of the trivial representation in $RR_{\beta}^{\kappa}(\mathcal{X}, \tilde{L}_{\mathcal{X}})$ is equal to zero if

(3.17)
$$\|\beta\|^{2} + \frac{1}{2} \mathbf{Tr}_{\beta} |\mathcal{N}_{\mathcal{Z}}| - 2(\rho_{c}, \beta) > 0$$

for every connected component \mathcal{Z} of \mathcal{X}^{β} which intersects $\Phi^{-1}(\beta)$. Condition (3.17) always holds if $\beta \in \mathfrak{k}$ is K-invariant or if $\parallel \beta \parallel > \parallel \rho_c \parallel$.

Since every $\beta \in \mathcal{B}$ belongs to the Weyl chamber, we have $2(\rho_c, \beta) = \mathbf{Tr}_{\beta} |\mathfrak{k}/\mathfrak{t}|$, and then (3.17) can be rewritten as $\|\beta\|^2 + \frac{1}{2}\mathbf{Tr}_{\beta}|\mathcal{N}_{\mathcal{Z}}| - \mathbf{Tr}_{\beta}|\mathfrak{k}/\mathfrak{t}| > 0$. From eq. (3.16), we get

Corollary 3.11. If condition (3.17) holds for all non-zero $\beta \in \mathcal{B}$, we have

$$\left[RR_{\Phi}^{\kappa}(\mathcal{X}, \tilde{L}_{\mathcal{X}})\right]^{\kappa} = \left[RR_{0}^{\kappa}(\mathcal{X}, \tilde{L}_{\mathcal{X}})\right]^{\kappa}$$

where $RR_0^{\kappa}(\mathcal{X},-)$ is the Riemann-Roch character localized near $\Phi^{-1}(0)$ (see Definition 3.7). In particular, $\left[RR_{\Phi}^{\kappa}(\mathcal{X},\tilde{L}_{\mathcal{X}})\right]^{\kappa}=0$ if condition (3.17) holds for all non-zero $\beta\in\mathcal{B}$, and $0\notin\mathrm{Image}(\Phi)$.

3.5. **Proof of Proposition 3.10.** First when $\beta \in \mathfrak{k}$ is K-invariant, the scalar product (ρ_c, β) vanishes and then (3.17) trivially holds. Let us show that (3.17) holds when $\|\beta\| > \|\rho_c\|$. Let \mathcal{Z} a connected component of \mathcal{X}^{β} which intersects $\Phi^{-1}(\beta)$. Let $m \in \Phi^{-1}(\beta) \cap \mathcal{Z}$, and let $E_m \subset \mathbf{T}_m M$ be the subspace spanned by $X_M(m), X \in \mathfrak{k}$. We have $E_m \simeq \mathfrak{k}/\mathfrak{k}_m$, where $\mathfrak{k}_m := \{X \in \mathfrak{k}, X_M(m) = 0\}$. Since $\Phi(m) = \beta$, and Φ is equivariant $\mathfrak{k}_m \subset \mathfrak{k}_\beta := \{X \in \mathfrak{k}, [X, \beta] = 0\}$, so $\mathbf{T}_m M$ contains a \mathbb{T}_β -equivariant subspace isomorphic to $\mathfrak{k}/\mathfrak{k}_\beta$. So we have $\mathbf{Tr}_\beta |\mathcal{N}_{\mathcal{Z}}| \geq \mathbf{Tr}_\beta |\mathfrak{k}/\mathfrak{k}_\beta| = 2(\rho_c, \beta)$, and then

$$\parallel \beta \parallel^2 + \frac{1}{2} \mathbf{Tr}_{\beta} |\mathcal{N}_{\mathcal{Z}}| - 2(\rho_c, \beta) \geq \parallel \beta \parallel^2 - (\rho_c, \beta)$$

since $\parallel \beta \parallel > \parallel \rho_c \parallel$. \square

We prove now that condition (3.17) forces⁷ $[RR_{\beta}^{K}(\mathcal{X}, \tilde{L})]^{K}$ to be equal to 0. Let $m_{\beta,\mu}(E) \in \mathbb{Z}$ be the K-multiplicities of the localized Riemann-Roch character

⁷In this section we denotes simply by \tilde{L} the κ -prequantum line bundle over \mathcal{X} .

 $RR_{\beta}^{\kappa}(\mathcal{X}, E)$ introduced in Definition 3.7 : $RR_{\beta}^{\kappa}(\mathcal{X}, E) = \sum_{\mu \in \Lambda_{+}^{*}} m_{\beta,\mu}(E) \chi_{\mu}^{\kappa}$. We show now that $m_{\beta,0}(\tilde{L}) = 0$, by using the formulaes of localization that we proved in [33] for the maps $RR_{\beta}^{\kappa}(\mathcal{X}, -)$.

First case: $\beta \in \mathcal{B}$ is a non-zero K-invariant element of \mathfrak{k}^* .

We show here the following relation on the multiplicities $m_{\beta,\mu}(\tilde{L})$:

$$(3.18) m_{\beta,\mu}(\tilde{L}) \neq 0 \implies (\mu,\beta) \geq ||\beta||^2 + \frac{1}{2} \mathbf{Tr}_{\beta} |\mathcal{N}_{\mathcal{Z}}| for some \ \mathcal{Z} \subset \mathcal{X}^{\beta},$$

in particular $m_{\beta,0}(\tilde{L}) = 0$.

Since \mathbb{T}_{β} belongs to the center of K, \mathcal{X}^{β} is a symplectic K-invariant submanifold of \mathcal{X} . Let \mathcal{N} be the normal bundle of \mathcal{X}^{β} in \mathcal{X} . The K-invariant almost complex structure of \mathcal{X} induces a K-invariant almost complex structure on \mathcal{X}^{β} , and a complex structure on the fibers of $\mathcal{N} \to \mathcal{X}^{\beta}$. We have then a Riemann-Roch character $RR_{\beta}^{K}(\mathcal{X}^{\beta},-)$ localized on $\mathcal{X}^{\beta}\cap\Phi^{-1}(\beta)$ with the decomposition $RR_{\beta}^{K}(\mathcal{X}^{\beta},F)=\sum_{\mathcal{Z}}RR_{\beta}^{K}(\mathcal{Z},F|_{\mathcal{Z}})$, where the sum is taken over the connected component $\mathcal{Z}\subset\mathcal{X}^{\beta}$ which intersect $\Phi^{-1}(\beta)$. The torus \mathbb{T}_{β} acts linearly on the fibers of the complex vector bundle \mathcal{N} , thus we can associate the polarized complex K-vector bundle $\mathcal{N}^{+,\beta}$ and $(\mathcal{N}\otimes\mathbb{C})^{+,\beta}$ (see Definition 5.5 in [33]): for any real \mathbb{T}_{β} -weight α on $\mathcal{N}^{+,\beta}$, or on $(\mathcal{N}\otimes\mathbb{C})^{+,\beta}$, we have

$$(3.19) \qquad (\alpha, \beta) > 0.$$

We proved in section 6.2 of [33], the following localization formula which holds in $\widehat{R}(K)$ for any K-vector bundle E over \mathcal{X} : (3.20)

$$RR_{\beta}^{\kappa}(\mathcal{X}, E) = (-1)^{r_{\mathcal{N}}} \sum_{k \in \mathbb{N}} RR_{\beta}^{\kappa} \left(\mathcal{X}^{\beta}, E|_{\mathcal{X}^{\beta}} \otimes \det \mathcal{N}^{+,\beta} \otimes S^{k} ((\mathcal{N} \otimes \mathbb{C})^{+,\beta}) \right) .$$

Here $r_{\mathcal{N}}$ is the locally constant function on \mathcal{X}^{β} equal to the complex rank of $\mathcal{N}^{+,\beta}$, and $S^{k}(-)$ is the k-th symmetric product over \mathbb{C} .

Let $i: \mathfrak{t}_{\beta} \hookrightarrow \mathfrak{t}$ be the inclusion of the Lie algebra of \mathbb{T}_{β} , and let $i^*: \mathfrak{t}^* \to \mathfrak{t}^*_{\beta}$ be the canonical dual map. Let us recall the basic relationship between the \mathbb{T}_{β} -weight on the fibers of a K-vector bundle $F \to \mathcal{X}^{\beta}$ and the K-multiplicities of $RR^{K}_{\beta}(\mathcal{X}^{\beta}, F) \in \widehat{R}(K)$: if the irreducible representation V_{μ} occurs in $RR^{K}_{\beta}(\mathcal{X}^{\beta}, F)$, then $i^*(\mu)$ is a \mathbb{T}_{β} -weight on the fibers of F (see Appendix B in [33]).

If one now uses (3.20), one sees that $m_{\mu,\beta}(\tilde{L}) \neq 0$ only if $i^*(\mu)$ is a \mathbb{T}_{β} -weight on the fibers of some $\tilde{L}|_{\mathcal{Z}} \otimes \det \mathcal{N}_{\mathcal{Z}}^{+,\beta} \otimes S^k((\mathcal{N}_{\mathcal{Z}} \otimes \mathbb{C})^{+,\beta})$. Since $(i^*(\mu),\beta) = (\mu,\beta)$, (3.18) will be proved if one shows that each \mathbb{T}_{β} -weight γ_z on $\tilde{L}|_{\mathcal{Z}} \otimes \det \mathcal{N}_{\mathcal{Z}}^{+,\beta} \otimes S^k((\mathcal{N}_{\mathcal{Z}} \otimes \mathbb{C})^{+,\beta})$ satisfies

(3.21)
$$(\gamma_z, \beta) \ge \parallel \beta \parallel^2 + \frac{1}{2} \mathbf{Tr}_\beta |\mathcal{N}_{\mathcal{Z}}| .$$

Let α_z be the \mathbb{T}_{β} -weight on the fiber of the line bundle $\tilde{L}|_{\mathcal{Z}} \otimes \det \mathcal{N}_{\mathcal{Z}}^{+,\beta}$. Since any \mathbb{T}_{β} -weight on $S^k((\mathcal{N} \otimes \mathbb{C})^{+,\beta})$ satisfies (3.19), (3.21) holds if

(3.22)
$$(\alpha_z, \beta) \ge ||\beta||^2 + \frac{1}{2} \operatorname{Tr}_{\beta} |\mathcal{N}_{\mathcal{Z}}|$$

for every $\mathcal{Z} \subset \mathcal{X}^{\beta}$ which intersects $\Phi^{-1}(\beta)$. Let $L_{2\omega}$ be the prequantum line bundle on $(M, 2\omega, 2\Phi)$ such that $\tilde{L}^2 = L_{2\omega} \otimes \kappa$ (where κ is by definition equal to $\det(\mathbf{T}_{\mathbb{C}}^*M) \simeq \det(\mathbf{T}M)^{-1}$). We have

$$(\tilde{L}|_{\mathcal{Z}} \otimes \det(\mathcal{N}^{+,\beta}))^2 = L_{2\omega}|_{\mathcal{Z}} \otimes \det(\mathbf{T}M)^{-1}|_{\mathcal{Z}} \otimes \det(\mathcal{N}^{+,\beta})^2$$
.

So $2\alpha_z = \alpha_1 + \alpha_2$ where α_1 , α_2 are respectively \mathbb{T}_{β} -weights on $L_{2\omega}|_{\mathcal{Z}}$ and $\det(\mathbf{T}M)^{-1}|_{\mathcal{Z}} \otimes \det(\mathcal{N}^{+,\beta})^2$. The Kostant formula (2.1) on $L_{2\omega}|_{\mathcal{Z}}$ gives $(\alpha_1, X) = 2(\beta, X)$ for every $X \in \mathfrak{t}_{\beta}$, in particular

$$(3.23) (\alpha_1, \beta) = 2 \| \beta \|^2 .$$

On \mathcal{Z} , the complex vector bundle $\mathbf{T}M$ has the following decomposition, $\mathbf{T}M|_{\mathcal{Z}} = \mathbf{T}\mathcal{Z} \oplus \mathcal{N}^{-,\beta} \oplus \mathcal{N}^{+,\beta}$, where $\mathcal{N}^{-,\beta}$ is the orthogonal complement of $\mathcal{N}^{+,\beta}$ in \mathcal{N} : every \mathbb{T}_{β} -weight δ on $\mathcal{N}^{-,\beta}$ verifies $(\delta,\beta) < 0$. So we get the decomposition $\det(\mathbf{T}M)^{-1}|_{\mathcal{Z}} \otimes \det(\mathcal{N}^{+,\beta})^2 = \det(\mathbf{T}\mathcal{Z}) \otimes \det(\mathcal{N}^{-,\beta})^{-1} \otimes \det(\mathcal{N}^{+,\beta})$, which shows

$$(3.24) (\alpha_2, \beta) = \mathbf{Tr}_{\beta} |\mathcal{N}_{\mathcal{Z}}|$$

since \mathbb{T}_{β} acts trivially on $\mathbb{T}\mathcal{Z}$. Finally (3.22) follows trivially from (3.23) and (3.24).

Second case: $\beta \in \mathcal{B}$ such that $K_{\beta} \neq K$.

Consider the induced Hamiltonian action of K_{β} on \mathcal{X} , with moment map $\Phi_{K_{\beta}}: \mathcal{X} \to \mathfrak{k}_{\beta}^*$. Let \mathcal{B}' be the indexing set for the critical point of $\|\Phi_{K_{\beta}}\|^2$ (see (3.15)). Following Definition 3.7, we consider for each $\beta' \in \mathcal{B}'$ the K_{β} -quantization map $RR_{\beta'}^{K_{\beta}}(\mathcal{X}, -)$ localised on $C_{\beta'}^{K_{\beta}} = K_{\beta}.(\mathcal{X}^{\beta'} \cap \Phi_{K_{\beta}}^{-1}(\beta'))$. Here β is a K_{β} -invariant element of \mathcal{B}' with $C_{\beta}^{K_{\beta}} = \mathcal{X}^{\beta} \cap \Phi^{-1}(\beta)$.

element of \mathcal{B}' with ${}^8C_{\beta}^{\kappa_{\beta}}=\mathcal{X}^{\beta}\cap\Phi^{-1}(\beta)$. Let $\operatorname{Hol}_{T}^{\kappa}:R^{-\infty}(T)\to R^{-\infty}(K),\ \operatorname{Hol}_{T}^{\kappa_{\beta}}:R^{-\infty}(T)\to R^{-\infty}(K_{\beta}),\ \text{and}\ \operatorname{Hol}_{\kappa_{\beta}}^{\kappa}:R^{-\infty}(K_{\beta})\to R^{-\infty}(K)$ be the holomorphic induction maps (see Appendix B in [33]). Recall that $\operatorname{Hol}_{T}^{\kappa}=\operatorname{Hol}_{\kappa_{\beta}}^{\kappa}\circ\operatorname{Hol}_{T}^{\kappa_{\beta}}.$ The choice of a Weyl chamber determines a complex structure on the real vector space $\mathfrak{k}/\mathfrak{k}_{\beta}$. We denote $\overline{\mathfrak{k}/\mathfrak{k}_{\beta}}$ the vector space endowed with the opposite complex structure.

The induction formula that we proved in [33][Section 6] states that, for every equivariant vector bundle E, we have

$$(3.25) RR_{\beta}^{\kappa}(\mathcal{X}, E) = \operatorname{Hol}_{\kappa_{\beta}}^{\kappa} \left(RR_{\beta}^{\kappa_{\beta}}(\mathcal{X}, E) \wedge_{\mathbb{C}}^{\bullet} \overline{\mathfrak{t}/\mathfrak{t}_{\beta}} \right)$$

Let us first write the decomposition $RR_{\beta}^{\kappa_{\beta}}(M,\tilde{L}) = \sum_{\mu \in \Lambda_{\beta}^{+}} m_{\mu,\beta}(\tilde{L})\chi_{\mu}^{\kappa_{\beta}}$, into irreducible characters of K_{β} . Since β is K_{β} -invariant we can use the results of the First case. In particular (3.18) tells us that

(3.26)
$$m_{\beta,\mu}(\tilde{L}) \neq 0 \implies (\mu,\beta) \geq ||\beta||^2 + \frac{1}{2} \mathbf{Tr}_{\beta} |\mathcal{N}_{\mathcal{Z}}|$$

for some connected component $\mathcal{Z} \subset \mathcal{X}^{\beta}$ which intersects $\Phi^{-1}(\beta)$.

Each irreducible character $\chi_{\mu}^{\kappa_{\beta}}$ is equal to $\operatorname{Hol}_{T}^{\kappa_{\beta}}(t^{\mu})$, so from (3.25) we get $RR_{\beta}^{\kappa}(M,\tilde{L}) = \operatorname{Hol}_{T}^{\kappa}\left(\left(\sum_{\mu} m_{\mu,\beta}(\tilde{L}) t^{\mu}\right)\Pi_{\alpha\in\Re^{+}(\mathfrak{k}/\mathfrak{k}_{\beta})}(1-t^{-\alpha})\right)$ where $\Re^{+}(\mathfrak{k}/\mathfrak{k}_{\beta})$ is the set of positive T-weights on $\mathfrak{k}/\mathfrak{k}_{\beta}$: so $\langle \alpha, \beta \rangle > 0$ for all $\alpha \in \Re^{+}(\mathfrak{k}/\mathfrak{k}_{\beta})$. Finally,

⁸On \mathcal{X}^{β} , the map $\Phi_{K_{\beta}}$ and Φ coincide.

⁹We choose a set $\Lambda_{+,\beta}^*$ of dominant weights for K_{β} that contains the set Λ_{+}^* of dominant weight for K.

we see that $RR_{\beta}^{\kappa}(M,\tilde{L})$ is a sum of terms of the form $m_{\mu,\beta}(\tilde{L})\operatorname{Hol}_{T}^{\kappa}(t^{\mu-\alpha_{I}})$ where $\alpha_I = \sum_{\alpha \in I} \alpha$ and I is a subset of $\mathfrak{R}^+(\mathfrak{k}/\mathfrak{k}_{\beta})$. We know that $\operatorname{Hol}_{\tau}^{\kappa}(t^{\mu'})$ is either 0 or the character of an irreducible representation (times ± 1); in particular $\operatorname{Hol}_{\tau}^{K}(t^{\mu'})$ is equal to ± 1 only if $(\mu', X) \leq 0$ for every $X \in \mathfrak{t}_+$ (see Appendix B in [33]). So $[RR_{\beta}^{K}(M, \tilde{L})]^{K} \neq 0$ only if there exists a weight μ such that $m_{\mu,\beta}(\tilde{L}) \neq 0$ and that $Hol_{T}^{K}(t^{\mu-\alpha_{I}}) = \pm 1$. The first condition imposes $(\mu, \beta) \geq ||\beta||^{2} + \frac{1}{2} \mathbf{Tr}_{\beta} |\mathcal{N}_{Z}|$ for some connected component $\mathcal{Z} \subset \mathcal{X}^{\beta}$, and the second one gives $(\mu, \beta) \leq (\alpha_I, \beta)$. Combining the two we end up with

$$\parallel \beta \parallel^2 + \frac{1}{2} \mathbf{Tr}_{\beta} |\mathcal{N}_{\mathcal{Z}}| \leq (\alpha_I, \beta) \leq \sum_{\alpha \in \mathfrak{R}^+(\mathfrak{k}/\mathfrak{k}_{\beta})} (\alpha, \beta) = 2(\rho_c, \beta) ,$$

for some connected component $\mathcal{Z} \subset \mathcal{X}^{\beta}$ which intersects $\Phi^{-1}(\beta)$. Finally we have proved that $[RR_{\beta}^{K}(M,\tilde{L})]^{K} = 0$ if $\|\beta\|^{2} + \frac{1}{2} \mathbf{Tr}_{\beta} |\mathcal{N}_{\mathcal{Z}}| > 2(\rho_{c},\beta)$ for every component $\mathcal{Z} \subset \mathcal{X}^{\beta}$ which intersects $\Phi^{-1}(\beta)$. \square

4. Quantization commutes with reduction

Let (M, ω, Φ) be a Hamiltonian K-manifold equipped with an almost complex structure J. In this section, we assume that the moment map Φ is proper and that the set $Cr(\|\Phi\|^2)$ of critical points of $\|\Phi\|^2$: $M \to \mathbb{R}$ is compact. We denote $RR_{\Phi}^{\kappa}(M,-)$ the corresponding quantization map (see Definition 3.2). Let Δ be the convex polyhedral set $\Phi(M) \cap \mathfrak{t}_{\perp}^*$.

The main result of this section is the following

Theorem 4.1. Suppose that M satisfies Assumption 3.4 at every $\tilde{\mu} \in \mathfrak{t}^*$, and that the infinitesimal stabilizers for the K-action on M are abelian. If \tilde{L} is a κ -prequantum line bundle over (M, ω, Φ, J) , we have

$$(4.27) RR_{\Phi}^{\kappa}(M,\tilde{L}) = \varepsilon \sum_{\mu \in \Lambda_{+}^{*}} \mathcal{Q}(M_{\mu+\rho_{c}}) \chi_{\mu}^{\kappa} ,$$

where $\varepsilon = \pm 1$ is the 'quotient' of the orientation o(J) defined by the almost complex structure and the orientation $o(\omega)$ defined by the symplectic form. Here the integer $\mathcal{Q}(M_{\mu+\rho_c})$ are computed by Proposition 2.4. In particular, $\mathcal{Q}(M_{\mu+\rho_c})=0$ if $\mu+\rho_c$ does not belong to the relative interior of Δ .

The same result holds in the traditional 'prequantum' case. Suppose that Msatisfies Assumption 3.4 at every $\mu \in \mathfrak{t}^*$, and that the almost complex structure J is compatible with ω . If L is prequantum line bundle over (M, ω, Φ) , we have $RR_{\Phi}^{K}(M,L) = \sum_{\mu \in \Lambda_{\perp}^{*}} RR(M_{\mu}, L_{\mu}) \chi_{\mu}^{K}.$

The remaining part of this section is devoted to the proof of Theorem 4.1: we have to show that the K-multiplicities, $m_{\mu}(\tilde{L})$, of $RR_{\Phi}^{\kappa}(M,\tilde{L})$ are equal to $\varepsilon \mathcal{Q}(M_{\mu+\rho_c})$, where the quantities $\mathcal{Q}(M_{\mu+\rho_c})$ are defined by Proposition 2.4. Since (M,Φ) satisfies Assumption 3.4 at every $\tilde{\mu}$, we know from Proposition 3.5 that $\mathrm{m}_{\mu}(\tilde{L}) = [RR_{\Phi_{\tilde{\mu}}}^{K}(M \times \overline{\mathcal{O}^{\tilde{\mu}}}, \tilde{L} \boxtimes \mathbb{C}_{[-\mu]})]^{K}$ for every $\mu \in \Lambda_{+}^{*}$.

The next Lemma is the first step in computing the multiplicities $m_{\mu}(\tilde{L})$.

Lemma 4.2. Let $RR_0^{\kappa}(M \times \overline{\mathcal{O}^{\tilde{\mu}}}, -)$ be the Riemann-Roch character localized¹⁰ near $\Phi_{\tilde{\mu}}^{-1}(0) \simeq \Phi^{-1}(\mu + \rho_c)$ (see Def. 3.7). If \tilde{L} is a κ -prequantum line bundle over M, and if the infinitesimal stabilizers for the K-action are abelian, we have

(4.28)
$$m_{\mu}(\tilde{L}) = \left[RR_0^K (M \times \overline{\mathcal{O}^{\tilde{\mu}}}, \tilde{L} \boxtimes \mathbb{C}_{[-\mu]}) \right]^K .$$

In particular $m_{\mu}(\tilde{L}) = 0$ if $\mu + \rho_c$ does not belong to the moment polyhedral subset Δ .

Proof: The lemma will follow from Corollary 3.11, applied to the symplectic manifold $\mathcal{X}:=M\times\overline{\mathcal{O}^{\bar{\mu}}}$, with moment map $\Phi_{\bar{\mu}}$ and κ -prequantum line bundle $\tilde{L}\boxtimes\mathbb{C}_{[-\mu]}$. Let $\beta\neq 0$ such that $\mathcal{X}^{\beta}\cap\Phi_{\bar{\mu}}^{-1}(\beta)\neq\emptyset$. Let \mathcal{N} be the normal bundle of \mathcal{X}^{β} in \mathcal{X} , and let $x\in\mathcal{X}^{\beta}\cap\Phi_{\bar{\mu}}^{-1}(\beta)$. By the criterion of Proposition 3.10, it is sufficient to show that

(4.29)
$$\|\beta\|^2 + \frac{1}{2} \operatorname{Tr}_{\beta} |\mathcal{N}_x| - 2(\rho_c, \beta) > 0 .$$

Write $x=(m,\xi)$ with $m\in M^{\beta}$ and $\xi\in (\mathcal{O}^{\tilde{\mu}})^{\beta}$. We know that $\mathbf{Tr}_{\beta}|\mathcal{N}_{x}|=\mathbf{Tr}_{\beta}|\mathbf{T}_{x}\mathcal{X}|=\mathbf{Tr}_{\beta}|\mathbf{T}_{m}M|+\mathbf{Tr}_{\beta}|\mathbf{T}_{\xi}\mathcal{O}^{\tilde{\mu}}|$. The tangent space $\mathbf{T}_{\xi}\mathcal{O}^{\tilde{\mu}}\simeq\mathfrak{k}/\mathfrak{k}_{\xi}$ contains¹¹ a copy of $\mathfrak{k}/\mathfrak{k}_{\beta}$, so $\mathbf{Tr}_{\beta}|\mathbf{T}_{\xi}\mathcal{O}^{\tilde{\mu}}|\geq \mathbf{Tr}_{\beta}|\mathfrak{k}/\mathfrak{k}_{\beta}|=2(\rho_{c},\beta)$. On the other hand, $\mathbf{T}_{m}M$ contains the vector space $E_{m}\simeq\mathfrak{k}/\mathfrak{k}_{m}$ spanned by $X_{M}(m), X\in\mathfrak{k}$. We have assume that the stabilizer subalgebra \mathfrak{k}_{m} is abelian, and since $\beta\in\mathfrak{k}_{m}$, we get $\mathfrak{k}_{m}\subset\mathfrak{k}_{\beta}$. Thus $\mathfrak{k}/\mathfrak{k}_{\beta}\subset E_{m}\subset \mathbf{T}_{m}M$ and $\mathbf{Tr}_{\beta}|\mathbf{T}_{m}M|\geq 2(\rho_{c},\beta)$. Finally (4.29) is proved since $\frac{1}{2}(\mathbf{Tr}_{\beta}|\mathbf{T}_{m}M|+\mathbf{Tr}_{\beta}|\mathbf{T}_{\xi}\mathcal{O}^{\tilde{\mu}}|)\geq 2(\rho_{c},\beta)$. \square

In the next subsection, we recall the basic notions about Spin^c-structures.

4.1. Spin^c structures and symbols. We refer to Lawson-Michelson [25] for background on Spin^c-structures, and to Duistermaat [14] for a discussion of the symplectic case.

The group Spin_n is the connected double cover of the group SO_n . Let $\eta: \operatorname{Spin}_n \to \operatorname{SO}_n$ be the covering map, and let ε be the element who generates the kernel. The group Spin_n^c is the quotient $\operatorname{Spin}_n \times_{\mathbb{Z}_2} \operatorname{U}_1$, where \mathbb{Z}_2 acts by $(\varepsilon, -1)$. There are two canonical group homomorphisms

$$\eta: \operatorname{Spin}_n^{\operatorname{c}} \to \operatorname{SO}_n$$
 , $\operatorname{Det}: \operatorname{Spin}_n^{\operatorname{c}} \to \operatorname{U}_1$.

Note that $\eta^c = (\eta, \text{Det}) : \text{Spin}_n^c \to \text{SO}_n \times \text{U}_1$ is a double covering map.

Let $p:E\to M$ be a oriented Euclidean vector bundle of rank n, and let $\mathrm{P}_{\mathrm{SO}}(E)$ be its bundle of oriented orthonormal frames. A $\mathrm{Spin^c}$ -structure on E is a $\mathrm{Spin^c}$ principal bundle $\mathrm{P}_{\mathrm{Spin^c}}(E)\to M$, together with a $\mathrm{Spin^c}$ -equivariant map $\mathrm{P}_{\mathrm{Spin^c}}(E)\to\mathrm{P}_{\mathrm{SO}}(E)$. The line bundle $\mathbb{L}:=\mathrm{P}_{\mathrm{Spin^c}}(E)\times_{\mathrm{Det}}\mathbb{C}$ is called the determinant line bundle associated to $\mathrm{P}_{\mathrm{Spin^c}}(E)$. Whe have then a double covering map^{12}

(4.30)
$$\eta_E^c: \mathrm{P}_{\mathrm{Spin}^c}(E) \longrightarrow \mathrm{P}_{\mathrm{SO}}(E) \times \mathrm{P}_{\mathrm{U}}(\mathbb{L}) ,$$

where $P_{\mathrm{U}}(\mathbb{L}) := P_{\mathrm{Spin}^{\mathrm{c}}}(E) \times_{\mathrm{Det}} U_{1}$ is the associated U_{1} -principal bundle over M.

¹⁰Note that $RR_0^K(M \times \overline{\mathcal{O}^{\tilde{\mu}}}, -)$ is the zero map if $\Phi^{-1}(\mu + \rho_c) = \emptyset$.

¹¹Since the stabilizer $\mathfrak{k}_{\xi} \simeq \mathfrak{t}$ is abelian and $\beta \in \mathfrak{k}_{\xi}$ we get $\mathfrak{k}_{\xi} \subset \mathfrak{k}_{\beta}$.

¹²If P, Q are principal bundle over M respectively for the groups G and H, we denote simply by $P \times Q$ their fibering product over M which is a $G \times H$ principal bundle over M.

A Spin^c-structure on a oriented Riemannian manifold is a Spin^c-structure on its tangent bundle. If a group K acts on the bundle E, preserving the orientation and the Euclidean structure, we define a K-equivariant Spin^c-structure by requiring $P_{\mathrm{Spin^c}}(E)$ to be a K-equivariant principal bundle, and (4.30) to be $(K \times \mathrm{Spin^c}_n)$ -equivariant.

Let Δ_{2m} be the complex Spin representation of $\mathrm{Spin}_{2m}^{\mathrm{c}}$. Recall that $\Delta_{2m} = \Delta_{2m}^+ \oplus \Delta_{2m}^-$ inherits a canonical Clifford action $\mathbf{c}: \mathbb{R}^{2m} \to \mathrm{End}_{\mathbb{C}}(\Delta_{2m})$ which is $\mathrm{Spin}_{2m}^{\mathrm{c}}$ -equivariant, and which interchanges the graduation : $\mathbf{c}(v): \Delta_{2m}^{\pm} \to \Delta_{2m}^{\mp}$, for every $v \in \mathbb{R}^{2m}$. Let

$$(4.31) S(E) := P_{Spin^{c}}(E) \times_{Spin^{c}_{2m}} \Delta_{2m}$$

be the spinor bundle over M, with the grading $S(E) := S(E)^+ \oplus S(E)^-$. Since $E = P_{\mathrm{Spin}^c}(E) \times_{\mathrm{Spin}^c_{2m}} \mathbb{R}^{2m}$, the bundle $p^*S(E)$ is isomorphic to $P_{\mathrm{Spin}^c}(E) \times_{\mathrm{Spin}^c_{2m}} (\mathbb{R}^{2m} \oplus \Delta_{2m})$.

Let \overline{E} be the bundle E with opposite orientation. A Spin^c structure on E induces a Spin^c on \overline{E} , with the same determinant line bundle, and such that $\mathcal{S}(\overline{E})^{\pm} = \mathcal{S}(E)^{\mp}$.

Definition 4.3. Let S-Thom $(E): p^*S(E)^+ \to p^*S(E)^-$ be the symbol defined by

$$\begin{array}{cccc} \mathrm{P}_{\mathrm{Spin^c}}(E) \times_{\mathrm{Spin^c_{2m}}} (\mathbb{R}^{2m} \oplus \Delta^+_{2m}) & \longrightarrow & \mathrm{P}_{\mathrm{Spin^c}}(E) \times_{\mathrm{Spin^c_{2m}}} (\mathbb{R}^{2m} \oplus \Delta^-_{2m}) \\ & [p; v, w] & \longmapsto & [p, v, \mathbf{c}(v)w] \end{array}.$$

When E is the tangent bundle of a manifold M, the symbol S-Thom(E) is denoted S-Thom(M). If a group K acts equivariantly on the $\operatorname{Spin}^{\operatorname{c}}$ -stucture, we denote S-Thom_K(E) the equivariant symbol.

The characteristic set of S-Thom(E) is $M \simeq \{\text{zero section of } E\}$, hence it defines a class in $\mathbf{K}(E)$ if M is compact (this class is a free generator of the $\mathbf{K}(M)$ -module $\mathbf{K}(E)$ [3]). When $E = \mathbf{T}M$, the symbol S-Thom(M) corresponds to the *principal symbol* of the Spin^c Dirac operator associated to the Spin^c-structure [14]. If moreover M is compact, the number $\mathcal{Q}(M) \in \mathbb{Z}$ is defined as the index of S-Thom(M). If we change the orientation, note that $\mathcal{Q}(\overline{M}) = -\mathcal{Q}(M)$.

Remark 4.4. It should be noted that the choice of the metric on the fibers of E is not essential in the construction. Let g_0, g_1 be two metric on the fibers of E, and suppose that (E, g_0) admits a Spin^c -stucture denoted $\operatorname{P}_{\operatorname{Spin}^c}(E, g_0)$. The trivial homotopy $g_t = (1-t).g_0 + t.g_1$ between the metrics, induces an homotopy between the principal bundles $\operatorname{P}_{\operatorname{SO}}(E, g_0)$, $\operatorname{P}_{\operatorname{SO}}(E, g_1)$ which can be lifted to an homotopy between $\operatorname{P}_{\operatorname{Spin}^c}(E, g_0)$ and a Spin^c -bundle over (E, g_1) . When the base M is compact, the corresponding symbols $\operatorname{S-Thom}(E, g_0)$ and $\operatorname{S-Thom}(E, g_1)$ define the same class in $\mathbf{K}(E)$.

These notions extend to the orbifold case. Let M be a manifold with a locally free action of a compact Lie group H. The quotient $\mathcal{X} := M/H$ is an orbifold, a space with finite quotient singularities. A Spin^c structure on \mathcal{X} is by definition a H-equivariant Spin^c structure on the bundle $\mathbf{T}_H M \to M$, where $\mathbf{T}_H M$ is identified with the pullback of $\mathbf{T}\mathcal{X}$ via the quotient map $\pi: M \to \mathcal{X}$. We define in the same way S-Thom(\mathcal{X}) $\in \mathbf{K}_{orb}(\mathbf{T}\mathcal{X})$, such that π^* S-Thom(\mathcal{X}) = S-Thom $_H(\mathbf{T}_H M)$. Here \mathbf{K}_{orb} denotes the K-theory of proper vector bundles [21]. The pullback by π induces an isomorphism $\pi^*: \mathbf{K}_{orb}(\mathbf{T}\mathcal{X}) \simeq \mathbf{K}_H(\mathbf{T}_H M)$. The number $\mathcal{Q}(\mathcal{X}) \in \mathbb{Z}$ is

defined as the index of S-Thom(\mathcal{X}), or equivalently as the multiplicity of the trivial representation in $\mathrm{Index}_{M}^{H}(\mathrm{S-Thom}_{H}(\mathbf{T}_{H}M))$.

Consider now the case of a *complex* vector bundle $E \to M$, of complex rank m. The orientation on the fibers of E is given by the complex structure J. Let $\mathrm{P}_{\mathrm{U}}(E)$ be the bundle of unitary frames on E. We have a morphism $\mathrm{j}:\mathrm{U}_m\to\mathrm{Spin}_{2m}^{\mathrm{c}}$ which makes the diagram ¹³

$$(4.32) U_m \xrightarrow{j} \operatorname{Spin}_{2m}^{c}$$

$$\downarrow^{\eta^c}$$

$$SO_0 \times U_1$$

commutative [25]. Then

$$(4.33) P_{Spin^{c}}(E) := Spin_{2m}^{c} \times_{j} P_{U}(E)$$

defines a Spin^c-structure over E, with determinant line bundle equal to $\det_{\mathbb{C}} E$.

Lemma 4.5. Let M be a manifold equipped with an almost complex structure J. The symbol S-Thom(M) defined by the Spin^c-structure (4.33), and the Thom symbol Thom(M, J) defined in section 3.2 coincide.

Proof: The Spinor bundle S is of the form $P_{\mathrm{Spin}^c}(\mathbf{T}M) \times_{\mathrm{Spin}_{2m}^c} \Delta_{2m} = P_{\mathrm{U}}(\mathbf{T}M) \times_{\mathrm{U}_m} \Delta_{2m}$. The map $\mathbf{c}: \mathbb{R}^{2m} \to \mathrm{End}_{\mathbb{C}}(\Delta_{2m})$, when restricted to the U_m -equivariant action through j, is equivalent to the Clifford map $\mathrm{Cl}: \mathbb{R}^{2m} \to \mathrm{End}_{\mathbb{C}}(\wedge\mathbb{C}^m)$ (with the canonical action of U_m on \mathbb{R}^{2m} and $\wedge\mathbb{C}^m$). Then $S = \wedge_{\mathbb{C}}\mathbf{T}M$ endowed with the Clifford action. □

Lemma 4.6. Let P be a $\operatorname{Spin}^{\operatorname{c}}$ -structure over M, with bundle of spinors \mathcal{S} , and determinant line bundle \mathbb{L} . For every Hermitian line bundle $L \to M$, there exists a unique $\operatorname{Spin}^{\operatorname{c}}$ -structure P_L with bundle of spinors $\mathcal{S} \otimes L$, and determinant line bundle $\mathbb{L} \otimes L^2$ (P_L is called the $\operatorname{Spin}^{\operatorname{c}}$ -structure P twisted by L).

$$Proof$$
: Take $P_L = P \times_{\mathrm{U}_1} \mathrm{P}_{\mathrm{U}}(L)$.

We end up this subsection with the following definitions. Let (M,o) be an oriented manifold. Suppose that

- ullet a connected compact Lie K acts on M
- (M, o, K) carries a K-equivariant Spin^c-structure
- one has an equivariant map $\Psi: M \to \mathfrak{k}$.

Suppose first that M is compact. The symbol S-Thom $_{\kappa}(M)$ is then elliptic and defines a quantization map

$$Q^{K}(M,-): \mathbf{K}_{K}(M) \to R(K)$$

by the relation $\mathcal{Q}^{\kappa}(M,V) := \operatorname{Index}_{M}^{K}(\operatorname{S-Thom}_{\kappa}(M) \otimes V) : \mathcal{Q}^{\kappa}(M,V)$ is the equivariant index of the Spin^c Dirac operator on M twisted by V.

Let Ψ_M be the equivariant vector field on M defined by $\Psi_M(m) := \Psi(m)_M|_m$.

¹³Here i: $U_m \hookrightarrow SO_{2m}$ is the canonical inclusion map.

Definition 4.7. The symbol S-Thom_K(M) pushed by the map Ψ , which is denoted S-Thom^{Ψ}_K(M), is defined by the relation

$$\operatorname{S-Thom}^{\Psi}_{{\scriptscriptstyle{K}}}(M)(m,v) := \operatorname{S-Thom}_{{\scriptscriptstyle{K}}}(M)(m,v-\Psi_{M}(m))$$

for any $(m,v) \in \mathbf{T}M$. The symbol S-Thom $_{K}^{\Psi}(M)$ is transversally elliptic if and only if $\{m \in M, \Psi_{M}(m) = 0\}$ is compact. When this holds one defines the localized quantization map $\mathcal{Q}_{\Psi}^{K}(M,V) := \operatorname{Index}_{M}^{K}(\operatorname{S-Thom}_{K}^{\Psi}(M) \otimes V)$.

We end this section with an adaptation of Lemma 9.4 in Appendix B of [33] to the localized quantization map $\mathcal{Q}_{\Psi}^{\kappa}(M,-)$. Let $\beta\in\mathfrak{t}_{+}$ be a non-zero element in the center of the Lie algebra \mathfrak{k} of K. We suppose here that the subtorus $i:\mathbb{T}_{\beta}\hookrightarrow K$, which is equal to the closure of $\{\exp(t.\beta),\ t\in\mathbb{R}\}$, acts trivially on M. Let $\mathrm{m}_{\mu}(V),\ \mu\in\Lambda_{+}^{*}$ be the K-multiplicities 14 of $\mathcal{Q}_{\Psi}^{\kappa}(M,V)$.

Lemma 4.8. If $m_{\mu}(V) \neq 0$, $i^{*}(\mu)$ is a weight for the action of \mathbb{T}_{β} on $V \otimes \mathbb{L}^{\frac{1}{2}}$. If each weight α for the action of \mathbb{T}_{β} on $V \otimes \mathbb{L}^{\frac{1}{2}}$ satisfies $(\alpha, \beta) > 0$, then $[\mathcal{Q}_{\Psi}^{K}(M, V)]^{K} = 0$.

4.2. Spin^c structures on symplectic reductions. Let (M, ω, Φ, K) be a Hamiltonian manifold, such that Φ is proper. Let J be a K-invariant almost complex structure on M. On M, we have the orientation $o(J_M)$ defined by the almost complex structure and the orientation $o(\omega_M)$ defined by the symplectic form. We denote $\varepsilon = \pm 1$ their 'quotient'. On the symplectic reductions we will have also two orientations, one induces by ω , and the other induces by J, with the same 'quotient' ε .

There exists a unique relatively open face τ of the Weyl chamber \mathfrak{t}_+^* such that $\Phi(M) \cap \tau$ is dense in $\Phi(M) \cap \mathfrak{t}_+^*$. The face τ is called the principal face of (M, Φ) [26]. All points in the open face τ have the same connected centralizer K_{τ} . The Principal-cross-section Theorem tells us that $\mathcal{Y}_{\tau} := \Phi^{-1}(\tau)$ is a symplectic K_{τ} -manifold, where $[K_{\tau}, K_{\tau}]$ acts trivially [26].

Here we work under the assumption that the infinitesimal stabilizers for the K-action on M are abelian: for $m \in M$, $\mathfrak{k}_m := \{X \in \mathfrak{k}, X_M(m) = 0\}$ is an abelian subalgebra of \mathfrak{k} . Since $[\mathfrak{k}_\tau, \mathfrak{k}_\tau] \subset \mathfrak{k}_m$ for every $m \in \mathcal{Y}_\tau$, our assumption imposes that $[\mathfrak{k}_\tau, \mathfrak{k}_\tau] = 0$, hence τ is the interior of the Weyl chamber. For the remaining of this section, we denote $\mathcal{Y} = \Phi^{-1}(\operatorname{interior}(\mathfrak{t}_+^*))$ the symplectic slice relative to interior of the Weyl chamber. It is a symplectic manifold with an induced Hamiltonian action of the maximal torus T, with moment map the restriction of Φ to \mathcal{Y} : $\Phi: \mathcal{Y} \to \mathfrak{t}^*$. The convexity Theorem tell us that $\Delta := \Phi(M) \cap \mathfrak{t}_+^*$ is a convex polyhedral subset of \mathfrak{t}_+^* (called the moment polytope when M is compact). The relative interior Δ^0 of Δ is a dense subset of $\Phi(\mathcal{Y})$.

Proposition 4.9. The almost complex structure J induces :

- i) an orientation $o(\mathcal{Y})$ on \mathcal{Y} , and
- ii) a T-equivariant $\operatorname{Spin}^{\operatorname{c}}$ structure on $(\mathcal{Y}, o(\mathcal{Y}))$ with determinant line bundle $\det_{\mathbb{C}}(\mathbf{T}M|_{\mathcal{Y}})$ $\mathbb{C}_{-2\rho_{c}}$.

Proof of i): On \mathcal{Y} , we have the decomposition $\mathbf{T}M|_{\mathcal{Y}} = \mathbf{T}\mathcal{Y} \oplus [\mathfrak{k}/\mathfrak{t}]$, where $[\mathfrak{k}/\mathfrak{t}]$ denotes the trivial bundle $\mathcal{Y} \times \mathfrak{k}/\mathfrak{t}$ corresponding of the subspace of $\mathbf{T}M|_{\mathcal{Y}}$ formed by the vector fields generated by the infinitesimal action of $\mathfrak{k}/\mathfrak{t}$. The choice

 $^{^{14}\}mathcal{Q}_{\Psi}^{K}(M,V) = \sum_{\mu \in \Lambda_{+}^{*}} m_{\mu}(V) \chi_{\mu}^{K}$

of the Weyl chamber induces a complex structure on $\mathfrak{k}/\mathfrak{t}$, and hence an orientation $o([\mathfrak{k}/\mathfrak{t}])$: this orientation can be also defined by a symplectic form of the type $\omega_{\mathfrak{k}/\mathfrak{t}}(X,Y) = \langle \xi, [X,Y] \rangle$, where ξ belongs to the interior of the Weyl chamber \mathfrak{t}_+^* . Let $o(\mathcal{Y})$ be the orientation on \mathcal{Y} defined by $o(J_M)|_{\mathcal{Y}} = o(\mathcal{Y})o([\mathfrak{k}/\mathfrak{t}])$. On \mathcal{Y} , we have also the orientation $o(\omega_{\mathcal{Y}})$ defined by the symplectic form $\omega_{\mathcal{Y}}$. Note that if $o(J_M) = \varepsilon o(\omega_M)$, we have also $o(\mathcal{Y}) = \varepsilon o(\omega_{\mathcal{Y}})$.

Let $P := \operatorname{Spin}_{2n}^{\mathfrak{c}} \times_{\operatorname{U}_m} \operatorname{P}_{\operatorname{U}}(\mathbf{T}M)$ be the $\operatorname{Spin}^{\mathfrak{c}}$ structure on M induced by J (see eq. 4.33). When we restrict to \mathcal{Y} , $P|_{\mathcal{Y}}$ is then a $\operatorname{Spin}^{\mathfrak{c}}$ structure on the bundle $\mathbf{T}\mathcal{Y} \oplus [\mathfrak{k}/\mathfrak{t}]$. Let q be a T-invariant Riemanian structure on $\mathbf{T}\mathcal{Y} \oplus [\mathfrak{k}/\mathfrak{t}]$ such that $\mathbf{T}\mathcal{Y}$ is orthogonal with $[\mathfrak{k}/\mathfrak{t}]$, and q equals the Killing form on $[\mathfrak{k}/\mathfrak{t}]$. Following Remark 4.4, $P|_{\mathcal{Y}}$ induces a $\operatorname{Spin}^{\mathfrak{c}}$ structure P' on $(\mathbf{T}\mathcal{Y} \oplus [\mathfrak{k}/\mathfrak{t}], q)$, with the same determinant line bundle $\mathbb{L} = \det_{\mathbb{C}}(\mathbf{T}M|_{\mathcal{Y}})$. Since the $\operatorname{SO}_{2k} \times \operatorname{U}_l$ -principal bundle $\operatorname{P}_{\operatorname{SO}}(\mathbf{T}\mathcal{Y}) \times \operatorname{U}(\mathfrak{k}/\mathfrak{t})$ is a reduction \mathbb{L} of the SO_{2n} principal bundle $\operatorname{P}_{\operatorname{SO}}(\mathbf{T}\mathcal{Y} \oplus [\mathfrak{k}/\mathfrak{t}])$, we have the commutative diagram

where Q is a $(\eta^c)^{-1}(SO_{2k} \times U_l) \simeq Spin_{2k}^c \times U_l$ -principal bundle. Finally we see that $Q' = Q/U_l$ is a $Spin^c$ structure on $T\mathcal{Y}$. Since $(U(\mathfrak{k}/\mathfrak{t}) \times P_U(\mathbb{L}))/U_l \simeq P_U(\mathbb{L} \otimes \mathbb{C}_{-2\rho_c})$, the corresponding determinant line bundle is $\mathbb{L}' = \mathbb{L} \otimes \mathbb{C}_{-2\rho_c}$. \square

Let $\operatorname{Aff}(\Delta)$ be the affine subspace generated by Δ , and let $\overrightarrow{\Delta}$ be the subspace of \mathfrak{t}^* generated by $\{m-n\mid m,n\in\Delta\}$. Let T_Δ the subtorus of T with Lie algebra \mathfrak{t}_Δ equal to the orthogonal (for the duality) of $\overrightarrow{\Delta}$. It is not difficult to see that T_Δ corresponds to the connected component of the principal stabilizer for the T-action on \mathcal{Y} .

Here we consider the symplectic reduction $M_{\xi} := \Phi^{-1}(\xi)/T$, for generic quasiregular values ξ ; that is, for $\xi \in \Delta^{\circ}$ such that T/T_{Δ} acts locally freely on $\Phi^{-1}(\xi)$: in this case $\Phi^{-1}(\xi)$ is a smooth submanifold in \mathcal{Y} with a tubular neighborhhood equivariantly diffeomorphic to $\Phi^{-1}(\xi) \times \overrightarrow{\Delta}$.

Proposition 4.10. Let $\mu \in \Lambda_+^*$ such that $\tilde{\mu} = \mu + \rho_c$ belongs to Δ . Let \tilde{L} be a κ -prequantum line bundle. For every generic quasi-regular value $\xi \in \Delta$, the Spin^c structures on \mathcal{Y} , when twisted by $\tilde{L}|_{\mathcal{Y}} \otimes \mathbb{C}_{-\mu}$, induces a Spin^c structure on the reduced space $M_{\xi} := \Phi^{-1}(\xi)/T$ with determinant line bundle $(L_{2\omega}|_{\Phi^{-1}(\xi)} \otimes \mathbb{C}_{-2\tilde{\mu}})/T$. Here we have two choices for the orientations : $o(M_{\xi})$ induced by $o(\mathcal{Y})$, and $o(\omega_{M_{\xi}})$ defined by the induced symplectic form. They are tied by the relation $o(M_{\xi}) = \varepsilon o(\omega_{M_{\xi}})$.

Proof: Let $\xi \in \Delta$ be a generic quasi-regular value of Φ , and $\mathcal{Z} := \Phi^{-1}(\xi)$. This is a submanifold of \mathcal{Y} with a trivial action of T_{Δ} and a locally free action of T/T_{Δ} . We denote $\pi : \mathcal{Z} \to M_{\xi}$ the quotient map. We identify $\pi^*(\mathbf{T}M_{\xi})$ with the orthogonal complement (relatively to a Riemannian metric) to the trivial bundle¹⁶

¹⁵Here $2n = \dim M$, $2k = \dim \mathcal{Y}$ and $2l = \dim(\mathfrak{k}/\mathfrak{t})$, so n = k + l.

 $^{^{16}[}t/t_{\Delta}]$ corresponds to the subspace of $T\mathcal{Z}$ formed by the vector fields generated by the infinitesimal action of t/t_{Δ} .

 $[\mathfrak{t}/\mathfrak{t}_{\Delta}]$. On the other hand the tangent bundle $\mathbf{T}\mathcal{Y}$, when restricted to \mathcal{Z} , decomposes as $\mathbf{T}\mathcal{Y}|_{\mathcal{Z}} = \mathbf{T}\mathcal{Z} \oplus [\overrightarrow{\Delta}]$, so we have

$$\begin{array}{rcl} \mathbf{T}\mathcal{Y}|_{\mathcal{Z}} &=& \pi^*(\mathbf{T}M_{\xi}) \oplus [\mathfrak{t}/\mathfrak{t}_{\Delta}] \oplus [\overrightarrow{\Delta}] \\ &=& \pi^*(\mathbf{T}M_{\xi}) \oplus [\mathfrak{t}/\mathfrak{t}_{\Delta} \otimes \mathbb{C}] \ , \end{array}$$

with the convention $\mathfrak{t}/\mathfrak{t}_{\Delta} = \mathfrak{t}/\mathfrak{t}_{\Delta} \otimes i\mathbb{R}$ and $\overrightarrow{\Delta} = \mathfrak{t}/\mathfrak{t}_{\Delta} \otimes \mathbb{R}$. Since $\mathfrak{t}/\mathfrak{t}_{\Delta} \otimes \mathbb{C}$ is canonically oriented by the complex multiplication by i, the orientation $o(\mathcal{Y})$ determines an orientation $o(M_{\xi})$ on $\mathbf{T}M_{\xi}$ through (4.35).

Now we proceed like in Proposition 4.10. Let Q' be the Spin^c structure on $\mathcal Y$ introduced in Proposition 4.10, and let Q^{μ} be Q' twisted by the line bundle $\tilde L|_{\mathcal Y}\otimes\mathbb C_{-\mu}$: its determinant line bundle is $\det_{\mathbb C}(\mathbf TM)|_{\mathcal Y}\otimes\mathbb C_{-2\rho_c}\otimes(\tilde L|_{\mathcal Y}\otimes\mathbb C_{-\mu})^2=L_{2\omega}|_{\mathcal Y}\otimes\mathbb C_{-2\tilde\mu}$. The $\operatorname{SO}_{2k'}\times\operatorname{U}_{l'}$ -principal bundle $\operatorname{P}_{\operatorname{SO}}(\pi^*(\mathbf TM_\xi))\times\operatorname{U}(\mathfrak t/\mathfrak t_\Delta\otimes\mathbb C)$ is a reduction of the SO_{2k} principal bundle $\operatorname{P}_{\operatorname{SO}}(\pi^*(\mathbf TM_\xi)\oplus[\mathfrak t/\mathfrak t_\Delta\otimes\mathbb C])$; we have the commutative diagram

$$(4.36) \qquad \qquad Q'' \xrightarrow{\qquad} P_{SO}(\pi^*(\mathbf{T}M_{\xi})) \times U(\mathfrak{t}/\mathfrak{t}_{\Delta} \otimes \mathbb{C}) \times P_{U}(\mathbb{L}|_{\mathcal{Z}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Q^{\mu}|_{\mathcal{Z}} \xrightarrow{\qquad} P_{SO}(\pi^*(\mathbf{T}M_{\xi}) \oplus [\mathfrak{t}/\mathfrak{t}_{\Delta} \otimes \mathbb{C}]) \times P_{U}(\mathbb{L}|_{\mathcal{Z}}) ,$$

where $\mathbb{L} = L_{2\omega}|_{\mathcal{Y}} \otimes \mathbb{C}_{-2\tilde{\mu}}$. Here Q'' is a $(\eta^c)^{-1}(SO_{2k'} \times U_{l'}) \simeq Spin_{2k'}^c \times U_{l'}$ -principal bundle. The Kostant formula (2.1) tells us that the action of T_{Δ} is trivial on $\mathbb{L}|_{\mathcal{Z}}$, since $\xi - \tilde{\mu} \in \overrightarrow{\Delta}$. Thus the action of T_{Δ} is trivial on Q''. Finally we see that $Q_{\xi} = Q''/(U_{l'} \times T)$ is a Spin^c structure on M_{ξ} with determinant line bundle $\mathbb{L}_{\xi} = (L_{2\omega}|_{\mathcal{Z}} \otimes \mathbb{C}_{-2\tilde{\mu}})/T$. \square

4.3. **Definition of** $\mathcal{Q}(M_{\mu+\rho_c})$. First we give three different ways to define the quantity $\mathcal{Q}(M_{\mu+\rho_c}) \in \mathbb{Z}$ for any $\mu \in \Lambda_+^*$. The compatibility of these different definitions gives a proof of Theorem 4.1. First of all $\mathcal{Q}(M_{\mu+\rho_c}) = 0$ if $\mu + \rho_c \notin \Delta$. First definition.

If $\mu + \rho_c$ is a generic quasi regular value of Φ , $M_{\mu + \rho_c} := \Phi^{-1}(\mu + \rho_c)/T$ is a symplectic orbifold. We know from Proposition 4.10 that $M_{\mu + \rho_c}$ inherits Spin^c-structures, with the same determinant line bundle $(L_{2\omega}|_{\Phi^{-1}(\tilde{\mu})} \otimes \mathbb{C}_{-2\tilde{\mu}})/T$, for the two choices of orientation $o(M_\xi)$ and $o(\omega_{M_\xi})$. We denote $\mathcal{Q}(M_{\mu + \rho_c}) \in \mathbb{Z}$ the index of the Spin^c Dirac operator associated to the Spin^c structure on $(M_\xi, o(\omega_{M_\xi}))$ and $\mathcal{Q}(M_{\mu + \rho_c}, o(M_{\mu + \rho_c}))$ the index of the Spin^c Dirac operator associated to the Spin^c structure on $(M_{\mu + \rho_c}, o(M_{\mu + \rho_c}))$. Since $o(M_\xi) = \varepsilon o(\omega_{M_\xi})$, we have $\mathcal{Q}(M_{\mu + \rho_c}, o(M_{\mu + \rho_c})) = \varepsilon \mathcal{Q}(M_{\mu + \rho_c})$.

 $Second\ definition.$

We can also define $Q(M_{\mu+\rho_c})$ by shift 'desingularization' as follows. If $\mu+\rho_c\in\Delta$, one considers generic quasi regular values ξ of Φ , close enough to $\mu+\rho_c$. Following Proposition 4.10, $M_{\xi}=\Phi_{\mathcal{T}}^{-1}(\xi)/T$ inherits a Spin^c structure, with determinant line bundle $(L_{2\omega}|_{\Phi^{-1}(\xi)}\otimes\mathbb{C}_{-2\bar{\mu}})/T$. Then we set $\mathcal{Q}(M_{\mu+\rho_c}):=\mathcal{Q}(M_{\xi})$, where the RHS is the index of the Spin^c Dirac operator associated to the Spin^c structure on $(M_{\xi},o(\omega_{M_{\xi}}))$. In the same way $\mathcal{Q}(M_{\mu+\rho_c},o(M_{\mu+\rho_c}))=\mathcal{Q}(M_{\xi},o(M_{\xi}))$. Here one has to show that these quantities are independent of the choice of ξ when ξ

¹⁷Here $2k = \dim \mathcal{Y}$, $2k' = \dim M_{\mathcal{E}}$ and $l' = \dim(\mathfrak{t}/\mathfrak{t}_{\Delta})$, so k = k' + l'.

is a generic quasi regular value close enough to $\mu + \rho_c$. We will see in fact that $\mathcal{Q}(M_{\mu+\rho_c}) = 0$ when $\mu + \rho_c \in \partial \Delta$ (see 4.38).

Third definition.

Since M is supposed to satisfy Assumption 3.4 at $\tilde{\mu}$, we can use the characterization of the multiplicity $m_{\mu}(\tilde{L})$ given in Lemma 4.2. The number $\mathcal{Q}(M_{\mu+\rho_c})$ is the multiplicity of the trivial representation in $\varepsilon RR_0^{\kappa}(M \times \overline{\mathcal{O}^{\mu}}, \tilde{L} \otimes \mathbb{C}_{[-\mu]})$.

We work now with a fixed element $\mu \in \Lambda_+^*$, and during the remaining part of this section, \mathcal{Y} will denotes a small T-invariant open neighborhood of $\Phi^{-1}(\mu + \rho_c)$ in the symplectic slice $\Phi^{-1}(\text{interior}(\mathfrak{t}_+^*))$.

We have to show the compatibility of our definitions, that is

$$\left[RR_0^{\kappa}\left(M\times\overline{\mathcal{O}^{\overline{\mu}}},\tilde{L}\otimes\mathbb{C}_{[-\mu]}\right)\right]^{\kappa}=\mathcal{Q}(M_{\xi},o(M_{\xi}))$$

for any generic quasi regular value $\xi \in \text{Aff}(\Delta)$ close enough to $\mu + \rho_c$.

The manifold $(\mathcal{Y}, o(\mathcal{Y}))$ carries a T-invariant Spin^c-structure, so we can consider the localized quantization maps $\mathcal{Q}_{\Phi-\tilde{\mu}}^T(\mathcal{Y}, -)$ and $\mathcal{Q}_{\Phi-\xi}^T(\mathcal{Y}, -)$, since the functions $\|\Phi - \tilde{\mu}\|^2$ and $\|\Phi - \xi\|^2$ have compact critical set on \mathcal{Y} when $\xi \in \mathrm{Aff}(\Delta)$ is close enough to $\tilde{\mu}$. The proof of (4.37) is divided in two steps.

Proposition 4.11. Let E and F be respectively K-equivariant complex vector bundle over M and $\mathcal{O}^{\tilde{\mu}}$. We have the following equality

$$RR_0^{\kappa}(M \times \overline{\mathcal{O}^{\overline{\mu}}}, E \boxtimes F) = \operatorname{Ind}_{\scriptscriptstyle T}^{\kappa} \left(\mathcal{Q}_{\Phi - \overline{\mu}}^{\scriptscriptstyle T}(\mathcal{Y}, E|_{\mathcal{Y}} \otimes F|_{\overline{e}}) \right)$$

in $R^{-\infty}(K)$. It gives in particular that

$$\left[RR_0^{\kappa}(M\times\overline{\mathcal{O}^{\bar{\mu}}},E\boxtimes F)\right]^{\kappa}=\left[\mathcal{Q}_{\Phi-\bar{\mu}}^{\tau}(\mathcal{Y},E|_{\mathcal{Y}}\otimes F|_{\bar{e}})\right]^{T}.$$

Proposition 4.12. If $\xi \in Aff(\Delta)$ is close enough to $\tilde{\mu}$:

- i) the quantization maps $Q_{\Phi-\tilde{\mu}}^{T}(\mathcal{Y},-)$ and $Q_{\Phi-\xi}^{T}(\mathcal{Y},-)$ are equal,
- ii) if ξ is a generic quasi-regular value of Φ we have

$$\left[\mathcal{Q}_{\Phi-\tilde{\xi}}^{^{T}}(\mathcal{Y},\tilde{L}|_{\mathcal{Y}}\otimes\mathbb{C}_{-\mu})\right]^{T}=\mathcal{Q}(M_{\xi},o(M_{\xi}))\;,$$

and if
$$\xi \notin \Delta$$
, $[\mathcal{Q}_{\Phi-\tilde{\xi}}^{^{T}}(\mathcal{Y}, \tilde{L}|_{\mathcal{Y}} \otimes \mathbb{C}_{-\mu})]^{T} = 0$.

Propositions 4.11 and 4.12 will be proved in subsections 4.4 and 4.5.

If $\tilde{\mu} \in \partial \Delta$, we can take $\xi \in \text{Aff}(\Delta)$ close enough to $\tilde{\mu}$, with $\xi \notin \Delta$. Propositions 4.11 and 4.11 give

$$(4.38) \qquad \left[RR_0^{\kappa} (M \times \overline{\mathcal{O}^{\tilde{\mu}}}, \tilde{L} \otimes \mathbb{C}_{[-\mu]}) \right]^{\kappa} = \left[\mathcal{Q}_{\Phi-\tilde{\mu}}^{\tau} (\mathcal{Y}, \tilde{L}|_{\mathcal{Y}} \otimes \mathbb{C}_{-\mu}) \right]^{T}$$

$$= \left[\mathcal{Q}_{\Phi-\xi}^{\tau} (\mathcal{Y}, \tilde{L}|_{\mathcal{Y}} \otimes \mathbb{C}_{-\mu}) \right]^{T}$$

$$= 0.$$

Hence $Q(M_{\mu+\rho_c}) = 0$ for every $\mu + \rho_c \in \partial \Delta$.

4.4. **Proof of Proposition 4.11.** The induction formula of Proposition 4.11 is essentially identical to the one we proved in [33]. The main difference is that the almost complex structure is not assumed to be compatible with the symplectic structure.

We identify the coadjoint orbit $\mathcal{O}^{\tilde{\mu}}$ with $\overline{K/T}$. Let $\mathcal{H}^{\tilde{\mu}}$ be the Hamiltonian vector field of the function $\frac{1}{2} \parallel \Phi_{\tilde{\mu}} \parallel^2$: $M \times \overline{K/T} \to \mathbb{R}$. Here \mathcal{Y} denotes a small neighborhood of $\Phi^{-1}(\tilde{\mu})$ in the symplectic slice $\Phi^{-1}(\operatorname{interior}(\mathfrak{t}_+^*))$ such that the open subset $\mathcal{U} := (K \times_T \mathcal{Y}) \times \overline{K/T}$ is a neighborhood of $\Phi_{\tilde{\mu}}^{-1}(0) = K \cdot (\Phi^{-1}(\tilde{\mu}) \times \{\bar{e}\})$ which verifies $\overline{\mathcal{U}} \cap \{\mathcal{H}^{\tilde{\mu}} = 0\} = \Phi_{\tilde{\mu}}^{-1}(0)$.

By Definition 3.7, the localized Riemann-Roch character $RR_0^K(M \times \overline{K/T}, -)$ is computed by means of the Thom class $\operatorname{Thom}_K^{\Phi_{\bar{\mu}}}(\mathcal{U}) \in \mathbf{K}_K(\mathbf{T}_K\mathcal{U})$. On the other hand, the localized quantization map $\mathcal{Q}_{\Phi-\bar{\mu}}^T(\mathcal{Y}, -)$ is computed by means of the class S-Thom $_T^{\Phi-\bar{\mu}}(\mathcal{Y}) \in \mathbf{K}_T(\mathbf{T}_T\mathcal{Y})$ (see Definition 4.7). Proposition 4.11 will follow from a simple relation between these two transversally elliptic symbols.

First, one considers the isomorphism

$$(4.39) \phi: \mathcal{U} \to \mathcal{U}'$$

$$([k;y],[h]) \to [k;[k^{-1}h],y],$$

with $\mathcal{U}' := K \times_T (\overline{K/T} \times \mathcal{Y})$, and $\phi^* : \mathbf{K}_K(\mathbf{T}_K\mathcal{U}') \to \mathbf{K}_K(\mathbf{T}_K\mathcal{U})$ being the induced isomorphism. Then one consider the inclusion $i : T \hookrightarrow K$ which induces an isomorphism $i_* : \mathbf{K}_T(\mathbf{T}_T(\overline{K/T} \times \mathcal{Y})) \to \mathbf{K}_K(\mathbf{T}_K\mathcal{U}')$ (see [1, 33]). Let $j : \mathcal{Y} \hookrightarrow \overline{K/T} \times \mathcal{Y}$ be the T-invariant inclusion map defined by $j(y) := (\bar{e}, y)$. We have then a pushforward map $j_! : \mathbf{K}_T(\mathbf{T}_T\mathcal{Y}) \to \mathbf{K}_T(\mathbf{T}_T(\overline{K/T} \times \mathcal{Y}))$. Finally we have produced a map $\Theta := \phi^* \circ i_* \circ j_!$ from $\mathbf{K}_T(\mathbf{T}_T\mathcal{Y})$ to $\mathbf{K}_K(\mathbf{T}_K\mathcal{U})$, such that $\mathrm{Index}_{\mathcal{U}}^K(\Theta(\sigma)) = \mathrm{Ind}_T^K(\mathrm{Index}_{\mathcal{Y}}^T(\sigma))$ for every $\sigma \in \mathbf{K}_T(\mathbf{T}_T\mathcal{Y})$.

Proposition 4.11 is an immediate consequence of the following

Lemma 4.13. We have the equality

$$\Theta\left(\operatorname{S-Thom}_{T}^{\Phi-\tilde{\mu}}(\mathcal{Y})\right) = \operatorname{Thom}_{K}^{\Phi_{\tilde{\mu}}}(\mathcal{U}).$$

Proof: Let \mathcal{S} be the bundle of spinors on $K \times_T \mathcal{Y}$: $\mathcal{S} = P \times_{\operatorname{Spin}_{2k}^c} \Delta_{2k}$, where $P \to P_{\operatorname{SO}}(\mathbf{T}(K \times_T \mathcal{Y})) \times P_{\operatorname{U}}(\mathbb{L})$ is the Spin^c structure induced by the complex structure. By Proposition 4.9, we have the reductions

$$(4.40) \qquad \qquad P_{SO}(\mathbf{T}\mathcal{Y}) \times U(\mathfrak{k}/\mathfrak{t}) \times P_{U}(\mathbb{L}|_{\mathcal{Y}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P|_{\mathcal{Y}} \longrightarrow P_{SO}(\mathbf{T}\mathcal{Y} \oplus [\mathfrak{k}/\mathfrak{t}]) \times P_{U}(\mathbb{L}|_{\mathcal{Y}})$$

$$\downarrow \qquad \qquad \downarrow$$

$$P \longrightarrow P_{SO}(\mathbf{T}(K \times_{T} \mathcal{Y})) \times P_{U}(\mathbb{L}) .$$

Here Q/U_l is the induced Spin^c-structure on \mathcal{Y} . Let us denote $p: \mathbf{T}(K \times_T \mathcal{Y}) \to K \times_T \mathcal{Y}$, $p_{\mathcal{Y}}: \mathbf{T}\mathcal{Y} \to \mathcal{Y}$ and $p_{K/T}: \mathbf{T}(K/T) \to K/T$ the canonical projections. Using (4.40), we see that

$$p^*\mathcal{S} = (K \times_T p_{\mathcal{V}}^* \mathcal{S}(\mathcal{Y})) \otimes p_{K/T}^* \wedge_{\mathbb{C}} \mathbf{T}(K/T) ,$$

where $\mathcal{S}(\mathcal{Y})$ is the spinor bundle on \mathcal{Y} . Hence we get the decomposition

$$S-Thom_K(K \times_T \mathcal{Y}) = Thom_K(K/T) \odot K \times_T S-Thom_T(\mathcal{Y})$$
.

Let $\Phi'_{\tilde{\mu}} := \Phi_{\tilde{\mu}} \circ \phi^{-1}$ be the moment map on \mathcal{U}' , and let \mathcal{H}' be the Hamiltonian vector field of $\parallel \Phi'_{\tilde{\mu}} \parallel$. The transversally elliptic symbol Thom $_{K}^{\Phi_{\tilde{\mu}}}(\mathcal{U})$ is equal to

$$\left[\operatorname{Thom}_K(K/T)\odot\operatorname{Thom}_K(\overline{K/T})\odot K\times_T\operatorname{S-Thom}_T(\mathcal{Y})\right]_{\text{pushed by }\mathcal{H}^{\check{\mu}}}\ ,$$

hence $\sigma_1 := (\phi^{-1})^* \operatorname{Thom}_K^{\Phi_{\tilde{\mu}}}(\mathcal{U})$ is equal to

$$\left[\operatorname{Thom}_K(K/T)\odot K\times_T\left(\operatorname{Thom}_T(\overline{K/T})\odot\operatorname{S-Thom}_T(\mathcal{Y})\right)\right]_{\text{pushed by }\mathcal{H}'}.$$

Using the decomposition $\mathbf{T}\mathcal{U}' \simeq K \times_T (\mathfrak{k}/\mathfrak{t} \oplus K \times_T (\overline{\mathfrak{k}/\mathfrak{t}}) \oplus \mathbf{T}\mathcal{Y})$, we have $\mathcal{H}'(m) = pr_{\mathfrak{k}/\mathfrak{t}}(h\tilde{\mu}) + R(m) + \mathcal{H}_{\tilde{\mu}}(y) + S(m)$ for $m = [k; [h], y] \in \mathcal{U}'$, where $R(m) \in \overline{\mathfrak{k}/\mathfrak{t}}$ and $R(m) \in \mathcal{T}_y \mathcal{Y}$ vanishes when $m \in K \times_T (\{\bar{e}\} \times \mathcal{Y})$, i.e. when $[h] = \bar{e}$. Here $\mathcal{H}_{\tilde{\mu}}$ is the Hamiltonian vector field of the function $\frac{1}{2} \parallel \Phi - \tilde{\mu} \parallel^2 : \mathcal{Y} \to \mathbb{R}$.

The transversally elliptic symbol σ_1 is equal to the exterior product

$$\sigma_1(m,\xi_1+\xi_2+v)=\mathbf{c}(\xi_1-pr_{\mathfrak{k}/\mathfrak{t}}(h\tilde{\mu}))\odot\mathbf{c}(\xi_2-R(m))\odot\mathbf{c}(v-\mathcal{H}_{\tilde{\mu}}-S(m))\;,$$

with $\xi_1 \in \mathfrak{k}/\mathfrak{t}$, $\xi_2 \in \overline{\mathfrak{k}/\mathfrak{t}}$, and $v \in \mathbf{T}\mathcal{Y}$.

Now we simplify the symbol σ_1 whithout changing its K-theoretic class. Since $\operatorname{Char}(\sigma_1) \cap \mathbf{T}_K \mathcal{U}' = K \times_T (\{\bar{e}\} \times \mathcal{Y})$, we transform σ_1 through the K-invariant diffeomorphism $h = e^X$ from a neighborhood of 0 in $\overline{\mathfrak{t}/\mathfrak{t}}$ to a neighborhood of \bar{e} in $\overline{K/T}$. That gives $\sigma_2 \in K_K(\mathbf{T}_K(K \times_T (\mathfrak{t}/\mathfrak{t} \times \mathcal{Y})))$ defined by

$$\sigma_2([k;X,y],\xi_1+\xi_2+v) = \mathbf{c}(\xi_1-pr_{\mathfrak{k}/\mathfrak{t}}(e^X\tilde{\mu}))\odot\mathbf{c}(\xi_2-R(m))\odot\mathbf{c}(v-\mathcal{H}_{\tilde{\mu}}-S(m)).$$

Now trivial homotopies link σ_2 with the symbol σ_3 , where we have removed the terms R(m) and S(m), and where we have replaced $pr_{\ell/\ell}(e^X\tilde{\mu}) = [X,\tilde{\mu}] + o([X,\tilde{\mu}])$ by the term $[X,\tilde{\mu}]$:

$$\sigma_3([k,X,y],\xi_1+\xi_2+v)=\mathbf{c}(\xi_1-[X,\tilde{\mu}])\odot\mathbf{c}(\xi_2)\odot\mathbf{c}(v-\mathcal{H}_{\tilde{\mu}}).$$

Now, we get $\sigma_3 = i_*(\sigma_4)$ where the symbol $\sigma_4 \in K_T(\mathbf{T}_T(\mathfrak{k}/\mathfrak{t} \times \mathcal{Y}))$ is defined by

$$\sigma_4(X, y; \xi_2 + v) = \mathbf{c}(-[X, \tilde{\mu}]) \odot \mathbf{c}(\xi_2) \odot \mathbf{c}(v - \mathcal{H}_{\tilde{\mu}})$$
.

So σ_4 is equal to the exterior product of $(y, v) \to \mathbf{c}(v - \mathcal{H}_a^{\tau})$, which is S-Thom $T^{\Phi - \tilde{\mu}}(\mathcal{Y})$, with the transversally elliptic symbol on $\mathfrak{k}/\mathfrak{t}$: $(X, \xi_2) \to \mathbf{c}(-[X, \tilde{\mu}]) \odot \mathbf{c}(\xi_2)$. But the K-theoretic class of this former symbol is equal to $k_!(\mathbb{C})$, where $k: \{0\} \hookrightarrow \mathfrak{k}/\mathfrak{t}$ (see subsection 5.1 in [33]). This shows that

$$\sigma_4 = k_!(\mathbb{C}) \odot \operatorname{S-Thom}_T^{\Phi - \tilde{\mu}}(\mathcal{Y}) = j_!(\operatorname{S-Thom}_T^{\Phi - \tilde{\mu}}(\mathcal{Y})) \ .$$

¹⁸A small computation shows that $R(m) = pr_{\mathfrak{k}/\mathfrak{t}}(h^{-1}(pr_{\mathfrak{t}}(h\tilde{\mu}) - \Phi(y)))$, and $S(m) = [\tilde{\mu} - pr_{\mathfrak{t}}(h\tilde{\mu})]_{\mathcal{Y}}(y)$.

4.5. **Proof of Proposition 4.12.** In this subsection, $\tilde{\mu} = \mu + \rho_c$ is fixed once for all, r > 0 is the smallest non zero critical value of $\|\Phi - \tilde{\mu}\|^2$, and we take $\mathcal{Y} = \Phi^{-1}\{\xi \in \mathrm{Aff}\Delta, \|\xi - \tilde{\mu}\| < \frac{r}{2}\}.$

For $\xi \in \operatorname{Aff}\Delta$ close enough to $\tilde{\mu}$, we consider $\xi_t = t\xi + (1-t)\tilde{\mu}$, $0 \leq t \leq 1$. If one shows that there exists a compact subset \mathcal{K} of \mathcal{Y} such that $\operatorname{Cr}(\|\Phi - \xi_t\|^2) \cap \mathcal{Y} \subset \mathcal{K}$, the familly S-Thom $_T^{\Phi - \xi_t}(\mathcal{Y})$, $0 \leq t \leq 1$, is an homotopy of transversally elliptic symbols between S-Thom $_T^{\Phi - \tilde{\mu}}(\mathcal{Y})$ and S-Thom $_T^{\Phi - \xi}(\mathcal{Y})$. This shows then that $\mathcal{Q}_{\Phi - \tilde{\mu}}^T(\mathcal{Y}, -)$ and $\mathcal{Q}_{\Phi - \xi}^T(\mathcal{Y}, -)$ are equal.

We describe now $\operatorname{Cr}(\|\Phi - \xi_t\|^2) \cap \mathcal{Y}$ using a parametrization introduced in [30][Section 6]. Let $\mathcal{B}_{\tilde{\mu}}$ be the collection of affine subspaces of \mathfrak{t}^* generated by the image under Φ of submanifolds \mathcal{Z} of the following type: \mathcal{Z} is a connected component of \mathcal{Y}^H which intersects $\Phi^{-1}(\tilde{\mu})$, H being a subgroup of T. The set $\mathcal{B}_{\tilde{\mu}}$ is finite since $\Phi^{-1}(\tilde{\mu})$ is compact and thus has a finite number of stabilizers for the T action. Note that $\mathcal{B}_{\tilde{\mu}}$ is reduced to $\operatorname{Aff}\Delta$ if $\tilde{\mu}$ is a generic quasi regular value of Φ . For $A \in \mathcal{B}_{\tilde{\mu}}$, we denote T_A the subtorus of T with Lie algebra equal to the orthogonal (for the duality) of A, and $\beta(-,A)$ denotes the orthogonal projection on A.

Like in [31], we see that

(4.41)
$$\operatorname{Cr}(\|\Phi - \xi\|^2) \cap \mathcal{Y} = \cup_{A \in \mathcal{B}_{\bar{\mu}}} \left(\mathcal{Y}^{T_A} \cap \Phi^{-1}(\beta(\xi, A)) \right)$$

if $\parallel \xi - \tilde{\mu} \parallel < \frac{r}{2}$. If we take $\mathcal{K} := \{ \xi \in \text{Aff}\Delta, \parallel \xi - \tilde{\mu} \parallel \leq \frac{r}{3} \}$, we have $\text{Cr}(\parallel \Phi - \xi \parallel^2) \cap \mathcal{Y} \subset \mathcal{K}$ for $\parallel \xi - \tilde{\mu} \parallel \leq \frac{r}{3}$. Thus point i) is proved.

Now we fix $\xi \in \text{Aff}\Delta$ close enough to $\tilde{\mu}$, and we parametrize $\text{Cr}(\|\Phi-\xi\|^2) \cap \mathcal{Y}$ by $\mathcal{B} = \{\beta(\xi, A) - \xi \mid A \in \mathcal{B}_{\tilde{\mu}}\}$ so that $\text{Cr}(\|\Phi-\xi\|^2) \cap \mathcal{Y} = \cup_{\beta \in \mathcal{B}} (\mathcal{Y}^{\beta} \cap \Phi^{-1}(\beta+\xi))$. If $\mathcal{Q}_{\beta}^{T}(\mathcal{Y}, -)$ denotes the quantization map localized near $\mathcal{Y}^{\beta} \cap \Phi^{-1}(\beta+\xi)$, the excision property tells us, like in 3.16, that

$$Q_{\Phi-\xi}^{T}(\mathcal{Y},-) = \sum_{\beta \in \mathcal{B}} Q_{\beta}^{T}(\mathcal{Y},-)$$
.

Note that $0 \in \mathcal{B}$ if and only if $\Phi^{-1}(\xi) \neq \emptyset$. Point ii) of Proposition 4.12 will follow from the following results.

Lemma 4.14. If ξ is a generic quasi regular value of Φ , we have $[Q_0^T(\mathcal{Y}, \tilde{L}|_{\mathcal{Y}} \otimes \mathbb{C}_{-\mu})]^T = Q(M_{\xi}, o(M_{\xi}))$.

Lemma 4.15. Let β be a non-zero element of \mathcal{B} . Then $[\mathcal{Q}_{\beta}^{T}(\mathcal{Y}, \tilde{L}|_{\mathcal{Y}} \otimes \mathbb{C}_{-\mu})]^{T} = 0$. Hence $[\mathcal{Q}_{\Phi-\xi}^{T}(\mathcal{Y}, \tilde{L}|_{\mathcal{Y}} \otimes \mathbb{C}_{-\mu})]^{T} = 0$, if $\Phi^{-1}(\xi) = \emptyset$.

Other versions of Lemmas 4.14 and 4.15 are already known: in the Spin-case for an S^1 -action by Vergne [38], and by the author [33] when the Spin^c-structure comes from an almost complex structure.

We review briefly the arguments, as they work in the same way. We consider the Spin^c structure on $\mathcal V$ defined in Proposition 4.9, that we twist by the line bundle $\tilde L|_{\mathcal V}\otimes\mathbb C_{-\mu}$: it defines a Spin^c structure Q^μ on $\mathcal V$ with determinant line bundle $\mathbb L^\mu:=L_{2\omega}\otimes\mathbb C_{-2\tilde\mu}$. We consider then the symbol S-Thom $_{T,\mu}^{\Phi-\xi}(\mathcal V)$ constructed with Q^μ (see Def. 4.7). For $\beta\in\mathcal B$, the term $Q^{\mathcal F}_{\beta}(\mathcal Y,\tilde L|_{\mathcal V}\otimes\mathbb C_{-\mu})$ is by definition the T-index of S-Thom $_{T,\mu}^{\Phi-\xi}(\mathcal Y)|_{\mathcal U^\beta}$, where $\mathcal U^\beta$ is a sufficiently small open neighborhood of $\mathcal V^\beta\cap\Phi^{-1}(\beta+\xi)$ in $\mathcal V$.

Proof of Lemma 4.14: A neighborhood \mathcal{U}^0 of $\mathcal{Z} := \Phi^{-1}(\xi)$ is diffeomorphic to a neighborhood of \mathcal{Z} in $\mathcal{Z} \times \overrightarrow{\Delta}$, where $\Phi - \xi : \mathcal{Z} \times \overrightarrow{\Delta} \to \overrightarrow{\Delta}$ is the projection to the second factor. We still denote \mathcal{Q}^{μ} the Spin^c-structure on $\mathcal{Z} \times \overrightarrow{\Delta}$ equal¹⁹ to $pr^*(\mathcal{Q}^{\mu}|_{\mathcal{Z}})$. We easily show that $\mathcal{Q}^{\mathcal{T}}_{\beta}(\mathcal{Y}, \tilde{L}|_{\mathcal{Y}} \otimes \mathbb{C}_{-\mu})$ is equal to the T-index of $\sigma_{\mathcal{Z}} = \text{S-Thom}_{T,\mu}^{\Phi-\xi}(\mathcal{Z} \times \overrightarrow{\Delta})$. Let \mathcal{Q}'' be the reduction of $\mathcal{Q}^{\mu}|_{\mathcal{Z}}$ introduced in (4.36). Since $\mathcal{Q}^{\mu}|_{\mathcal{Z}} = \text{Spin}_{2k}^{c} \times_{(\text{Spin}_{2k'}^{c} \times \text{U}_{2l'})} \mathcal{Q}''$, the bundle of spinors \mathcal{S} over $\mathcal{Z} \times \overrightarrow{\Delta}$ decomposes as

$$S = pr^* \Big(\pi^* S(M_{\xi}) \otimes \mathcal{Z} \times \wedge (\mathfrak{t}/\mathfrak{t}_{\Delta} \otimes \mathbb{C}) \Big) .$$

Here $\mathcal{S}(M_{\xi})$ is the bundle of spinors on M_{ξ} induces by the Spin^c-structure $\mathbb{Q}''/\mathbb{U}_{2l'}$, and $\pi: \mathcal{Z} \to M_{\xi}$ is the quotient map. In the trivial bundle $\mathcal{Z} \times (\mathfrak{t}/\mathfrak{t}_{\Delta} \otimes \mathbb{C})$, we have identified $\mathcal{Z} \times (\mathfrak{t}/\mathfrak{t}_{\Delta} \otimes i\mathbb{R})$ with the subspace of $\mathbf{T}\mathcal{Z}$ formed by the vector fields generated by the infinitesimal action of $\mathfrak{t}/\mathfrak{t}_{\Delta}$, and $\mathcal{Z} \times (\mathfrak{t}/\mathfrak{t}_{\Delta} \otimes \mathbb{R})$ with $\mathcal{Z} \times \overrightarrow{\Delta} \subset \mathbf{T}(\mathcal{Z} \times \overrightarrow{\Delta})|_{\mathcal{Z}}$. For $(z,f) \in \mathcal{Z} \times \overrightarrow{\Delta}$, let us decompose $v \in \mathbf{T}_{(z,f)}(\mathcal{Z} \times \overrightarrow{\Delta})$ into $v = v_1 + X + iY$, where $v_1 \in \pi^*(\mathbf{T}M_{\xi})$, and $X + iY \in \mathfrak{t}/\mathfrak{t}_{\Delta} \otimes \mathbb{C}$. The map $\sigma_{\mathcal{Z}}(z,f;v_1+X+iY)$ acts on $\mathcal{S}(M_{\xi})_z \otimes \wedge (\mathfrak{t}/\mathfrak{t}_{\Delta} \otimes \mathbb{C})$ as the product

$$\mathbf{c}_z(v_1)\odot\mathbf{c}(X+i(Y-f))$$
,

which is homotopic²⁰ to the transversally elliptic symbol

$$\mathbf{c}_z(v_1) \odot \mathbf{c}(f+iX)$$

So we have proved that $\sigma_{\mathcal{Z}} = j_! \circ \pi^*(\operatorname{S-Thom}(M_{\xi}))$, where $j_! : K_T(\mathbf{T}_T \mathcal{Z}) \to K_T(\mathbf{T}_T(\mathcal{Z} \times \overrightarrow{\Delta}))$ is induced by the inclusion $j : \mathcal{Z} \hookrightarrow \mathcal{Z} \times \overrightarrow{\Delta}$. The last equality finishes the proof (see [33][Section 6.1]).

Proof of Lemma 4.15: The equality $[\mathcal{Q}_{\beta}^{T}(\mathcal{Y}, \tilde{L}|_{\mathcal{Y}} \otimes \mathbb{C}_{-\mu})]^{T} = 0$ comes from a localization formula on the submanifold \mathcal{Y}^{β} for the map $\mathcal{Q}_{\beta}^{T}(\mathcal{Y}, -)$ (see [33, 38]). The normal bundle \mathcal{N} of \mathcal{Y}^{β} in \mathcal{Y} carries a complex structure J on the fibers such that each \mathbb{T}_{β} -weight α on (\mathcal{N}, J) satisfies $(\alpha, \beta) > 0$. The principal bundle \mathbb{Q}^{μ} , when restricted to \mathcal{Y}^{β} admits the reduction

Hence $Q^{\beta} := Q'/U(l)$ is a Spin^c -structure on \mathcal{Y}^{β} with determinant line bundle equal to $\mathbb{L}^{\beta} := \mathbb{L}^{\mu}|_{\mathcal{Y}^{\beta}} \otimes (\det \mathcal{N})^{-1} = L_{2\omega}|_{\mathcal{Y}^{\beta}} \otimes \mathbb{C}_{-2\tilde{\mu}} \otimes (\det \mathcal{N})^{-1}$. Let $\mathcal{Q}^T_{\beta}(\mathcal{Y}^{\beta}, -)$ be the quantization map defined by Q^{β} and localized near $\Phi^{-1}(\beta + \xi) \cap \mathcal{Y}^{\beta}$ by $\Phi - \xi$. Following the argument of [33][Section 6] one obtains

$$\mathcal{Q}_{\beta}^{T}(\mathcal{Y}, \tilde{L}|_{\mathcal{Y}} \otimes \mathbb{C}_{-\mu}) = (-1)^{l} \sum_{k \in \mathbb{N}} \mathcal{Q}_{\beta}^{T}(\mathcal{Y}^{\beta}, \det \mathcal{N} \otimes S^{k}(\mathcal{N}))$$

where $S^k(\mathcal{N})$ is the k-th symmetric product of \mathcal{N} , and $l = \operatorname{rank}_{\mathbb{C}} \mathcal{N}$. Thus, it is sufficient to prove that $[\mathcal{Q}^T_{\beta}(\mathcal{Y}^{\beta}, \det \mathcal{N} \otimes S^k(\mathcal{N}))]^T = 0$ for every $k \in \mathbb{N}$. For this

¹⁹Here $pr: \mathcal{Z} \times \overrightarrow{\Delta} \to \mathcal{Z}$ is the projection to the first factor.

²⁰See [33][Section 6.1].

purpose, we use Lemma 4.8. Let α be the \mathbb{T}_{β} -weight on det \mathcal{N} . By the Kostant formula, the \mathbb{T}_{β} -weight on $L_{2\omega}|_{\mathcal{Y}^{\beta}}$ is equal to $\beta + \xi$. Hence any \mathbb{T}_{β} -weight γ on det $\mathcal{N} \otimes S^{k}(\mathcal{N}) \otimes (\mathbb{L}^{\beta})^{1/2}$ is of the form

$$\gamma = \beta + \xi - \tilde{\mu} + \frac{1}{2}\alpha + \delta$$

where δ is a \mathbb{T}_{β} -weight on $S^k(\mathcal{N})$. So $(\gamma, \beta) = (\beta + \xi - \tilde{\mu}, \beta) + \frac{1}{2}(\alpha, \beta) + (\delta, \beta)$. But the \mathbb{T}_{β} -weights on \mathcal{N} are 'positive' for β , so $(\alpha, \beta) > 0$ and $(\delta, \beta) \geq 0$. On the other hand, $\beta + \xi = \beta(\xi, A)$ is the orthogonal projection of ξ on some affine subspace $A \subset \mathfrak{t}_+^*$ which contains $\tilde{\mu}$: hence $(\beta + \xi - \tilde{\mu}, \beta) = 0$. Finally we have proved that $(\gamma, \beta) > 0$. \square

5. QUANTIZATION AND THE DISCRETE SERIES

In this section we follow closely the notation of [12]. Let G be a connected, real, semisimple Lie group with finite center. By definition, the *discrete series* of G is the set of isomorphism classes of irreducible, square integrable, unitary representations of G.

Let K be a maximal compact subgroup of G, and T be a maximal torus in K. Harish-Chandra has shown that G has a discrete series if and only if T is a Cartan subgroup of G [19]. For the remainder of this section, we may therefore assume that T is a Cartan subgroup of G. The discrete series are parametrized by a subset \widehat{G}_d in the dual \mathfrak{t}^* of the Lie algebra of T. For any $\lambda \in \widehat{G}_d$, Harish-Chandra has associated an invariant eigendistribution on G, denoted Θ_λ , which is shown to be the global trace of an irreducible, square integrable, unitary representations of G.

On the other hand one can associate to $\lambda \in \widehat{G}_d$, the regular coadjoint orbit $M := G \cdot \lambda$. It is a symplectic manifold with a Hamiltonian action of K. Since the vectors X_M , $X \in \mathfrak{g}$, span the tangent space at every $\xi \in M$, the symplectic 2-form is determined by

$$\omega(X_M, Y_M)_{\xi} = \langle \xi, [X, Y] \rangle$$
.

The corresponding moment map $\Phi: M \to \mathfrak{k}^*$ for the K-action is the composition of the inclusion $i: M \hookrightarrow \mathfrak{g}^*$ with the projection $\mathfrak{g}^* \to \mathfrak{k}^*$. The vector λ determines a choice \mathfrak{R}^+ of positive roots for the T-action on $\mathfrak{g}_{\mathbb{C}}$. We recall now how the choice of \mathfrak{R}^+ determines a complex structure on M. The decomposition $\mathfrak{g}_{\mathbb{C}} = \mathfrak{t}_{\mathbb{C}} \oplus \sum_{\alpha \in \mathfrak{R}} \mathfrak{g}_{\mathbb{C},\alpha}$ gives the following T-equivariant decomposition of the complexified tangent space of M at λ :

$$\mathbf{T}_{\lambda} M \otimes \mathbb{C} = \sum_{\alpha \in \mathfrak{R}} \mathfrak{g}_{\mathbb{C}, \alpha} = V \oplus \overline{V} ,$$

with $V = \sum_{\alpha \in \mathfrak{R}^+} \mathfrak{g}_{\mathbb{C},\alpha}$. We have then a T-equivariant isomorphism $\mathcal{I}: \mathbf{T}_\lambda M \to V$ equal to the composition of the inclusion $\mathbf{T}_\lambda M \hookrightarrow \mathbf{T}_\lambda M \otimes \mathbb{C}$ with the projection $V \oplus \overline{V} \to V$. The T-equivariant complex structure J_λ on $\mathbf{T}_\lambda M$ is determined by the relation $\mathcal{I}(J_\lambda v) = \imath \mathcal{I}(v)$. Hence, the set of real infinitesimal weights for the T-action on $(\mathbf{T}_\lambda M, J_\lambda)$ is \mathfrak{R}^+ . Since M is an homogeneous space, J_λ integrates into an almost complex structure (which is in fact integrable). J on M. Using the isomorphism $M \simeq G/T$, the canonical line bundle $\kappa = \det_{\mathbb{C}}(\mathbf{T}M)^{-1}$ is $\kappa = G \times_T \mathbb{C}_{2\rho}$ where ρ is halph the sum of the roots of \mathfrak{R}_+ .

²¹For $v \in \mathfrak{g}_{\mathbb{C},\alpha}$, $\exp(X).v = e^{i\langle \alpha, X \rangle} v$ for any $X \in \mathfrak{t}$.

If $\lambda \in \widehat{G}_d$, $\lambda - \rho$ is a weight and

(5.43)
$$\tilde{L} := G \times_T \mathbb{C}_{\lambda - \rho} \to G/T$$

is a κ -prequantum line bundle over (M, ω, J) . We have shown in [32], that $\operatorname{Cr}(\|\Phi\|^2)$ is compact, equal to the K-orbit $K \cdot \lambda$. The quantization map $RR_{\Phi}^{\kappa}(M, -)$ is then well defined. The main result of this section is the following

Theorem 5.1. We have the following equality of tempered distribution on K

$$\Theta_{\lambda}|_{K} = (-1)^{\frac{\dim(G/K)}{2}} RR_{\Phi}^{K}(G \cdot \lambda, \tilde{L}) ,$$

where $\Theta_{\lambda}|_{K}$ is the restriction of the eigendistribution Θ_{λ} to the subgroup K.

With Theorem 5.1 in hand we can exploit the result of Theorem 4.1 to compute the K-multiplicities of $\Theta_{\lambda}|_{K}$ in term of reduced spaces. Let us fix some notation. For every $\mu \in \Lambda_{+}^{*}$, we denote $m_{\mu}(\lambda) \in \mathbb{N}$ the multiplicity²² of $\Theta_{\lambda}|_{K}$ relatively to the K-irreducible representation with highest weigt μ :

(5.44)
$$\Theta_{\lambda}|_{K} = \sum_{\mu \in \Lambda_{+}^{*}} m_{\mu}(\lambda) \chi_{\mu}^{K} \quad \text{in} \quad R^{-\infty}(K) .$$

The moment map $\Phi: G \cdot \lambda \to \mathfrak{k}^*$ is *proper* since the coadjoint orbit is closed [32]. We show in Lemma 5.5 that the moment polyhedral subset $\Delta = \Phi(G \cdot \lambda) \cap \mathfrak{k}^*_+$ is of dimension dim T. Thus the notions of *generic quasi-regular values* and *regular values* coincide: they concern the elements $\xi \in \Delta$ such that $\Phi^{-1}(\xi)$ is a smooth submanifold with a locally free action of T. We have shown in subsection 4.3 how to define the quantity $Q((G \cdot \lambda)_{\mu+\rho_c}) \in \mathbb{Z}$ as the index of a Spin^c Dirac operator on $\Phi^{-1}(\xi)/T$, where ξ is a regular value of Φ close enough to $\mu + \rho_c$.

Proposition 5.2. For every $\mu \in \Lambda_+^*$, we have

$$m_{\mu}(\lambda) = \mathcal{Q}((G \cdot \lambda)_{\mu + \rho_c})$$
,

in particular $m_{\mu}(\lambda) = 0$ if $\mu + \rho_c$ does not belong to the relative interior of the moment polyhedral subset Δ .

Proof: A small check of orientations shows that $\varepsilon=(-1)^{\frac{\dim(G/K)}{2}}$. By Theorem 4.1, we have to show that $(G\cdot\lambda,\Phi)$ satisfies Assumption 3.4, and that the infinitesimal K-stabilizers are abelian. The first point will be treated in subsection 5.3. The second point is obvious since $M\simeq G/T$: all the G-stabilizers are conjugate to T, so all the K-stabilizers are abelian. \square

Let us fix some notation. Let $\mathfrak{R} \subset \mathfrak{R}_c \subset \Lambda^*$ be respectively the set of (real) roots for the action of T on $\mathfrak{g}_{\mathbb{C}}$ and $\mathfrak{k}_{\mathbb{C}}$. We choose a system of positive roots \mathfrak{R}_c^+ for \mathfrak{R}_c , we denote \mathfrak{t}_+^* the corresponding Weyl chamber, and we let ρ_c be half the sum of the elements of \mathfrak{R}_c^+ . We denote by B the Killing form on \mathfrak{g} . It induces on \mathfrak{t} , and then on \mathfrak{t}^* , a scalar product (denoted (-,-)). An element $\lambda \in \mathfrak{t}^*$ is called $\operatorname{regular}$ if $(\lambda,\alpha) \neq 0$ for every $\alpha \in \mathfrak{R}$. Let \mathfrak{R}^+ be a system of positive roots for \mathfrak{R} , and let ρ be half the sum of elements of \mathfrak{R}^+ . The set $\Lambda^* + \rho$ does not depend of the choice of \mathfrak{R}^+ : we denote it by Λ_{ρ}^* .

 $^{^{22}}$ See subsection 5.1.

The discrete series of G are parametrized by

$$\widehat{G}_d := \{ \lambda \in \mathfrak{t}^*, \lambda \text{ regular } \} \cap \Lambda_a^* \cap \mathfrak{t}_{\perp}^*$$

When G is compact (i.e. G = K), the set \widehat{G}_d equals $\Lambda_+^* + \rho_c$, and it parametrizes the set of irreducible representations of G.

5.1. K-multiplicities of the discrete series. In this section, we fix $\lambda \in \widehat{G}_d$. Let \mathfrak{R}^+ be the system of positive roots for \mathfrak{R} such that $(\lambda, \alpha) > 0$ for every $\alpha \in \mathfrak{R}^+$. Then $\mathfrak{R}_c^+ \subset \mathfrak{R}^+$, and $\rho = \frac{1}{2} \sum_{\alpha \in \mathfrak{R}^+} \alpha$ decomposes in $\rho = \rho_c + \rho_n$ where $\rho_n = \frac{1}{2} \sum_{\alpha \in \mathfrak{R}_n^+} \alpha$ and $\mathfrak{R}_n^+ = \mathfrak{R}^+ - \mathfrak{R}_c^+$. Let π_{λ} be the (equivalence class of) unitary, square integrable, irreducible G-

representation associated to λ , and let Θ_{λ} be its global character. This G-invariant distribution admits a restriction $\Theta_{\lambda}|_{K}$ to K which is equal to the global character of $\pi_{\lambda}|_{K}$ (see the Appendix in [13]). For every $\mu \in \Lambda_{+}^{*}$, the multiplicity of V_{μ} in $\pi_{\lambda}|_{K}$ is finite and denoted $m_{\mu}(\lambda)$. We have the following equality of distributions on $K: \Theta_{\lambda}|_{K} = \sum_{\mu \in \Lambda_{+}^{*}} m_{\mu}(\lambda) \chi_{\mu}^{K}$.

Let $\mathcal{P}: \Lambda^* \mapsto \mathbb{N}$ be the partition function associated to the set \mathfrak{R}_n^+ : for $\mu \in \Lambda^*$, $\mathcal{P}(\mu)$ is the number of distinct ways we can write $\mu = \sum_{\alpha \in \mathfrak{R}_n^+} n_\alpha \alpha$ with $n_\alpha \in \mathbb{N}$ for all α . The following Theorem is known as the Blattner formula and was first proved by Hecht and Schmid [20].

Theorem 5.3. For $\mu \in \Lambda_+^*$, we have

$$\mathbf{m}_{\mu}(\lambda) = \sum_{w \in W} (-1)^{w} \mathcal{P}\left(w(\mu + \rho_{c}) - (\mu_{\lambda} + \rho_{c})\right) ,$$

where 23 $\mu_{\lambda} := \lambda - \rho_c + \rho_n$.

With Theorem 5.3 in hand, we can describe $\Theta_{\lambda}|_{K}$ through the holomorphic induction map $\operatorname{Hol}_{T}^{K}: R^{-\infty}(T) \to R^{-\infty}(K)$. Recall that $\operatorname{Hol}_{T}^{K}$ is characterized by the following properties: i) $\operatorname{Hol}_{T}^{K}(t^{\mu}) = \chi_{\mu}^{K}$ for every dominant weight $\mu \in \Lambda_{+}^{*}$; ii) $\operatorname{Hol}_{_T}^{^K}(t^{w\circ\mu})=(-1)^w\operatorname{Hol}_{_T}^{^K}(t^\mu)$ for every $w\in W$ and $\mu\in\Lambda^*$; iii) $\operatorname{Hol}_{_T}^{^K}(t^\mu)=0$ if $W\circ\mu\cap\Lambda_+^*=\emptyset$. Using these properties we have

(5.46)
$$\sum_{\mu \in \Lambda^*} \mathcal{R}(\mu) \operatorname{Hol}_{T}^{K}(t^{\mu}) = \sum_{\mu \in \Lambda^*_{\perp}} \left[\sum_{w \in W} (-1)^{w} \mathcal{R}(w \circ \mu) \right] \chi_{\mu}^{K},$$

for every map $\mathcal{R}: \Lambda^* \to \mathbb{Z}$.

For a weight $\alpha \in \Lambda^*$, with $(\lambda, \alpha) \neq 0$, let us denote $[1 - t^{\alpha}]_{\lambda}^{-1} \in R^{-\infty}(T)$ the oriented inverse of $(1 - t^{\alpha})$: $[1 - t^{\alpha}]_{\lambda}^{-1} = \sum_{k \in \mathbb{N}} t^{k\alpha}$ if $(\lambda, \alpha) > 0$, and $[1 - t^{\alpha}]_{\lambda}^{-1} = -t^{-\alpha} \sum_{k \in \mathbb{N}} t^{-k\alpha}$ if $(\lambda, \alpha) < 0$. Let $A = \{\alpha_1, \dots, \alpha_l\}$ be a set of weights with $(\lambda, \alpha_i) \neq 0, \forall i.$ We denote $A^+ = \{\varepsilon_1 \alpha_1, \cdots, \varepsilon_l \alpha_l\}$ the corresponding set of polarized weights: $\varepsilon_i = \pm 1$ and $(\lambda, \varepsilon_i \alpha_i) > 0$ for all i. The product $\Pi_{\alpha \in A}[1 - t^{\alpha}]_{\lambda}^{-1}$ is well defined (denoted $[\Pi_{\alpha\in A}(1-t^{\alpha})]_{\lambda}^{-1}$) and a small computation shows that

(5.47)
$$\left[\Pi_{\alpha \in A} (1 - t^{\alpha}) \right]_{\lambda}^{-1} = (-1)^{r} t^{-\gamma} \left[\Pi_{\alpha \in A^{+}} (1 - t^{\alpha}) \right]_{\lambda}^{-1}$$

$$= (-1)^{r} t^{-\gamma} \sum_{\mu \in \Lambda^{*}} \mathcal{P}_{A^{+}} (\mu) t^{\mu} .$$

²³We shall note that $\mu_{\lambda} \in \Lambda_{+}^{*}$ (see [12], section 5)

Here $\mathcal{P}_{A^+}: \Lambda^* \to \mathbb{N}$ is the partition function associated to A^+ , $\gamma = \sum_{(\lambda,\alpha)<0} \alpha$, and $r = \sharp \{\alpha \in A, \ (\lambda,\alpha)<0\}$. These notations are compatible with those we used in [33][Section 5]. If V is a complex T-vector space with $V^{\lambda} := \{v \in V, \ \lambda.v = 0\}$ reduced to 0, the element $\wedge_{\mathbb{C}}^{\bullet}V \in R(T)$ admits a polarized inverse $[\wedge_{\mathbb{C}}^{\bullet}V]_{\lambda}^{-1} = [\Pi_{\alpha \in \Re(V)}(1-t^{\alpha})]_{\lambda}^{-1}$ where $\Re(V)$ is the set of real infinitesimal T-weights on V.

Lemma 5.4. We have the following equality in $R^{-\infty}(K)$

$$\Theta_{\lambda}|_{K} = \operatorname{Hol}_{T}^{K} \left(t^{\mu_{\lambda}} \left[\prod_{\alpha \in \mathfrak{R}_{n}^{+}} (1 - t^{\alpha}) \right]_{\lambda}^{-1} \right).$$

Proof: Let Θ ∈ $R^{-\infty}(K)$ be the RHS in the equality of the Lemma. From (5.47), we have Θ = $\sum_{\mu \in \Lambda^*} \mathcal{P}(\mu) \operatorname{Hol}_T^K(t^{\mu+\mu_{\lambda}}) = \sum_{\mu \in \Lambda^*} \mathcal{P}(\mu-\mu_{\lambda}) \operatorname{Hol}_T^K(t^{\mu})$. If we use now (5.46), we see that multiplicity of Θ relative to the highest weight $\mu \in \Lambda_+^*$ is $\sum_{w \in W} (-1)^w \mathcal{P}(w(\mu+\rho_c)-(\mu_{\lambda}+\rho_c))$. From Theorem 5.3, we conclude that Θ_λ|_K = Θ. □

5.2. **Proof of Theorem 5.1.** In Lemma 5.4 we have used the Blattner formula to write $\Theta_{\lambda}|_{K}$ in term of the holomorphic induction map Hol_{T} . Theorem 5.1 is then proved if one shows that $RR_{\Phi}^{K}(G \cdot \lambda, \tilde{L}) = (-1)^{r}\operatorname{Hol}_{T}^{K}(t^{\mu_{\lambda}}[\Pi_{\alpha \in \mathfrak{R}_{n}^{+}}(1 - t^{\alpha})]_{\lambda}^{-1})$, with $\mu_{\lambda} = \lambda - \rho_{c} + \rho_{n}$, and $r = \frac{1}{2}\dim(G/K)$. More generally, we show in this section that for any K-equivariant vector bundle $E \to G \cdot \lambda$

$$(5.48) RR_{\Phi}^{\kappa}(G \cdot \lambda, E) = (-1)^r \operatorname{Hol}_{\tau}^{\kappa} \left(E_{\lambda} \cdot t^{2\rho_n} \cdot \left[\Pi_{\alpha \in \mathfrak{R}_n^+} (1 - t^{\alpha}) \right]_{\lambda}^{-1} \right),$$

where $E_{\lambda} \in R(T)$ is the fiber of E at λ .

First we recall why $\operatorname{Cr}(\parallel \Phi \parallel^2) = K \cdot \lambda$ in $M := G \cdot \lambda$ (see [32] for the general case of closed coadjoint orbits). One can work with an adjoint orbit $M := G \cdot \tilde{\lambda}$ through the G-identification $\mathfrak{g}^* \simeq \mathfrak{g}$ given by the Killing form; then $\Phi : M \to \mathfrak{k}$ is just the projection on M to the (orthogonal) projection $\mathfrak{g} \to \mathfrak{k}$. Let \mathfrak{p} be the orthogonal complement of \mathfrak{k} in \mathfrak{g} . Every $m \in M$ decomposes in $m = x_m + y_m$, with $x_m = \Phi(m)$ and $y_m \in \mathfrak{p}$. The Hamiltonian vector field of $\frac{-1}{2} \parallel \Phi \parallel^2$ is, following (3.10), $\mathcal{H}_m = [x_m, m] = [x_m, y_m]$ then

$$\operatorname{Cr}(\|\Phi\|^2) = \{\mathcal{H} = 0\} = \{m \in M, [x_m, y_m] = 0\}.$$

Now, since $\tilde{\lambda}$ is elliptic, every $m \in M$ is also elliptic. If $m \in \operatorname{Cr}(\parallel \Phi \parallel^2)$, $[m, x_m] = 0$ and m, x_m are elliptic, hence $y_m = m - x_m$ is elliptic and so is equal to 0. Finally $\operatorname{Cr}(\parallel \Phi \parallel^2) = G \cdot \tilde{\lambda} \cap \mathfrak{k} = K \cdot \tilde{\lambda}$. \square

After Definition (3.2), the computation of $RR_{\Phi}^{K}(G \cdot \lambda, \tilde{L})$ holds on a small K-invariant neighborhood of $K \cdot \lambda$ of $G \cdot \lambda$. Our model for the computation will be

$$\tilde{M} := K \times_T \mathfrak{p}$$

endowed with the canonical K-action. The tangent bundle $\mathbf{T}\tilde{M}$ is isomorphic to $K \times_T (\mathfrak{r} \oplus \mathbf{T}\mathfrak{p})$ where \mathfrak{r} is the T-invariant complement of \mathfrak{t} in \mathfrak{k} . One has a symplectic form $\tilde{\Omega}$ on \tilde{M} defined by $\tilde{\Omega}_m(V,V')=\langle \lambda,[X,X']+[v,v']\rangle$. Here $m=[k,x]\in K\times_T\mathfrak{p}$, and V=[k,x;X+v],~X'=[k,x;X'+v'] are two tangent vectors²⁴. A small

 $^{^{24}}X, X' \in \mathfrak{r} \text{ and } v, v' \in \mathfrak{p}$

computation shows that the K-action on $(K \times_T \mathfrak{p}, \tilde{\Omega})$ is Hamiltonian with moment map $\tilde{\Phi} : \tilde{M} \to \mathfrak{k}^*$ defined by

$$\tilde{\Phi}([k,x]) = k \cdot \left(\lambda - \frac{1}{2} pr_{\mathfrak{t}^*}(\lambda \circ \operatorname{ad}(x) \circ \operatorname{ad}(x))\right) \ .$$

Here ad(x) is the adjoint action of x, and $pr_{t^*}: \mathfrak{g}^* \to \mathfrak{t}^*$ is the projection.

Lemma 5.5. There exists a K-hamiltonian isomorphism $\Upsilon: \mathcal{U} \simeq \tilde{\mathcal{U}}$, where \mathcal{U} is a K-invariant neighborhood of $K \cdot \lambda$ in M, and $\tilde{\mathcal{U}}$ is a K-invariant neighborhood of K/T in \tilde{M} . We can impose furthermore that the differential of Υ at λ is the identity²⁵.

Corollary 5.6. The cone $\lambda + \sum_{\alpha \in \mathfrak{R}_n^+} \mathbb{R}^+ \alpha$ coincides with $\Delta = (G \cdot \lambda) \cap \mathfrak{t}_+^*$ in a neighborhood of λ . The polyhedral set Δ is of dimension dim T.

Proof: The first assertion is an immediate consequence of Lemma 5.5 and of the convexity Theorem [26]. Let $X_o \in \mathfrak{t}$ such that $\xi(X_o) = 0$ for all $\overrightarrow{\Delta}$, that is $\alpha(X_o) = 0$ for all $\alpha \in \mathfrak{R}_n^+$: X_o commutes with all elements in \mathfrak{p} . Let \mathfrak{a} be a maximal abelian subalgebra of \mathfrak{p} , and let Σ be the set of weights for the adjoint action of \mathfrak{a} on $\mathfrak{g}: \mathfrak{g} = \sum_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}$, where $\mathfrak{g}_{\alpha} = \{Z \in \mathfrak{g}, [X, Z] = \alpha(X)Z \text{ for all } X \in \mathfrak{a}\}$. Since $[X_o, \mathfrak{a}] = 0$, $[X_o, \mathfrak{g}_{\alpha}] \subset \mathfrak{g}_{\alpha}$ for all $\alpha \in \Sigma$. But since $[X_o, \mathfrak{p}] = 0$, and $\mathfrak{g}_{\alpha} \cap \mathfrak{k} = 0$ for all $\alpha \neq 0$, we see that $[X_o, \mathfrak{g}_{\alpha}] = 0$ for all $\alpha \neq 0$. The subalgebra \mathfrak{g}_0 is abelian and contains X_o , thus $[X_o, \mathfrak{g}] = 0$: X_o belongs to the center $Z(\mathfrak{g})$ of \mathfrak{g} . Since G has a finite center, $Z(\mathfrak{g}) = 0$, and then $X_o = 0$. Finally we have proved that $\overrightarrow{\Delta}^{\perp} = 0$, or equivalently $\overrightarrow{\Delta} = \mathfrak{t}$. \square

Proof of Lemma 5.5: The symplectic cross-section Theorem [17] asserts that the pre-image $\mathcal{Y} := \Phi^{-1}(\operatorname{interior}(\mathfrak{t}_+^*))$ is a symplectic submanifold provided with an Hamiltonian action of T. The restriction $\Phi|_{\mathcal{Y}}$ is the moment map for the T-action on \mathcal{Y} . Moreover, the set $K.\mathcal{Y}$ is a K-invariant neighborhood of $K \cdot \lambda$ in M diffeomorphic to $K \times_T \mathcal{Y}$. Since λ is a fixed T-point of \mathcal{Y} , an Hamiltonian model for $(\mathcal{Y}, \omega|_{\mathcal{Y}}, \Phi|_{\mathcal{Y}})$ in a neighborhood of λ is $(\mathbf{T}_{\lambda}\mathcal{Y}, \omega_{\lambda}, \Phi_{\lambda})$ where ω_{λ} is the linear symplectic form of the tangent space $\mathbf{T}_{\lambda}M$ restricted to $\mathbf{T}_{\lambda}\mathcal{Y}$, and $\Phi_{\lambda} : \mathbf{T}_{\lambda}\mathcal{Y} \to \mathfrak{t}^*$ is the unique moment map with $\Phi_{\lambda}(0) = \lambda$. A small computation shows that $x \to \lambda \circ \operatorname{ad}(x)$ is an isomorphism from \mathfrak{p} to $\mathbf{T}_{\lambda}\mathcal{Y}$, and $\Phi_{\lambda}(x) = \lambda - \frac{1}{2}pr_{\mathfrak{t}^*}(\lambda \circ \operatorname{ad}(x) \circ \operatorname{ad}(x))$. \square

We still denoted J the almost complex structure transported on $\tilde{\mathcal{U}} \subset K \times_T \mathfrak{p}$ through Υ . Let $\pi: K \times_T \mathfrak{p} \to K/T$, and $\pi_{\tilde{\mathcal{U}}}: \tilde{\mathcal{U}} \to K/T$ be the fibering maps. Remark that for any equivariant vector bundle E over M, the vector bundle $(\Upsilon^{-1})^*(E|_{\mathcal{U}}) \to \tilde{\mathcal{U}}$ is isomorphic to $\pi_{\tilde{\mathcal{U}}}^*(K \times_T E_{\lambda})$, where $E_{\lambda} \in R(T)$ is the fiber of E at λ . At this stage, we have after Definition 3.2

$$(5.49) RR_{\Phi}^{K}(G \cdot \lambda, E) = \operatorname{Index}_{\tilde{\mathcal{U}}}^{K} \left(\operatorname{Thom}_{K}^{\tilde{\Phi}}(\tilde{\mathcal{U}}, J) \otimes \pi_{\tilde{\mathcal{U}}}^{*}(K \times_{T} E_{\lambda}) \right) .$$

We will now define a simpler representant of the class in $\mathbf{K}_K(\mathbf{T}_K\tilde{\mathcal{U}})$ defined by $\mathrm{Thom}_{\kappa}^{\tilde{\Phi}}(\tilde{\mathcal{U}},J)$ with the help of Lemma 3.6. Consider the map

$$\underline{\lambda}: K \times_T \mathfrak{p} \longrightarrow \mathfrak{k}^*$$

$$(k, x) \longmapsto k \cdot \lambda ,$$

²⁵Note that $\mathbf{T}_{\lambda}\mathcal{U}$ and $\mathbf{T}_{\lambda}\tilde{\mathcal{U}}$ are canonically isomorphic to $\mathfrak{r}\oplus\mathfrak{p}$.

and let $\underline{\lambda}_{\tilde{M}}$ be the vector field on \tilde{M} generated $\underline{\lambda}$ (see (3.10)). Note that $\underline{\lambda}_{\tilde{M}}$ never vanishes outside the zero section of $K \times_T \mathfrak{p}$. Let $(-,-)_{\tilde{M}}$ be the riemmanian metric on \tilde{M} defined by $(V,V')_{\tilde{M}}=(X,X')+(v,v')$ for V=[k,x;X+v], V=[k,x;X'+v']. A small computation shows that

$$(\tilde{\mathcal{H}}, \underline{\lambda}_{\tilde{M}})_{\tilde{M}} = \parallel \underline{\lambda}_{\tilde{M}} \parallel^2 + o(\parallel \underline{\lambda}_{\tilde{M}} \parallel^2)$$

in the neighborhood of the zero section in $K \times_T \mathfrak{p}$. Hence, if we take $\tilde{\mathcal{U}}$ small enough, $(\tilde{\mathcal{H}}, \underline{\lambda}_{\tilde{M}})_{\tilde{M}} > 0$ on $\tilde{\mathcal{U}} - \{\text{zero section}\}$, hence $\operatorname{Thom}_{K}^{\tilde{\Phi}}(\tilde{\mathcal{U}}, J) = \operatorname{Thom}_{K}^{\underline{\lambda}}(\tilde{\mathcal{U}}, J)$ in $\mathbf{K}_{K}(\mathbf{T}_{K}\tilde{\mathcal{U}})$ (see Lemma 3.6).

Let us denote $J_{\lambda}: \mathfrak{r} \oplus \mathfrak{p} \to \mathfrak{r} \oplus \mathfrak{p}$ the complex structure defined by J on the tangent space $\mathbf{T}_{\lambda}\tilde{M}$. Let \tilde{J} be the K-invariant almost complex structure on \tilde{M} , constant on the fibers of $\tilde{M} \to K/T$, and equal to J_{λ} at λ : if $[k,x] \in K \times_T \mathfrak{p}$, $\tilde{J}_{[k,x]}(V) = [k,x,J_{\lambda}(X+v)]$ for V = [k,x,X+v].

Since the set $\{\underline{\lambda}_{\tilde{M}} = 0\} = K/T$ is compact, one defines with \tilde{J} and the map $\underline{\lambda}$ the localized Thom symbol

$$\operatorname{Thom}_{\kappa}^{\underline{\lambda}}(\tilde{M}, \tilde{J}) \in \mathbf{K}_K(\mathbf{T}_K \tilde{M})$$
.

Through the canonical identification with the tangent space at [k,x] and [k,0], on can write $\tilde{J}_{[k,x]} = \tilde{J}_{[k,0]} = J_{[k,0]}$ for any $[k,x] \in \tilde{\mathcal{U}}$. We note that J and \tilde{J} are related on $\tilde{\mathcal{U}}$ by the homotopy J^t of almost complex structures: $J^t_{[k,x]} := J_{[k,tx]}$ for $[k,x] \in \tilde{\mathcal{U}}$. By Lemma 3.6, we conclude that the localized Thom symbols $\operatorname{Thom}_{K}^{\lambda}(\tilde{\mathcal{U}},J)$ and $\operatorname{Thom}_{K}^{\lambda}(\tilde{M},\tilde{J})|_{\tilde{\mathcal{U}}}$ define the same class in $\mathbf{K}_{K}(\mathbf{T}_{K}\tilde{\mathcal{U}})$, thus (5.49) becomes

$$(5.50) RR_{\Phi}^{K}(G \cdot \lambda, E) = \operatorname{Index}_{\tilde{M}}^{K} \left(\operatorname{Thom}_{K}^{\underline{\lambda}}(\tilde{M}, \tilde{J}) \otimes \pi^{*}(K \times_{T} E_{\lambda}) \right) .$$

In order to compute (5.50), we now use the induction morphism

$$i_*: \mathbf{K}_T(\mathbf{T}_T\mathfrak{p}) \longrightarrow \mathbf{K}_K(\mathbf{T}_K(K \times_T \mathfrak{p}))$$

defined by Atiyah in [1] (see [33][Section 3]). The map i_* enjoys two properties: first, i_* is an isomorphism and the K-index of $\sigma \in \mathbf{K}_K(\mathbf{T}_K(K \times_T \mathfrak{p}))$ can be computed with the T-index of $(i_*)^{-1}(\sigma)$.

Let $\sigma:p^*(E^+)\to p^*(E^-)$ be a K-transversally elliptic symbol on $K\times_T\mathfrak{p}$, where $p:\mathbf{T}(K\times_T\mathfrak{p})\to K\times_T\mathfrak{p}$ is the projection, and E^+,E^- are equivariant vector bundles over $K\times_T\mathfrak{p}$: for any $[k,x]\in K\times_T\mathfrak{p}$, we have a collection of linear maps $\sigma([k,x,X+v]):E^+_{[k,x]}\to E^-_{[k,x]}$ depending on the tangent vectors X+v. The symbol $(i_*)^{-1}(\sigma)$ is defined by

$$(5.51) \hspace{1cm} (i_*)^{-1}(\sigma)(x,v) = \sigma([1,x,0+v]): E^+_{[1,x]} \longrightarrow E^-_{[1,x]} \ ,$$

for any $(x,v) \in \mathbf{T}\mathfrak{p}$. For $\sigma = \operatorname{Thom}_{K}^{\tilde{\Phi}}(\tilde{M},\tilde{J})$, the vector bundle E^{+} (resp. E^{-}) is $\wedge_{\mathbb{C}}^{odd}\mathbf{T}\tilde{M}$ (resp. $\wedge_{\mathbb{C}}^{even}\mathbf{T}\tilde{M}$). Since the complex structure leaves $\mathfrak{r} \simeq \mathfrak{k}/\mathfrak{p}$ and \mathfrak{p} invariant one gets

$$(i_*)^{-1}(\operatorname{Thom}_K^{\underline{\lambda}}(\tilde{M},\tilde{J})) = \operatorname{Thom}_T^{\lambda}(\mathfrak{p},J_{\lambda}) \wedge_{\mathbb{C}}^{\bullet} \mathfrak{k}/\mathfrak{t}$$

and

$$(5.52) (i_*)^{-1} \left(\operatorname{Thom}_{K}^{\underline{\lambda}}(\tilde{M}, \tilde{J}) \otimes \pi^*(K \times_T E_{\lambda}) \right) = \operatorname{Thom}_{T}^{\lambda}(\mathfrak{p}, J_{\lambda}) E_{\lambda} \wedge_{\mathbb{C}}^{\bullet} \mathfrak{k}/\mathfrak{t} ,$$

where²⁶ Thom_T^{λ}($\mathfrak{p}, J_{\lambda}$) is the *T*-equivariant Thom symbol on the complex vector space ($\mathfrak{p}, J_{\lambda}$) pushed by the constant map $\mathfrak{p} \to \mathfrak{t}, x \mapsto \lambda$.

To express the K-index of σ in terms of the T-index of $(i_*)^{-1}(\sigma)$, we need the induction map

(5.53)
$$\operatorname{Ind}_{T}^{K}: \mathcal{C}^{-\infty}(T) \longrightarrow \mathcal{C}^{-\infty}(K)^{K},$$

where $\mathcal{C}^{-\infty}(T)$ is the set of generalized functions on T, and the K invariants are taken with the conjugation action. The map Ind_T^K is defined as follows: for $\phi \in \mathcal{C}^{-\infty}(T)$, we have $\int_K \operatorname{Ind}_T^K(\phi)(k) f(k) dk = \frac{\operatorname{vol}(K,dk)}{\operatorname{vol}(T,dt)} \int_T \phi(t) f|_T(t) dt$, for every $f \in \mathcal{C}^{\infty}(K)^K$. Theorem 4.1 of Atiyah in [1] tells us that

(5.54)
$$K_{T}(\mathbf{T}_{T}\mathfrak{p}) \xrightarrow{i_{*}} K_{K}(\mathbf{T}_{K}\tilde{M})$$

$$\operatorname{Index}_{\mathfrak{p}}^{T} \bigvee \operatorname{Index}_{\tilde{M}}^{K} \mathcal{C}^{-\infty}(K)^{K}.$$

is a commutative diagram (with $\tilde{M}=K\times_T\mathfrak{p}$). In other words, $\mathrm{Index}_{\tilde{M}}^K(\sigma)=\mathrm{Ind}_T^K(\mathrm{Index}_{\mathfrak{p}}^T((i_*)^{-1}(\sigma)))$. With (5.50), (5.52), and (5.54), we find

$$\begin{array}{lcl} RR_{\Phi}^{^{K}}(G \cdot \lambda, E) & = & \operatorname{Ind}_{_{T}}^{^{K}} \left(\operatorname{Index}_{\mathfrak{p}}^{T}(\operatorname{Thom}_{_{T}}^{\lambda}(\mathfrak{p}, J_{\lambda})) \, E_{\lambda} \wedge_{\mathbb{C}}^{\bullet} \, \mathfrak{k}/\mathfrak{t}\right) \\ & = & \operatorname{Hol}_{_{T}}^{^{K}} \left(\operatorname{Index}_{\mathfrak{p}}^{T}(\operatorname{Thom}_{_{T}}^{\lambda}(\mathfrak{p}, J_{\lambda})) \, E_{\lambda}\right) \, \, . \end{array}$$

(See the Appendix in [33] for the relation $\operatorname{Hol}_{\scriptscriptstyle T}^{\scriptscriptstyle K}(-) = \operatorname{Ind}_{\scriptscriptstyle T}^{\scriptscriptstyle K}(- \wedge_{\mathbb{C}}^{\bullet} \mathfrak{k}/\mathfrak{t})$.) Now we can conclude, since $\operatorname{Index}_{\mathfrak{p}}^{\scriptscriptstyle T}(\operatorname{Thom}_{\scriptscriptstyle T}^{\scriptscriptstyle \lambda}(\mathfrak{p},J_{\scriptscriptstyle \lambda}))$ is computed in section 5 of [33]:

$$\operatorname{Index}_{\mathfrak{p}}^{T}(\operatorname{Thom}_{T}^{\lambda}(\mathfrak{p}, J_{\lambda})) = \left[\Pi_{\alpha \in \mathfrak{R}_{n}^{+}}(1 - t^{-\alpha})\right]_{\lambda}^{-1}$$
$$= (-1)^{r} t^{2\rho_{n}} \left[\Pi_{\alpha \in \mathfrak{R}_{n}^{+}}(1 - t^{\alpha})\right]_{\lambda}^{-1},$$

with $r = \frac{1}{2} \dim(G/K)$. \square

5.3. $(G \cdot \lambda, \Phi)$ satisfies Assumption 3.4. Let M be a regular elliptic coadjoint orbit for G, and let K be a maximal compact subgroup of G. We denote $\Phi: M \to \mathfrak{k}^*$ the canonical moment map for the K-action. For $\mu \in \mathfrak{k}^*$, let us consider the map $\Phi_{\mu}: M \times K \cdot \mu \to \mathfrak{k}^*$, $(m,n) \to \Phi(m) - n$. Let $\|\cdot\|$ be the Euclidan norm on \mathfrak{k} defined by the Killing form: it induces an identification $\mathfrak{k} \simeq \mathfrak{k}^*$ and so an Euclidan norm on \mathfrak{k}^* .

This section will be devoted to the proof of the following

Proposition 5.7. The set $Cr(\|\Phi_{\mu}\|^2)$ of critical point of $\|\Phi_{\mu}\|^2$ is compact in $M \times K \cdot \mu$. Precisely, for any μ , there exists $c(\mu) > 0$ such that

$$\operatorname{Cr}(\parallel \Phi_{\mu'} \parallel^2) \subset \left(M \cap \left\{ \xi \in \mathfrak{g}^*, \parallel \xi \parallel \leq c(\mu) \right\} \right) \times K \cdot \mu' \ ,$$

for any μ' such that $\parallel \mu' \parallel \leq \parallel \mu \parallel$.

²⁶Our notations use the structure of R(T)-module for $\mathbf{K}_T(\mathbf{T}_T\mathfrak{p})$, hence we can multiply $\operatorname{Thom}_T^{\lambda}(\mathfrak{p},J_{\lambda})$ by $E_{\lambda} \wedge_{\Gamma}^{\bullet} \mathfrak{k}/\mathfrak{t}$.

Consider the map $M \to \mathfrak{k}^*$, $m \mapsto \Phi(m) - \mu$. One see easily that $\operatorname{Cr}(\parallel \Phi_{\mu} \parallel^2)$ $=K\cdot \Big(\operatorname{Cr}(\parallel \Phi_{\mu}\parallel^{2})\cap (M\times \{\mu\})\Big), \text{ and } \operatorname{Cr}(\parallel \Phi_{\mu}\parallel^{2})\cap (M\times \{\mu\})\subset \operatorname{Cr}(\parallel \Phi-\mu\parallel^{2})\times \{\mu\}.$ Proposition 5.7 will follow from the following

Proposition 5.8. For any μ , there exists $c(\mu) > 0$ such that

$$\operatorname{Cr}(\parallel \Phi - \mu' \parallel^2) \subset M \cap \left\{ \xi \in \mathfrak{g}^*, \parallel \xi \parallel \leq c(\mu) \right\} \,,$$

for any μ' such that $\parallel \mu' \parallel \leq \parallel \mu \parallel$.

Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition of \mathfrak{g} . The Killing form B provides a G-equivariant identification $\mathfrak{g} \simeq \mathfrak{g}^*$ and K-equivariant identifications $\mathfrak{k} \simeq \mathfrak{k}^*$, $\mathfrak{p} \simeq \mathfrak{p}^*$. Then we consider M as a adjoint orbit of G: $M = G \cdot \lambda$ where $\lambda \in \mathfrak{k}$ is a regular element, i.e. $G_{\lambda} = K_{\lambda}$ is a maximal torus in K, and the moment map $\Phi: M \to \mathfrak{k}$ is just the restriction to M of the projection $\mathfrak{k} \oplus \mathfrak{p} \to \mathfrak{k}$. The Killing form B defines K-invariant Euclidean structure on \mathfrak{k} and \mathfrak{p} such that

$$(5.55) B(X,X) = - ||X_1||^2 + ||X_2||^2,$$

for $X=X_1+X_2$, with $X_1\in \mathfrak{k},\, X_2\in \mathfrak{p}.$ Using the fact that $m\to B(m,m)$ is constant equal to $-\parallel\lambda\parallel^2$, we get $\parallel\Phi(m)\parallel^2=\frac{1}{2}\parallel m\parallel^2+\frac{1}{2}\parallel\lambda\parallel^2$ for any $m\in M.$ Finally we obtain

$$\| \Phi(m) - \mu \|^2 = \frac{1}{2} \| m \|^2 - 2 < m, \mu > + \text{cst}$$

where cst = $\frac{1}{2} \parallel \lambda \parallel^2 + \parallel \mu \parallel^2$. Using the Cartan decomposition $G = K \cdot \exp(\mathfrak{p})$, one can consider $^{27} f^{\mu} : K \times \mathfrak{p} \to \mathbb{R}, \ (k, X) \to \parallel \Phi(k^{-1} \cdot e^X \cdot \lambda) - \mu \parallel^2$ which is equal to $\frac{1}{2} \parallel e^X \cdot \lambda \parallel^2 - 2 < e^X \cdot \lambda, k \cdot \mu > + \text{cst}$. Let \mathfrak{a} be a maximal abelian subalgebra of \mathfrak{p} . Since $\mathfrak{p} = \cup_{k \in K} k \cdot \mathfrak{a}$, one see that

 f^{μ} is related to

$$F^{\mu}: (K \cdot \lambda) \times (K \cdot \mu) \times \mathfrak{a} \to \mathbb{R}$$

defined by $F^{\mu}(m,n,X) = \frac{1}{2} \parallel e^X \cdot m \parallel^2 -2 < e^X \cdot m, n >$. In particular, Proposition 5.8 is equivalent to the following

Proposition 5.9. For any μ , there exists $c(\mu) > 0$ such that

$$(m, n, X) \in \operatorname{Cr}(F^{\mu'}) \implies \|e^X \cdot m\| \le c(\mu)$$
,

for any μ' such that $\parallel \mu' \parallel \leq \parallel \mu \parallel$.

Proof: Let $(m, n, X) \in Cr(F^{\mu})$. Then, the identity $\frac{d}{dt}F^{\mu}(m, n, X + tX)|_{t=0} = 0$

$$(5.56) \langle e^X \cdot m, e^X \cdot [X, m] \rangle = 2 \langle e^X \cdot [X, m], n \rangle.$$

Lemma 5.10. For every $(m, n, X) \in K \cdot \lambda \times \mathfrak{t} \times \mathfrak{a}$ satisfying (5.56), we have

$$\parallel e^X \cdot [X, m] \parallel \leq c(n) \parallel X \parallel$$
,

where c(n) > c(n') if ||n|| > ||n'||.

 $^{^{27}\}mathrm{Here}\cdot\mathrm{means}$ the adjoint action.

Proof of the Lemma: Let Σ the set of weights for the adjoint action of $\mathfrak a$ on $\mathfrak g$: $\mathfrak g = \sum_{\alpha \in \Sigma} \mathfrak g_\alpha$, where $\mathfrak g_\alpha = \{Z \in \mathfrak g, [X,Z] = \alpha(X)Z \text{ for all } X \in \mathfrak a\}$. Recall that $\theta(\mathfrak g_\alpha) = \mathfrak g_{-\alpha}$, where θ denotes the Cartan involution.

We decompose $m \in K \cdot \lambda$ into $m = \sum_{\alpha} m_{\alpha}$, and $A := \langle e^{X} \cdot m, e^{X} \cdot [X, m] \rangle = \sum_{\alpha} e^{2\alpha(X)} \alpha(X) \parallel m_{\alpha} \parallel^{2}$. Let $\Sigma_{m}^{\pm} := \{ \alpha \in \Sigma, m_{\alpha} \neq 0 \text{ and } \pm \alpha(X) > 0 \}$, then

$$A = \sum_{\alpha \in \Sigma_{m}^{+}} e^{2\alpha(X)} \alpha(X) \parallel m_{\alpha} \parallel^{2} + \sum_{\alpha \in \Sigma_{m}^{-}} e^{2\alpha(X)} \alpha(X) \parallel m_{\alpha} \parallel^{2}$$

$$\geq \sum_{\alpha \in \Sigma_{m}^{+}} e^{2\alpha(X)} \frac{\alpha(X)^{2}}{r \parallel X \parallel} \parallel m_{\alpha} \parallel^{2} - r \parallel X \parallel \sum_{\alpha \in \Sigma_{m}^{-}} \parallel m_{\alpha} \parallel^{2} \quad [1]$$

with $r := \sup_{\alpha, ||X|| \le 1} |\alpha(X)|$. But

$$\sum_{\alpha \in \Sigma_{m}^{+}} e^{2\alpha(X)} \alpha(X)^{2} \| m_{\alpha} \|^{2} = \| e^{X} \cdot [X, m] \|^{2} - \sum_{\alpha \in \Sigma_{m}^{-}} e^{2\alpha(X)} \alpha(X)^{2} \| m_{\alpha} \|^{2}$$

$$\geq \| e^{X} \cdot [X, m] \|^{2} - r^{2} \| X \|^{2} \sum_{\alpha \in \Sigma_{m}^{-}} \| m_{\alpha} \|^{2}$$
 [2]

So, the inequalities [1] and [2] give²⁸

$$(5.57) \hspace{3.1em} A \geq \frac{\parallel e^X \cdot [X,m] \parallel^2}{r \parallel X \parallel} - r \parallel X \parallel . \parallel \lambda \parallel^2 .$$

Since $2 < e^X \cdot [X, m], n > \le 2 \parallel e^X \cdot [X, m] \parallel . \parallel n \parallel, (5.56)$ and (5.57) yield

$$2\parallel e^X\cdot [X,m]\parallel.\parallel n\parallel\geq \frac{\parallel e^X\cdot [X,m]\parallel^2}{r\parallel X\parallel}-r\parallel X\parallel.\parallel\lambda\parallel^2\ .$$

In other words $E := \parallel e^X \cdot [X,m] \parallel$ satisfies the polynomial inequality $E^2 - 2bE - c^2 \le 0$, with $c = r \parallel X \parallel . \parallel \lambda \parallel$ and $b = r \parallel X \parallel . \parallel n \parallel$. A direct computation gives

$$\parallel e^X \cdot [X, m] \parallel \leq c(n) \parallel X \parallel$$

with
$$c(n) = r(||n|| + \sqrt{||n||^2 + ||\lambda||^2})$$
.

We take now $n \in K \cdot \mu$, hence $c(n) = c(\mu)$. Proposition 5.9 follows from the following claim: for any c > 0 there exists c' > 0, such that

$$\parallel e^X \cdot [X, m] \parallel < c \parallel X \parallel \implies \parallel e^X \cdot m \parallel < c'$$

holds for every $(m, X) \in K \cdot \lambda \times \mathfrak{a}$.

Suppose that the claim does not hold: there is a sequence $(m_i, X_i)_{i \in \mathbb{N}}$ in $K \cdot \lambda \times \mathfrak{a}$ such that $\parallel e^{X_i} \cdot [X_i, m_i] \parallel \leq c \parallel X_i \parallel$ but $\parallel e^{X_i} \cdot m_i \parallel \to \infty$. We write $X_i = t_i v_i$ with $t_i > 0$ and $\parallel v_i \parallel = 1$. We can assume moreover that $v_i \to v_\infty$ with $\parallel v_\infty \parallel = 1$, and $m_i \to m_\infty \in K \cdot \lambda$ when $i \to \infty$. Let $\Sigma_{m_\infty} \subset \Sigma$ be the subset $\{\alpha \in \Sigma, m_{\infty,\alpha} \neq 0\}$. Note that $\Sigma_{m_\infty} \neq \emptyset$ since m_∞ is a regular element in \mathfrak{k} and $\mathrm{rank}(G) = \mathrm{rank}(K)$. The sequence

$$(I) \qquad e^{t_i v_i} \cdot [v_i, m_i] = \sum_{\alpha} e^{t_i \alpha(v_i)} \alpha(v_i) m_{i,\alpha}$$

is bounded in \mathfrak{g} , and

$$(II) e^{t_i v_i}.m_i = \sum_{\alpha} e^{t_i \alpha(v_i)} m_{i,\alpha}$$

²⁸Since $\alpha \in \Sigma_m^+ \Leftrightarrow -\alpha \in \Sigma_m^-$, we see that $2\sum_{\alpha \in \Sigma_m^-} \| m_\alpha \|^2 = \sum_{\alpha \in \Sigma_m} \| m_\alpha \|^2 = \| m \|^2 = \| \lambda \|^2$.

diverges. From the sequence (II), we see that $(t_i)_{i\in\mathbb{N}}$ is not bounded, so can be assumed to be divergent to ∞ . Since for every $\alpha \in \Sigma_{m_\infty}$, $\|m_{i,\alpha}\| \ge \varepsilon > 0$ for i large enough, the fact that (I) is bounded implies that $e^{t_i\alpha(v_i)}\alpha(v_i)$ is bounded in \mathbb{R} for all $\alpha \in \Sigma_{m_\infty}$. Since $\theta(m_\infty) = m_\infty$, the subset $\Sigma_{m_\infty} \subset \Sigma$ is stable through the transformation $\alpha \to -\alpha$. So

$$e^{t_i\alpha(v_i)}\alpha(v_i)$$
 and $e^{-t_i\alpha(v_i)}\alpha(v_i)$

are bounded in \mathbb{R} , for every $\alpha \in \Sigma_{m_{\infty}}$. Since $t_i \to \infty$, the later result forces $\alpha(v_i) \to 0$ when $i \to \infty$; hence

$$[v_{\infty}, m_{\infty}] = \sum_{\alpha \in \Sigma_{m_{\infty}}} \alpha(v_{\infty}) m_{\infty, \alpha} = 0.$$

But $m_{\infty} \in K \cdot \lambda$ is a regular element of G, and $\operatorname{rank}(G) = \operatorname{rank}(K)$, then $\mathfrak{g}_{m_{\infty}} = \mathfrak{t}_{m_{\infty}}$ is a Cartan subalgebra of \mathfrak{t} . So (5.58) implies $v_{\infty} = 0$ which is contradictory. \square

References

- M.F. ATIYAH, Elliptic operators and compact groups, Springer, 1974. Lecture notes in Mathematics, 401.
- [2] M.F. Atiyah, Convexity and commuting hamiltonians, Bull. London Math. Soc. 14, 1982, p. 1-15.
- [3] M.F. ATIYAH, R. BOTT and A. SHAPIRO, Clifford modules, Topology 3, Suppl. 1, p. 3-38.
- [4] M.F. ATIYAH, G.B. SEGAL, The index of elliptic operators II, Ann. Math. 87, 1968, p. 531-545
- [5] M.F. ATIYAH, I.M. SINGER, The index of elliptic operators I, Ann. Math. 87, 1968, p. 484-530.
- [6] M.F. ATIYAH, I.M. SINGER, The index of elliptic operators III, Ann. Math. 87, 1968, p. 546-604.
- [7] M.F. ATIYAH, I.M. SINGER, The index of elliptic operators IV, Ann. Math. 93, 1971, p. 139-141.
- [8] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, Grundlehren, vol. 298, Springer, Berlin, 1991.
- [9] N. Berline and M. Vergne, The Chern character of a transversally elliptic symbol and the equivariant index, *Invent. Math.* 124, 1996, p. 11-49.
- [10] N. BERLINE and M. VERGNE, L'indice équivariant des opérateurs transversalement elliptiques, Invent. Math. 124, 1996, p. 51-101.
- [11] A. CANNAS DA SILVA, Y. KARSHON and S. TOLMAN, Quantization of presymplectic manifolds and circle actions, Trans. Amer. Math. Soc. 352, 2000, p. 525-552.
- [12] M. DUFLO, Représentations de carré intégrable des groupes semi-simples réels, Séminaire Bourbaki, Vol. 1977/78, Exposé No.508, Lect. Notes Math. 710, 22-40 (1979).
- [13] M. DUFLO, G. HECKMAN and M. VERGNE, Projection d'orbites, formule de Kirillov et formule de Blattner, Mémoires de la S.M.F. 15, 1984, p. 65-128.
- [14] J. J. Duistermaat, The heat lefschetz fixed point formula for the Spin^c-Dirac operator, Progress in Nonlinear Differential Equation and Their Applications, vol. 18, Birkhauser, Boston, 1996.
- [15] V. GUILLEMIN and S. STERNBERG, Convexity properties of the moment mapping, *Invent. Math.* 67, 1982, p. 491-513.
- [16] V. GUILLEMIN and S. STERNBERG, Geometric quantization and multiplicities of group representations, *Invent. Math.* 67, 1982, p. 515-538.
- [17] V. GUILLEMIN and S. STERNBERG, A normal form for the moment map, in Differential Geometric Methods in Mathematical Physics(S. Sternberg, ed.), Reidel Publishing Company, Dordrecht, 1984.
- [18] L. JEFFREY and F. KIRWAN, Localization and quantization conjecture, Topology 36, 1997, p. 647-693.
- [19] HARISH-CHANDRA Discrete series for semi-simple Lie group, I and II, Acta Mathematica, 113 (1965) p. 242-318, and 116 (1966) p. 1-111.

- [20] H. HECHT and W. SCHMID, A proof of Blattner's conjecture, Invent. Math., 31, 1975, p. 129-154.
- [21] T.KAWASAKI, The index of elliptic operators over V-manifolds, Nagoya Math. J., 84, 1981, p. 135-157.
- [22] F. KIRWAN, Cohomology of quotients in symplectic and algebraic geometry, Princeton Univ. Press, Princeton, 1984.
- [23] F. KIRWAN, Convexity properties of the moment mapping III, Invent. Math. 77, 1984, p. 547-552.
- [24] B. KOSTANT, Quantization and unitary representations, in Modern Analysis and Applications, Lecture Notes in Math., Vol. 170, Spinger-Verlag, 1970, p. 87-207.
- [25] H. LAWSON and M.-L. MICHELSOHN, Spin geometry, Princeton Math. Series, 38. Princeton Univ. Press, Princeton, 1989.
- [26] E. LERMAN, E. MEINRENKEN, S. TOLMAN and C. WOODWARD, Non-Abelian convexity by symplectic cuts, Topology 37, 1998, p. 245-259.
- [27] E. MEINRENKEN, On Riemaan-Roch formulas for multiplicities, J. Amer. Math. Soc., 9, 1996, p. 373-389.
- [28] E. MEINRENKEN, Symplectic surgery and the Spinc-Dirac operator, Advances in Math. 134, 1998, p. 240-277.
- [29] E. MEINRENKEN, S. SJAMAAR, Singular reduction and quantization, Topology 38, 1999, p. 699-762.
- [30] P-E. PARADAN, Formules de localisation en cohomologie équivariante, Compositio Mathematica 117, 1999, p. 243-293.
- [31] P-E. PARADAN, The moment map and equivariant cohomology with generalized coefficient, Topology, 39, 2000, p. 401-444.
- [32] P-E. PARADAN, The Fourier transform of semi-simple coadjoint orbits, J. Funct. Anal. 163, 1999, p. 152-179.
- [33] P-E. PARADAN, Localization of the Riemann-Roch character, math.DG/9911024.
- [34] R. SJAMAAR, Symplectic reduction and Riemann-Roch formulas for multiplicities, Bull. Amer. Math. Soc. 33, 1996, p. 327-338.
- [35] G. SEGAL, Equivariant K-Theory, Publ. Math. IHES 34, 1968, p. 129-151.
- [36] Y. TIAN, W. ZHANG, An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math 132, 1998, p. 229-259.
- [37] M. VERGNE, Geometric quantization and equivariant cohomology, First European Congress in Mathematics, vol. 1, Progress in Mathematics 119, Birkhauser, Boston, 1994, p. 249-295.
- [38] M. VERGNE, Multiplicity formula for geometric quantization, Part I, Part II, and Part III, Duke Math. Journal 82, 1996, p. 143-179, p 181-194, p 637-652.
- [39] M. VERGNE, Quantification géométrique et réduction symplectique, Séminaire Bourbaki 888, 2001.
- [40] E. WITTEN, Two dimensional gauge theories revisited, J. Geom. Phys. 9, 1992, p. 303-368.
- [41] WOODHOUSE, Geometric quantization, 2nd ed. Oxford Mathematical Monographs. Oxford: Clarendon Press, (1997).