ON THE CLASSIFICATION OF GENERIC PHENOMENA IN
THERMODYNAMIC BINARY MIXTURES

F. AICARDI

ABSTRACT. A complete list of generic phenomena occurring in binary mixtures is
given through the classification of singularities of convexification of two-parameter
families of fronts. This work improves a preceding classification by Varchenko
[Var90], adding to the list the birth of the azeotropy phenomenon by an exchange
between a lower and an upper critical point. The occurrence of Legendrian singu-
larities is also discussed.
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INTRODUCTION

An empirical list of generic phenomena occurring in binary mixtures was given
by Landau and Lifchitz ([LL67]). A theoretical classification was firstly made by
Varchenko ([Var90]) in a mathematical work probably unknown to most physicists.
For example, in a recent classification by Nezbeda et al. ([NKS97]), the phenomenon
of the birth of the double azeotrope, found by Varchenko, is missing (as well as in
the Landau-Lifchitz list). The double azeotrope, although rare, do exist generically,
(see [GS66]), and actually in a more recent work the phenomenon of its birth was
pointed out in a model of binary mixture ([KNPS99]).

On the other hand, Varchenko’s theory does not include another singularity of
the Landau-Lifchitz list, and he concluded that this event is not generic. In fact,
it is generic, and rather common in binary mixtures: it occurs when an azeotrope
arises together with an exchange between an upper and a lower critical point. This
singularity is called “critical azeotropic point” in [KNPS99] and [KNPS99]. I show
in this paper that the theory of Varchenko, without a restriction he wrongly made,
includes this singularity (which I called “wings”).

The contact geometry in the last decades was successfully used to describe the
properties of the equilibrium surfaces and to derive at once several facts of classical
thermodynamics. An important result in contact geometry is that in contact spaces
of dimension less or equal to 6 the singularities of Legendrian sub-manifolds (called
Legendrian singularities) are simple (their mathematical model does not contain free
parameters) and their list is finite. This implies that a priori in a thermodynamic
mixture with at most 4 components we know all possible types of critical events
that may generically occur ([AVSZ82]). However, this list has to be drastically
reduced, as I remarked in [AFV00]: most singularities have no physical relevance,
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because they happen in the instability domain. In particular, in binary mixtures all
singularities of maximal codimension are not detectable.

The main theoretical models of binary mixtures are the Van der Waals equation
and their derivations. A seminal paper on this subject is the work of Konynenburg
and Scott, where a whole set of Van der Waals systems (depending on three external
parameters) is investigated. It is interesting to observe that such systems feature all
possible singularities allowed by the theory but one: the birth of double azeotrope.
In section 4 I shall use this model for different purposes: firstly (4.1), to verify
the behavior, theorically predicted, of the thermodynamic potential near the wings-
singularity; secondly (4.2), to show the presence of the ‘invisible’ A4 singularity in
some systems considered in [KS80] and to detect the occurrence of the A5 singularity
as a non generic event, namely appearing in some systems with particular values of
parameters.

1. PHASE-DIAGRAMS AND (GIBBS POTENTIAL

Warnings. Throughout this paper, the vocabulary of contact geometry is used,
mainly in some remarks which are clearly identified, and which the reader can skip.
The interested reader might consult [AG90] for further details. The word surface is
used for objects which are not necessarily of dimension 2.

In the pressure-temperature diagram (phase-diagram) of a one-component ther-
modynamical system, a line corresponds to a phase-change, the end-point of a line
corresponds to a critical point and the meeting-point of three lines corresponds to
a three-phase equilibrium.

Thermodynamical systems which consist in one mole of mixtures of two compo-
nents are also described by pressure-temperature diagrams, where the loci of critical
points, (resp. of azeotropies, of triple points) appear as lines.

To every point of the (p,T)-plane there corresponds an entire interval of equi-
librium states, characterized by the molar fraction x of one of the components.
The analogue of the one-component system phase-diagram is a partition of the 3-
dimensional (p, 7, x)-space by a two-dimensional surface in, which separates the
regions of homogeneous equilibrium from those of the heterogeneous one. I shall
refer to this surface as C-surface.

By classifying the generic phenomena of binary mixtures, I mean the description
of all local features of such three-dimensional phase-diagrams which are stable up
to small changes in the external parameters of the system.

The equilibrium states of a thermodynamical mixture with a fixed number of
molecules form a 3-dimensional surface in the space M of dimension seven, whose
coordinate are the extensive variables (volume V', entropy S and molar fraction z of
the second component), the intensive conjugate variables (the pressure p, the tem-
perature 7', and the difference of chemical potentials yy — 111 of the two components)
and the internal energy U. Remark. The space M may be viewed as a contact space:

the contact differential one-form, whose zeros define a field of hyperplanes on M, is
nothing but the Gibbs form:
a=dU —TdS + pdV — (po — p1)dz

The tangent space at each point of the equilibrium surface is contained in the contact

hyperplane through this point. Such 3-dimensional surfaces are called Legendrian.
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The graph of the internal energy in terms of the extensive variables, i.e. the pro-
jection of the Legendre sub-manifold to the (V, S, z, U)-space, is what is called the
front of this Legendrian surface.

The internal energy U of the homogeneous equilibrium states is a smooth true
function (i.e. one-valued) of the extensive variables. A point on the graph of the
internal energy represents a state of stable equilibrium if the tangent plane at that
point does not intersect the surface in other points. The points where the graph
is locally but not globally convex represent metastable equilibria and those where
the graph is non convex represent non stable equilibria. The entire set of stable
equilibria is described by the convexified graph of the internal energy: the points
where the convex envelope of the graph do not coincide with the graph represent
heterogeneous equilibria.

The Gibbs potential G' of the homogeneous equilibrium states is the Legendre
transform of the internal energy with respect to the variables V' and S. It is a
multivalued function (whose graph might be singular) of the variables p, T and z.

Remark. In the language of contact geometry, the graph of the Gibbs potential
is the front of a surface which is Legendrian with respect to the contact form dG —
Vdp + SdT — (g — p1)dz = 0.

Denote by G[p, T|(x) the multivalued function of one variable z, obtained from
G when p and T are fixed. Denote by G|[p, T|; the true function of z obtained after
convexification of G[p, T'|(x). The three dimensional phase diagram is separated into
regions by the surface made of all points (p, T, z) such that the graph of G|[p, T is
not smooth above z (these z correspond to the endpoints of the segments that were
added in the convexification of G[p,T]). Since we have a 2-parameters (p and 7T)
family of convexified functions, the classification of generic phenomena encountered
in binary mixtures is reduced to the classification of the singularities of codimension
one and two of the convex envelopes of sections of one-dimensional fronts. Varchenko
studied families of smooth fronts. It is remarkable that this suffices to interpret all
singularities but one.

2. THE CLASSIFICATION OF SINGULARITIES

2.1. Definition of Varchenko’s singularities. Consider a set of smooth bounded
functions y = f;(x) defined on IR and convex outside an interval /. The convex hull
of this set is the intersection of all half-planes which contain this set. The convex
envelope y = f(z) is the function associating to z the minimum value of y of the
convex hull on z (see fig 1).

At generic points where f(z) is locally convex the tangent line has a contact of
order two with the graph of f(z), and no other points of the graph belong to this line.
In the generic situation the graph of f(z) is subdivided into arcs and segments by
a set of singular points. Also the interval I is thus subdivided into sub-intervals by
the z-coordinates of the singular points. Consider the case where f(x) depends on
some continuous parameters: higher codimension events are constituted by points
where the order of tangency with the tangent line is bigger, or by the presence of a
set, of points (possibly coinciding) with a common tangent (having possibly different
orders of tangency) belonging to the convex envelope. In figure 2 events of different

codimensions are shown.
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FIGURE 1. Three smooth functions on a interval, their convex hull
(dashed domain) and the C-singularities of its convex envelope pro-
jected (dashed lines) on the interval
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FIGURE 2. Singularities of codimension one (a) and of codimension
two (b)

Varchenko proved that if f(z) depends on two parameters, the list of generic
phenomena contains, besides the codimension zero situations, three codimension-
one singularities (fold, double fold and dihedral angle) and four singularities of
codimension two (double pleat, trihedral angle, split-pleat tail and dove).

I shall analyze all these singularities (and the missing “wings”) for binary mix-
tures, where the two parameters are the pressure and the temperature, = is the
molar fraction of the second component and f(z) is the Gibbs potential.

2.2. The list of generic phenomena. Consider a generic (p, T)-diagram. To ev-
ery generic point there corresponds a particular G[p, T|z(x), containing a number
m of disjoint straight segments due to the convexification, and 2m singular points
(their extremes). The projection of these points to the [0, 1] interval of the z vari-
able subdivide this interval in £ = 2m + 1 segments, to which there correspond
m + 1 homogeneous phases and m non homogeneous ones. These points actually

define the C-surface of the phase diagram over the (p,T)-plane. When one moves
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FIGURE 3. The generic point. Examples with m = 0,1,2. (top: the
convexified potential, middle: the 2m-sheeted surface over the generic
point, bottom: the (p,T)-diagram)

along 1-dimensional path on this plane, one encounters generically - by definition
- singularities of codimension 1 in the potential: the number 2m of singular points
changes and consequently also the shape of the C-surface. The loci of these codi-
mension one points form curved segments on the (p,7T)-plane, whose end-points
correspond to singularities of codimension two. Over such points the surface can be
rather complicated: the number m varies in different ways along different paths on
the (p,T)-plane which go trough the point of codimension two. To have a better
understanding of the form of the surface over these points, I give pictures of its local
shape and also pictures of its generic sections by planes containing the x-direction. I
obtain in this way the pictures of generic local features of (z,7) or (z, p)-diagrams,
to which physicists are more accustomed. (Following an old tradition, the regions
of heterogeneous phases are filled by horizontal lines).

Codimension zero. The surface over a generic point is 2m-sheeted. The number of
phases (the odd k) is marked on the (p, T')-diagrams, and to each k there corresponds
a gray-color code (darker color corresponds to bigger k). See figures 3 and 4.

Codimension 1. The codimension one singularities of the C-surface (corresponding
to codimension one singularities of the convexified potential) projects on lines of the
(p, T)-plane. The number k£ jumps at these lines: it is always possible to provide
these lines with a coorientation, defining positive the side of the plane where £ is
bigger. In the figures the positive side is signaled by small strokes (hence pointing

towards the darker region). The three types of codimension-one singularities are:
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FIGURE 4. The (z,T)-diagram over a generic point
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FIGURE 5. The fold. Top-left: the (p,T)-diagram; centre: the C-
surface over the (p,T')-plane; small bozes: the convexified potential
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FIGURE 6. The (z,T)-diagram, section of the C-surface containing
the critical point
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FIGURE 7. The dihedral angle. Top-left: the (p,T)-diagram; centre:
the C-surface over the (p,T)-plane; small bozes: the convexified po-
tential
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FIGURE 8. The (z,T)-diagram, section of the C-surface containing
the triple point



Double fold

FIGURE 9. The double fold. Top-left: the (p,T)-diagram; centre: the
C-surface over the (p, T')-plane; small bozes: the convexified potential

FIGURE 10. The (z,T)-diagram, section of the C-surface containing
the azeotrope point

e I-1) Fold. Known as critical point, this event happens when the locally
convex G[p,T|(x) stops being convex giving rise to a pair of inflection points.
The convexified potential contains, after this event, the straight segment of the
born heterogeneous phase (see figure 5). In the generic sections of the surface
containing the z direction (ex. p = const, see figure 6) the critical point is a
maximum or a minimum of the curve bounding the heterogeneous domain. It
is called respectively upper or lower critical point.

Remark. This singularity is the A3 Legendrian singularity (see section 3).

e 1-2) Dihedral angle. This singularity is known as triple point or three-phase
equilibrium. It happens when in the potential there are three different points
with a common tangent, all belonging to the convex envelope. The C-surface is
composed of three dihedral angles over the triple point line. The system passes
from k phases to k + 2 phases when the (p,T") point crosses the line of triple

points (see figures 7 and 8).
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Double pleat
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FIGURE 11. The double pleat. Top-left corner: the (p,T)-diagram;
centre: the C-surface over the (p,T)-plane; small bozes: the convexi-
fied potential

Double pleat

FIGURE 12. The (z,T)-diagrams, sections of the C-surface containing
the birth of double azeotrope

e 1-3) Double fold. This phenomenon is known as azeotropy. It happens when
two convex branches of the potential become tangent each other. The lower
potential stops being convex giving rise to two convexifying segments. The
systems passes from & phases to &k + 4 phases, when the (p, T') point crosses the
line of azeotropies (see figures 9 and 10).

Codimension 2. The codimension two singularities of the C-surface (corre-
sponding to codimension two singularities of the convexified potential) project
on points of the (p,T)-plane. There are five types of such singularities:

e II-1) Double pleat. This phenomenon corresponds to the birth of the double
azeotrope. It happens when two branches of the potential experience a second

order tangency. The system, varying the pressure or the temperature, passes
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FIGURE 13. The dove. Top-left: the (p,T)-diagram; centre: the C-
surface over the (p,T)-plane; small bozxes: the convexified potential

FIGURE 14. The (z,T)-diagrams, sections of the C-surface containing
the birth of azeotrope from a triple points line

at this point from k£ + 2 to k 4+ 6 phases (see figure 11). The generic section
of the C-surface containing the x direction avoids the tangent to the azeotrope
line in the (p, T')-plane at the singular point (figure 12).

e 11-2) Dove. This singularity corresponds to the birth /death of an azeotropy
in a triple point line. It happens when in the graph of the potential two
adjacent points of the three points having a common tangent do coincide, giving
rise to a mutual tangency of two branches, responsible of the azeotropy (see
figure 13). On the (p, T)-plane, the azeotrope line at its end is tangent to the

triple point line, which reverse the coorientation at the dove singularity. The
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FIGURE 15. The trihedral angle. Top-left: the (p, T)-diagram; centre:
the C-surface over the (p,T)-plane; small bozes: the convexified po-
tential

generic section of the C-surface containing the x direction avoids the tangent
to the triple points line in the (p,T) plane at the singular point (figurel4)

e [1-3) Trihedral angle. This singularity corresponds to the quadruple point
or four-phases equilibrium. In the graph of the potential there are four
different points having the same tangent line, all belonging to the convex en-
velope. At the singular point four three-phases lines meet, each of which is the
projection on the (p,T)-plane of three dihedral angles, belonging to three of
the four trihedral angles which form the C-surface (see figure 15). In this case
there are three different generic types of sections of the C-surface containing
the z direction (figure 16).

e 11-4) Split-pleat tail. This singularity corresponds to the birth or death of a
critical point at the birth of a triple point. In the graph of the potential,
two adjacent points of three points with a common tangent merge in a point
(fold) with a contact of order four with the tangent line. The surface over
the singularity is (k+2) sheeted and (k+4) sheeted over an angle, which may
reach 7 (it is acute in figure 17). There are two types of generic sections of
the C-surface, containing the x direction, as shown in figure 18. In the first

case the triple point and the critical points coexist and both disappear at the
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FIGURE 16. The (z, T)-diagrams, sections of the C-surface containing
the quadruple point singularity

singularity, in the other one the critical point disappears and a triple point
appears.

e 1I-5) Wings. This singularity happens when a upper-critical (lower-critical)
point disappears at a lower-critical (upper-critical) point appears
together with an azeotrope. The surface has a double-fold line which ends
in a fold line. On the (p, T)-plane at the wings point the double fold (azeotrope)
line ends and it is tangent to the critical line. The coorientation of the critical
line reverses at the singular point. The graph of the potential experiences a
singularity of fronts: a cusp point belonging to the interior of the convex hull
become tangent to a locally convex branch, belonging to the convex envelope.
Many singularities in the graph of the potential in the neighborhood of the
wings are invisible because they belong to the interior of the convex hull and
do not affect the convex envelope (see figure 19). A generic section of the C-
surface containing the z direction does not contain the tangent to the critical
line at the wings point (see figure 20).
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FIGURE 17. The split-pleat tail. Top-left: the (p, T')-diagram; centre:
the C-surface over the (p,T)-plane; small bozes: the convexified po-
tential
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FIGURE 18. The (z,T)-diagrams, sections of the C-surface showing
(top) the death of a critical point together with a triple point and
(bottom) the death of a critical point with the birth in a triple point
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FIGURE 19. The wings. Top-left: the (p,T)-diagram; centre: the
C-surface over the (p, T)-plane; small bozes: the convexified potential

3. LEGENDRIAN SINGULARITIES

In the energy description the equilibrium states of a mole of a binary mixture
consist in a 3d-surface L, graph of the internal energy U in terms of the extensive
variables V' (volume), S (entropy) and z (molar fraction of the second component).
The stable equilibrium states consist in the convex envelope L of this graph. A
point of the convex envelope represents a homogeneous equilibrium if the graph of
the internal energy is locally convex, a heterogeneous equilibrium otherwise (the

graph is locally a ruled surface or a hyperplane). In the contact space M, with the
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FIGURE 20. The (z,7T)-diagrams, sections of the C-surface showing
the death of a lower-critical point and the birth of an azeotrope to-
gether with an upper-critical point

additional intensive variables p = —0U/0V, T = 0U/0S, py — py = 0U/0x, the 3-d
equilibrium surfaces are represented by Legendrian sub-manifolds £ and £. Remind
that £ is smooth, whereas £ is non smooth because of convexification.

Legendrian singularities occur at those points of £ where the Hessian determinant
of internal energy vanishes. Since in a neighborhood of such points the sign of
the Hessian determinant changes, a singular point cannot belong to the interior of
the homogeneous domain, where U is locally convex: a Legendrian singularity is
always located at the boundary of a locally convex domain. On the other hand,
after convexification a point represents a stable equilibrium only if it belongs to the
convex envelope of the internal energy, hence a ‘stable’ Legendrian singular point
must belong also to £ and it is therefore located on the C-surface separating the
homogeneous from the heterogeneous states.

The generic Legendrian singularities of a 3-dimensional sub-manifold have codi-
mension 1, 2 or 3. They are given by the following list [AG90]: A, (codimension
1); A3 (codimension 2); Ay, D and D (codimension 3). After the convexification
the singularities of type D,, disappear (being located always at the interior of the
complement of the elliptical domain); whereas the A, singularities survive to the
convexification only if n is odd (see [AFV00]). Therefore, in binary mixture we
can see, generically, only the Aj singularity. Such singular points form lines in the
C-surface, namely the fold lines of critical points of the mixture.

4. SINGULARITIES IN VAN DER WAALS SYSTEMS

In this section I utilize a 3-parameter family of Van der Waals models analyzed by
Konynenburg and Scott ([KS80]) to investigate the presence of generic singularities.
The Van der Waals equation of state for a mole of binary mixture is

RT a(x)

(1) P=y @)~

where R is the molar gas constant, z is the mole fraction of the second component,
and the function a(z) et b(z) are

a(x) = (1 —z)%a11 + 2(1 — z)za1z + 2 as,

b(z) = (1 — x)by1 + xbay.
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Constants a;; and aso measure the attractive forces between pairs of molecules
of the pure components 1 and 2, respectively, and a5 is the corresponding param-
eter for the interaction between molecules 1 and 2. Constants by; and by, are size
parameters for the pure components.

According to [KS80], the three non dimensional parameters that characterize the
Van der Waals model are:

(azz _ 2a12 a11)

b3 b11b22 b3

G + 3

2 2
b22 bll

A=

In fact, these parameters are functions of the ratios m = ag/a11, n = a12/a1;
and k = bgy /b1y, so that the Van der Waals equation written in terms of the non
dimensional variables p, T and V, given by:
27b% 27Rb

1 p T= ol V

ail 8aii b11

p:

becomes

©) p=- bézT B 27a(x2)/a11
— fE) /b11 Vv

which depends only on the three parameters m, n and k.

Konynenburg and Scott analyzed [KS80] the behavior of system (1) varying the
values of parameters &, ( and A. The classification of the different kinds of behavior
they gave, based on the global features of the (p,T)-diagrams, became standard in
the literature on the binary mixtures.

.From the point of view of singularities, varying the parameters values, the sys-
tem (1) exhibits all the generic phenomena listed in the previous section, with the
exception of the double pleat (the birth of the double azeotrope). The presence of
the double azeotrope is quite rare in binary mixtures (it was experimentally found
in 1966 [GS66]): this justifies the absence of the double pleat in the Landau-Lifchitz
empirical classification.

4.1. The Wings-singularity. I am moreover specially interested in the wings sin-
gularity, the new singularity from the theoretical point of view. It is well visible in
the (p,T)-diagrams of systems of type I-A, II-A, TII-A, V-A in [KS80] (i.e., in all
cases with azeotropy), where a single azeotrope line ends meeting a critical line.

One can indeed verify that the Gibbs potential is actually of the form given in
figure 19 in a neighborhood of the singular point. Consider, for example, the system
with ¢ = —.263, A = —.579 and £ = 1/3. In the (p,T)-diagram of figure 41 in
[KS80] a wings-singularity is visible for non dimensional pressure and temperature
p = 0.82 and T = 1.37. For values of p and T indicated by a black circle in figure
21, the non dimensional Gibbs potential G[p,T|(x) = G|p,T|(z)/RT is calculated
according to the formulae:

G[p, T](z) = In /\1(3:1)6(1 —z) 4+ In Xy (z)x
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where the non dimensional activities are

ln/\(x)__27(1—x+nac)+ln l—=z N v
A ATV V—(1—-z+kx) V—(1—-z+kx)

27(n — nx + mx) I x N v
ATV V— (1—z+kx) V—(1—2z+kx)

and, for every x € (0, 1), V(z) is given by the solutions of equation 2 with the chosen
values p and T.

Then I show in figure 21 the graph of the multivalued G|p, T](x), which are similar
to the expected pictures (see figure 19).

InAp(z) = —

4.2. Legendrian singularities in Van der Waals systems. Besides the pro-
jected lines of critical points (fold lines), in the calculated (p,T)-diagrams of the
system (1), a singularity A, is visible in a case (figure A2 of [KS80]) where the
authors extend the critical line to the metastable domain. In the projection to the
(p, T)-plane this singularity is a cusp point of the critical line.

Moreover, the projection of a singularity As is visible in figure 32 of [KS80], where
a critical point line splits in a three-phases line and 2 critical lines (whose projections
on the (p, T)-plane coincide). This singularity is non generic for binary mixture, i.e.
it happens for special values of the parameters, but it is stable and thus detectable
by experiments. For further details and explanations see [AFV00].

5. CONCLUSIONS

The singularity theory and specially the approach of Varchenko which was gener-
alized here allows not only to classify all the possible phenomena, of binary mixtures,
but also to understand - looking at the (p,T')-diagrams - the whole features of the
phase diagrams (see [AFV00])

Such a mathematical formulation in terms of singularities of convex envelopes is
also convenient to classify all generic phenomena occurring when the system expe-
riences a change in the external parameters.

This is essential to understand the geometrical properties of the so-called global
phase diagrams, describing the different behaviors of systems depending on many
parameters.

Moreover, this method could also be used to show that in the list of Nezbeda et
al. [NKS97] of the codimension 3 singularities (i.e. occurring in generic 1-parameter
families of models) five phenomena are missing.
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