TOPOLOGICAL GEODESICS AND VIRTUAL RIGIDITY

LOUIS FUNAR AND SIDDHARTHA GADGIL

ABSTRACT. We show that closed 3-manifolds whose fundamental group is
word-hyperbolic, infinite and residually finite, are virtually rigid. This result
is based on the notion, which we introduce, of topological geodesics in such
manifolds. We also prove basic existence and uniqueness results for topological
geodesics.
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A basic question in topology is to what extent the homotopy type of a man-
ifold determines the manifold. For aspherical manifolds, in particular irreducible
3-manifolds with infinite fundamental group, conjecturally pairs of homotopy equiv-
alent manifolds are always homeomorphic.

One of the fundamental theorems in 3-manifold topology, due to Waldhausen,
asserts that this is so for so-called Haken 3-manifolds. These include irreducible
manifolds with non-trivial boundary. Following Gabai [5], we prove rigidity results
by deleting solid tori and reducing to the case of manifolds with boundary. Partial
results along these lines have been obtained also by Dubois ([4]) which simplified
the previous proof by Gabai.

We show here that a large class of 3-manifolds are virtually rigid, i.e., pairs of
homotopy equivalent manifolds have finite covers which are homeomorphic.

Theorem 0.1. Suppose M is a closed, irreducible 3-manifold with w1 (M) infinite,
residually finite and word-hyperbolic. Then if f: M — N is a homotopy equiva-
lence, there exist finite covers M' and N' of M and N and a lift f': M' — N' of
f which is homotopic to a homeomorphism.

Remark. We only use word-hyperbolicity to show the tameness of certain covers of
M, which also follows under some weaker hypotheses (see section 6).

Our proof is a generalisation of that of Gabai [5] asserting the same when N is
hyperbolic. While this has subsequently been strengthened to showing rigidity for
such manifolds (see [6] and [7]), the methods used are rather special to hyperbolic
manifolds and are unlikely to generalise.

Our main tool is the notion, which we introduce, of a topological geodesic in
a 3-manifold. We prove basic existence and uniqueness results for these, which
are perhaps of independent interest. Further applications of these will be studied
elsewhere.

Suppose henceforth that M is a closed 3-manifold with 7 (M) word-hyperbolic
and infinite. In particular, the universal cover M of M is homeomorphic to R3 (see

[2])-
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Definition 0.1. An embedded curve vy in M is a topological geodesic if a component
4 of its inverse image in M is unknotted.

Remark. This is equivalent to saying that every component of its inverse image is
unknotted.

Under the hypothesis that M is word-hyperbolic, we have the following existence
theorem.

Theorem (see theorem 1.2). Let M be an irreducible 3-manifold with w1 (M) word-
hyperbolic and infinite. Then every conjugacy class in w1 (M) is represented by a
topological geodesic.

If we further assume that 1 (M) is residually finite, we have a uniqueness result.

Theorem (see theorem 4.3). Let M be an irreducible 3-manifold with m (M) word-
hyperbolic, residually finite and infinite. Suppose ¢ and ¢’ are homotopic topological
geodesics in M representing a primitive class in m (M) (i.e., not a multiple of any
other class), then there exists a finite cover M' of M such that ¢ and ¢’ lift to
isotopic curves in M'.

Remark. Topological geodesics arise naturally while studying elliptic 3-manifolds.
For instance, whether homotopy lens spaces are lens spaces is equivalent to the
existence of the analogue of a topological geodesic. Further, lens spaces can be
distinguished by considering the homotopy classes of topological geodesics in a
given manifold.

Acknowledgements. We would like to thank Yair Minsky and Darren Long for help-
ful comments and conversations.

1. DEFINITION AND EXISTENCE

We assume henceforth that M is a closed, irreducible 3-manifold with m (M)
word-hyperbolic, residually finite and infinite. We make (as in the introduction)
the following definition.

Definition 1.1. An embedded curve v in M is a topological geodesic if a component
4 of its inverse image in M is unknotted.

The existence of geodesics is based on the following lemma.

Lemma 1.1. For v € m (M), let M, = M/{g) be the quotient of M by the the
group of deck transformations generated by v. Then M/{g) = S* x R?

Proof. As (M) is word-hyperbolic, the universal cover M has a compactification
to B2, and the action by deck transformations extends to B2. The action of y has
two fixed points p and ¢, and v acts properly discontinuously on B3 — {p,q} with
quotient D? x S. The result follows as M., is the interior of this manifold. a

Theorem 1.2. Let M be an irreducible 3-manifold with 71 (M) word-hyperbolic and
infinite. Then given v € w1 (M), there is a topological geodesic ¢ that represents .

Proof. We simply take the image in M of a curve c in M,, that is a core of the solid
torus constructed above. It is easy to ensure that the image is embedded. |
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Remark. The above theorem shows that there exists a topological geodesic repre-
senting every element in the fundamental group, rather than each conjugacy class
of elements, which is the case for geodesics in a Riemannian manifold with neg-
ative sectional curvature. But given a geodesic representing an element, there is
an obvious construction of a geodesic representing any conjugate element. So the
real issue is that the topological geodesic representing a conjugacy class should be
unique.

2. THICK TUBES

In this section, we show that a geodesic ¢ corresponding to a primitive element of
71 (M) has a thick tube around it in a finite cover, i.e., a solid torus @) that contains ¢
and so that d(0Q, c) is large and T —int(N(c)) = T? x [0, 1]. The precise statement,
is below. Here, and henceforth, we fix a metric on M and use the pullback metric
on all its covers

The construction is based on the fact due to Darren Long (see [8]) that in word-
hyperbolic, or more generally atoroidal, groups, maximal cyclic groups are separa-
ble.

Theorem (D. Long). Let G be a residually finite group, v € G an element that
generates a mazimal abelian subgroup, and S a finite set disjoint from (). Then
there exists a subgroup H C G with finite index such that v € H but SN H =0

We construct a thick tube in the cover M/{y) = S* x R?. This embeds in a
cover where all other small elements are separated from such a group. In this cover
we have a short curve (geodesic) in one homotopy class, but all closed curves that
are not homotopic to a power of this are long. The precise statement and proof are
below.

Theorem 2.1. Let vy € m (M) be a primitive element and let K € R. Then there
s a geodesic ¢ C M and a finite cover M' of M such that c lifts to M' and there
is an embedded solid torus @) that contains ¢ and so that d(0Q,c) is large and
Q —int(N(c)) = T? x [0,1]

Proof. Consider the cover M, = M /{g) of M and pick base-points p of M and p'
of M,,. As M, is homeomorphic to S* x R?, there is a curve ¢ and a solid torus @
embedded in M., with ¢ based at p, so that ¢ and @ are as required. We shall find
a finite cover M' of M which is covered by M, so that the image of () embeds in
M'.

As @) is compact, there is a finite collection X of inverse images of p in M, such
that if each of these map to distinct points in an intermediate cover M' between
M, and M, then () embeds in this cover. Choose paths joining p’ to each point in
X and let S’ be the set of elements in m; (M) that are represented by the images
of these paths. Let S = S'U {zy~! :z,y € S}.

By the above theorem, there exists a subgroup H separating v from S. Let M’
be the corresponding cover. It is easy to see that the elements of X map to different
points in M’, and hence @ embeds in M’. a

Definition 2.1. A thick tube around a geodesic ¢ is an embedded solid torus @
that contains ¢ such that Q —int(N(c)) = T? x [0,1].

Observe that the components of the inverse image of a thick tube around a
geodesic in M are unknotted.
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3. VIRTUAL RIGIDITY

Gabai’s proof of virtual rigidity (see [5]) now generalises. Briefly, if there are
knots K and K’ in M and N whose complements are irreducible and so that, possi-
bly after changing f by a homotopy, f(N(K)) C N(K') and f(M —int(N(K))) C
N — int(N(K')), then we can apply Waldhausen’s result to the knot exteriors.
Gabai’s proof proceeds by showing that given a geodesic v in M (which plays the
role of K) with a thick tube around it, the image of this contains a solid torus W
(which plays the role of N(K")), so that f can be deformed to a map that takes
M — int(N(y)) to N —int(W). Waldhausen’s theorem now shows rigidity.

As f is a homotopy equivalence between compact manifolds, there exists C' such
that d(z,y) > C = f(z) # f(y). By the methods of the previous section, given
C € R there is a finite cover M’ of M, a geodesic v C M’ and solid tori V;,1 <4 < 4
such that d(y,0V1) > C and d(0V;,0Vi41) > C, 1 < i < 3. Let S; = 9V;. Let
Vo = 7. Replace M by M’ and N by its cover with the same fundamental group

as M' (under the identification m (M) L 1 (V).

The rest of the proof is exactly the same as that of Gabai (hyperbolicity is not
used beyond this stage - only that the tori are far apart and topologically of a
standard form). We outline below the main steps.

Let g: N — M be the homotopy inverse of f. Let K = f(S2) and J =
N(K) U (components of N — K disjoint from f(S;)U f(S3)). Then 0J has two
components, one of which bounds a region disjoint from J containing f(S;) and
the other bounds a region disjoint from J containing f(S3). Further, J is ir-
reducible and [K] generates Hy(J) = Z. All this follows from the fact that
d(z,y) > C = f(z) # f(y)-

Next, J contains a homologically non-trivial torus which bounds in N a solid
torus W containing f(v). This is constructed using the fact that the Thurston
norm equals the singular norm, and that we have a singular torus 7. Further,
g: T — N —int(W) and the inclusion T' — N — int(W) induce injections between
the fundamental groups.

Now we can deform f and g so that they restrict to give a homotopy equivalence
between M — Vo and N — W. Waldhausen’s theorem now gives the result.

4. UNIQUENESS

Lemma 4.1 (Engulfing lemma). Any curve d in M homotopic to a geodesic c is
contained in a tube around the geodesic ¢ in some finite cover.

Proof. As ¢ and d are homotopic, there exists an annulus A with boundary com-
ponents ¢ and d. On passing to a cover with a sufficiently thick tube @) around c,
the annulus A is contained in the tube (). Hence d has a lift that is contained in

Q- O

Lemma 4.2 (Core lemma). If ¢ and ¢’ are homotopic geodesics and ¢’ is contained
in a thick tube Q around c, then c' is isotopic to c.

Proof. Consider 71(Q — ¢'). The inverse image of the solid torus Q in M contains
an unknotted cylinder D that contains a unique component C’ of the inverse image
of ¢/. The group my (D — C") = my (M — C") is the kernel of the map m; (Q —¢') — 7Z
that maps the longitude of the torus 0@ (hence those of ¢ and ¢'), to 1 and the
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meridian to 0. As C' is an unknot (because ¢’ is a geodesic) this kernel is Z, hence
71 (Q — ¢') = Z2. This implies that ¢’ is isotopic to c. O

Theorem 4.3. Let M be an irreducible 3-manifold with m (M) word-hyperbolic,
residually finite and infinite. Suppose ¢ and c' are homotopic topological geodesics
in M representing a primitive class in m (M), then there exists a finite cover M’
of M such that c and ' lift to isotopic curves in M'.

Proof. As ¢ and ¢’ are homotopic, there is an annulus A bounding ¢ and ¢/. By
passing to a cover M' with a sufficiently thick tube @ around ¢, we may ensure that
A is contained in Q). The core lemma now implies that ¢ and ¢’ are isotopic. a

5. HOMOTOPY VERSUS ISOTOPY

It is known that for an irreducible manifold homotopic self-homeomorphisms are
isotopic provided that the manifold is hyperbolic (a consequence of Gabai’s rigidity
[6]) or Seifert fibered (by the Scott theorem) or lens spaces.

Theorem 5.1. Let M be irreducible and with word hyperbolic fundamental group.
If f: M — M is a homeomorphism homotopic to the identity then there is a finite
cover M' of M and a lift f' : M' — M' of f such that f' is isotopic to the identity.

Proof. Let v be a topological geodesic correspoding to a primitive class in 7y (M).
Then the geodesics f(y) and v are homotopic hence there exists a finite cover M’
such that f(v) and ~ lift to isotopic curves. Since f is homotopic to identity there
is no obstruction in lifting it to a homotopy equivalence f’ of the finite covering
M'. One can further assume (by means of some isotopy on M') that f(y') = '
(pointwise).

The proof of the core lemma shows that M’ — +' is atoroidal hence hyperbolic
(since Haken). Furthermore the restriction f'(ar—, is a homeomorphism. There-
fore f'|mr— is homotopic to an isometry of M’ —~' (by Mostow rigidity) and hence
isotopic to an isometry (by Waldhausen’s theorem).

Let j be this isometry. Since the isometry group of a hyperbolic manifold of
finite volume is finite it follows that j is of finite order. Further j has an extension
g (by identity) to all of M', by asking g to keep pointwise v'. In particular g is a
periodic homeomorphism of M. ~

Let consider the lift h of g to the universal covering M = R? (which is also the
universal covering of M'). The action of h extends continuously to the compactifi-
cation (over the boundary sphere) to a homeomorphism of the ball B3. The action
by deck transformations extends to one by homeomorphisms of the compactifica-
tion obtained by adding the boundary of the group m (M), because this is word
hyperbolic. In our case the boundary is the sphere at infinity.

But f is homotopic to identity, hence the action induced on the boundary is
trivial. This shows that A is the identity on the boundary sphere.

Lemma 5.2. A periodic homeomorphism of B3 which restricts to identity on the
boundary is identity.

Proof. We will use a theorem of Newman ([10]) improved by Smith (see [12]) in its
variant stated in ([3],Thm.9.5, p.157). It states that a compact Lie group acting
effectively on a connected topological manifold has a nowhere dense fixed point set.

One considers the finite cyclic group action induced by our periodic homeomor-
phism on the ball B3. This action extends to the sphere S? by the identity outside
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the upper hemisphere. Then the fixed point set contains a 3-ball and the previous
result shows that the action cannot be effective, and hence h must be the identity
map. O

In particular f’ is isotopic to the identity. |

6. ABOUT THE HYPOTHESIS

While we have assumed word-hyperbolicity for the sake of definiteness, we actu-
ally need much less. Assuming 71 (M) is atoroidal, we also need everywhere that
M =R3, or equivalently that M3 is tame (i-e, is the interior of a compact mani-
fold). Existence and uniqueness use the tameness of M,. Finally, virtual rigidity
needs tameness for some M,.

There are contractible 3-manifolds, namely Whitehead manifolds, different from
R3. There are also 3-manifolds different from S* x R? that have fundamental group
Z and universal cover R® (see, for example, [11]). Conjecturally these manifolds do
not admit free co-compact actions, but so far this is known only under additional
assumptions on the group (for example word-hyperbolicity).

Tameness is implied by hypothesis weaker than word-hyperbolicity. Specifically
one could state Lemma 1.1 under the following hypothesis:

Lemma 6.1. Assume v is an element of infinite order and m (M) is a CAT(0)
group (i.e. it acts properly discontinuously and co-compactly by isometries on a
geodesic CAT(0) metric space), or more generally a semi-hyperbolic group. Then
the conclusion of lemma 1.1 holds true.

Proof. Any infinite cyclic subgroup Z C w1 (M) yields a flat in X by the Flat Torus
Theorem (see [1, 13]) and so it is a quasi-convex subgroup (see [1], Thm. 9.11
for details). The main theorem of [9] implies that M /(7) is a missing boundary
manifold, hence a solid torus. In the semi-hyperbolic case an infinite cyclic group lies
in the center of its centralizer (which is a finite extension of the infinite cyclic group)
and the latter is both semi-hyperbolic and a quasi-convex subgroup of 71 (M). O

Corollary 6.2. In the hypotheses of theorems 0.1, 1.2 and 4.3, we may replace
word-hyperbolic by semi-hyperbolic.

Results of M.Bridson extend the result to solv-manifolds and thus to all funda-
mental groups of geometric 3-manifolds. Notice that M.Kapovich has announced
that atoroidal CAT(0) 3-manifold groups are word hyperbolic, improving a previous
theorem of L.Mosher.
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