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ABSTRACT. The Abhyankar-Sathaye Problem asks whether any biregular em-
bedding ¢ : C* < C" can be rectified, that is, whether there exists an auto-
morphism a € Aut C* such that a o ¢ is a linear embedding. Here we study
this problem for the embeddings ¢ : C3 < C* whose image X = (C?) is given
in C* by an equation p = f(z,y)u + g(z,y, z) = 0, where f € Clz, y]\{0} and
g € C[z,y, z]. Under certain additional assumptions we show that, indeed, the
polynomial p is a variable of the polynomial ring C1¥! = C[z, y, z,u] (i.e., a co-
ordinate of a polynomial automorphism of C*). This is an analog of a theorem
due to Sathaye [30] which concerns the case of embeddings C? — C3. Besides,
we generalize a theorem of Miyanishi [24, Thm. 2] giving, for a polynomial p
as above, a criterion for as when X = p~1(0) ~ C3.
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INTRODUCTION

Generalizing a theorem of A. Sathaye [30] it is proven in [15] that if a surface
X = p~'(0) C C® with p = fu+g € CB and f,g € Clz,y] is acyclic (that is,
H, (X; Z) = 0) then p is a variable of the polynomial ring CP! i.e., a coordinate of
an automorphism o € Aut C®. Thus X can be rectified, and so is isomorphic to
C%. This does not hold any more in C* (even with f € C[z]). Indeed [28, 19] the

Russell cubic 3-fold
X:={p=2Put+z+y’+22=0}CcC

is an exotic C® i.e., is diffeomorphic to R® and non-isomorphic to C®. In 2.28, 3.21
and 3.6 below we give a criterion for as when a 3-fold X = p~1(0) c C* with

M p=fyutgey) e (fed®\{o}, geC?)

is acyclic (resp., is isomorphic to C? resp., is an exotic C?). In particular, we show in
2.11 that if X is acyclic then actually it is diffeomorphic to Ré. If furthermore (3.21)
X is isomorphic to C* then any fiber X, := p~1(A) (A € C) of the polynomial p is
isomorphic to C* as well, and moreover (with an appropriate choice of coordinates
(z,y)) all fibers of the morphism

p=(z,p):C' = C

are reduced and isomorphic to C2. We do not know whether in that case a poly-
nomial p in (1) must be a variable of the polynomial ring C/, and p must be a
trivial family. However, in section 4 in many cases we provide affirmative answers
to these questions and give simple concrete examples where the answers remain
unknown. Due to the Quillen-Suslin Theorem, the latter question would be an-
swered in positive if the following conjecture [6, (3.8.5)] (cf. [31, 16]) were true for
n=2=dimS:

Dolgachev-Weisfeiler Conjecture. Let f : X — S be a flat affine morphism
of smooth schemes with every fiber isomorphic (over the residue field) to an affine
space A}, Then f is locally trivial in the Zariski topology (i.e., is a fiber bundle).

Whereas the former question (as whether p is a variable of the polynomial ring C*)
is a particular case (with n = 4 and k = 3) of the famous

Abhyankar-Sathaye Embedding Problem: Is it true that any bireqular em-
bedding CF — C" is rectifiable i.e., is equivalent to a linear one under the action
of the group Aut C* on C™?

Geometrically, the situation can be regarded as follows (cf. [15]). The morphism
o: (z,y,2z,u) — (z,y,2) represents the 3-fold X as a birational modification of
Y := C3. The latter essentially consists in replacing the divisor D := D(f) C Y
by the exceptional one E := {f = g = 0} C X. All the important properties
of X can be recovered in terms of the restriction o|g : E — D. In our setting
both E and D are cylindrical surfaces, namely £ = C' x C and D =T x C, where
C:=D(f)ND(g) CY is the center of the blowing up o and I' := f~1(0) C C2 .
This makes it possible to formulate the criteria mentioned above in terms of the
natural projection # : C — I, (z,y,2) — (x,y), and enables us in concrete
examples to verify these criteria.

Let us briefly describe the content of the paper. Section 1 contains preliminaries;
it can be omitted at the first reading and consulted when necessary. However, some
results obtained here (and used later on in the proofs) are of independent interest.
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For instance, this concerns 1.3 where we treat the question for as when a birational
extension of a UFD is again a UFD. Furthermore, generalizing an observation
due to V. Shpilrain and J.-T. Yu [32, 33] we claim in 1.31-1.32 that for arbitrary
polynomials p, ¢ € C[z1,...,Z,][y] the hypersurfaces in C**! given respectively by
the equations

y=q(py) and  y=pley))

are isomorphic and moreover, 1-stably equivalent (see 4.21). We also use the fact
(see 1.12) that a one-point compactification of an acyclic smooth affine variety is a
homology manifold which is a homology sphere and satisfies the Alexander duality.

In section 2 we study the topology of the 3-folds X as above. More generally, we
work with a 3-fold X = {p = fu+¢g =0} CY xC, where f,g € C[Y] with Y being
a smooth acyclic affine 3-fold and D := f~1(0) C Y being a cylinder D = I' x C over
an affine curve I' (whereas in subsection 2.3 Y itself is supposed to be a cylinder
over an acyclic affine surface Z i.e., Y = Z x C, with I' C Z). The main results of
section 2 (see 2.11, 2.27 and 2.28) provide a criterion for as when such a 3-fold X
is diffeomorphic to RS.

In subsection 3.1 we determine when X = p~1(0) C C* with p = fu+gasin (1)
is an exotic C3. The main tool used here is Derksen’s version of the Makar-Limanov
invariant [19, 4] described in subsection 1.3.

Subsection 3.2 is devoted to a study of embeddings C* — C* given by an equation
p= fu+g=0with f € C?I\C and g € (. In 3.21 we show that in appropriate
new coordinates in the (z,y)-plane, the z-coordinate restricted to any fiber of p
gives a C2-fibration. On the other hand, the restriction of p to any hyperplane
x = const is a variable of the polynomial ring Cly, z,u] (in the latter case we say
in brief that p is a residual z-variable).

A complete analog of Theorem 7.2 in [15] cited at the beginning holds if the
polynomial p € C* is linear with respect to two (and not just one) variables.
Indeed (3.24) if the 3-fold X:

p=a(z,y)u+b(z,y)v + c(z,y) =0

in C* is smooth and acyclic then p € C1*! is a variable. We give a simple criterion
(in terms of the coefficients a, b, ¢ € C[z,y]) for as when this is the case.

In section 4 we concentrate on the Abhyankar-Sathaye Problem for our particular
class of embeddings. The main results 4.2, 4.16 of subsection 4.1 provide sufficient
conditions for as when a residual z-variable p = fu + g € C" as in (1) is indeed
a variable. In 2.8 we define a canonical factorization f = fhorizfsiant fvert, and
we show (4.2) that an embedding C* = X := p~1(0) C C* can be rectified if
either the polynomial fyor, is reduced, or fyery = 1. Moreover, in appropriate new
coordinates (z,y) we have foon noriz *= fslantfvert € C[z], and p is an z-variable
i.e., a variable in C[z]l® over C[z]. For instance (see 4.2, 4.3) this is the case if
deg, g < 1, or f is a power of an irreducible polynomial, or else f € C[z] (the latter
strengthens a result of M. Miyanishi [24, Thm. 2], where it is supposed in addition
that g € C[y, z]). As another examples, we show (see 4.17) that the polynomials

p1 = $y2u +y+xz+ myz2 and p3 = $y2u +y+ 2z + $3y22
are variables of C*l. However, we do not know whether or not so is

P2 = xyzu +y+ =2z + acyz2
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(whereas py ' (p) ~ C* Vu € C and ps is a residual z-variable and a C(z)-variable,
see 4.9 and 4.18).

In subsection 4.2 we establish (see 4.23) that every embedding C® — C* given
by an equation p = fu+ g = 0 as in (1) can be rectified in C.

In the last subsection 4.3 (attributed to the second author) we generalize a theo-
rem of D. Wright [37] which says that Sathaye’s Theorem holds for the embeddings
C? — C? given by an equation p = fu™ +g = 0 with f,g € Clz,y] and n € N.
Namely, it is shown in 4.27 that a residual z-variable of the form p = fu"+g € €4,
where f,g € C[z,y, 2] and n > 2, actually is an z-variable.

1. PRELIMINARIES

1.1. Affine modifications of UFD’s. We start by recalling the notion of affine
modification [15]; at the same time, we introduce the notation that will be used
throughout the paper.

Notation 1.1. Let Y be a reduced, irreducible affine variety over C, A = C[Y'] be
the algebra of regular functions on Y, I C A be a non-trivial ideal and f € I be
a non-zero element of I. The affine modification of the variety Y along the divisor
Dy = f*(0) with center I is the affine variety X = spec A’, where

A= A[T/f] = {a' = a/f¥|ar, € I*} C Frac A.
The inclusion A < A’ corresponds to a birational morphism ¢ : X — Y with the
exceptional divisor E = 0~ }(D) = (f o0)1(0) C X, where D := supp Dy. The
restriction o|(X\E) : X\E — Y\D is an isomorphism.
Let D = U, D; resp., E = |J;_, E; be the decomposition into irreducible
components, which we assume to be Cartier divisors. Letting

nl
(2) o*(D;) =Y myE;, i=1,...,n,
j=1
we consider the n x n' multiplicity matriz My = (m;;) with non-negative integer

entries. Clearly, m;; > 0 < o(E;) C D;.

The following simple observation will be useful in 1.4 below. We denote reg E; =
E;\sing E; and reg D; = D;\sing D;.

Lemma 1.2. In the notation as above, suppose that the affine varieties X and Y
are smooth. If m;; = 1 then o(E;) € singD;. Moreover m;; = 1 if and only if
o(reg E;) CregD; and o sends the analytic discs in X transversal to E; at a point
Q € reg E; biholomorphically onto analytic discs in'Y transversal to D; at the point
P :=0(Q) €regD;.

Proof. We may assume that m;; > 0 that is, o(E;) C D;. For a point () € E; with
the image P = 0(Q) € D;, welet U 3 P resp., V' 3 @ be a neighborhood such that
D;nU = f7(0) resp., E; NV = h}(0), where f; resp., h; is a holomorphic function
in U resp., V. Then we have

fiooly =hI"™ -h  with h(Q)#0,
which gives the equality of 1-forms:

(3) d(f 0 0)(Q) = mi;hI¥ THQM(Q) - dh; (Q) .
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Assuming that Q € reg E; (< dh;(Q) # 0) and m;; = 1, from (3) we obtain:

d(f 0 0)(Q) = h(Q) - dh;(Q) #0,
whence df;(P) # 0 and do(TgX) € TpD;. This yields the implication ”=—=>".
On the other hand, if P € regD; (& dfi(P) # 0) and do(TgX) € TpD; then
d(fo0)(Q) # 0, and so by (3) m;; = 1, which gives "<=". O

For an algebra B, denote by B* its group of invertible elements.

Proposition 1.3. In the notation as in 1.1 above, assume moreover that the al-
gebras A = C[Y] and A’ = C[X] are UFD’s, and A* = A", Then n =n' and the
multiplicity matriz M, is unimodular.

Proof. Since the algebras A and A’ are UFD’s there exist irreducible elements
fi,.-.,fn € A resp., h1,...,hy € A’ such that D; = f*(0), ¢ = 1,...,n, resp.,
Ej = hj(0), j=1,...,n'. Clearly, h; = (a;/b;) o o with coprime aj, b; € 4, j =
1,...,n'. The regular functions a;, b; do not vanish in ¥\D, and hence their
irreducible factors are proportional to some of the elements fi,..., f,. Thus for
each j =1,...,n’ there exists y; € A* such that

(4) hi= s [[ £ 00
=1

with m/; € Z. On the other hand, for each i = 1,...,n there exists §; € A"" = A*
such that

nl
(5) fz'00=5iHth““-

k=1
Plugging successively (4) and (5) one into another and taking into account the
assumption that the algebras A’ and A are UFD’s and ¢ is a birational morphism,
we obtain the equalities

7

n
(6) Zmikm;cj=(5,-j, i,j:l,...,n,

k=1

n
(7) Zm;zmzk:(sjka jak:]-:"'7nl7

i=1
that is, M - M, = Ly and M, - M} = I,,, where I}, denotes the identity matrix of
order k. Hence n = n' and M. = M, !, so M, is unimodular. a

Proposition 1.4. Suppose that the varieties X and Y as in 1.1 are smooth, and
the multiplicity matriz M, is an upper triangular unipotent square matriz:

n=n', muy=1i=1,...,n, mi; =0 Vi>j.

Then o, : w1 (X) = m(Y) 4s an isomorphism.

Proof. Letting G = m(Y\D), G' = m(X\E) and ¢’ = o|x\g, we have that
ol : G' = G is an isomorphism which sends the subgroup

H = <<aE1,...,aEn>> cq
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into the subgroup
H = <<aD1,...,aDn>> cd,
where for a hypersurface Z in a complex manifold X, az denotes a vanishing loop
of Z in X \ Z, whereas for a group G and elements ay,...,a; € G, ((a1,...,a))
denotes the minimal normal subgroup of G generated by ay,...,ar. Moreover,
o4 : m(X) = m(Y) is a surjection with kernel kero, 2 H/o!(H') (see e.g., [15,
the proof of Prop. 3.1]). Thus we must show that o, (H') = H.
Fori=1,...,n denote

H;:={{ap,,...,ap;)) CG resp., H;:={{(ag,...,a5)) CG,

so that H, = H and H, = H'. Clearly, o\ (ag,) ~ ap, (where ~ stands for
conjugation), whence o, (H{) = Hy;. We show by induction that o) (H]) = H; for
alli=1,...,n.

Assume that this equality holds for i = k — 1 < n. As my = 1, by 1.2 we may
conclude that for a general point Q) € Ej, P := ¢(Q) is a smooth point of Dy, and
o sends biholomorphically a smooth analytic disc transversal to the divisor Ej at
@ onto a transversal disc to Dy, at P. As the matrix M, is upper triangular we

obtain ¢ (H!) C H; (i = 1,...,n) and furthermore, o’ (ag,) ~ ap, mod Hj_;.
As 0 (H},_,) = Hp_1 it follows that also o (H,) = Hy, therefore o (H') = H, as
desired. 0

1.2. Acyclic varieties. Recall that the acyclicity of a topological space X means
that its reduced homology vanishes: H,(X) := H.(X;Z) = 0. The following
proposition is an immediate corollary of the above results.

Proposition 1.5. Assume that the affine varieties X and 'Y as in 1.1 above are
smooth and acyclic. Then

(a) n=n' and the multiplicity matrix M, is unimodular.
If moreover, M, is an upper triangular unipotent matriz then

(b) o4 : m(X) = m(Y) is an isomorphism.

(¢) X is contractible if and only if so is Y.

(d) In the latter case the varieties X andY are both diffeomorphic to the affine
space R*™ provided that m := dimcY > 3.

Proof. By [8, 1.18-1.20] (see also [11, 3.2]) for any smooth acyclic affine variety Z
the algebra C[Z] is UFD and its invertible elements are constants. Thus (a) follows
from 1.3. (b) directly follows from 1.4. In virtue of the Hurewicz and Whitehead
theorems [7, Ch.2, §11.5, §14.2], an acyclic manifold is contractible if and only if
it is simply connected. Hence (c) follows from (b). In turn, (d) follows from the
Dimca-Ramanujam theorem [3, 39]. O

1.6. In section 3.2 we will apply the following corollary (see 1.7 below) of Miyan-
ishi’s characterization of C® [24, 25]. On the other hand, this corollary also follows
from [31] and [16], as stated in [16, Cor. 0.2]. Moreover, by [12, L. III] it would
be enough to suppose in 1.7 that only general (rather than all) fibers of x were
isomorphic to C2.

Theorem 1.7. Let X be a smooth acyclic affine 3-fold. Then X ~ C3 if and only
if there exists a regular function x € C[X] with all fibers isomorphic to C2.
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1.8. It is known [15, Thm.1.1] that any birational morphism ¢ : X — Y of affine
varieties is an affine modification. The divisor D C Y of modification and the
exceptional divisor E C X of o can be defined as minimal reduced divisors such that
the restriction o|x\g : X\E — Y\D is an isomorphism. In the next proposition
and its corollary we provide conditions (more general than those in [15, Thm. 3.1])
which guarantee preservation of the homology group under modification. (Note that
the divisors £ and D below do not need to satisfy the assumption of minimality.)

Proposition 1.9. Given affine varieties X, Y and decompositions
X=X\E)UE and Y =(Y\D)UD,
where E C X and D - Y are reduced divisors, let o : X = Y be a birational
morphism which respects these decompositions. Suppose that the following hold.
(1) E,D are topological manifolds, EcC reg X, DcC reg Y, and a*(ﬁ) =F.
(ii) The induced homomorphisms
(o]g)« : H*(E) — H*(f)) and (J|X\E)* : H*(X\E) — H*()A’\IA))
are isomorphisms.
Then oy : Hy(X) — H,(Y) is an isomorphism as well; in particular, X is acyclic
if and only if Y is so.

Proof. We apply the Thom isomorphism [5, 7.15] to the pairs (X, E) resp., (Y, D)
(notice that locally near E resp., D these are pairs of topological manifolds). As
o*(D) = E and (o]g)« = Ho(E) = Ho(D), o maps the irreducible components
of E into those of D providing a one-to-one correspondence, and (as in 1.2) sends
their transverse classes [5, Ch. VIII] to the corresponding transverse classes. By
functoriality of the cap-product [5, VIL.12.6] for every i > 0 the following diagram
is commutative:

Hy(X, R\B) — H;_(E)

p.q
R
Hy(Y,Y\D) t—:’ H;_>(D)
Y
(where t stands for the Thom isomorphism, and the homology groups in negative

dimensions are zero). This allows to replace the relative homology groups in the
exact sequences of pairs as to obtain the following commutative diagram:

.= H; 1(E) — H{(X\E) — H;(X) — H;_»(E)

X —
zla* Zlfh la'* zla*
v —

>

\E)—> ...

(
-

H; 4
H;,_(Y\D)— ...

... H;_1(D) — H;(Y\D) — H;(Y) — H;_»(D)

By (ii) the four vertical arrows (as shown at the diagram) are isomorphisms, whence
by the 5-lemma, the middle one is so as well, as stated. |
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Actually, the divisors £ and D we deal with in section 2 below are not always
topological manifolds. However, in our setting we can apply 1.9 by decomposing
further as follows.

Corollary 1.10. The same conclusion as in 1.9 holds if (instead of (i), (ii)) we
assume that there are decompositions E = E'+ E" and D = D' + D" satisfying the
following conditions:
(i) E'\E", D'\D", E" and D" are topological manifolds, EE C regX, D C
regV, and o*(D'\D") = E'\E", ¢*(D") = E".
(ii") The induced homomorphisms (O'X\E)* : H (X\E) —» H,(Y\D),

(0lpng)s : Ho(E'\E") - H,(D'\D") and (o|pn), : H.(E") - H.(D")

are tsomorphisms.

Proof. Indeed, 1.9 implies that (under our assumptions)
(0] g\ )+ : Ho(X\E") » H.(Y\D")

is an isomorphism. Now (with E and D in 1.9 replaced by E" resp., D"), 1.9

~ A

implies that o, : H.(X) —» H.(Y) is an isomorphism as well. O

1.11. Recall [23, Ch. 5, §5.3], [9, Ch. 2, §8.1]' that a simplicial polyhedron P
is called a homology n-manifold if for any point p € P we have H, (P, P\{p}) =
H,(S™) 2.

Proposition 1.12. Let X be a smooth acyclic affine variety of complex dimension
n. Then the one-point compactification X of X is a homology 2n-manifold which
is a homology 2n-sphere: H,(X) = H,(S*"). In particular, the Alezander duality
holds for X .

Proof. Notice first that X is diffeomorphic to the interior of a compact manifold,
say, Xr with boundary 0Xpg (indeed, one can take for Xp the intersection of
X with a ball of a large enough radius R in an affine space C¥ D X). Hence
X ~ Xgr/0XR ~ XrUsx, C(0XR) (with CY denoting the cone over Y'), and any
triangulation of X naturally extends to those of X.

By the Poincaré-Lefschetz duality for a manifold with boundary [23, 5.4.13],

H2n—i(XR) o~ HI(XR;(‘)XR) =~ ﬁz(XR/aXR) = ﬁz(X)a

whence X is a homology 2n-sphere. Using the acyclicity of Xz and of C'(8Xg) and
applying the Mayer-Vietoris sequence to the decomposition X = XgUs x, C(0XR),
we see that H;(X) = H;_1(8Xg). Thus the smooth manifold 8Xp is a homology
(2n — 1)-sphere.

Clearly, H,(X,X\{z}) = H,(S?") for any point z € X = X\{oo}. For the
vertex £ = oo of the cone C(0Xg) and for any i € N, by excision and from the
exact homology sequence of a pair we obtain:

Hi(X, X\{c0}) = H;(C(8Xr), C(0XR)\{0c0})
IWe are grateful .. Guillou for useful discussions on homology manifolds and references.

20r equivalently, Hy (Ik(p)) = H«(S™~1), where lk(p) denotes the link of p in P, or else, for
any g-simplex o in P, Hy(lk(c)) = H,(S""971).
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= H; 1(0Xp) = Hi_y(S7") = Hi(S™") .
Thereby X is a homology manifold and is a homology 2n-sphere. For any point
z € X, from the exact homology sequence of the pair (X, X\{z}) it follows that

X\{z} is acyclic. Now the proof of the Alexander duality for the usual sphere [23,
5.3.19] goes mutatis mutandis for X (cf. [2, Thm. 6.4], [36, p. 176]). d

1.3. Digest on Makar-Limanov and Derksen invariants. These invariants
(introduced in [19, 13, 4]) allow in certain cases to distinguish space-like affine
varieties from the affine spaces. On this purpose, we use them in subsection 3.1 (to
establish 3.6). Let us first recall the following notions and facts.

1.13. Locally nilpotent derivations. Let A be an affine domain over C. A derivation
0 € Der A of A is called locally nilpotent (LND for short) if for each a € A there
exists n = n(a, d) € N such that 8™ (a) = 0; the set of all non-zero locally
nilpotent derivations of the algebra A is denoted by LND(A). Given 0 € LND (4),
the function degy(a) := min{n(a, 0) — 1} is a degree function on A. The kernel
AP =ker 0 of 9 is a O-invariant subalgebra of A; its elements are called 8-constants.
For the proof of the following lemma see e.g., [19, 20, 13, 4], [39, §7] or [12, 5.1(6)].

Lemma 1.14. The following statements hold:
(a) tr.deg [A: A% = 1.
) The subalgebra A% is algebraically closed.
(c) It is factorially closed i.e., uv € A2\{0} = u, v € A%.
) If uF + vt € AP\{0} for some k, 1> 2 then u, v € A%.
Moreover, p(u,v) € A°\C = u, v € A? for any polynomial p € CP?1 with
general fibers being irreducible and non-isomorphic to C.

1.15. Invariants. The Makar-Limanov invariant of the algebra A is the subalgebra

ML(4) = [] A%cA,
HELND(A)

whereas the Derksen invariant:

pk(4)=c[ |J 4%ca
HELND(A)

is the subalgebra of A generated by the 0-constants of all locally nilpotent deriva-
tions on A. If ML(A) = C (resp., Dk(A) = A) then we say that the corre-
sponding invariant is trivial. This is, indeed, the case for a polynomial algebra
A=cCl"l (neN).

1.16. Specializations. Let X be an affine variety, and set A = C[X]. To study
the locally nilpotent derivations on A, it is possible to proceed by induction on
the dimension of X. Namely, let @ € LND (A), and let u € ker § be non-zero. As
O(u—c) = 0 Ve € C, the principal ideal (u—c) of the algebra A is invariant under 9,
and so 0 descends to the quotient B, = A/(u — ¢) = C[S,], where S. = u~!(c) is a
fiber of u. For a general ¢ € C, this specialization 8, is a non-zero locally nilpotent
derivation of the algebra B, (see 1.17 below). Clearly, the restriction to S, of any
O-constant v € kerd is a O.-constant.
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1.17. C4 -actions. Otherwise, the above specialization can be described via the
natural correspondence between the locally nilpotent derivations of the algebra A
and the regular actions of the additive group C; on the variety X = spec A (e.g.,
see [27, 39]). Indeed, the subalgebra ker d coincides with the algebra of invariants
A¥ of the associated C, -action ¢ = pg. If u is a p-invariant then clearly, the C, -
action ¢|g, on a fiber S, = spec B, of u is associated with the above specialization
O.. Hence 9, € LND (B,) if and only if the Cy-action ¢|s, is non-trivial.

1.18. Jacobian derivations [13, 14]. For an n-tuple of polynomials py,...,pp—1, ¢ €
CI"l, the Jacobian

j Opiy- - P,
9(q) :==jac (p1,---,Pn-1,9q) = (gl(xl p ml)CI)

(regarded as a function of g, whereas the polynomials p,...,p,—1 are fixed) gives
a derivation on the polynomial algebra C™l. This derivation is non-zero provided
that the polynomials p1,...,p,—1 are algebraically independent. For p := p;, the
principal ideal (p) C CI is invariant under 8, whence 8 descents to a derivation
of the quotient algebra A := CI"l /(p) = C[X], where X := p*(0) C C* . Denote
by JLND(A) the set of all locally nilpotent Jacobian derivations of the algebra A.
Two derivations 8, &' € Der (A) are called equivalent if A% = A?". Actually, two
derivations are equivalent iff they generate the same degree function [14]: degy =
degs . We have the following theorem.

Theorem 1.19. ([13, 14]) If p € CI™l is a non-constant irreducible polynomial then
every locally nilpotent derivation & € LND (A) (where as above, A = C™ /(p)) is
equivalent to a Jacobian locally nilpotent derivation 8' € JLND (A). Henceforth,
we have

ML(4)= (] A’ and Dk(A):(C[ U AB].
HEIJLND(A) dEJLND(A)

1.20. Weight degree functions and the associated graded algebras (see e.g., [13, 14,
39]). A weight degree function on the algebra A = C[X] = C[™/(p) is defined by
assigning weights d; = d(z;) € R to the variables z,...,z, € C"l and letting for
a € A:

da(a) := inf {d(q) | ¢ € T, ¢|x = a}.
Here as usual

d(q) = max{d(m)|m € M(q)}

with M (q) denoting the set of the monomials m = ¢, [[1, 2 of g, where d(m) :=
%, a;d;. The weight degree function d4 : A — RU {—oo} defines an ascending
filtration {A}1er of the algebra A with A; := {a € A|da(a) < t}. We also let
Al :={a€ A|da(a) <t} C A;, and we consider the associated graded algebra

A=PA/A;
teR
(actually, the set of non-zero homogeneous components A;/A} of the algebra A is
at most countable).

3To simplify the exposition we suppose that X is a hypersurface, whereas the results of [14]
hold in a more general setting.
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1.21. Associated homogeneous derivations. For a polynomial g € CI*! | we consider
its d-principal part (in other words, the principal d-quasihomogeneous part) § :=
2_meM(q), d(m)—d(q) M- For an element a € A, we let G to be its image in the
graded algebra A (clearly, @ € A;/A! with ¢ = d4(a)). Notice that a = | i for a
polynomial ¢ € CI"! such that ¢ |x = a and d(q) = d(a); the latter equality holds
if and only if §| ; # 0.
If @ € Der (A) is a derivation then the degree
dA(a) ;= inf {dA(a) — dA(aa) |a € A}
is finite [14]. Letting
da = da if da(a) — da(Ba) =da(®) and Oa =0 otherwise,

and extending d in a natural way to a homogeneous derivation of the graded algebra
A, we obtain a correspondence Der(A) —Derg,(A). It has the following properties.

Theorem 1.22. ([13, 14]) Let p € CI™ be a polynomial with a non-constant, irre-
ducible d-principal part p. Set X = p71(0) C C*. Then the following hold.
(a) A~([X].
(b) If 8 € LND (A) then 8 € LND (A), and for any a € A, a € A%,
(c) * For any non-zero Jacobian derivation
5= O(p, P2,y Pn—1, *)
Oz1,--.,Tn)
of the algebra A = C[X] there exists an equivalent one
O(p, s - -+, Pn1, *)
Oz1,---,Tn)
such that the d-principal parts p, Py, .. ., P,_, are algebraically independent.
(d) If the latter condition holds then the associated derivation &' €Der(A) of
the associated graded algebra A is also a Jacobian one, namely,

é‘, — a(ﬁa pIZa e )p,n—la *)
6(.731,.. .,:cn)

9 =

1.23. Graded invariants. For a graded algebra fl, we denote by Dk, (/i) the
following ‘graded’ version of the Derksen invariant:
Dk, () = (C[ U Af’] .
HELND,, (A)

The way we use in the next section the Derksen invariant (similar to that of [4, 13,
19, 39]) is based on the next simple lemma.

Lemma 1.24. Given an irreducible hypersurface X C C", suppose that the algebra
A = C[X] is equipped with o weight degree function da such that the hypersurface
X C C" is also irreducible. If

Dk, (A) C Ao =P Ae/A; C A

t<0

4A similar fact remains true for any affine domain [21].
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then
Dk (A) C Ao = {a € A|da(a) < 0}.
Henceforth, X # C* ! unless A = Ag.

Proof. By 1.22 (a),(b) for every & € LND (A) and for every d-constant a € A?, we
have G € ker 0, where 0 € LNDy,(A), whence a@ € A<g. Therefore, da(a) < 0 ie,,
a € Ay, as stated. O

1.4. Variables in polynomial rings.

1.25. For a commutative ring B, we let B[™ = B[y;,...,y,]. A polynomial p € Bl"
is called a B-variable (or simply a variable if no ambiguity occurs) if it is a coordinate
(p = p1) of an automorphism 8 = (p1,ps,...,pn) € AutgBM™ (thus 8|p = idp).
The set of all B-variables of B[™ is denoted as Varg BI"l. For B = C[z, -+ ,z,], a
B-automorphism is called in brief an (z1, - - , z,)-automorphism, and a B-variable
is also called an (z1,--- ,x,)-variable.

Remark 1.26. It is easily seen that a polynomial p € C™ is an (21, ...,2k)-
variable (where 0 < k < n — 1) if and only if X := p~1(0) ~ C*~! and there exists
d € LND (C") with z;,...,2; € kerd such that dp = 1 (i.e., p is a slice of 9).
Indeed, Op = 1 implies that X can be identified with the orbit space C"/ps =
spec (") 9o = spec (ker §) of the associated Cy-action ¢y on C* (see 1.17), and
so T = (ker 9)[p] = CI»~1[p].

Notice that as C* ~ X x C, the assumption X ~ C*~! above is superfluous
provided that the Zariski Cancellation Conjecture holds.

1.27. For a polynomial ¢ = ¢(z,y,2,...) € C"™, we denote by g5 (A € C) the
specialization g(\, y, 2,...) € CIn—1.

We say that a polynomial p(z,y1,--- ,yn) € Clz][y1,-- ,yn] is a residual z-
variable if for every A € C, the specialization p) is a variable of Cly,--- ,y,]- It is
easily seen that any z-variable is a residual x-variable.

1.28. Let f € B. An element b € B is said to be invertible (resp., nilpotent)
mod f if its image [b] € B/(f) is so. Thus b is nilpotent mod f if and only if
b € rad (f). Observe that if B is UFD and f = [}, f{* is a canonical factorization
then b € rad (f) < b € (f9), where frd :=T[, fi € B.

To detect variables in polynomial rings, the following results will be useful. The
statement (a) below is due to P. Russell [28, Prop. 2.2], and is reproved in [35]
basing on (b) (see [35, Prop. 1.4]).

Proposition 1.29. For a commutative ring B, the following hold.

(a) For any f, by, by € B and q € B[z] with by invertible mod f and g
nilpotent mod f, we have p:= fu+ by + b1z + ¢(2) € Varp B[z, u].

(b) For f € B, we let By := B/(f), and we denote by p : B — By the canonical
surjection. Ifp € VarpB|z,u] is such that p(p(z,0)) € Varp, By[z] then also
pf(z,u) = p(z, fu) € VarBB[z,u].

(c) Let B=Clz] and f € B. If p € VargBly, z,u] is such that for every root
To of f, the specialization p,,(y,2,0) is a variable of Cly,z] ° then also
pf(y, z,u) := p(y, z, fu) € VarpBly, z, u].

50r equivalently, p(p(y, 2,0)) € Varg, Byly, 2]
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Proof of (c). Tt suffices to prove (c) for f = z and then conclude by induction on
the degree of f. Let v € AutpBly, z,u] be such that v(y) = p(z,y, z,u). Denote
~o the specialization of v at x = 0. Clearly, vo(y) = p(0,y, z,u) is a variable of
Cly, z,u]; in particular,

Cly, z,ul/ (p(0,y, 2,u)) ~ C?1.
If ¢ denotes this isomorphism then

Cly, z,ul/ (P(0,y, 2,u),u) = C?/($(u)) -

By our assumption, p(0,y, z,0) is a variable of Cy, 2], and so ¢

Cly, 2,u]/ (p(0,y, 2,u),u) ~ Cly, 2]/ (p(0,y, 2,0)) ~ C1).

Hence by the Abhyankar-Moh-Suzuki Theorem, ¢(u) is a variable in C?!. Therefore
we may assume that ¢(u) = u i.e., there is a Clu]-isomorphism

Clully, 2]/ (p(0,y, z,u)) ~ Clu]™M .
By the Abhyankar-Moh-Suzuki theorem as generalized by Russell and Sathaye [29,
Thm. 2.6.2], p(0,y, z,u) is a Clu]-variable of Clu][y, z]. Let ag be the corresponding
Clu]-automorphism of Clu][y, z] such that ag(y) = p(0,y, z,u), and denote by ¥ the
composition
5 := 75 ‘an € AutpBly, 2, u) .
Then we get

() = 110 " ao(y) =17 | (0, y, 2,u)) = Y(y) = p(z,y, 2,u)
and
H(u) =17 'ao(u) = 1% '(u) =u mod z.
If o, is the (z,y, z)-automorphism of C(z)[y, z][u] defined by o, (u) = zu then the
composition o, yo, ! (which d priori is an z-automorphism of C(x)[y, 2, u]) actually
is a B-automorphism of B[y, z,u]. Thus o,50,(y) = p(z,y, z, zu) is an z-variable
of Clz][y, #, u]. O

Corollary 1.30. Let p € Clz][y, z,u] be an z-variable.
(a) If for q(z) € Clz], py = p(z,y,2,q(x)u) is a residual z-variable then it
actually is an x-variable.
(b) Consequently, p(x,y, z,q(x)u) is an z-variable if and only if p(x, y, 2, grea(z)u)
18 SO.

Proof. (a) As p, is a residual a-variable, for every root zg of g, pzy,0 := p(%0,y, 2,0)
is a variable of Cly, z,u]. In particular, Cly, z,u]/(Pze,0) = Cly, 2]/ (Pz,0) ® Clu] =
CPL. Tt follows that Cly, 2]/ (pz,.0) = CI!l, and then by the Abhyankar-Moh-Suzuki
Theorem p,, o is a variable of Cly, z]. It follows from 1.29(c) that p(z,y, z, ¢(z)u)
is an z-variable, as stated.

The proof of (b) relies on (a) and on the fact that p(z, y, z, ¢(z)u) and p(z,y, 2, grea () u)
are simultaneously residual z-variables. |

The proof of the following results is inspired by those of [32, Thm. 1.1] and [33,
Thm. 1.4].

Proposition 1.31. For any commutative ring B, the following hold.

6Hereafter under (f,9) we mean the ideal generated by f and g.
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(a) For arbitrary pair of polynomials p,q € Bly| there exists an automorphism
Y = Yp,q € AutpBl[y,v] such that

7((y = ap(®)),v))= (y — pa(y)),v) -
(b) In particular, for q(y) = —ay with a € B we have:
7((y + ap(y),v)) = (y + p(ay),v) .
Moreover, if a*|p(0) then there exists an automorphism vy, € AutgBly,v]

such that
pla*tly)

e ,0) .

Ye((y + ap(y),v))= (y +

Proof. It is not difficult to verify that the desired automorphism ~ and its inverse

~~! can be defined as follows :

{ Y(y) =v +4q(y) { Y y) = v +p(y)
Yw) =y —p+aly) | 7)) =y—qlv+py) .
Iterating «y yields an appropriate v, as needed in (b). d

Corollary 1.32. (a) For any pair p,q € Bly] the homomorphism
¢ = Blyl/(y—alp(y)) — Blyl/(y—play)))
y — q(y)

is an isomorphism.
(b) In particular, for any a € B and p € Bly| the homomorphism

¢ = Blyl/(y+ap(y)) — Blyl/(y +play))
Y — ay

is an isomorphism. Moreover, if a*|p(0) then also
k41
¢k + Bll/(y+aply)) — Blyl/ly+252)
Yy —  aftly

s an isomorphism.

Proof. We just apply 1.31 and the obvious isomorphism Bly]/(f(y)) ~ Bly,v]/(f(y),v).
O

1.33. We denote by SAut C"! ¢ Aut C™ the subgroup which consists of the au-
tomorphisms a with the Jacobian jac(a) = 1.

For the polynomial extension B[’ of the algebra B := C[z], we have the following
fact.

Proposition 1.34. (a) For any set of distinct points \1,..., \, € C, the ho-
momorphism of multi-specialization
®: SAutpBly,z] — (SAutCly,z])"
Y — (7)\1,"'3’)9\")

18 surjective.
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(b) The multi-specialization map

®': Varg Bly,z] — (Var(Cly,z])"
p H (pAl""7pAn)

18 surjective.

Proof. By the Jung-van der Kulk decomposition theorem it is enough to show that
the image of ® contains the elements g, €(SAut Cly, z])™, where

9o = (14,...,1d, o, 1d,...,1d),
and a € SAut Cly, 2] is a triangular automorphism of the form

: a(y) =y +7(2) a(y) =y
either { a(z) = or { a(z) =z + s(y).

Indeed, any automorphism 8. : (y,2) — (cy + r(2),c712) with ¢ € C* can be
decomposed as 8. = 6.0 a with a : (y,z) — (y + ¢ !7(2),2) as above and
d. : (y,2) = (cy,c'2). In turn, we have d, = 71 o v_., where 7. : (y,z) —
(cz,—c'y) can be written as . = al, o o o o, with

a.:(y,2)— (yz—cly)  and ol : (y,2) — (Y +c22).

Without loss of generality we may assume that g, = (a,Id,...,Id). Let ¢ €
B = ([z] be such that o(A1) = 1, p(A2) = -+ = p(Ay) = 0, and consider the
triangular automorphism v € Autp Bly, 2], where

7(W) =y + o(x)r(2) Y(y) =y
{ 1(z) =z resb { 1(z) = 2 + p(2)s(2).

It is easily seen that, indeed, ®(y) = go- This proves (a).

(b) By (a) it suffices to show that every variable p = a(y) € Varc Cly, 2] with
a € AutcCly, z] can be regarded as a coordinate function of an automorphism
o' €SAutCly, z]. Indeed, let o' := a0 o with o : (y,2) — (y,7 12), where j :=
jac(a). Then o' (y) = a(y) = p and o' €SAut C[z,y]. Thus (b) follows. O

Remark 1.35. We would like to use this opportunity to indicate a flow in the proof
of Theorem 7.2 in [15] (which generalizes the Sathaye Theorem, as mentioned in
the Introduction). Namely, proving Claim 3 of Proposition 7.1 in [15] and carrying
induction by the multiplicity of a root £ = 0 of the polynomial p, it has been
forgotten to extend it over all the roots. Instead, one might apply 1.34 (or 1.29(b);
cf. [35, Thm. 3.6]) which would simplify the proof considerably.

2. SIMPLE MODIFICATIONS OF ACYCLIC 3-FOLDS ALONG CYLINDRICAL DIVISORS

We focus below on a special case of affine modifications called simple birational
extensions (see 2.1 below), applied to acyclic affine 3-folds. Our aim in this sections
is to give a criterion for as when the acyclicity is preserved under such a modification
(cf. [15, Thm. 3.1]). In the special case when the divisor of modification is a
cylinder, we obtain in Theorem 2.11 below necessary conditions for preserving the
acyclicity. In Theorem 2.27 (cf. also 2.28) we show that these conditions are also
sufficient, provided that the given acyclic 3-fold is a cylinder as well.
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2.1. Simple affine modifications.

Definition 2.1. A simple birational extension of a domain A (over C) is an algebra
A" := Alg/f], where f,g € A are such that the ideal I = (f,g) C A is of height
2 (i.e., the center of modification C' = V(I) = D¥ N D¢ is of codimension 2 in
Y := spec A). We also call X := spec A’ a simple affine modification of the affine
variety Y.

In the sequel A is UFD, and the above condition simply means that f,g € A are
coprime. More generally [15, Prop. 1.1], any affine modification can be obtained
as A' = Alg1/f1,---,9n/fn] With f;,g; € A; here again, if A is UFD then we may
suppose f;, g; being coprime (i = 1,...,n).

2.2. Observe that the variety X = spec A’ can be realized as the hypersurface in
Y x C with the equation fu+ g = 0 (where u is a coordinate in C), and the blowup
morphism is just the first projection: ¢ = pry|x : X — Y. The exceptional divisor
E=071YC)=0"YD)={f =0} C X is cylindrical: E ~ C x C (cf. [15, Prop.
1.1]).

We have the following simple but useful lemma.

Lemma 2.3. In the notation as above, assume that the affine variety Y := spec A
is smooth. Then the simple affine modification X = spec Alg/ f] is also smooth if
and only if
(i) the divisor Dy = g*(0) is smooth and reduced at each point of the center
C= D;ed N D;ed, and
(i) Dy and D, meet transversally at those points of C where the divisor Dy is
also smooth and reduced.

Furthermore, if X is smooth then df =0 at each singular point of the center C.

Proof. The second assertion easily follows from the first one. To prove the first
one, let F' = 0 be the equation of the hypersurface X CY x C with F:=uf —g €
C[Y'][u] being irreducible. As X\E ~ Y\D is smooth, we should only control the
smoothness of X at the points of the exceptional divisor
E={f=9g=0}=CxCCY xC.
At a point @ = (P,u) € E, we have:
dF =udf +dg+ fdu=udf +dg =0

if and only if dg = —udjf is proportional to df. Now the assertion easily follows. [

2.2. Preserving acyclicity: necessary conditions. In this subsection we adopt
the following convention and notation.

Convention 2.4. (i) X and Y denote smooth, acyclic affine 3-folds 7 such
that
(ii) A" = C[X] is a simple birational extension of the algebra A = C[Y] i.e.,
A" = Alg/ f] with coprime elements f, g € A, and
(iii) D := D;Fd ~ T x C (where I is an affine curve) is a cylindrical divisor.

"Hence the algebras A and A’ are UFD’s, see the proof of 1.5.
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2.5. Denote by 7 : D — I’ the morphism induced by the canonical projection
I' x C — T'. By abuse of notation, we equally denote by 7 the restriction 7|¢ : C' —
I". Thus we have the following commutative diagram:

E~CxC—C

AU
D~T'xC—T

If C = U;il Ci resp., I' = J;_, I; is the irreducible decomposition then the irre-
ducible components of the divisor E resp., D are E; ~ C; x C, resp., D; ~I'; x C.
As in 1.1 we denote by M, = (m;;) the multiplicity matrix of o . Recall that by
1.1, 1.2 and 2.3, m;; > 1 if and only if C; C D4 and m;; = 1 if and only if the
surfaces D4, D;ed C Y meet transversally at general points of the curve Cj.

The terminology in the following definitions comes from the real picture corre-
sponding to our situation.

2.6. Notice that for each j = 1,...,n there exists i € {1,...,n} such that 7(C;) C
I';, and this index i = i(j) is unique unless 7|¢; = const.

An irreducible component C; of the curve C is called vertical if 7w|C; = const
(i.e. deg(m|c;) = 0) and non-vertical otherwise (thus the vertical components of
C are disjoint and each of them is isomorphic to C). The uniqueness of the index
i = i(j) for a non-vertical component C; and the unimodularity of M, (see 1.5)
imply that the j-th column of the matrix M, is the i-th vector of the standard
basis (€1,...ey,) in R, and two different non-vertical components C; and Cj of C
project into two different irreducible components I'; resp., I'; of I'. Hence up to
reordering, we may assume that Ci,...,Cy are the non-vertical components of C
and 7(C;) CI;,i=1,...,k. Then we have

I, | B
My=| — | ——
0 | B
with a unimodular matrix B’. Consequently, for every ¢ = 1,...,k, the surfaces

Dred and D;ed meet transversally at general points of the curve C;.

2.7. Theirreducible components I'y, . .., Iy, are also called non-vertical resp., 'y 1,- ..

are called vertical. Among the non-vertical components C; resp., I'; we distinguish
those with deg (7|c;) = 1 which we call horizontal and those with deg (7|c;) > 2
which we call slanted. We reorder again to obtain that Cy,...,C} resp., I'1,..., Ty
are the horizontal components of C resp., I', and Chy1,...,Ck resp., Tpia,..., Ty
are the slanted ones. An irreducible component of C resp., I' which is not horizontal
is refered to as a non-horizontal component; Choriz denotes the union of all horizon-
tal components of C. In the same way we define Chon—horizs Cverts Chnon—verts Cslants
Ihorizs I'non—horizs Dhoriz, €tc. Thus we have:

h k n
Thoriz = U Fi; Tglant = U Fi; Lyert = U Fi;
i—1 i=h+1 i=k+1
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and similarly

h k n
Choriz = U Cz’; Cvslant = U C’i; Cvert = U Ci -
=1 i=h+1 i=k+1

2.8. Let furthermore f = []}_, f; 9 = fhoriz - fnon—horiz be factorizations such that

f]*(o) = D;ed (.7 = ]-7 .- ;n)7 (fhoriz)il(o) = Dhoriz =~ Fhoriz xC
and
(fnon—horiz)_l(o) = Dnon—horiz =~ 11n0n—horiz x C.

2.9. An irreducible component is called isolated if it is a connected component.
Let us give a typical example which illustrates our definitions.

Example 2.10. Letting Y = C® with coordinates z,y, z, set f = zy,g = y + 22.
Then X = {zyu+y+22=0} CC' =Y xC, D ={zy =0} Cc C, o(z,y,2,u) =
(z,y,2) and E = {zy = y+ 2z = 0} C C*. Therefore, ' = {zy = 0} C C?, Thori, =
{y =0} and I'yery = {x = 0} whereas C' = Cyert U Choriz With Chori, = {y = 2 = 0}
and Tyery = {2 =y = 0}.

The main result of this subsection is the following theorem.

Theorem 2.11. Let X and Y be smooth acyclic affine 3-folds satisfying the con-
ditions (i) and (i) of 2.4. Then (in the notation of 2.6-2.9) the following hold.
(a) 7"'l(c(horiz \Cnon—horiz) : Choriz \Cnon—horiz — Thoriz \Fnon—horiz is an iso-
morphism.
(B8) The slanted components Chy1,...,Cr and Tpy1,...,Ty are isolated and
homeomorphic to C.
(7) fnon—horiz = po frt1 with p € C[2], and every non-horizontal component of
T" is homeomorphic to the affine line C. In other words,

n

fnon—horiz =cC- H (fh+1 - /\i)ai (C € (C*, )\h+1 = 0)
i=h+1
with W(f,l_jl()\i)) =T; homeomorphic to C (i=h+1,...,n).
(6) Up to a further reordering, the multiplicity matriz has the following form:

I, | 0 | Bo
| |

M, = 0 | Ir—n | O
| |

Consequently (by 1.5), o : m(X) = m(Y) is an isomorphism. Moreover, X is
contractible (and hence diffeomorphic to R® ) if and only if Y is so.

The rest of this subsection is devoted to the proof of Theorem 2.11. It is conve-
nient to introduce the following terminology and notation.

2.12. Let F be a curve. We say that a point P € F is multibranch (resp., unibranch)
if it is a center of up = pup(F) > 1 (resp., up = 1) local analytic branches of F'. We
denote by F™°™ the normalization of F' and by F its smooth complete model. The
points of F'\ F"°™ are called the punctures of F. A morphism of curves p: F — G
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can be lifted to the normalizations resp., the completions; we denote the lift by
pnorm : pmorm — [morm resp., ﬁ  F — G

2.13. Consider further an irreducible smooth curve F' of genus g with n punctures,
and let the 1-cycles ai,...,ay, b1,...,b; on F' provide a symplectic basis of the
group Hy(F) = H{(F; Z). Then there is an injection H;(F) < Hy(F) onto the
subgroup generated by the classes [a1],...,[a4], [b1],---,[by]; we may identify the
group H;(F) with its image in H{(F). The group H;(F) being freely generated
by the classes [a1], ..., [ag], [b1],---,[bg], [c1],-- -, [cn—1], Wwhere ¢y, ..., ¢, are simple
1-cycles around the punctures of F', we have a (non-canonical) decomposition

(8) Hi(F)~H(F)®G(F) with G(F):={[c1),...,[en]) = Z" 1

(3" 1les] = 0 being the only relation between the generators [¢1],...,[cn] of the
group G(F).

2.14. We denote by Sp = S U S (where S N S = 0) the finite subset of
the curve I' such that a point P belongs to Sr if and only if it satisfies at least one
of the following three conditions:
(i) P == (C;) for a vertical component C; of C (& P € Slgl));
(ii) P =7(Q) for a multibranch point @ of C;
(iii) P is a multibranch point of T'.

2.15. Set Sc = 7~ 1(Sr) C C and Sg) = ﬂ_l(Sﬁi)), i = 0,1. Thus the analytic
set S¢ contains the union S(C1 ) — vert Of vertical components of C', whereas the
residue set Sg)) =Sc\ Sg) is finite.

It is easily seen that if Q € Sg) ) then over any local analytic branch B; of T" at
the point P := 7(Q) there is at least one local analytic branch 4; C 7 !(B;) ﬁD;ed
of C at Q. Indeed, the surfaces 7~ !(B;) ~ B; x C and D, meet at @, and so the
polynomial g|.-1(g,) € O[B;][2] vanishes at Q =: (P, zq), but its specialization at P
is nonzero, as ) € Sg) ) means that no vertical component of C passes through Q.
Consequently pg(C) > pp(T) and P & Tyer, whence 7 (Tyert) C Sg) = Cyert-

2.16. We let I'™ =T'\ Sp (more generally, I
C\Sc=n"1(*) =r" YT )CC.

non—vert

1_‘something n F*) and C* =

* j—
something —

2.17. For a complex hermitian manifold M and a closed analytic subset T" of M,
by a link lkp(T) of T at a point P € T we mean the intersection T'N S, of T with
a small enough sphere S, in M centered at P. We also call link the corresponding
homology class [lkp(T)] € H.(T \ {P}) = H.(T \ {P}; Z), and we still denote it
simply by lkp(T).

2.18. We denote by Hr resp., Hc the subgroup of the group H; (T'™*) = H{(T'*; Z)
resp., Hi(C*) generated by the links® lkp(T) resp., lkg(C) of the points P € Sr
resp., @ € Sg)). Notice that lkp(I') = I lkp(B;), where By,...,B, are the

8Here we are in the special case when M = X resp., Y and T' = C resp. I'.
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local branches of T" at P and p := pp(T). Clearly, Hr C G(I'*) resp., Hc C G(C*),
and so we obtain (non-canonical) isomorphisms

9) Hy(C*)/He ~ Hi(C*) @ [G(C*)/H()]
resp.,
(10) H,(I'*)/Hr ~ H,(T) ® [G(T'*)/Hr] .

The next proposition is our main technical tool in the proof of Theorem 2.11.

Proposition 2.19. Under the assumptions as in 2.4, consider the restriction m =
M+ 1 C* = T*. Then m,(Hc) C Hr, and 7 induces the following isomorphisms:

(11) 7. : Hi(C*)/He —» Hy(T*)/Hr,
(12) o o Hy (C*) — Hy(T),
(13) #,: G(C*)/He — G(I*)/Hr .

The proof is based on Lemmas 2.21 and 2.22 below. Let us introduce the fol-
lowing notation.

2.20. Denote
Sp=0"S¢)=8cxCCE resp., S =0¢"1(S%) (i=0,1)
and
Sp=n"YSr)C D, so that Sp~SrxCCI'xC~D.
Furthermore, set
E*=0"YC*)=E\Sg =C*xC resp., D* =77 '(T*)=D\Sp ~T*xC
and
X*=X\Sg resp., Y*=Y\Sp.
Thus
X\E=X"\E* resp., Y\D=Y*\D*,
and so we have an isomorphism

o|x-\p+ : X*\ B* = Y*\ D*.

Lemma 2.21. There are monomorphisms
(14)  px : H3(X™) = Hi(C*)  resp.,  py:H3(Y™) = Hi(I'")
such that m.px = pyo. and

T s Hi(C7)/px (H3(X™)) = Hi(T")/ py (H3(Y™))

s an isomorphism.
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Proof. The map of pairs o|x- : (X*, X*\ E*) = (Y*,Y*\ D*) induces the following
commutative diagram (where the horizontal lines are exact homology sequences of
pairs):

* * * i * * * 0Os * *
. — Hy(X*\ E*) — Hj(X*) 2 Hy(X*, X*\ E*) 5 H;_1(X*\ E*) — ...

lzm la* {o* 10 (*1)

* * * * * * * 8* * *
. — H;(Y*\ D*) — H(Y*) Z» Hy(Y*,Y*\D*) = H;_;(Y*\D*) — ...

Claim. (a) H3(X*\ E*) = H3(Y* \ D*) =0 and (b) Hy(X*) = Hy(Y'*) = 0.
Proof of the claim. (a) In virtue of the isomorphism

o, s Hy(X*\ E*) = H5(X \ E) = H3(Y \ D) = Hy(Y* \ D*)
it is enough to show the vanishing of one of these groups, say, of H3(X \ E). Let as
before, F' denote the one-point compactification of a topological space F'. As X is
acyclic (whence by 1.12, the Alexander duality can be applied to X) and moreover
E is closed in X, the Alexander duality gives an isomorphism
(15) H3(X \ E) = H*(E, {o0}).

Consider the homeomorphisms E ~ C x K2, E ~ (C x R?)/(C Vv R?) and replace
here R? by S2. Since (C' x S?, C' vV S?) has the homotopy type of a pair of cell
complexes, by [5, 4.4] we get
H?*(E, {o0}) = H*(E) = H*(C x 82, C'V §?).
The Kiinneth formula for cohomology [22, (11.2)] yields a monomorphism
W Z HP(C,{o0}) @ H1(S2%,{o0}) =: H - H*(C x §2, C v §?)
p+q=2
with the cokernel
coker = Z Tor (H?(C, {o0}), HY(S?, {o0})) .
p+q=3
As )
H®(C,{oo}) = H%(S?,{oc}) = H'(S?,{cc}) = 0
we have H = 0. The group H*(S 2 {oo}) being torsion free, we also have coker y =
0, and so H2(C x S2, C Vv §?) = 0 as well. Thus in view of (15), H3(X \ E) = 0.
This proves (a).
(b) By the Alexander duality we obtain
Hy(X™*) = Ha(X \ Sg) = H(Sp,{o0}) = H*(SE) -
The topological space Sg is homeomorphic to a bouquet of 4-spheres S* and 2-
spheres S2. The 4-spheres are provided by the one-point compactification of the

product Sg ) % C = Cyext X C (recall (see 2.6) that the components of the curve
Clert are disjoint and each one is isomorphic to C), whereas the 2-spheres S? are
provided by the one-point compactification of the product Sg) ) x C.

Hence H3(Sg) = Hy(X*) = 0. Similarly, we have Hy(Y*) = 0. This proves the
claim. O
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In virtue of the above claim, (1) (with ¢ = 3) leads to the commutative diagram

0 — = Hy(X*) —% Hy(X*, X*\ E*) 2 Hy(X*\E*) —— 0

{0* la* lw* (*2)

a

0 H3(Y*) 2 Hy(V*,Y*\ D*) 5 Hy(Y*\D*) — 0

Next we apply the Thom isomorphism [5, 7.15] to the pairs of manifolds (X*, E*)
resp., (Y*,D*) (cf. the proof of 1.9). Indeed, the curve C* resp., I'* being lo-
cally unibranch (whence homeomorphic to its normalization), E* = C* x C resp.,
D* =T* x C is a topological manifold. Notice that (in virtue of 1.2 and 2.6) o*
maps the transverse classes [5, Ch. VIII] of E* into those of D*. By functoriality of
the cap-product [5, VII.12.6], for every ¢ > 2 the following diagram is commutative:

Hy(X", X"\ E") > H; »(E*)

la'* la* (x3)

Hy(Y*, Y\ D*) _~ H; (D)

R

By making use of (x3) together with the following commutative diagram (see 2.5):

H,(E*) —» H,(C*)

la* lw* (*4)

H.(D*) — H,.(T™)

we may replace in (x2) the group H3(X*, X*\ E*) resp., H3(Y*, Y*\ D*) by the
group H1(C*) resp., H1(I'*) to obtain a commutative diagram

0 — = Hy(X*) 2% H,(C*) -5 Hy(X*\ E) 0

F e

0 Hy(Y*) 2% Hy\(T*) -2 Hy(Y*\D*) —— 0

where px := 0. 0tx 014 resp., py := 7« oty 0i,. The diagram (*;) yields the
assertions of the lemma. O

Lemma 2.22. px(H3(X*)) = Hco and py (H3(Y*)) = Hr.

Proof. We start by constructing an appropriate free base of the Z-module Hs(X*)
(resp., H3(Y™*)). By the Alexander duality we have isomorphisms

Hy(X*) = H(Sp) = H2($)) == 200055
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where S\ := S x C (similarly, Hs(Y*) & Z%(50)). Thus Hs(X*) = Ha(X*) &
H 2(S;EO)) is a free Z-module, and so the universal coeflicient formula provides yet
another form of the Alexander duality:

Hy(X*) = HX(SY)) = Hy(8Y)  (vesp., Hs(Y*)= Hy(Sp))

(see e.g., [7, Ch. 2, §15.5]). Now a free base of H3(X*) can be reconstructed as

follows. On each component Tg := o 1(Q) = {Q} xC ~ C of Sg)) (where @ € Sg)))
fix a point Q' € Tg, and fix a complex 2-ball Bé, in X transversal to Tg at Q’.

Then the 3-cycle [sg/] € H3(X*) which corresponds to the 2-cycle [T] € H2(S’g)))
by the Alexander duality, can be represented by a small 3-sphere (say) sg: in Bf?,
centered at Q' [7, Ch. 2, §17]. These cycles [sg] € H3(X™*) with 7(Q") = Q, where
@ runs over Sg’ ) form the desired base.

It is convenient to fix the choice of a point Q' € T as follows. Consider the
curve C' C X given by the equations u = foo = 0 (thus C! = END™Y). Tt is easily
seen that the restriction o|C’ : C' — C is an isomorphism. Its inverse C — C' C E
is a section of the projection ¢|E : E = C x C — C. Letting Q' := Ton C'
and placing the transversal ball By, into the divisor Di?? = {u = 0} C X (notice
that by 2.3, Q' is a smooth point of Di?® ~ D), we let 6 := sg- N C'. Then
0(dg) =: dg = lkg(C) is a link of the curve C at the point @ € C, and so
0o € Hc. We claim that px([sqg]) = [0g] € H1(C*), or in other words, that
ix([sg]) = tx' ([6q'])-

Indeed, consider the Zariski open dense subsets X** := X* \ sing E* C X* resp.,
reg E* := E* \ sing E* C E*. Let U be a small tubular neighborhood of the closed
submanifold reg E* C X** with a retraction 7 : U — reg E*. We have ¢ C reg E*,
and the class [T 1 (d¢r)] € H3(X**, X**\reg E*) = H3(U, U\reg E*) corresponds to
the class [6g:] under the Thom isomorphism Hj(X**, X**\reg E*) =, Hy(reg E®)
[7, Ch. 4, §30]. The Thom isomorphism being functorial under open embeddings
[5, VIII.11.5], we have t5' ([6o/]) = [~ (6¢1)] € H3(X*, X* \ E*).

The divisors D™ and E* in X* are transversal, and so the 3-sphere s¢ is
transversal to the divisor E* along the 1-cycle 6o C E*. Hence sg:NU and 71 (d¢y)
represent the same relative homology class in Hs(U, U \ reg E*) = H3(X**, X** \
reg E*). This proves the equality px([sg']) = [dg].

Therefore, we have shown that px(Hs(X*)) C H¢, and every element [0g] of
a free base of the Z-module H¢ is the image of an element [s¢/] € H3(X™) with
o(Q") = Q. This proves the first equality of the lemma; the proof of the second one
is similar. O

Proof of Proposition 2.19. In virtue of 2.21 and 2.22 we have 7, (H¢) C Hr and
#x in (11) is, indeed, an isomorphism. Furthermore, as H;(T') = H,(T)/G(T*)
and H,(C*) = H,(C)/G(C*) (see 2.13), the homomorphism 7, : H;(C*) — H;(T)
factors through 7., whence 7, is a surjection. To show that it is also injective,
consider a nonzero element [a] € H;(C*) generated by a l-cycle a in C} (where
i < k) such that the 1-cycle 8 := 7(a) in T} gives a zero element of Hy(T;). Hence
the class [] € H1(T'}) is contained in the subgroup G(I'}). It is easily seen that
7« (G(C})) contains a subgroup of finite index in G(I'}). Thus for some m > 0 we
have m[f] = m.([v]) with [y] € G(C}). As m[a] — [v] is still a nonzero element of
H,(C*) whose image in Hy(T'}) is zero, we have 7, (m[a] — [y]) = 0, which is wrong
since 7, is an isomorphism. This proves that 7, in (12) is an isomorphism.
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It follows that the decompositions (9) and (10) in 2.18 can be chosen in such a
way that 7, respects them. Then by (11) and (12), 7, in (13) is also an isomorphism.
The proof is completed. O

2.23. The proof of the next lemma is based on the following simple observation.
Let G is a free abelian group of finite rank. For an element a € G, the following
conditions are equivalent:
(i) a is primitive (that is, if a = kb with b € G, k € Z then k = £1);
(ii) given a free base ai,...,a, of a Z-module G, the coordinates in the pre-
sentation a = 2?21 k;a; are relatively prime.

Lemma 2.24. Let F be a curve with the irreducible components F1, ..., Fr, which
are all non-compact, and with the multiple points Py, ..., Pyr. Denote by p1,...,PN
the punctures of the curve F* := F\{Py,...,Py}, and let B; be a local branch of
F centered at p;. Consider the group G := G(F*)/Hp, where

G(F*) == (lkp,(B;) | i =1,...,N) C Hy(F*)
and
Hp = (lkp;(F)|j=1,...,M) C G(F*).
Then G =2 ZN-M=L_ Furthermore, for each i = 1,...,N the class [lk,;(B;)] € G

s primitive unless it is zero. The latter holds if and only if p; is the only puncture
of the corresponding component Fy, and Fy is an isolated component of F'.

Proof. Denoting v : F"°™ — F a normalization, we let v~ (P,,) = {p;}jes.. with
J =y Jm C {1,...,N} °. Thus lkp, (F) = ¥, lky;(B;). We also let
{pi}icr, be the set of punctures of a component F;* := F; N F* of the curve F*.
For every m = 1,..., M (resp., l = 1,...,L) we pick an index j,, € Jp, (resp.,
i € I;\J) (notice that the index set I;\J of the punctures of F; is non-empty, as
F; is assumed to be non-compact). Then we have:

= (lkp,(B;), lkp, (F)|m=1,,...,M, i & {iy,-..,ig,j1,---,jm})-

Thus G(F*) 2 ZN-L = Hp @ ZVN LM with Hp = ZM, and so

The elements [lk,, (B;)] € G of the free base (16) satisfy the condition (ii) of 2.23,
whence are primitive. The indices j,, € J,, being arbitrary, as cardJ,, > 2 the
classes [lkp, (B;)] € G with i € J are all primitive as well. By the same reason, a
class [lky, (B;)] € G with i € I}\J is primitive unless {i} = I;\J (i.e., unless p; is the
only puncture of F}). If such a component F; meets another one Fyr at a multibranch
point P,,, then choosing j,, from J, N Iy and decomposing [lk,,(B;)] € G in
the base (16) we obtain that at least one of the coordinates equals —1, hence
2.23(ii) is fulfilled, and so [lkp, (B;)] is primitive too. Finally, [lky,(B;)] € G is not
primitive if and only if p; is the only puncture of F; and Fj is isolated (in that case
lkp,(Bi) + >_p e, lkp, (F) = 0in G(F*), whence [lkp, (B;)] = 0 in G). O

In the proof of Theorem 2.11 below (based on 2.19 and 2.24) the role of F in
2.24 is played respectively by the curves I' and Chon—vert \Cvert- As in the proof of

9Here ]_[ stands for the disjoint union.
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2.24, it will be important to bear in mind the freedom of choice when selecting the
indices {i1,...,%L,J1,---,jm} as in (16). From 2.24 we obtain such a corollary.

Corollary 2.25. In the notation as in 2.19, let Q € C; (i € {1,...,k}) be a
puncture of C} such that P := 7(Q) € T; is not a puncture at infinity of the affine
curve T';. Then the following hold.

(a) multe@ =1 (that is, @ is non-ramified at Q);

(b) P is a puncture of I'};

(c) the components C; and T'; are horizontal (that is, 1 <i < h).

Proof. The curve C; possesses yet another puncture over a place at infinity of I,
whence by (2.24), [lkg(C})] is a primitive element of the group G(C*)/H¢. As 7ty
in (13) is an isomorphism, 7. ([lkg (C})]) = k[lkp(T})] € G(I'™*)/Hr\{0} is primitive
as well, whence k = multg7 = 1, which yields (a) and (b).

Suppose that there are two different local branches A and A’ of C over a lo-
cal branch B of T at P, and let (), Q' € C be their centers. The same argu-
ment as above shows that 7. ([lkg(A4)]) = 7« ([lkg (A")]) = [lkp(B)], where both
[lko(A)], [lkg (A")] € G(C*)/H¢ are primitive. Hence

(17) [lkq(A)] = [thq (A)] #0.
It is not difficult to verify that (in contradiction with (17)) there exists a base (16)
which includes both [lkg(A)] and [lkg: (A')], unless A and A’ are local branches of

the curve C' at a multibranch point @) € Sg] ) with ug(C) = 2. But in the latter
case [lkq(A)] = —[lkg (A')], which again contradicts (17). Therefore, there is only
one local branch of C over B, which yields (c). O

Now we are ready to prove Theorem 2.11.

Proof of Theorem 2.11. It is convenient to proceed first with the proof of (). From
2.25 we get:
Cstant NSt = 0 = Cslans N Sc

(indeed, '}, ¢ resp., Cj,ne cannot have punctures other than the places at infinity).
Thus the slanted components C; and T'; (h+ 1 < i < k) of C resp., I are isolated
and do not contain multibranch points. In particular, C; = C} resp., I'; =T'}, and
these curves are homeomorphic to their normalizations. Furthermore, the group
G(C}) (resp., G(I'Y)) is a direct summand of G(C*)/H¢ (resp., G(I'*)/Hy). Hence
by 2.19,

(18) Tla(cy) 1 G(C7) — G(I)
is an isomorphism, as well as
(19) 7_1—*|H1(C’,-) : Hl(éi) i) H, (fz) .

Since deg 7|, > 1, (19) shows that H;(C;) = 0 = Hy(I';) i.e., both C; and I; are
rational curves. Therefore by (8) in 2.13,
Hy(C7°™) = Hi(C) = Hi(CF) = G(CF)
and
Hy(T7") = Hy(T) = Hi () = G(I7) .
Now (18) yields that
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is an isomorphism. By a theorem of Hurwitz (see e.g., [18, 1.2.1]), a morphism
p : F — G of smooth irreducible affine curves is an isomorphism once the induced
homomorphism p, : Hy(F) — H;(G) is an isomorphism, unless Hy (F) = H;(G) =
Oie, F ~ G ~C. Thus C'"™ ~ I'7°"™ ~ C, and so the curves C; and I'; are
homeomorphic to C, which proves (5).

(Oé) By 2.15 7"71(1_‘vert) C Cyert, whence W(Choriz\cvert) Cc 1—‘horiz\Fvert- To show
that actually, the latter inclusion is an equality, suppose on the contrary that for a
point P € Thoriz\Lverts 7~ 1(P) = 0. Then all p := pp(T) branches A;,..., A, of C
over the branches By, ..., B, of I" at P have centers at infinity. By 2.25(b) the curve

I'* has a puncture over P. Thus P € Sl(f’) is a multibranch point of T'heyiz\Ivert,
and so the primitive classes (see 2.24) [lkp(B;)] € G(I'™*)/Hr (j = 1...,u) are
subjected to the (only) relation E;‘Zl [lkp(B;)] = 0. Therefore, the primitive classes
[lko,(A;)] € G(C*)/He (j =1...,p) are also related by

"
(20) tha, (4,)] = 0,
=1

J

where ; € C is the center of the branch A4;. Constructing a free base (16) of
the free Z-module G(C*)/H¢, we may suppose that for any j = 1,...,u, j &
{i1,...,i} (and definitely, j & {j1,...,jm} as Q; is a puncture at infinity of C).
Thus the classes [lkg; (A;)] (j = 1...,u) make a part of a free base (16), and so
cannot satisfy (20), a contradiction.

Denote F' := C'horiz\cynon—horiz = CYhoriz\cyvert and G := 1-‘horiz\rnon—horiz =
Thoriz\I'vert- We have shown that the morphism mF : F' = G of degree 1 is bijective.
It follows that it is an isomorphism. Indeed, as D, and Dy meet transversally along
F (see 2.5), the curve F' is the zero divisor of the restriction g|gxc,, which is a
polynomial of degree one in z, say, az + b € C[G][2]. Note that a and b have no
common zero on G (otherwise the zeros of g|gxc = az + b would contain a vertical
component). As 7|r is surjective, a is nowhere zero, whence z = —b/a € C[G], and
so m|p is an isomorphism. This proves (a).

() The group G(I'*)/Hr = 7.(G(C*)/Hc) being generated by the classes

ﬁ-([leg (Cz*)]) € G(F;on—vert)/[HF N G(onn—vert)]
(where (; runs over the set of punctures of the curve C*) we have
G(T )/[Hr 0 G(Thon—ver)] = G(T*)/ Hr -

non—vert

Since in virtue of (8), G(T'*

slant
G(F*)/HF = G(F;on—slant)/HF = G(Ffwriz)/[HF N G(F;oriz)] .

In particular, for each puncture P of T’

) = 0 we obtain

*
vert»

(21) [lkp(D)] € G(Toriz) /IHr N G(Thgr, )] -

It follows that on any vertical component of I" there is only one puncture at infinity.
Indeed, if there were a component I'; of I'yer¢ with at least two punctures at infinity,
say, P; and P», then any free base as in (16) of the Z-module G(I'*)/Hr would
contain at least one of the corresponding classes, say, [lkp, (I')], which contradicts

we have

(21).
A similar argument shows that the curve I'yery has no selfintersection. In par-
ticular, the components of I'yery are disjoint, and for each s = k+ 1,...,n, I'; is

homeomorphic to ;™.
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Furthermore, by 2.19
7?* : Hl (C*) 4 Hl (f) = Hl (f‘nonfvert) @ Hl (fvert)

is an isomorphism, and 7, (H; (C*)) C Hy (Thon—vert)- It follows that Hy (Tyert) = 0,
whence the components of I'yery are rational. Finally, I'; (1 = k+1,...,n) is a
rational curve with one place at infinity and without selfintersections, therefore is
homeomorphic to C.

Asforanyi=h+2,...,n, Dpy1ND; = @ and D; ~ T; x C is simply connected,
with the notation as in 2.6 we have that the restriction f41|p, does not vanish,
and so is constant: fp41|p, =: A; € C. Thus we obtain a decomposition as in (7y),
which completes the proof of ().

(6) As the matrix B’ in 2.6 is unimodular and by () the vertical components
are disjoint, arguing as in 2.6 we can easily see that the morphism 7 : C' — I’ maps
any component of Ciery into a component of I'yer, and maps different components
of Cyert, into different components of T'yery. Moreover, the columns of B’ are vectors
of the standard basis in R"~*. Hence up to a reordering we may assume that B’ is
the unit matrix. The slanted components I'y,41, ..., 'y being isolated the last k —h
lines of the matrix B are zero, which completes the proof of (9). a

Remark 2.26. Notice that for any vertical component C; of C (i = k+1,...,n),
P; := 7(C;) is a smooth point of the curve T';. This follows from 1.2 as m;; = 1.

2.3. Preserving acyclicity: a criterion. We have the following partial converse
to 2.11.

Theorem 2.27. Let X andY be irreducible smooth affine 3-folds which satisfy the
condition (1) of 2.4, as well as the following one (which replaces 2.4 (iii)):

111 = X 18 a cyuinaer over a smoot acycuc ajfine surface , an =
i) Y = Z x C i lind h acyclic affi face Z, and D
TxCuwithD CZ.

Suppose also that the conditions (o )-(5) of Theorem 2.11 are fulfilled. 1° Then the
induced homomorphisms

ox : Hi(X) > H(Y) and o, :m(X) = 7 (Y)

are isomorphisms. Henceforth, the 3-fold X is acyclic; it is contractible if and only
if Y is so.

Proof. The theorem immediately follows from 1.4, 1.10 and 2.32 below. Indeed, the
assumption 2.11(§) allows to apply 1.4 in order to get that o, : m (X) — 7 (V) is
an isomorphism. In turn, by 2.32 the assumptions of 1.10 are fulfilled, and so by
1.10, 0« : Ho (X) —» H.(Y) is an isomorphism as well. O

From 2.11 and 2.27 we obtain the following criterion for preserving the acyclicity.

Corollary 2.28. Let X and Y be smooth affine 3-folds satisfying the conditions
2.4(i1) and 2.27(ii7'). If' Y is acyclic resp., contractible then X is so if and only if
the conditions 2.11(a)-(8) are fulfilled.

10gee 2.29 below.
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Remark 2.29. Assuming in 2.27 that the conditions 2.11(«)-(d) are fulfilled we
require implicitly that the things are as in 2.6-2.8, without supposing acyclicity as
in 2.4(i). In fact, 2.6-2.8 refer only to the fact that the multiplicity matrix M, is
unimodular, which is anyhow foreseen by 2.11(6).

Actually the proofs of the lemmas below rely only on the conditions (ii), (iii)
and the following one.

(iv) Thereis a regular function ¢ € A = C[Y] such that for every i = h+1,...,n
the restriction ¢|p, is constant, as well as the restriction of ¢ to any fiber
of the morphism 7 : D — T, and for any point P € Sr\Lyers, both &p :=
©*(p(n1(P))) CY and ¥p := 0 !(®p) C X are smooth, reduced surfaces
with (T*(q)p) =Up.

Under these assumptions o, is an isomorphism in homology (even if we do not
suppose as in 2.27 that Y is acyclic).

The next lemma shows that the conditions (ii) and (iii") imply (iv).

Lemma 2.30. Under the assumptions of 2.27 there exists a (possibly empty) smooth,
reduced curve I'' on Z such that

(a) 'n I'hon—horiz = 0 and T’ 2 S%‘O) \Fnonfhoriz;

(b) the surfaces ® :==T'x CCY and ¥ := o1 (®) C X are smooth, and

(¢) oy : Hi(¥) — H,(®) is an isomorphism.

Proof. If h < n (i-e., Tnon—noriz 7 @) then we take for T the union of the fibers
of the regular function f11|z through the points of Sl(ao)\l“non_hom. Indeed, since
the Euler characteristics e(I'y1) = e(Z) = 1 and Thy1 = (fat1]2)*(0), by [38,
6.2] the fibers of fjy1|z are smooth, reduced and irreducible except for, possibly,
Ip41. Thus IV is smooth and reduced. As fr11 is constant on any component T';
of Thon—horiz W€ have I" N Tyon—noriz = @, whence (a) is fulfilled.

In the case where h = n (i-e., Tnon—_noriz = ¥) the existence of a smooth, reduced
curve I satisfying (a) easily follows by Bertini’s Theorem.

Evidently, ® = I'" x C is a smooth surface. Since o|x\g : X\E = Y\D is
an isomorphism, the surface ¥ := o~1(®) is smooth if it is smooth at the points
Re UNE. Let Q = (P, Zo) = O'(R) eCwithPel'nI'C I‘horiz\l‘non,horiz.
As T is smooth we can find local coordinates (x,y) on Z centered at P such that
(loca‘HY) I = {.’ll’ = 0} Thus Q = (PJ ZO) = (0,0,20), R = (QJuO) = (O’OJZOJuO)J
and (locally)

U={z=0}nX={f(0,9)u—g(0,9,2) =0} CC ,,

where by the condition 2.11(a), (locally) g(0,y,2) = a(y)z + b(y) with a(0) # 0
(see the proof of 2.11(«x)). Therefore, 8g/9z(Q) = a(0) # 0, whence the surface ¥
is smooth at R. Thus (b) holds.

To show (c) we need the following claim.

Claim. (0'|\1;)* ((Dhoriz n (I))red) = (Ehoriz n \I,)red‘

Proof of the claim. We will use the same local chart and the notation as above. We
have (Dhoriz N ®)**¢ = {P} x C, = y*(0) (y being regarded as a function on ®).
Then locally, (y o o) : (y,z,u) — y, whence the subspace kerd(y o o)|gr = {y =
0} does not contain the tangent space TrX (indeed as a(0) # 0 the differential
d(fu—g)|r = ...—a(0)dz of the defining polynomial of ¥ in C , ,, at the point R is

Y,z,u
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not proportional to the differential dy of y = y o o at R). It follows that d(yoo)|w
does not vanish at the points R € ¥ N E, and so locally

(Bnoriz N ¥)™*! = (y 00)*(0) = (0]w)* ((Dhoria N ®)")
as desired. 0

Notice that @ N Dhoriz = (I N Thoriz) X C C @ is a disjoint union of affine lines,
whereas in virtue of 2.11(a), ® N Choriz is a finite set of points, one on every of
those lines. Furthermore, ¥ N Eporiz = (@ N Choriz) X C.

The proof of (c) is based on 1.9. In the notation as in 1.9 we let X := ¥,V :=
®, E := U N Ehorp and D := & N Dyoyi,. Then by (b) above, X,V, E and D are
smooth varieties, o(E) C D, o(X\E) = Y\D, and (by the above claim) o*(D) =
E, that is, the condition (i) of 1.9 is fulfilled. As olx\p X\E - Y\D is an
isomorphism, taking into account the observations following the claim it is easily
seen that 1.9(ii) holds as well. Thus by 1.9, o, : H,(X) — H,(Y) is an isomorphism,
which yields (c). O

2.31. The proof of the next lemma relies on 1.10, where we let £ = E' U E" and
D=D' U D" with E = Ehoriz; D' = Dhoriz;

E" = Enon—horiz H ¥ and D":= Dron—noriz H ¢ )
® and ¥ being the same as in 2.30(b).

Lemma 2.32. Under the assumptions and the notation as in 2.27 and 2.31, the
conditions (i') and (ii') of 1.10 are fulfilled.

Proof. In virtue of 2.11(v), for every ¢ = h + 1,...,n both curves C; and T'; are
homeomorphic to C, whence both surfaces E; = C; x C and D; ~ I'; x C are home-
omorphic to C2. Therefore Enon_noriz and Dpon_horiz are topological manifolds,
and (0|g,.,_pouin)* : He(Enon—horiz) = H«(Dnon—horiz) iS an isomorphism. As the
surfaces ® and ¥ are smooth we have that E" and D' are topological manifolds as
well, and in view of 2.30(c), (o|g" )« : H(E") = H,(D") is an isomorphism.

As by our construction

SI‘ g F’ u 11non—h0riz and SC' g ﬂ'_l(rl) ) Cnon—horiz )

the curves Thoriz\ (I U Tnon—horiz) and Choeriz\ (7~ (') U Cron—horiz) have no multi-
branch points. Therefore they are topological manifolds, as well as the surfaces

DI\D” = [Fhoriz\(rlurnon—horiz)]X(C and EI\E” = [Choriz\('/T_l(FI)UCnon—horiz)]X(C-
By 2.11(«) the projection
e Choriz\(ﬂ'_l(]-”) U Cnon—horiz) — Fhoriz\(rl ) I‘lnon—horiz)

is an isomorphism, whence o|gngr : E'\E" — D'\D" is so as well. Now the
conditions (i) and (ii’) of 1.10 follow. O

3. SIMPLE AFFINE MODIFICATIONS OF C® DIFFEOMORPHIC TO R®

The main result of this section is 3.6, which together with 2.28 provides a criterion
for as when a simple affine modification X C C* of Y = C? is isomorphic to C.
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3.1. Exotic simple modifications of C3>. We keep the terminology and the no-
tation of section 2, and we adopt the following
Convention 3.1. Hereafter

(i) Y = C? with the coordinates z,y, z, and
(ii) X is a smooth affine 3-fold in C* diffeomorphic to R®, with equation of the

form

(22) p:f(way)u+g($ayaz):()a
where f € Clz, y]\C, g € C[z, y, 2] (thus by 2.28, the conditions 2.11(a)-
(6) hold).

3.2. Note that the blowup morphism ¢ : X 3 (z,y,z,u) — (z,y,2) € Y rep-
resents X as a simple affine modification of Y = C® along the cylindrical divisor
D =Dy =T x C (where I' := f~(0) C C*) with center C = {f =g =0} CC°
and with the morphism 7 : C — T as in 2.5 given by 7 : (z,y,2) — (x,y). Hence
the assumptions (i)-(iii) of 2.4 are fulfilled.

3.3. Asin 2.8 we factorize f € Clz,y] into irreducible factors: f =[], f;**, and
we write g as a polynomial in z:

d
g(z,y,2) = ij(x,y)zj with d:=deg,g.
j=0

We let d; := deg (7|c,). Recall (2.6, 2.7) that an irreducible component C; (resp.,
T; = f7'(0)) of the curve C (resp., T') is vertical (resp., horizontal resp., slanted)
if and only if d; = 0 (resp., d; = 1 resp., d; > 2). The following lemma is a simple
observation, and so we omit the proof.

Lemma 3.4. For every i = 1,...,n we have b; € (fi) Vj = d; +1,...,d and
ba, & (fi). Hence p as in (22) admits a unique presentation

p= fu+gi+ fih;

with g;(z,y,2) == E;-i":o bj(z,y)2? € Clz,y,2] and h; € (2%*1) C Clz,y,2]. Pur-
thermore, if fuoriz 7 const then p can be written as

(23) p= fhorizfnon—horizu +bo+biz+ fﬁf)fizho
with b, by € Clz,y] and ho € (2%) C Clz,y, 2], where bi|r, . \Tmon_now, 10S 10 zeT0.

3.5. Recall [39] that an ezotic C? is a smooth affine 3-fold diffeomorphic to R® but
non-isomorphic to C3.

The principal result of this subsection is the following theorem.

Theorem 3.6. If under the assumptions as in 3.1, at least one of the curves
Chon—noriz 6nd Tnon_noriz 5 singular then X is an exotic C3.

The proof is done in 3.9 and 3.15 below. For a converse result, see 3.21 in the
next subsection.

Notice that 3.6 provides a regular way of constructing exotic C3-s as hypersur-
faces in C*. Let us give concrete examples.
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3.7. Examples. For the Russell cubic 3-fold
X={z>u+z+y*+2*=0}cC,

the curve I' = Tgany = {# = 0} C C? is smooth and isomorphic to C, whereas

C = Cgant = {z = y?+ 2% = 0} C C (the center of modification) is homeomorphic

to C but singular. It is well known [19, 4, 39] that X represents an exotic algebraic
structure on C3. By [13] the Koras-Russell cubic 3-fold

X={*+y)u+z+22=0}cC

also is an exotic C*; here both I' = Tgjant = {2? + y® = 0} C C? and C = Cyjant =
{2? +y® =0 =2 + 22} C C® are homeomorphic to C but singular.

Remark 3.8. Generalizing a theorem of Sathaye [30], in [15, Thm. 7.2] it is proven
that actually, every smooth acyclic surface in C* with equation p = f(z,y)u +
g(x,y) = 0 (where f, g € C'?l) is isomorphic to C? and rectifiable. Examples 3.7
show that in general, this does not hold anymore in C* without the additional
assumption of smoothness of Chon—noriz and Tnon—noriz (cf- 3.6 above).

The proof of 3.6 starts with the following proposition (cf. 3.20 below).

Proposition 3.9. Let X and Y be as in 3.1. If the curve I'non—horiz 45 Singular
then the Derksen invariant Dk (A') of the algebra A’ := C[X] is non-trivial, whence
X £C.

The proof is done in 3.10-3.14.

Lemma 3.10. Under the assumptions as in 3.9, choosing appropriate new coordi-
nates in the (x,y)-plane and rescaling the z-coordinate we may write the polynomial
p in the form

(24) b= (wk - yl)mfhoriz(xay)u + 2° + 90(1‘;9;2) + (xk - yl)hO(x;yaz) )

where k,l,e > 2, (k,1) = 1, fuhoriz € Clz,y] and  fhoriz(0,0) = 1, go, ho €
Clz,y, 2], deg,go < e and z°|ho.

Proof. In the notation as in 2.6-2.9 we have h < n. In virtue of the condition 2.11(y)
we may suppose that the component I'p11 of I'non—_nhoriz iS & singular plane curve
homeomorphic to C. Hence by the Lin-Zaidenberg Theorem [18], choosing new
coordinates in the (z,y)-plane we may assume that fn.1 = =% — ! with k, 1 > 2
and (k,l) = 1. As the other fibers z* — y' = ¢ (¢ € C\{0}) of the polynomial
fra1 are not homeomorphic to C, in view of 2.11(v) we have h + 1 = n, and so
faon-—horiz = f™ = (zF — y!)™ with m := a,. By 3.4 the polynomial (22) can be
now written as follows:

b= (xk - yl)mfhoriz(xay)u + be(xay)ze + gﬂ(mayaz) + (xk - yl)hg(w,y,z)
with b, € Clz,y], go, ho € Clz,y,2], deg, go < e and 2¢*!|hg. In virtue of 2.11()
and 2.5 the divisors D, =T, x C and D;ed meet transversally at general points of
Cn = D, N DY, If T, were vertical (i.e., g(z,y,2) = bo(z,y) mod (2% — y'); see
3.3, 3.4) then the equation by(#,t*) = 0 would have a unique solution ¢, such
that (in virtue of 2.26) n(C,) = (tb,t§) is a smooth point of T, C C2 , i.e.,
to # 0. Thus by(t,t*) = c(t — to)” which is wrong as the derivative of the left
hand side vanishes at ¢ = 0. Therefore, I';, = T'gjans, whence e = degn|c, > 2
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and 7|¢, : Cpn — T, is a proper morphism (as each of these curves has only
one puncture). It follows that the restriction b.|r, has no zero. As T, is simply
connected we have b,|r, = const =: b2 € C*, and 50 b (z,y) = b2 + (zF —y')ce (z,y)
for a certain polynomial ¢, € C!?. Finally, rescaling the z-coordinate if necessary,
we obtain the desired presentation. As by 2.11(8), ', = Tgan is an isolated
component of I', the restriction fhoriz|r, does not vanish, whence is constant, and
we may assume in addition that this constant is fhoriz(0,0) = 1. O

3.11. We choose the weight degree function d on the algebra A with
d, = —IN, dy = —kN, d. =v2 and d, = klmN +eV?2,
so that the polynomials
fo=f=2—y"  and  pi=(aF —y)"u+ 2
are d-quasihomogeneous. Letting N € N to be sufficiently large (thus d(hg) < kLN,

and hence d((z* — y')hy) < 0) we may assume that p as above is the d-principal
part of the polynomial p as in (24).

Lemma 3.12. Let q € C[z,y, z,u] \ C be an irreducible d-homogeneous polynomial
with deg,q < e. Then q coincides (up to a constant factor) with one of the following
polynomials:

z, Y, 7, u, \e¥ + py', where X, peC*.

Proof. Letting q = Z;:é a;(z,y,u)z with a; € Clz,y,u] (i =0,...,e—1) we claim
that there can be only one nonzero coefficient a;. Assuming on the contrary that
a;, a;+j # 0 for some i, i +j € {0,...,e — 1} with 1 < j < e — 1 we would have
d(a;7") = d(a;y;2"7). Taking into account the equality d, = %d, we derive

d(aiz") — d(air;2"7) = jd. = jV2 = ady, + Bdy = 0eV2 + f'd,

(25) = (j—ae)V2=p'd, €Q

for certain o € Z>g and 3, f' € Q. But ae — j € Q\ {0}, whence (25) leads to a
contradiction.

Therefore, the irreducible polynomial ¢ must coincide (up to a constant fac-
tor) either with z or with a polynomial ay € Clz,y,u]. Let ¢ = ao(z,y,u) =
E:zo ci(@,y)ut with ¢; € Clz,y] (i = 0,...,t). The weights d, (resp., d,) and d,,
being independent over Q the same argument as above shows that at most one
summand ¢;(z, y)u! may be different from zero.

Thus once again, the irreducible polynomial ¢ coincides (up to a constant fac-
tor) either with u or with a polynomial ¢g € C[z,y]. In the latter case, being
d-homogeneous the polynomial ¢ must coincide (up to a constant factor) with one
of the polynomials z, y, Az* + py' (A, u € C*), as stated. ]

3.13. Let an irreducible polynomial p € CI*l be as in (24). Set as before X =
p~1(0) Cc Ct, X =p~1(0) C C* and A’ = C[X] where p is the d-principal part of p.
Denote by p 4, the canonical surjection

pir s O — CH/(p) = A

and by & = p 4, (x),...,0=p4(u) € A’ the traces on X of the coordinate functions.
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The polynomial p being irreducible, by 1.22(a) A’ is just the graded algebra
associated with the filtered algebra A’ a filtration being provided by the degree
function d on A’.

Lemma 3.14. In the notation as in 3.13 we have
ML, (A’) = Dkg (A) = C[2, §] € A'<o.
Therefore (by 1.24)
Dk (A") Cc Ay #A',
so that A’ ¢ C13 and X % C®, which proves 3.9.

Proof. The Jacobian derivation

(P, x, y, *)

%= 5o, 3, 2, 0)

on the algebra Ar being homogeneous and locally nilpotent with A’ao = kergy =
C[z, 9], it is sufficient to show that Z, § € ker & for any 0 € LNDg,(A’ ). Indeed, by
1.14 both C|[z, §] and ker § are algebraically closed subalgebras of A' of transcen-
dence degree 2, thereby they coincide provided that C[Z, §] C ker d.

The derivation O being homogeneous, the subalgebra kerd C A is generated by
homogeneous elements (i.e., by the restrictions to X of d-homogeneous polynomials
on C*). Let a = ¢|3 € ker & (with a d-homogeneous ¢ € C1*) be nonconstant.
We may assume that deg.q < e (otherwise we replace the polynomial ¢ by the
rest of the Euclidean division of ¢ by the z-monic d-homogeneous polynomial p =
28 + (z% — yH)™u).

The kernel A% = kerd being factorially closed (see 1.14(c)), the irreducible
factors of ¢ restricted to X belong to this kernel as well. Therefore, ker dis generated
by the traces of irreducible d-homogeneous polynomials ¢ with deg.q < e. By
1.14(d) we have &, § € ker & provided that A\&* + ujt € ker d for some ), u e C.
Due to 3.12 and to the above argument on algebraic closeness, ker & coincides with
the subalgebra of Ar generated by one of the following pairs:

,9), @a), @ a), @2, @2, &a).
If 2 € ker d then by 1.14 and the equality
(26) 2+ (#F +gH™a =0

also &, 9, 4 € ker 5, whence § = 0, a contradiction. This eliminates the last three
cases.

If ker 0 = C[%, 4] ' then (26) yields the equality
(27) Imdegy ) = edegy 2.

On the other hand, as kerd = Clz, 4], by 1.19 9 is equivalent to the Jacobian
derivation
é — 6(13; Zz, U, *)
b 6(1’, Y, %z, ’LL) -

It is easily seen that

o (§) =—0lg = 27",

' The case where ker & = C[§j, @] can be eliminated by a similar argument.
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and so as degy = degy, (see 1.18) we get
(28) degy i = (e —1)degz 2 + 1.
From (27) and (28) we obtain:

[(1- %)e —1]deg;2 = —1.

But this is impossible because [, e > 2, m > 1, and so (1— ;= )e > 1. This completes
the proof of the lemma, as well as those of 3.9. a

Next we consider the remaining possibility in 3.6.

Proposition 3.15. Let X andY be as in 3.1. Suppose that Thon_noriz 15 a smooth
curve, whereas there exists a singular component, say, Cpy1 of the curve Cgant-
Then once again, the Derksen invariant Dk (A') is non-trivial, whence X # C3.

The proof is done in 3.16-3.19 below.

Lemma 3.16. Under the assumptions as in 3.15, after applying an appropriate

tame automorphism of Cg,y’z the polynomial p can be presented in the form

(29) p=1"ho(z,y,2)u+y" +2' + xhi (2,9, 2)
with k, I, m > 2, (k,1) =1, hg, hy € Clz,y,2] and ho(0,y,2) = const = 1.

Proof. The curve I'p41 C (Cg’y (being smooth and homeomorphic to C) is isomor-
phic to C. Thus by the Abhyankar-Moh-Suzuki Theorem, choosing appropriate
new coordinates in the (x,y)-plane we may suppose that fr.1 = xz. We factorize
f= fﬂlf = 2™ f with m := ap+1- As Chy1 is singular, by 2.3 the gradient grad f
has to vanish at some point of I'y41 = {z = 0}. The component I'y ;1 of T’ being
isolated (see 2.11(3)) this implies that rn > 2. Furthermore the polynomial f(0, y)
does not vanish, whence is a non-zero constant; by rescaling the z-coordinate we
may assume this constant being 1.

As the curve Cpy1 = {2 = 0 = ¢(0,y, 2)} C Cf,,z is homeomorphic to C
and singular, by the Lin-Zaidenberg Theorem (after performing an appropriate
automorphism of the plane (Cz’z) we may suppose that C, 41 is given by z = y*¥+2! =
0 with k, I > 2 and (k, [) = 1. In virtue of 2.5 and the condition 2.11(d) the divisors
Dpy1={x=0}cC,  and D;ed meet transversally at general points of the curve
Chy1, whence g(0, y, 2z) = y* + 2! (up to a constant factor which can be put equal
to 1) i.e., g = y* + 2! + zhy (2, y, z). Taking for ho(z,vy, 2) the polynomial obtained
from f as a result of the latter coordinate change, we obtain the desired presentation

3.17. We consider the weight degree function d on the algebra A’ := C[X] with
dy=-1,dy=d, =0 and d,=m.

As the d-principal part p = 2™u+y*+2¢ of the polynomial p as in (29) is irreducible,
by 1.22 A’ := C[X] is just the graded algebra associated with the filtration on A’
defined by the degree function d. Notice that in A’ the following relation holds:

(30) gma+ gk + 2 =0.

With this notation we have the following lemma.
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Lemma 3.18. Dkg, (AN ¢ /1’50, and so (by 1.24) Dk (A") C Ay # A'. Thereby
A" £ CBl and X # C3, which yields 3.15.

Proof. We must show that kerd c A’ <o whenever de LNDgr(A’). Assume that
there exist § € LNDgr(/i’) and @ € kerd such that a ¢ A’ <o. Furthermore, by
1.14(c) we may suppose that this element a is non-decomposable. We have a = ¢q|
for some d-homogeneous polynomial ¢ = 3°, . a;jz'u? € CH (with a;; € Cly, 2]).
Moreover, taking into account (30) we may suppose that ¢ < m whenever j > 0.

Claim. In the above expression for q there is only one non-zero monomial.

Proof of the claim. Indeed, if there were two of them, say, if a;, ;, # 0 and a;,;, # 0
then we would have

(31)  d(q) = mjr — i1 = mja — iz = m(j1 — jo) =41 —ia -
Assuming that i1 > 42, by (31) we get ji > ja2, and vice versa. Thus j; > 0, and

then by our assumption i; < m. Hence also i; — i2 < m, which contradicts (31).
This proves the claim. O

Since the element & = ¢(%, g, 2, 4) = a;; (9, 2)&'47 is supposed to be non-
decomposable and of positive d-degree, we have a = 4 € kerd. Thus & can
be specified to a locally nilpotent derivation 0; of the algebra B = C[S], where
Si={zm+yk+2 =0} ={u=1}NX C C® (see 1.16).

By 1.14(a), tr.deg (ker 6) = 2, whence there is a homogeneous d-constant b such
that the elements a = 4, be A are algebraically independent. As above we obtain
that either b = b(j, 2) for some irreducible polynomial b € d2\C, or b = &. In the
latter case by (30) we have §% + 2! € ker d, and thus by 1.14(d) also §, 2 € ker d.
Therefore & = 0, which is impossible. Finally, we conclude that b(g, 2) € kerd for
a certain polynomial b € C?1 \ C, and so the restriction b|g is a d;-constant.

Now the proof can be completed by applying the next lemma (cf. [4, 16, 39]). O

Lemma 3.19. Let B = C[S] where S := {z™ +y* + 2! =0} C C* and k, [, m >
2, ged(k,l) =1, and let 0; € LND (B). Then bls ¢ ker 8, whenever b € Cly, z]\C.

Proof. We define the weight degree function d on the algebra B by letting
dy =kl, dy=1Im, d,=km.

Actually 2™ +y* + 2! is a d-homogeneous polynomial, B is a graded algebra, and we
may consider the associated homogeneous derivation 8; € LNDy, (B). Assuming
that for a polynomial b € Cly, 2]\ C, bls € kerd, we will get a d-homogeneous
polynomial by € Cly, z]\C such that by|g € kerd; as well. By 1.14(c) an irreducible
d- homogeneous factor of the polynomlal by (this can be y, z or A\y* + pz!, where
A, € C*) restricts to S as a O;-constant. If it were Ay* + pz! then by 1.14(d) both
yls and z|s would be b,- constants, whence b, = 0, a contradiction.

Thus we may assume that, say, y|s € kerdy. As (z™ + yb + s = 0 we
have (z™ + z )|5 € ker &y, and (since m, [ > 2) again by 1.14(d) we obtain that
x|s, z|s € ker 1, which is impossible.

This completes the proof of 3.19, 3.18 and 3.15. O
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Remark 3.20. Choosing a weight degree function likewise in 3.11 and repeating
the proof of Proposition 5.3 in [12] it can be shown that under assumptions as in
3.6 (that is, as in 3.9 or 3.15) one has C[z] C ML(A4'), whence the Makar-Limanov
invariant ML(A') is non-trivial as well.

3.2. Simple affine modifications of C* isomorphic to C?. The following theo-
rem is a central result of the paper. The expression ‘in appropriate (x, y)-coordinates’
below means ‘after performing an appropriate automorphism a € AutClz,y] C
AutC[z,y,z,u]’. (In fact, the new (z,y)-coordinates are chosen in a way to get
Jnon—horiz € C[z]; in particular, no coordinate change is necessary when fon—horiz =COnSst.)

Theorem 3.21. For a hypersurface X C C* given by an equation
p=f@,y)u+g,y,2) =0 (feC\{0},geC),

in appropriately chosen new (z,y)-coordinates the following conditions (i)-(vi) are
equivalent.
(i) X ~C.
(i) Every fiber X, = p~'(n) (1 € C) of the polynomial p € C1* is isomorphic
to C3.
(iii) Ewvery fiber of the regular function z|x € A' := C[X] is reduced and iso-
morphic to C2.
(iv) Ewvery fiber of the morphism p : C* — C2, (z,y,z,u) — (z, p(z,vy, 2,u)),
is reduced and isomorphic to C?.
(v) The polynomial p is a residual x-variable 2.
(vi) With Y := C?* and X C C' as above being smooth and irreducible, the
conditions 2.11(a)-(6) hold as well as the following one:
(€) The curves Chon—horiz 01d Tnon—horiz are smooth.

Proof. The implications (v)=>(iv)=-(iii) and (ii)=(i) are immediate; (i)=(vi) fol-
lows from 2.28 and 3.6. Thus it suffices to establish (vi)=(v) and (iii)=>(ii).

Let us show (vi)=(v). If froon—noriz 7 const (that is, h < m) then in virtue of
our assumptions 2.11(y) and (vi)(¢), Tpy1 =~ C. By the Abhyankar-Moh-Suzuki
Theorem, after performing an appropriate automorphism of the plane Ci,y we may
suppose that fr41 = 2. Hence by 2.11(vy) we have

n
fnonfhoriz =c H (ZU — )\i)ai c C[m] .
i=h+1
Anyhow, fuoon—horiz = const or not, assuming that fhorz 7 const by 3.4 we may
write
PA = Efnoriz U + Doy + b1 az + frog, \ha

with fhoriz,a, fﬁﬁfiz,x, bo,x, bi,x € B := Cly], hx € Blz] and & := fnon—horiz(A) =
cTimpi(A=X)" € C. If X € C\{Apy1,---,An} (i€, & # 0) then in virtue of 3.4,
bi,x € B is invertible mod fhoriz,x, Whereas f}‘;f)fiz,)\ is nilpotent mod fhoriz -
Therefore by 1.29, px € B[z,u] is a B-variable; in particular, py € Cly, z,u] is a
variable (whence for every p € C, the surface {py = u} C (Cg is reduced and
isomorphic to C?).

,z,u

12That is (1.27) for any X € C, the specialization py € Cly, z,u] of p is a variable.
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For every i = h+1,...,n we have f; = z— \; and in virtue of 2.11(v) and (vi)(e),
I'; ~ C ~ C;. Moreover by 2.3(i) the polynomial gy, € Cly, 2] is irreducible and
g;il(O) = (; ~ C, whence by the Abhyankar-Moh-Suzuki Theorem it is a variable
of the polynomial ring Cly, z]. Thus px, = ga; € Cly, z,u] is a variable as well. Now
(v) follows. In the remaining case where fhor, = const the proof is similar (but
simpler) and left to the reader.

Next we prove (iii)=>(ii). We notice first of all that under the condition (iii), the
hypersurface X is smooth and irreducible (indeed, for every A € C we have

grad py = pr ((gradp)») with pr: (z,y,2,u) — (y,2,u)).
Similarly, under the condition (iv) every fiber X,, (1 € C) is smooth and irreducible.

Actually we establish (iii)=(i), which at the same time shows (iv)=-(ii). Together
with the implication (i)=(iv) (which we already know) these yield (iii)=-(ii), as
needed.

To prove the implication (iii)=>(i), in virtue of 1.7 it is enough to show that a
smooth, irreducible 3-fold X satisfying (iii) is acyclic. Let U = C\V be a Zariski
open subset such that over U, the morphism z|x : X — C is a smooth fibration
(with the fibers diffeomorphic to R?). In the notation of 1.9 we let X = X,V =
Y =C, E = (z|x)""(V) C X and D = 2~1(V) C V. It is easily seen that the
induced homomorphisms

(@] g\ )+ : Ho(X\E) = H.(C\V),

(@[3 p)s : He(Y\D) = H.(C\V),
and hence also L o

(@l \)x : Ho(X\E) = H.(Y\D)
are isomorphisms, as well as

(0]p)s : H(E) — H.(D)
(indeed, Ho(E) = 7V = H,(D) and the senior homology are trivial). Thus the
conditions (i) and (ii) of 1.9 are fulfilled, and so by 1.9

~ A

oy Hi(X) = H(Y)

is an isomorphism. Therefore, the 3-fold X = X is acyclic. This completes the
proof. a

Remark 3.22. For another proof of the implication (iii)=>(i) which do not use 1.7
see 4.23, 4.24 below.

3.23. If the polynomial p € C¥ is linear with respect to two (and not just one)
variables we have a much stronger result (see 3.24 below). It is an analog in dimen-
sion 4 of Theorem 7.2 in [15] generalizing Sathaye’s Theorem [30]. For a polynomial
¢ € Clz,y] welet Ty, := V(p) C C2. Also, we use below the variable v instead of z
to emphasize the symmetry of the situation.

Theorem 3.24. For a hypersurface X C C* given by an equation
(32) p = a(z,y)u + b(z,y)v + c(z,y) = dlau + bv) + ¢ =0

with a,b,c,d € Clz,y], d # 0, (a,b) # (0,0) and gecd(a,b) = 1, in appropriately
chosen new (x,y)-coordinates the following conditions (i')-(v') are equivalent.
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3
8]

3-fold X is irreducible, smooth and acyclic.

Clz])® is an z-variable.
Clz], ged(e,d) = 1, ToNTy C Ty, and for every root x = z; of
=1,...,degd) we have

)
) X ~
il e polynomial p € 18 a residual x-variable.
iii") The pol lpeCt dual bl
)
)

<mm

(33) Cz; (y) = C(.’L'i,y) € (C*y +C.

Proof. The strategy of the proof is as follows. In virtue of 3.21 the conditions (ii’)
and (iii') are equivalent to each other and to the other conditions of 3.21. The
equivalence (iii")<=-(iv') will be established later on in 4.2(b). By 2.11 we have
(i"Y=2.11(a)-(4). We show below that (i') also implies the condition (&) of 3.21(vi).
In virtue of 3.21 this yields the implications (i')==-3.21(vi) <=(ii')=(i’), and so
gives (i')<=(ii’"). Finally we show (iii')<=(v'), which concludes the proof.

Interchanging (if necessary) the roles of v and v we may suppose in the sequel
that a # 0.

(i'y=>(¢). We observe (see 3.3) that for p as in (32), Csant = Lstant = 0,
whence Chon—horiz = Cvert 18 sSmooth. And it was shown in the proof of 3.10 that if
Thon—horiz i singular then I'yon_horiz = I'siant- Henceforth in our setting I'yon—horiz
is also smooth, that shows (¢).

(iii"y=(v'). As X is irreducible we have gcd(c,d) = 1. Letting ¢ := p — ¢ we fix
a point P = (zg,yo) such that

qp = d(zo, yo)(a(wo,yo)u + b(wo,yo)v) = 0.

It is easily seen that y —yo divides py, — (2o, ¥0) = duy + (Czo —c(Z0,Y0)). AS Dy, €
Var(C[yaua ’U] we obtain that ¢,, = 0 and p,, —c(0,Y0) = Czq —¢(20,Y0) = £(Y —Yo)
with & € C*, as needed in (33). As ged(a,b) = 1, from ¢,, = 0 we get d, = 0.
Thus for every root (zg,yo) of d = 0 we have d,, = 0, which means that d € C[z].
Moreover, for every root (zg,y0) of a = b = 0 we also have d;, = 0, which shows
the inclusion I', N Ty C T’y and gives (v').

(v')=(iil"). In view of (33) for every root x; of d (i = h+1,...,n), Py, = Cz, €
VarcCly] C VarcCly, u,v]. Let further A € C and d(A) # 0. Asby (v'), TNy C Ty
we have ged(ay, by) = 1, whence ryay — sxbx = 1 for certain polynomials 7y, sy €

Cly]- As the matrix
(3 )
Sx T

is invertible over the ring Cly], the mapping
a: (u,v) — (u1,v1) := Ax(u,v)
induces a C[y]-automorphism of Cly][u, v] with a(py) = d(N)ui+cx € VarcCly, u, v].
Thus (iii’) follows. O
4. SIMPLE BIRATIONAL EXTENSIONS OF Cf8l As variaBLES IN Cl4]
4.1. Partial positive results. We recall the problem stated in the Introduction.
4.1. Problem. Is it true that if a hypersurface X C C* with equation of the form
p:=flz,y)u+g(z,y,2)=0 (where fe CPI\{0} and geCP¥)
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is isomorphic to C* then necessarily p € VarcCY and moreover, p € Varg BBl (that
is, p is an z-variable) provided in addition that foon—horiz € B 1= Clz]?

The principal results of this subsection can be summarized as follows.

Theorem 4.2. The answer to 4.1 is positive in each of the following cases:
(a) f € Cla].
(b) deg,g <1.
(C) fvert =1
(d) fhoriz = fiosi,-

The proof is given in 4.15 below. From 4.2(c),(d) we obtain the following corollary.
Corollary 4.3. Ifin 4.1, f = fi'* with f; € Clz,y] irreducible then p is a variable.

4.4. By 3.21(v) we may suppose that p as in 4.1 is a residual z-variable (see 1.25,
1.27). Thus 4.1 would be answered in positive if the following conjecture ' were

true.

Conjecture 4.5. If p € CI" is a residual x,-variable (that is,
px = p(\, 2a,. .., 2,) € VarcClm 1l YA e C)

then p is an x1-variable: p € Varqwl](C[wl]["_l].

In 4.6-4.8 below we analyze the situation with the only assumption that p =
fu + g is a residual x-variable. First in 4.6 we include the case where f = 0, then
in 4.7 we deal with the special case where f € C[z]\{0}, whereas the general case
is treated in 4.8.

Proposition 4.6. Let X be a smooth affine surface and ¢ : X — C be a morphism
with ¢*(A) =~ C VA € C. Then the following hold.
(a) X ~C?.
(b) Furthermore, if X = spec (C[3]/(g)) with g € OB = Clz,y, 2] and p = z|x
then g is an z-variable.

(c) Consequently, a residual z-variable g € Clz,y, z] is an z-variable. *

Proof. (a) The fact is well-known (e.g., cf. [26, Thm. 2.2.1]); nevertheless we
indicate the proof. First extending ¢ : X — C to a projective morphism @ : V. — P!
of a smooth ruled surface V', we then pass to a smooth relatively minimal model
of (V, @) by contracting successively the superfluous components of the reducible
fibers of @ different form the closures of the original fibers of ¢ (this is always
possible, see e.g. [10, Lemma 7], [38, Lemma 3.5] or [26, Lemma 1.4.1(6)]). Thus
we obtain (as a completion of the original family) a Hirzebruch surface 7 : ¥,, — P!
with a section s : P1 — %, ‘at infinity’, so that X = ¥,,\ (s(P!) UF,,). By means of
elementary transformations over the point co € P! we replace ¥,, with ¢ = P! x P!
and s(P!) with a constant section, say, Cy. This yields the desired isomorphism
X =%\(Co UFy) ~C2.

13Proposed by the second author.
M\ oreover, g € C[z, y, 2] is a residual z-variable of the ring C[z][y, 2, u] iff it is an z-variable.
Indeed, this follows from (c) and the cancellation for curves: T'x C~ C2 =T ~ C.
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(b) By (a) there is an isomorphism
v: Clz,y,2)/(9) = C* = Clz,y].
Letting h := v(z) € C?!, by our assumption we obtain:
C?/(h) = Clz,y, 2]/ (g, %) = Cle* (0)] = M.

Hence by the Abhyankar-Moh-Suzuki Theorem, up to an automorphism of Clz, y]
we may suppose that h = z i.e.,

v : Clally, 1/ (g) = Cla]™ .

Now it follows from the generalized version of the Abhyankar-Moh-Suzuki Theorem
[29, Thm. 2.6.2] that g is an a-variable, as stated.
(c) immediately follows from (a) and (b). O

Proposition 4.7. If p = f(x)u+g(z,y,2) € (U (with f € Clz]\{0}) is a residual
z-variable then actually it is an z-variable.

Proof. As u + g(x,y,2) is an z-variable, by 1.30(a) so is p = fu + g. O

Proposition 4.8. If p = f(z,y)u + g(z,y,2) € Clz][y,2,u] with f ¢ Clz] is a
residual x-variable then p can be written as follows:

(34) p=qlrfu+goy® + Grz + F522%] + a0 + a1y,

where

b quaamal € C[Q“L f7g07§1 € (C[l',y], g2 € (C[:U,y,z],
e fH0)N Gt (0) is a finite subset of g71(0) x C,, and

e for every root xg of r, q(wo)f(xo,y) € C.
The proof is done in 4.11 below.

Corollary 4.9. If p = f(z,y)u + g(z,y,2) € Clz][y,z,u] is a residual z-variable
then it is a C(z)-variable of C(x)l.

Proof. As a C[z]-variable is also a C(z)-variable, by 4.6 and 4.7 we may suppose
that f ¢ Clz], and so 4.8 applies. Let p be presented as in (34). As f=1(0)Ng;*(0)
is finite, the polynomials ¢rf, ¢§1 € Clz,y] regarded as elements of B := C(z)[y]
are coprime. Moreover the polynomial f™4g,22 € B[z] is nilpotent mod (grf),
and so by 1.29(a), p = fu + g € VargBJz,u]. O

The proof of 4.8 relies on the following lemma (cf. [30, 15, 35]).
Lemma 4.10. Let p = f(y)u + g(y, 2) be a variable of Cly, z,u].
(a) If f # 0 then p is an y-variable, and it can be written as follows:
p=f@u+9®) + 9z + [UY)ga(y, 2)7°

with ged(f,91) = 1.
(b) If f = 0 then the coefficient of the highest order term in z of p (which a
priori is a polynomial in y) is constant, unless deg, g < 0.
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Proof. (a) The statement is evidently true if f = const. Suppose that f ¢ C. By
our assumption C¥1 /(p) = C2l. If y; € C is such that f(y;) = 1 then we have

C[yazau]/(f(y)u + g(yaz)ay - yl) = (C[z,u]/(u + Iya (z)) = C[l] .
By the Abhyankar-Moh-Suzuki Theorem, the same is true for every value of y. In
particular, for any root yo of f we have
Cly, 2,4}/ (f(y)u + 9(y, 2),y — yo) = Clz,u]/(gy, (2)) = CH .
Therefore deg, gy,(2) = 1, p = fu + g has the desired form, and by 1.29(a) (with
B :=(Jy]) it is an y-variable.
(b) In the course of the proof of 1.30 we have noticed that the polynomials

of Cly, z] which are variables of Cly, z,u], are actually variables of Cly, z]. Thus
g € VarcCly, 2], and so the statement (b) is well-known (e.g., see [1]). O

4.11. Proof of Proposition 4.8. Tt is easily seen that the polynomial p = fu+ g €
Clz][y, z,u] admits a presentation
(35) p=qlfu+goy’ + Gz + 522°] + a0 + ary
with  ao,a1 € Clz], f,do,d1 € Clz,y], G € Clz,y,z] and with ¢ € C[z] being a
monic polynomial of maximal degree such that (35) holds. Clearly,

g '(0) = L(p) := {20 € C | pay = f(0,y)u+ g(z0,y,2) € Cy +C}

(possibly, this set is empty, and then we put ¢ := 1). As by our assumption,
f ¢ Cz] the subset

KE=EK(f)={ eC|fily) €eCt =¢'(OU{reC| fily) eC} CC
is finite. We let zg € C\K (f). The specialization p,, being a variable of Cly, z, u],
by 4.10(a) we have ged(f(zo,y), §1(z0,y)) = 1, whence f~1(0)Ng;*(0) C K x C,.
Since by 4.10(a), p,, € Cly, z,u] is a residual y-variable, the equality f(zo,v0) =
0 implies that deg, ga,,y,(2) = 1, whence also g2(zo,y0,2) = 0. It follows that

FHONE x Cy) €557(0).

It is easily seen that f~ € C[z,y] admits a factorization f(z,y) = r(z)f(z,y) such
that r—1(0) C K and f'(0) N (K x Cy) is finite. Then we have

FTHONEK x C;) € 351(0).
Passing to the Zariski closures we obtain
1O a0 de, g =f.
Now (35) yields a desired presentation (34). As 7=1(0) C K(f), by the definition of
K(f) for every root zo of r we have q(z0)f(zo,y) € C, and so it remains to check
that f=1(0) N g, *(0) is a finite subset of ¢~ (0) x C,.
We already know that f~1(0) N g;*(0) is a finite subset of K x C,. Suppose that

there is a point 3
(0, 90) € [f71(0) N g7 (0)]\g™"(0).
Then z¢ € K(f)\qg~*(0), whence f(zo,y) € C, and so
F(zo,y) = f(z0,90) = T(ﬂfo)f(ﬂfo,yo) =0.

By our assumption,

Pzo = a(20)[G0(%0,¥)y* + §1(z0,y)z + (@0, )F2(20,y, 2)2%] + ao(z0) + a1 (zo)y
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is a variable of C[y, z,u], and thus also of Cfy, z]. Hence by 4.10(b), f*4(z,y) =
fr4(z0,70) = 0, and then again by 4.10(b), §1(z0,y) = §1(x0,y0) = 0. Therefore,
Dz € Cly] is a variable, whence ¢(z¢) = 0, a contradiction. O

Remark 4.12. In the notation of 4.8, if p = fu+g = quu + g is a residual
x-variable then also g fu + g is so. Moreover by 1.30(a), if ¢fu + g is an x-variable
then p = fu + g is so as well.

Lemma 4.13. Letp= fu+g € Clz][y, 2z, u] be a residual z-variable presented as
in (34). If f~1(0) N g7 *(0) = 0 then p is an z-variable.

Proof. By 4.12 we may put in (34) r = 1. In virtue of 1.29(a), the polynomial

]5 = f(xa y)u + go(wa y)y2 + gl(xu y)z + fred(xa y)gQ(xa Y, Z)Z2
is an (z,y)-variable i.e., there is an automorphism a € AutpB[z,u] (with B :=
Clz,y]) such that a(u) = p (indeed by our assumption, g; is invertible mod f in
B). Furthermore by our assumption, for every root zq of g the specialization

Pzy = f(iUO:y)U + g($0ayaz) = aO(:EO) + al(:co)y € C[y,Z,U]

is a variable. Consequently, a1(z¢) # 0, and so ged(g,a1) = 1. It follows that there
is an affine automorphism 3 € Autcy,) Clz][y, u] such that

Bly) = q(x)u + ao(z) + ar(z)y -
Now af € Autgy,) Clz][y, 2,u] is such that

aB(y) = gp+ao(r) +ar(z)y = fu+g=p,

as desired. O

Lemma 4.14. Ifp = f(z,y)u+g(z,y, 2) is a residual x-variable of degree at most
1 in z then it is an z-variable.

Proof. Tt follows from 4.8 that if f ¢ Clz] then in (34) g1 # 0 (indeed, otherwise
F71(0) N g, *(0) cannot be a finite subset of g~*(0) x Cy). Thus if deg, g < 0 then
f € Clz], and so the statement follows from 4.7.

If deg, g = 1 then by 4.8 p = fu + g can be written as follows:

p=q@)[r(@)f(@,y)u+ jo(z,y)y* + §i(z,y)2] + ao(z) + a1 (z)y

with f~(0) N g;*(0) being a finite subset of ¢~ (0) x C,. By 4.12 we may assume
that » = 1.

We proceed by induction on the intersection index n := f*(0) - §¥(0). If n =0
then the statement follows from 4.13. Suppose that n > 1.

Let 2o € ¢~'(0) be a coordinate of an intersection point (zo,79) € f~1(0) N

371(0). Up to a translation we may suppose that zo = 0. As

mln{degy gl (07 y); degy f(07 y)} >0
we may write
91(0,9)2 + £(0,y)u = d(y)(aly)z + b(y)u)
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where ged(a,b) = 1. Hence there is a linear automorphism v € AutpB[z,u] (with
B := ([z,y]) such that y(a(y)z + b(y)u) = z. It is not difficult to verify that

applying v amounts to:
g g
weo | ] =[ 2]

for certain f,§ € B (where Jac(y) is the Jacobi matrix of v), and hence

v(p) = v(fu+g) = q(@)[zf(z,y)u + Jo(2,y)y* + §1(z,y)2] + ao(z) + a1 (z)y .
In view of the equality of ideals:

(glaxf) = (glaf) )
for the intersection indices we have:
31 (0) - (z£)*(0) = §1(0) - £*(0) = n,

therefore

3100)- f*(0) <n—1.
Now in virtue of 4.12,

p = a(@)[f (@, y)u + Jo(x, y)y” + i1 (2, 9)2] + ao(z) + ar(2)y
is a residual z-variable. Hence by the inductive hypothesis, it is also an z-variable.
Again by 4.12, so are v(p) and p = fu + g as well. The induction step is done, so
the proof is completed. a

4.15. Proof of Theorem 4.2. By 3.21(v),(vi) we may suppose that p = fu + g
is a residual z-variable and fnon—horiz € Clz] (cf. 4.4). Thus we must show that
actually, under each of the assumptions (a)-(d) p is an z-variable.

(a) (resp., (b)) immediately follows from 4.7 (resp., 4.14).

(c) We write the polynomial p = fu + g in the form (34). The assumption
fvert = 1 implies that ¢~'(0) = @, and hence f~1(0) N §;*(0) = @. Now the
conclusion follows from 4.13.

(d) As by our assumption, fneriz = % we have f = f*d. In view of 4.12 we

horiz
may suppose that » = 1 in (34), and so p can be written as follows:

p=fu+g=q(fu+doy® + Giz + f§22"] + a0 + ary.

The C[z,y, z]-automorphism u +— u — 22§>(,y, z) transforms p into a residual
z-variable of degree at most 1 in z. Now the conclusion follows from (b). O

The following result extends our list of variables p = fu+g beyond those provided
in 4.2.

Proposition 4.16. Let p = fu+g € C1Y as in (34) be a residual z-variable. If
g1 € Cz] and §22% = §2(z,y, §1(x)2,u) € Clz][y, G1 2] then p is an z-variable.
Proof. By 4.12 we may suppose that » = 1 in (34), and so p = p(x,y, §1(z)z,u),
where the polynomial

(36) P = qlfu+ Goy® + 2 + %) + a0 + a1y

still is a residual z-variable. Indeed by our assumption for any A € C\g; ' (0),

Pr = pa(y, 2/31(\), u) € VarcCPl .
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For zo € g;'(0), either g(zo) = 0 and then by the assumption, f,, = ao(zq) +
ar(zo)y = ps, € VarcCPl, or q(zo) # 0 and then again, in virtue of 1.29(a),
Dz, € VarpB[z,u] with B := C[y]. It follows from 4.13 that the polynomial p
as in (36) is an z-variable. Hence by 1.30(a) (with z playing the role of u) so is
p=p(z,y,51(x)z,u) as well. O

Example 4.17. The polynomial
pi=y+z(zz + y(yu + z22?)) e C4
is an z-variable. Indeed p = p(x,y, zz,u), where by 1.29(a), p := y+z(z+y(yu+2z2))

is a residual z-variable (and hence by 4.13 is an z-variable). Therefore, p is a residual
z-variable as well, and so 4.16 applies.

4.18. To conclude, we would like to rise the following question. It concerns a
(probably simplest) example of a residual z-variable of Cl which does not fit any
of the assumptions 4.2(a)-(d) or 4.16.

Question: Is the polynomial p = y + z(zz + y(yu + 22)) € C* a variable?

4.2. Simple modifications of C* rectifiable in C°. The following definitions
are inspired by [30].

4.19. Let B be a commutative ring. We say that p € Bl™ is a B-hyperplane if
Bl"l/(p) = Bl»~1l. We say that p defines a B-hyperplane fibration if p — X is a
B-hyperplane for every A € B.

If B = C or B = C[z] we simply say hyperplane resp., z-hyperplane instead of
B-hyperplane.

Notice that an z-hyperplane p(z,y1,- - ,¥n) € Clz][y1, - ,yn] becomes a hyper-
plane py,(y1,- - ,yn) for every fixed z = 29 € C. A polynomial p with the latter
property is called a residual z-hyperplane.

4.20. Observe [30, 16, 35] that a polynomial p = f(z,y)u + g(z,y,2) € T is a
residual z-plane if and only if it is a residual z-variable, and henceforth, if and only
if it defines a residual z-plane fibration.

4.21. We say that two polynomials p, ¢ € Bly1,-- - ,yn] are 1-stably equivalent if

v((p,v)) = (g,v)

for an automorphism v € AutgB[y1,- - ,Yn, V]

4.22. For instance, with this terminology 1.31(b) says that y + ap(y) with a €
B, p € Bly] is l-stably equivalent to y + p(ay), and moreover if a¥|p(0) then
y + ap(y) is 1-stably equivalent to y + p(a**t1y)/a*.

Theorem 4.23. Let p = f(x,y)u + g(x,y,2) € CY be a residual z-plane. Then it
is 1-stably equivalent to an x-variable. Consequently, p defines an x-plane fibration,
and each fiber X := {p = A} (A € C) of p is a 3-fold in C* isomorphic to C* which
can be rectified in C°.

Remark 4.24. Notice that 4.23 provides yet another proof of the implication
(iii)=(i) of 3.21 which does not need 1.7. Indeed, it proves (v)=-(i) while (iii)=(v)
is observed in 4.20 above.
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In the proof of 4.23 (see 4.26 below) we use the following lemma.

Lemma 4.25. If p € Clz,y,2,u] \ Clz,y] is a residual z-plane then it is 1-stably
equivalent (under an automorphism v € AutpBly,v] with B := Clz,z,u]) to a
polynomial p € Cz][y, z,u] which is still a residual z-plane and such that for every
To G(Ca ﬁ$0(yazau) ¢(C*y+(c

Proof. As p ¢ Clz,y], the subset
L(p) :Z{:CO €C|pzo E(C*y—i—(C} = {wla"' rrn}g(c

is finite. The proof proceeds by a descending induction on n =card L(p).

If card L(p) = 0 there is nothing to prove. Suppose that n > 0, and let z,, = 0.
Then there exists an affine automorphism 7 € Autcy,)Clz][y] € AutpD[y] (where
D := [z, z,u,v]) such that 7(p) = y + zp, where p € C[z,y, z,u] and p(z,0,0,0) =
0. Indeed, up to an affine automorphism of C[y] we may assume that p(0,y, z,u) =y
ie., p=y+azp with p € C¥, and then we apply the shift y —s y — zp(z,0,0,0) to
obtain 7(p) = y + zp with p := p — p(z,0,0,0).

The polynomial p € C!* admits a presentation:

b =yq(z,y,2,u) + 2" (g2 (2, 2,u) + g3(2,u)) .
As by our assumption for every fixed 2 € C the polynomial 7(p) = y + zp ¢ Clz, y]
is irreducible, we have xzg2 + g3 # 0, and thereby g3 # 0. Furthermore,
0 = p(z,0,0,0) = ¥ (zg2(z,0,0) + ¢3(0,0)) = ¢3(0,0),

whence g3 ¢ C. Now by 1.31(b) (cf. 4.22 above) there exists an automorphism
a € AutgBly,v] (with B = Clz, z,u]) such that

a((y +zp,v)) = (y + ,0).

zk

Letting 7, := ar we obtain:
fyn ((pa U)) = (pna U) ’
where p, =y + p(z, z¥*1y, 2,u)/z*. We have:

‘rk—‘rlyql ($7$k+1y7 Z,U) + xk(‘qu (.'L', Z,U) + q3(z7u))
zk
= Y+ myq1($7$k+1y7z7u) + .CL'QQ(Z',Z,U) + (I3(Z,U) .

Pn = Y+

Hence p,, (0,9, 2,u) = y+qs3(z,u) € VarcCly, z, u] with g3 ¢ C, and so p,(0,y, 2,u) ¢
C*y + C. In other words,

0=z, ¢ L(p,) ={A€C| (pn)r e C'y+C} CC.
Now the induction step and the proof of the lemma are completed by the following

Claim. (a) L(pn) = {z1, -+ ,2n-1} = L(p)\{zs} -
(b) Furthermore for any zg # 0, (pn)z, € Cly, 2,u] is a plane.
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Proof of the claim. '® Tt is enough to show that for every zy # 0 there exists an
affine automorphism f;, € AutcCly] C Autgy; ) Clz,u][y] such that

(37) Bro (Pzo) = ZL'IOH_1 (Pn)zo -
Indeed, we have:
(38) 26" (D)o = 76"y + T0Puo (25 y, 2, ).

Consider the linear automorphism o, : y — zgt

natural way. From (38) we get:

y extended to C[z,u][y] in a

mg—‘rl (Pn)ao = O (y + ZoPao (Y5 2, u)) = Oz ((T(p))wo) = Oz ((Two (pzo)) )
where 7, denotes the specialization of 7 at zo. Thus we obtain (37) with 8, :=
Oz Tao € AutcCly] extended to C[z, u|[y]. Hence p,, € C*y + C if and only if so is

(Pn)zo- O

4.26. Proof of Theorem 4.23. If f = 0 then in virtue of 4.6(c) and the Abhyankar-
Moh-Suzuki Theorem, p itself is an z-variable.

If f # 0 then by 4.25, p = fu + g is 1-stably equivalent to a polynomial p € Cl]
such that
(39) Lp)={AeC|preCy+C}=0.
It is easily seen that the polynomial p as constructed in the proof of 4.25 still has
the form p = fu + g with f € C[z,y] and g € Clz,y, 2]. It follows from (39) that
fvert = 1. As pis also a residual z-plane, by 4.2(c) it is an z-variable. Consequently,

Clz]ly, 2,u]/ (p) Czlly, 2, u,v]/(p,v) = Clz]ly, 2, u, v}/ (P, v)
Clz]ly, 2, u, v}/ (u,v) = Cla]P? .
Hence p is an z-plane. In view of 4.20 the same arguments work for every ‘fiber’

p—Aof p= fu+g (with A € Clz]). Therefore p = fu + g defines an z-plane
fibration. 0

4.3. On Sathaye-Wright’s Theorem. Recall that the Sathaye Theorem on lin-
ear planes [30] cited in the introduction was generalized by D. Wright [37] for the
embeddings C? < C® of the form p = f(z,y)u™ + g(x,y) = 0, and further general-
ized in [15] for the acyclic surfaces in C* of this type. Here we prove the following
theorem (based on the latter result).

Theorem 4.27. If p = f(z,y,2)u™ + g(z,y,2) € CY (with n > 2) is a residual
z-variable then it is an x-variable.

1%

1%

Proof. By [15, Thm. 7.2], the polynomials f and g satisfy the following condition:
(40) VYA€ C 3Fay € AutcCly,z] and 3y, € Cly] such that

fr=ax(er) and gr=ax(?).
Hence by 4.6(c), g is an z-variable of C[z,y, 2], and so we may suppose that g = z
and ay € Autgy,)Clz][y]. Then (40) yields:

(41) VAeC dgy€Cz] and 3y € Cy] such that
fa=ax(er) = ealaa(®) = ealy + an) -

15 Alternatively, (b) also follows from existence of a Clz]-isomorphism C[z]B! /(p) = C[z]3]/(p),
see 1.32(b).
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Eventually, we prove below (by induction on deg, f) that for any polynomial f €
C3 which satisfies (41), we have:
(42) f=2(x,a(x)y + 2Q(z,2))
with a € Clz], Q € Clz,2] and ® € Clz,y]. Therefore p = P(z,a(x)y, z,u) is
a residual z-variable with P := ®(z,y')u + 2z € Vargy Clz])B! (where ¢ := y +
2Q(x, 2)). Thus by 1.30(a), p is an x-variable, as stated.

If deg, f < 0 then (41) implies that f(z,y,2) = f(=,0,0) € C[z] and (42) follows.
Assume further that deg, f > 1. By (41) we have:

By fa(y,2) = () (y + an(2)) -
It follows that the polynomial 9, f with deg, 0, f = deg, f — 1 also satisfies (41),
whence by the inductive hypothesis,
8y f = &(,a(z)y + 2Q(=,2))
with @ € Cz], Q € Cz,z] and & € C[z,y]. Thereby,
af = U(x,a(x)y + 2Q(x, 2)) + zR(x, 2) with ¥ e Clz,y] and R € (lz,2],
where 0, ¥ = &. If deg, f =1 = deg, ¥ then
af = Wo(z) + ¥1(2)[a(2)y + 2Q(z, 2)] + 2R(z, 2),
and so @ divides ¥o(z) + ¥ (2)2Q(z, 2) + 2R(x, 2) i.e.,
To(z) + O, (2)2Q(x, 2) + zR(x, 2) = a(2Q(z, 2) + Bo) .
It follows that
f=W(z)y+2Q(z,2) + o

has the desired form (42).

Thus we may assume that deg, f > 2. By (41) for every A € C we obtain:
3) a(A\)fr =T (A a(Ny +2Q(N 2)) + 2R(\, 2) = G N)ealy + ar(2))
and so

TN a(N)y — a(A)aa(z) + 2Q(A, 2)) + 2R(A, 2) = a(M)ea(y) -

As deg, ¥ = deg, f > 2 it follows that for every A € C such that deg, ¥(),y) >0
we have deg,(2Q(),2) — @(A\)gx(2)) < 0, and so deg, zR()\,2) < 0 as well i.e.,
R(\,z) =0 for almost every A € C. Hence R = 0, and from (43)

we obtain:
(44) af = ¥(z,a(z)y + 2Q(z, 2)) -
If Q = 0 then f = tIl(x,&(x)y)/& € Clz,y], as desired. If Q # 0 then (up to
factorizing a(x)y + 2Q(z, z) and changing appropriately ¥(z,y)) we may assume

that ged (@, Q(z, z)) = 1. Putting in (44) y = 0 gives:
a(z)f(2,0,2) = ¥(z,2Q(z,2)).

From this equality and the assumption that ged (@, Q(z,2)) = 1 it is not difficult
to deduce that @ divides ¥ in Clz,y]. Thus from (44) with ® := ¥/a we get

f= (I)(JI,&(IL'):I/ + ZQ(.’E,Z)) ’

as needed. O
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