# The $\overline{\partial}$ -equation with vanishing and growth conditions at the boundary on some pseudoconvex domains

Judith Brinkschulte<sup>1</sup>

Prépublication de l'Institut Fourier n°528 (2001)

http://www-fourier.ujf-grenoble.fr/prepublications.html

## 1 Introduction

Let (X, g) be a Kähler manifold with strictly positive holomorphic bisectional curvature. For example, the complex projective space  $\mathbb{P}^n$  satisfies these requirements. Let  $\Omega \subset\subset X$  be a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain.

We will show some vanishing and separation theorems for the  $\overline{\partial}$ -cohomology groups with exact support in  $\overline{\Omega}$ . This will be done by means of basic  $L^2$ -estimates on  $\Omega$  with powers of the inverse of the boundary distance as weight functions. Sobolev-estimates for elliptic operators whose symbol can be controlled by some power of the boundary distance will be deduced in order to prove regularity results for the minimal  $L^2$ -solutions of the  $\overline{\partial}$ -operator.

Similar results under more restrictive assumptions on the ambient Kähler manifold X (namely compacity and the vanishing of certain cohomology groups), but under weaker assumptions on the regularity of  $\Omega$ , have been obtained by Henkin and Iordan [He-Io] using completely different methods. As a corollary, one can show that some smooth forms, which satisfy the tangential Cauchy-Riemann equations on the boundary of  $\Omega$ , extend as  $\overline{\partial}$ -closed forms to  $\overline{\Omega}$ . One should also consult the related work [Oh], which initiated this paper.

By duality, we can solve the  $\overline{\partial}$ -equation for extensible currents on  $\Omega$ . These currents were at first considered by Martineau [Ma]. The analogous

<sup>&</sup>lt;sup>1</sup>Université de Grenoble 1, Institut Fourier, B.P. 74, 38402 St. Martin d'Hères Cedex (France). E-mail: brinksch@ujf-grenoble.fr

Key words: pseudoconvex domain,  $\overline{\partial}$ -equation with exact support,  $\overline{\partial}$ -equation with polynomial growth, extensible currents, regularity of non uniformly elliptic operators. **2000 Mathematics Subject Classification:** 32F27, 32Q10, 32Q15, 32T99, 32J70.

result in the strongly pseudoconvex case can be found in [Sa] with a very different proof. As an application, we solve the  $\overline{\partial}$ -equation in bidegree (0,1) for smooth forms admitting a distribution boundary value.

The last part is dedicated to the solvability of the  $\overline{\partial}$ -equation for smooth forms with polynomial growth, i.e. for forms whose norm can be controlled by some power of the inverse of the boundary distance. This is done again by  $L^2$ -methods and a priori estimates for the minimal solution. We apply this result to show the vanishing of the Čech-cohomology groups of the sheaf of germs of holomorphic functions admitting a distribution boundary value. All these results seem to be new.

# 2 Elliptic operators of polynomial growth at the boundary

In this section, we will study the regularity of the equation Lu = f, where L is an elliptic operator on a  $\mathbb{C}^{\infty}$ -smooth bounded domain in  $\mathbb{R}^n$  whose principal symbol can be controlled by some power of the boundary distance.

More precisely, let  $U \subset\subset \mathbb{R}^n$  be a  $\mathcal{C}^{\infty}$ -smooth domain, and let  $L = \sum_{|\alpha|=m} a_{\alpha}(x) D^{\alpha} + \sum_{|\beta|< m} b_{\beta}(x) D^{\beta}$  be a differential operator of order m with smooth coefficients  $a_{\alpha}$ ,  $b_{\beta} \in \mathcal{C}^{\infty}(U)$  on U.

We say that L is an elliptic operator of polynomial growth on U if there exist  $k, l \in \mathbb{N}$  such that

$$\left|\sum_{|\alpha|=m} a_{\alpha}(x)\xi^{\alpha}\right| \gtrsim d^{k}(x) |\xi|^{m} \text{ for every } \xi \in \mathbb{R}^{n}$$
 (1)

and

$$|D^{\gamma} a_{\alpha}(x)| \lesssim d^{-l-|\gamma|}(x), \ |D^{\gamma} b_{\beta}(x)| \lesssim d^{-l-|\gamma|}(x) \tag{2}$$

for all multiindices  $\alpha$ ,  $\beta$ ,  $\gamma$ , where d is the boundary distance function of U.

Here we write  $a \lesssim b$  (resp.  $b \gtrsim a$ ), if there exists an absolute constant C > 0 such that  $a \leq C \cdot b$  (resp.  $b \geq C \cdot a$ ).

Before we proceed to the precise statement of the main theorem of this section, we must recall the basic definitions of the Sobolev norms  $\| \|_s$  of order s on  $\mathbb{R}^n$ ,  $s \in \mathbb{R}$ ,

$$||u||_s^2 = \int_{\mathbb{R}^n} (1+|\xi|^2)^s |\hat{u}(\xi)|^2 d\xi$$

where  $u \in \mathcal{D}(\mathbb{R}^n)$  is a smooth function with compact support in  $\mathbb{R}^n$  and  $\hat{u}$  is the Fourier transform of u.

It is clear that for any  $s \in \mathbb{N}$  and  $u \in \mathcal{D}(\mathbb{R}^n)$ ,  $\|u\|_s^2 \sim \sum_{|\alpha| \leq s} \|D^{\alpha}u\|_0^2$ . For  $u \in \mathcal{C}^{\infty}(U)$  and  $s \in \mathbb{N}$ ,  $\|u\|_s^2$  is then defined by  $\|u\|_s^2 = \sum_{|\alpha| \leq s} \|D^{\alpha}u\|_0^2$ ,  $\|u\|_0^2 = \int_U |u|^2 d\lambda$ .

We define  $C^r(\mathbb{R}^n, \overline{U}) := \{ f \in C^r(\mathbb{R}^n) \mid \text{supp} f \subset \overline{U} \}.$ 

#### Theorem 2.1

Let L be a differential operator of polynomial growth of order m with smooth coefficients on a  $\mathbb{C}^{\infty}$ -smooth domain  $U \subset\subset \mathbb{R}^n$ .

Then we have the following a priori estimate

$$||u||_s^2 \lesssim ||d^{-ts}Lu||_{s-m}^2 + ||d^{-Ts^2}u||_0^2$$

for some  $t, T \in \mathbb{N}$  and  $s \gg 1$ ,  $u \in \mathcal{C}^{\infty}(U)$ .

In particular, if  $\int_{U} |u(x)|^{2} d^{-N}(x) d\lambda(x) < +\infty$  and  $Lu \in \mathcal{C}^{N}(\mathbb{R}^{n}, \overline{U})$ , then  $u \in \mathcal{C}^{s(N)}(\mathbb{R}^{n}, \overline{U})$  where  $s(N) \sim \sqrt{N}$  for all  $N \gg 1$ .

*Proof:* It clearly suffices to show the a priori estimate. The last assertion then follows from the Sobolev lemma (see [Fo]).

We prove the estimate by simply expliciting the dependence on d of all the constants involved in the classical proof of the hypoellipticity of uniformly elliptic operators (see [Fo]).

Let us fix  $x_0 \in U$  and let  $B_{\delta}(x_0)$  be the ball of radius  $\delta \ll 1$  centered at  $x_0$ . Let u be a smooth function with support in  $B_{\delta}(x_0)$ .

First, we assume that  $b_{\beta} = 0$  for every multiindex  $\beta$ . Then we have

$$(\widehat{L_{x_0}u})(\xi) = (2\pi i)^m \sum_{|\alpha|=m} a_{\alpha}(x_0) \, \xi^{\alpha} \, \hat{u}(\xi)$$

where  $L_{x_0} = L(x_0)$  is the differential operator with frozen coefficients at  $x_0$ .

This implies

$$(1+|\xi|^2)^s |\hat{u}(\xi)|^2 \le 2^m (1+|\xi|^2)^{s-m} (1+|\xi|^{2m}) |\hat{u}(\xi)|^2 \lesssim (1+|\xi|^2)^{s-m} |\hat{u}(\xi)|^2 + d^{-2k}(x_0) (1+|\xi|^2)^{s-m} |(\widehat{L_{x_0}u})(\xi)|^2$$

by (1). Integrating both sides and using the inequality  $||u||_{s-m} \leq ||u||_{s-1}$ , one obtains

$$||u||_s^2 \lesssim d^{-2k}(x_0) ||L_{x_0}u||_{s-m}^2 + ||u||_{s-1}^2.$$

Hence there exists  $C_0 > 0$  such that

$$||u||_{s}^{2} \le C_{0} d^{-2k}(x_{0}) (||L_{x_{0}}u||_{s-m}^{2} + ||u||_{s-1}^{2}).$$
(3)

We now wish to estimate

$$||L_x u - L_{x_0} u||_{s-m}^2 = ||\sum_{\alpha} (a_{\alpha}(x) - a_{\alpha}(x_0))||D^{\alpha} u||_{s-m}^2.$$

The estimates (2) yield

$$|a_{\alpha}(x) - a_{\alpha}(x_0)| \le C_1 d^{-l-1}(x_0) |x_0 - x|$$

for some  $C_1 > 0$  and all  $\alpha, x, x_0$ .

Set  $\delta = (8C_0C_1^2n^md^{-2k-2l-2}(x_0))^{-\frac{1}{2}}$  and fix  $\phi \in \mathcal{D}(B_{2\delta}(0))$  with  $0 \le \phi \le 1$  and  $\phi \equiv 1$  on  $B_{\delta}(0)$ . Suppose u is a smooth function supported in  $B_{\delta}(x_0)$ . Then

$$(a_{\alpha}(x) - a_{\alpha}(x_0)) \ D^{\alpha}u(x) = \phi(x_0 - x) \ (a_{\alpha}(x) - a_{\alpha}(x_0)) \ D^{\alpha}u(x)$$

and

$$\sup_{x} |\phi(x_0 - x)(a_{\alpha}(x) - a_{\alpha}(x_0))|^2 \le 4C_1^2 d^{-2l-2}(x_0)\delta^2 = (2n^m C_0 d^{-2k}(x_0))^{-1}.$$

Hence by (2)

$$\|(a_{\alpha}(x) - a_{\alpha}(x_{0})) D^{\alpha}u\|_{s-m}^{2} \le (2n^{m}C_{0}d^{-2k}(x_{0}))^{-1} \|u\|_{s}^{2}$$

$$+ C_{2}d^{-s_{1}s-s_{0}}(x_{0}) \|u\|_{s-1}^{2}$$

for some  $C_2 > 0$ ,  $s_0, s_1 \in \mathbb{N}$ .

Thus, since there are at most  $n^m$  multiindices  $\alpha$  with  $|\alpha| = m$ , we have

$$||L_x u - L_{x_0} u||_{s-m}^2 \le (2C_0 d^{-2k}(x_0))^{-1} ||u||_s^2 + n^m C_2 d^{-s_1 s - s_0}(x_0) ||u||_{s-1}^2$$

Combining this with (3), we then obtain

$$||u||_s^2 \le d^{-2k}(x_0) ||Lu||_{s-m}^2 + d^{-m_0s-k_0}(x_0)||u||_{s-1}^2$$

for some  $m_0, k_0 \in \mathbb{N}$ .

Next, we consider the case  $b_{\beta} \not\equiv 0$ . Replacing  $m_0, k_0$  by larger integers if necessary, we can absorb the additional terms of Lu in the term  $d^{-m_0s-k_0}(x_0)\|u\|_{s-1}^2$  and still have the estimate

$$||u||_{s}^{2} \le d^{-2k}(x_{0}) ||Lu||_{s-m}^{2} + d^{-m_{0}s-k_{0}}(x_{0})||u||_{s-1}^{2}$$

We emphasize that all the constants involved are independent of  $x_0 \in U$ .

Next, we cover U by balls  $B_{\delta_i}(x_i)$  of the above type,  $i \in \mathbb{N}$ . It is easy to construct a partition of the unity  $(\theta_i)_{i \in \mathbb{N}}$  with respect to this covering satisfying  $\sum_{|\alpha| \leq s} |D^{\alpha}\theta_i|^2 \leq \theta_i |P_s(\delta_i^{-1})|$  where  $P_s$  is a polynomial of degree s in one variable. One has

$$\|\theta_i u\|_s^2 \le d^{-2k}(x_i) \|L\theta_i u\|_{s-m}^2 + d^{-m_0 s - k_0}(x_i) \|\theta_i u\|_{s-1}^2$$

for every smooth function u on U.

Replacing  $m_0, k_0$  by larger integers if necessary, we get

$$\|\theta_{i}u\|_{s}^{2} \leq C \{d^{-k_{0}}(x_{i})\|\theta_{i}Lu\|_{s-m}^{2} + d^{-m_{0}s-k_{0}}(x_{i})\|\theta_{i}u\|_{s-1}^{2}$$

$$+ d^{-m_{0}s-k_{0}}(x_{i}) \int_{U} \theta_{i}|u|^{2}d\lambda \}$$

$$\leq Md^{-m_{0}s-k_{0}}(x_{i}) \{\sum_{|\alpha| \leq s-m} \int_{U} \theta_{i}|D^{\alpha}(Lu)|^{2}d\lambda$$

$$+ \|\theta_{i}u\|_{s-1}^{2} + \int_{U} \theta_{i}|u|^{2}d\lambda \}$$

$$(4)$$

for some C, M > 0.

Moreover,

$$\begin{split} Md^{-m_0s-k_0}(x_i) & \|\theta_i u\|_{s-1}^2 \\ &= Md^{-m_0s-k_0}(x_i) \int_{\mathbb{R}^n} (1+|\xi|^2)^{s-1} |\widehat{\theta_i u}(\xi)|^2 d\lambda \\ &= Md^{-m_0s-k_0}(x_i) \int_{\{1+|\xi|^2 > 2Md^{-m_0s-k_0}(x_i)\}} (1+|\xi|^2)^{s-1} |\widehat{\theta_i u}(\xi)|^2 d\lambda \end{split}$$

$$+Md^{-m_0s-k_0}(x_i)\int_{\{1+|\xi|^2\leq 2Md^{-m_0s-k_0}(x_i)\}} (1+|\xi|^2)^{s-1}|\widehat{\theta_i u}(\xi)|^2 d\lambda$$

$$\leq \frac{1}{2}\|\theta_i u\|_s^2 + C'd^{-m_0s^2+m_0s-k_0s+k_0}(x_i)\|\theta_i u\|_0^2$$

for some C' > 0. Thus, by (4),

$$\|\theta_i u\|_s^2 \lesssim \sum_{|\alpha| \leq s-m} \int_U \theta_i d^{-2ts} |D^{\alpha}(Lu)|^2 d\lambda + \int_U \theta_i d^{-2Ts^2} |u|^2 d\lambda$$

for some  $t, T \in \mathbb{N}$  and  $s \gg 1$ . So

$$||u||_s^2 = ||\sum_i \theta_i u||_s^2 \le \sum_i ||\theta_i u||_s^2 \lesssim ||d^{-ts} L u||_{s-m}^2 + ||d^{-Ts^2} u||_0^2$$

which completes the proof.

Let us denote by  $B_N(U)$ ,  $N \in \mathbb{N}$ , the space of  $\mathcal{C}^{\infty}$ -functions u on U such that  $\sup_{x \in U} |u(x)d^N(x)| < +\infty$ . Then we have the following theorem:

#### Theorem 2.2

Let L be a differential operator of polynomial growth of order m with smooth coefficients on a  $C^{\infty}$ -smooth domain  $U \subset \subset \mathbb{R}^n$ .

Then we have the following a priori estimate

$$\sup_{x \in U} |d^{N+t}u|^2 \lesssim \sum_{|\alpha| < \lceil \frac{n}{2} \rceil + 1 - m} \|d^N D^{\alpha}(Lu)\|_0^2 + \|d^N u\|_0^2$$

for some  $t \in \mathbb{R}$ .

In particular, there exists  $t_0 \in \mathbb{N}$  such that if  $\int_U |u(x)|^2 d^{2N}(x) d\lambda < +\infty$  and  $Lu \in B_N(U)$ , then  $u \in B_{N+t_0}(U)$ .

*Proof:* By the Sobolev lemma (see [Fo]), it suffices to prove the a priori estimate

$$\|d^{N+t}u\|_{[\frac{n}{2}]+1}^2 \lesssim \sum_{|\alpha| < [\frac{n}{\alpha}]+1-m} \int_U |d^N D^{\alpha}(Lu)|^2 d\lambda + \|d^N u\|_0^2$$

for some  $t \in \mathbb{N}$ . Let us prove this estimate.

Replacing u by  $d^N u$  and s by  $\left[\frac{n}{2}\right] + 1$  in (4), we have

$$\begin{aligned} \|\theta_{i}d^{N}u\|_{\left[\frac{n}{2}\right]+1}^{2} & \leq & Md^{-c_{0}}(x_{i}) \left\{ \sum_{|\alpha| \leq \left[\frac{n}{2}\right]+1-m} \int_{U} \theta_{i} |D^{\alpha}(Ld^{N}u)|^{2} d\lambda \right. \\ & + \|d^{N}u\|_{\left[\frac{n}{2}\right]}^{2} + \int_{U} \theta_{i} |d^{N}u|^{2} d\lambda \right\} \\ & \leq & M'd^{-c_{0}}(x_{i}) \left\{ \sum_{|\alpha| \leq \left[\frac{n}{2}\right]+1-m} \int_{U} \theta_{i} |d^{N}D^{\alpha}(Lu)|^{2} d\lambda \right. \\ & + d^{-c_{1}}(x_{i}) \|d^{N}u\|_{\left[\frac{n}{2}\right]}^{2} + \int_{U} \theta_{i} |d^{N}u|^{2} d\lambda \right\} \end{aligned}$$

for some M' > 0,  $c_0, c_1 \in \mathbb{N}$ .

Following the proof of theorem 2.1, there exists M'' > 0 such that

$$M'd^{-c_0-c_1}(x_i)\|d^Nu\|_{\left[\frac{n}{2}\right]}^2 \leq \frac{1}{2}\|d^Nu\|_{\left[\frac{n}{2}\right]+1}^2 + M''d^{-(\left[\frac{n}{2}\right]+1)(c_0+c_1)}(x_i)\|d^Nu\|_0^2.$$

Thus

$$egin{aligned} \| heta_i d^N u\|_{[rac{n}{2}]+1}^2 &\lesssim& \sum_{|lpha|\leq [rac{n}{2}]+1-m} \int_U heta_i |d^{N-t} D^lpha(Lu)|^2 d\lambda \ &+ \int_U heta_i |d^{N-t} u|^2 d\lambda \end{aligned}$$

for some  $t \in \mathbb{N}$  and  $N \geq 1$ .

So

$$\|d^{N+t}u\|_{\left[\frac{n}{2}\right]+1}^{2} \lesssim \sum_{|\alpha| \leq \left[\frac{n}{2}\right]+1-m} \int_{U} |d^{N}D^{\alpha}(Lu)|^{2} d\lambda + \|d^{N}u\|_{0}^{2}$$

for  $N \geq 1$ .

# 3 Some $L^2$ -cohomology groups of the $\overline{\partial}$ -operator on pseudoconvex domains

For the rest of this paper, we will denote by (X, g) an n-dimensional Kähler manifold with strictly positive holomorphic bisectional curvature and by  $\Omega \subset\subset X$  a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain.

Let  $\delta(z)$  be the distance from  $z \in \Omega$  to the boundary of  $\Omega$  with respect to the metric g.  $\delta$  is then of class  $\mathcal{C}^{\infty}$  near  $\partial \Omega$  and smooth up to the boundary. We denote by  $\omega_g$  the Kähler form of the metric g on X.

According to a theorem of Elencwajg (see [El], [Su]; [Ta] for the case  $X = \mathbb{P}^n$ ), the function  $-\log \delta$  is plurisubharmonic in  $\Omega$ , and moreover  $i\partial \overline{\partial} (-\log \delta) \geq c \omega_g$  for some c > 0. This implies that  $\Omega$  admits a strongly plurisubharmonic exhaustion function, therefore  $\Omega$  is a Stein manifold.

Moreover, Ohsawa and Sibony ([Oh-Si]) have shown that  $\Omega$  even admits a bounded strongly plurisubharmonic exhaustion function. More precisely, they have shown that for some  $\epsilon > 0$ ,  $r := -\delta^{\epsilon}$  is strongly plurisubharmonic in  $\Omega$  and  $i\partial \overline{\partial} r \geq \text{cte } |r| \omega_q$ .

As  $-i\partial \overline{\partial} \log(-r) = \frac{1}{-r}i\partial \overline{\partial} r + \frac{1}{r^2}i\partial r \wedge \overline{\partial} r$ ,  $-\log(-r)$  is strongly plurisub-harmonic near  $\partial \Omega$ . Using the smoothing theorem for strongly plurisub-harmonic functions, we can thus find a smooth strongly plurisubharmonic function  $\varphi$  on  $\Omega$  which coincides with  $-\log(-r)$  near  $\partial \Omega$ .

We define  $\omega = i\partial \overline{\partial} \varphi$ . Near  $\partial \Omega$ , we have  $\omega \geq \frac{\operatorname{cte}}{-r} |r| \omega_g \geq \operatorname{cte} \omega_g$ .  $\omega$  is then a complete Kähler metric on  $\Omega$ . From now on,  $\Omega$  will be equipped with this metric. Moreover, we define  $\tilde{r} = -\exp(-\varphi)$ . Then  $\tilde{r}$  coincides with r near  $\partial \Omega$ .

Let (E, h) be a hermitian vector bundle on X, and let  $N \in \mathbb{Z}$ . We denote by  $L^2_{p,q}(\Omega, E, N)$  the Hilbert space of (p, q)-forms u with values in E which satisfy

$$||u||_N^2 := \int_{\Omega} |u|_{\omega,h}^2 (-\tilde{r})^N dV_{\omega} < +\infty.$$

Here  $dV_{\omega}$  is the canonical volume element associated to the metric  $\omega$ , and  $| |_{\omega,h}$  is the norm of (p,q)-forms induced by  $\omega$  and h.

Let  $\overline{\partial}_N^*$  (resp.  $\partial_N^*$ ) be the Hilbert adjoint of  $\overline{\partial}$  (resp.  $\partial$ ) with respect to the canonical scalar product  $\ll$ ,  $\gg_N$  of (p,q)-forms with values in E induced by  $\|\ \|_N$ .

We recall the Bochner-Kodaira-Nakano identity (see [De2]):

$$\square_N'' = \square_N' + [i\Theta(E_N), \Lambda]$$

where  $\Box_N'' = \overline{\partial} \overline{\partial}_N^* + \overline{\partial}_N^* \overline{\partial}$ ,  $\Box_N' = \partial \partial_N^* + \partial_N^* \partial$ ,  $\Theta(E_N)$  is the curvature of the bundle  $E_N = (E, (-r)^N h)$  and  $\Lambda$  is the adjoint of multiplication by  $\omega$ .

 $i\Theta(E_N) = iN\partial\overline{\partial}\varphi\otimes \mathrm{Id}_E + i\Theta(E) = N\omega\otimes \mathrm{Id}_E + i\Theta(E),$ thus this term can be made  $\geq \omega\otimes \mathrm{Id}_E$  by taking  $N\gg 1$ . Therefore if u is an (n,q)-form with values in E, we obtain

$$<[i\Theta(E_N),\Lambda]u,u>_N\geq |u|_N^2$$

if  $N \gg 1$  (see [De2] for the exact calculation of this curvature term).

Then the Bochner-Kodaira-Nakano identity yields

$$||u||_N^2 \le \operatorname{cte} (||\overline{\partial} u||_N^2 + ||\overline{\partial}_N^* u||_N^2)$$

for all (n,q)-forms u with compact support in  $\Omega$ ,  $q \geq 1$ . By definition, this means that  $E_N$  is  $W^{n,q}$ -elliptic for  $q \geq 1$ ,  $N \gg 1$  (see [An-Ve]).

The  $W^{n,q}$  -ellipticity immediately implies a vanishing theorem whose proof is standard (see [An-Ve], [De2]).

#### Proposition 3.1

Let  $\Omega \subset\subset X$  be a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain in a Kähler manifold with strictly positive holomorphic bisectional curvature. Let (E,h) be a hermitian vector bundle on X. For  $1 \leq q \leq n$  and  $N \gg 1$  we have

$$L^2_{n,q}(\Omega,E,N)\cap \mathrm{Ker}\overline{\partial}=\overline{\partial}L^2_{n,q-1}(\Omega,E,N)\cap L^2_{n,q}(\Omega,E,N).$$

By duality (see also lemma 2 in [An-Ve]),  $E_N^*$  ist  $W^{0,q}$  -elliptic for  $q \leq n-1$ . We thus obtain

#### Proposition 3.2

Let  $\Omega \subset\subset X$  be a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain in a Kähler manifold with strictly positive holomorphic bisectional curvature. Let (E,h) be a hermitian vector bundle on X. For  $1 \leq q \leq n-1$  and  $N \ll -1$  we have

$$L^2_{0,q}(\Omega,E,N)\cap \mathrm{Ker}\overline{\partial}=\overline{\partial}L^2_{0,q-1}(\Omega,E,N)\cap L^2_{0,q}(\Omega,E,N).$$

# 4 The $\overline{\partial}$ -equation with exact support on some pseudoconvex domains

In this section, we will show some vanishing and separation theorems for the  $\overline{\partial}$ -cohomology groups with values in a vector bundle E supported in  $\overline{\Omega}$ :

$$\begin{array}{lcl} H^{p,q}(X,\overline{\Omega},E) & = & \{f \in \mathcal{C}^{\infty}_{p,q}(X,E) \mid \mathrm{supp} f \subset \overline{\Omega}\} \cap \mathrm{Ker} \overline{\partial} / \\ & & \overline{\partial} \{f \in \mathcal{C}^{\infty}_{p,q-1}(X,E) \mid \mathrm{supp} f \subset \overline{\Omega}\}. \end{array}$$

This is done by solving the  $\overline{\partial}$ -equation in the  $L^2$ -sense as in section 3 and then applying the results of section 2 to the operator  $\Box_N = \overline{\partial} \overline{\partial}_N^* + \overline{\partial}_N^* \overline{\partial}$  for N < 0.

For later use, let us first compare the spaces  $L^2_{p,q}(\Omega,E,N)$  with the Hilbert spaces of square-integrable E-valued forms with respect to the pointwise norm  $|\ |_{\omega_q}$  and the volume element  $dV_{\omega_q}$ .

#### Lemma 4.1

Let u be a (p,q)-form on  $\Omega$  with values in E. We have

$$\delta^{2(p+q)} \ |u|_{\omega_q}^2 \ dV_{\omega_g} \lesssim |u|_{\omega}^2 \ dV_{\omega} \lesssim \delta^{-2n} \ |u|_{\omega_q}^2 \ dV_{\omega_g}.$$

*Proof:* We have  $\omega = \frac{1}{-r}i\partial\overline{\partial}r + \frac{1}{r^2}i\partial r \wedge \overline{\partial}r$  with  $r = -\delta^{\epsilon}$  for some  $\epsilon > 0$ . Since  $\partial\Omega$  is  $\mathcal{C}^{\infty}$ -smooth, all the derivatives of  $\delta$  are bounded. Therefore we have  $|\partial r|_{\omega_q} \lesssim \delta^{\epsilon-1}$  and  $|\partial\overline{\partial}r|_{\omega_q} \lesssim \delta^{\epsilon-2}$ . Thus  $\omega \lesssim \delta^{-2}\omega_q$ .

In [Oh-Si] it was shown that  $i\partial \overline{\partial} r \gtrsim |r| \omega_g$ . Thus  $\omega_g \lesssim \omega \lesssim \delta^{-2}\omega_g$ . The lemma is then proved in the same way as lemma 3.3 in [De1].

From the above lemma, it follows in particular that

$$\mathcal{C}^s_{p,q}(X,\overline{\Omega},E) \subset L^2_{p,q}(\Omega,E,-s_0s+s_1)$$

for some  $s_0, s_1 \in \mathbb{R}$ .

### Theorem 4.2

Let  $u \in L^2_{p,q}(\Omega, E, -N)$  be such that  $\square_{-N} u \in \mathcal{C}^N_{p,q}(X, \overline{\Omega})$ . Then  $u \in \mathcal{C}^{s(N)}_{p,q}(X, \overline{\Omega})$  where s(N) is a function proportional to  $\sqrt{N}$ ,  $N \gg 1$ . *Proof:* The above theorem will be a consequence of the results of section 2. Indeed, we will show that  $\square_{-N}$  is an elliptic operator of polynomial growth on  $\Omega$ .

In order to avoid too many sums over too many indices, we will assume that E is the trivial bundle and restrict our attention to (0, 1)-forms. The general case is handled analogously.

Let  $z_0 \in \partial \Omega$  and let  $(z_1, \ldots, z_n)$  be local holomorphic coordinates of X in a neighborhood U of  $z_0$ .

We have 
$$\omega = i \sum_{j,k=1}^{n} \omega_{jk} dz_j \wedge d\overline{z}_k$$
 with  $\omega_{jk} = \frac{1}{-r} \frac{\partial^2 r}{\partial z_j \partial \overline{z}_k} + \frac{1}{r^2} \frac{\partial r}{\partial z_j} \frac{\partial r}{\partial \overline{z}_k}$ 

Let  $L_1, \ldots, L_n$  be an orthonormal basis of  $T^{1,0}X_{|U\cap\Omega}$  with respect to  $\omega$ , i.e.  $L_k = \sum_{j \leq k} l_{jk} \frac{\partial}{\partial z_j}$  where the  $l_{jk}$  have to be determined by the condition  $\sum_{l \leq k} \sum_{i \leq j} l_{lk} \overline{l}_{ij} \omega_{li} = \delta_{jk}$ . It is therefore clear that the  $l_{jk}$  are functions involving only powers of r and the derivatives of order at most 2 of r.

Let  $\epsilon_i, \ldots, \epsilon_j \in (T^{1,0}X)^*_{|U \cap \Omega}$  be the dual basis of  $L_1, \ldots, L_n$ .

For  $u = \sum_{j=1}^{n} u_j \overline{\epsilon}_j$  we then have

$$\overline{\partial} u = \sum_{j,k} \overline{L}_k(u_j) \overline{\epsilon}_k \wedge \overline{\epsilon}_j - \sum_{j,k,l} c_{kj}^l u_l \overline{\epsilon}_k \wedge \overline{\epsilon}_j$$

where  $c_{jk}^l$  can be determined by the condition  $[\overline{L}_j, \overline{L}_k] = \sum_l c_{jk}^l \overline{L}_l$ , because we have  $\overline{\partial} \epsilon_l(\overline{L}_k, \overline{L}_j) = -\overline{\epsilon}_l([\overline{L}_k, \overline{L}_j])$  by the Cartan formula for  $\overline{\partial}$ . Therefore also the  $c_{jk}^l$  are functions involving only powers of r and the derivatives of order at most 3 of r.

Now let  $v = \sum_{j,k} v_{kj} \overline{\epsilon}_k \wedge \overline{\epsilon}_j$  be a smooth (0,2)-form with compact support in  $U \cap \Omega$ . Then we have

$$\ll \overline{\partial} u, v \gg_{-N} = 2^n \int_{\Omega} (\sum_{k,j} \overline{L}_k(u_j) \overline{v}_{kj} - \sum_{k,j,l} c_{kj}^l u_l \overline{v}_{kj}) (-r)^{-N} \det(\omega_{\alpha\beta}) d\lambda 
= 2^n \int_{\Omega} \sum_{k,j,l} (\overline{l}_{lk} \frac{\partial u_j}{\partial \overline{z}_l} \overline{v}_{kj} - c_{kj}^l u_l \overline{v}_{kj}) (-r)^{-N} \det(\omega_{\alpha\beta}) d\lambda 
= -2^n \sum_{k,j,l} \int_{\Omega} \{u_j \frac{\partial}{\partial \overline{z}_l} (\overline{l}_{lk} \overline{v}_{kj} (-r)^{-N} \det(\omega_{\alpha\beta})) 
- c_{kj}^l u_l \overline{v}_{kj} (-r)^{-N} \det(\omega_{\alpha\beta}) \} d\lambda$$

Thus

$$\overline{\partial}_{-N}^* v = -\sum_{k,j,l} (L_k(v_{kj}) + v_{kj} \frac{\partial l_{lk}}{\partial z_l} + N v_{kj} (-r)^{-1} \frac{\partial r}{\partial z_l} + v_{kj} l_{lk} \frac{\partial}{\partial z_l} (\det(\omega_{\alpha\beta})) \det(\omega_{\alpha\beta})^{-1} + v_{kj} \overline{c}_{kj}^l \overline{c}_{j} = 0$$

Hence

$$\Box_{-N}u = \sum_{j,k} L_k \overline{L}_k(u_j) \overline{\epsilon}_j + \text{lower order terms}$$

$$= \sum_{i,j,k,l} l_{lk} \overline{l}_{ik} \frac{\partial^2 u_j}{\partial z_l \partial \overline{z}_j} \overline{\epsilon}_j + \text{lower order terms}$$

where the lower order terms involve only derivatives of order  $\leq 1$  of u and multiplication by functions involving only powers of r and derivatives of some finite order of r.

One can now define Sobolev norms for forms on  $\Omega$  with values in E using the metric g. By lemma 4.1,  $u \in L^2_{p,q}(\Omega, E, -N)$  satisfies  $\int_{\Omega} |u|^2_{\omega_g} \delta^{-N+2n} dV_{\omega_g} < +\infty$ . The theorem then follows from the estimates in section 2 by taking into account that the local estimates can be patched together by choosing a suitable partition of the unity as in the proof of theorem 2.1.

We are now ready to prove the main theorem of this section.

#### Theorem 4.3

Let  $\Omega \subset\subset X$  be a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain in a Kähler manifold with strictly positive holomorphic bisectional curvature. Let E be a holomorphic vector bundle on X. Then we have

$$H^{p,q}(X,\overline{\Omega},E) = 0$$
 for  $1 \le q \le n-1$ 

and

 $H^{p,n}(X,\overline{\Omega},E)$  is separated for the usual  $\mathcal{C}^{\infty}$  – topology.

Moreover,

$$\overline{\partial}(\mathcal{C}^{\infty}_{p,n-1}(X,\overline{\Omega},E)) = \\ \bigcap_{N \in \mathbb{N}} \{ f \in \mathcal{C}^{\infty}_{p,n}(X,\overline{\Omega},E) \mid \int_{\Omega} f \wedge h = 0 \ \forall h \in L^{2}_{n-p,0}(\Omega,E^{*},N) \cap \mathrm{Ker}\overline{\partial} \}.$$

*Proof:* Replacing the vector bundle E by  $\Lambda^p(T^{1,0}X)^* \otimes E$ , it is no loss of generality to assume p=0.

We will begin by proving the following claim: Let  $f \in \mathcal{C}^k_{0,q}(X,\overline{\Omega},E) \cap \operatorname{Ker}\overline{\partial}$ ,  $1 \leq q \leq n-1$ ,  $k \gg 1$ . Then there exists  $u \in \mathcal{C}^{j(k)}_{0,q-1}(X,\overline{\Omega},E)$  such that  $\overline{\partial} u = f$  with  $j(k) \sim \sqrt{k}$ .

Proof of the claim: Let  $f \in \mathcal{C}^k_{0,q}(X,\overline{\Omega},E) \cap \operatorname{Ker}\overline{\partial}$ ,  $1 \leq q \leq n-1$ ,  $k \gg 1$ . Proposition 2.2 and the remark after lemma 4.1 imply that there exists  $u \in L^2_{0,q-1}(\Omega,E,-s_0k+s_1)$  such that  $\overline{\partial}u=f$  in  $\Omega$  for some  $s_0,s_1\in\mathbb{R}$ . Moreover, choosing the minimal solution, we may assume  $\overline{\partial}^*_{-s_0k+s_1}u=0$ , i.e.  $\Box_{-s_0k+s_1}u=\overline{\partial}^*_{-s_0k+s_1}f$ . By looking at the computation of  $\overline{\partial}^*_{-s_0k+s_1}$  as in the proof of theorem 4.2, ist is clear that for some  $m_0,m_1\in\mathbb{N}$ ,  $\overline{\partial}^*_{-s_0k+s_1}f\in\mathcal{C}^{m_0k+-m_1}_{0,q}(X,\overline{\Omega},E)$ .

Applying theorem 4.2, we then have  $u \in \mathcal{C}^{j(k)}_{0,q-1}(X,\overline{\Omega},E)$  with  $j(k) \sim \sqrt{k}$ .

Let us now prove the theorem.

 $H^{0,1}(X,\overline{\Omega},E)=0$  follows immediately from the above claim and the hypoellipticity of  $\overline{\partial}$  in bidegree (0,1).

Now assume  $1 < q \le n-1$  and let  $f \in \mathcal{C}^{\infty}_{0,q}(X,\overline{\Omega},E) \cap \operatorname{Ker}\overline{\partial}$ . By induction, we will construkt  $u_k \in \mathcal{C}^k_{0,q-1}(X,\overline{\Omega},E)$  such that  $\overline{\partial}u_k = f$  and  $|u_{k+1} - u_k|_{j(k)-1} < 2^{-k}$ . It is then clear that  $(u_k)_{k \in \mathbb{N}}$  converges to  $u \in \mathcal{C}^{\infty}_{0,q-1}(X,\overline{\Omega},E)$  such that  $\overline{\partial}u = f$ .

Suppose that we have constructed  $u_1, \ldots, u_k$ . By the above claim, there exists  $\alpha_{k+1} \in \mathcal{C}_{0,q-1}^{k+1}(X,\overline{\Omega},E)$  such that  $f = \overline{\partial}\alpha_{k+1}$ . We have  $\alpha_{k+1} - u_k \in \mathcal{C}_{0,q-1}^k(X,\overline{\Omega},E) \cap \text{Ker}\overline{\partial}$ . Once again by the above claim, there exists  $g \in \mathcal{C}_{0,q-2}^{j(k)}(X,\overline{\Omega},E)$  satisfying  $\alpha_{k+1} - u_k = \overline{\partial}g$ .

Since  $C_{0,q-2}^{\infty}(X,\overline{\Omega},E)$  is dense in  $C_{0,q-2}^{j(k)}(X,\overline{\Omega},E)$ , there exists  $g_{k+1} \in C_{0,q-2}^{\infty}(X,\overline{\Omega},E)$  such that  $|g-g_{k+1}|_{j(k)} < 2^{-k}$ .

Define  $u_{k+1}=\alpha_{k+1}-\overline{\partial}g_{k+1}\in\mathcal{C}^{k+1}_{0,q-1}(X,\overline{\Omega},E)$ . Then  $\overline{\partial}u_{k+1}=f$  and  $|u_{k+1}-u_k|_{j(k)-1}=|\overline{\partial}g-\overline{\partial}g_{k+1}|_{j(k)-1}\leq |g-g_{k+1}|_{j(k)}<2^{-k}$ . Thus  $u_{k+1}$  has the desired properties.

It remains to show that

$$\overline{\partial}(\mathcal{C}^{\infty}_{0,n-1}(X,\overline{\Omega},E)) =$$

$$\bigcap_{N\in\mathbb{N}}\{f\in\mathcal{C}_{0,n}^{\infty}(X,\overline{\Omega},E)\mid\int_{\Omega}f\wedge h=0\,\,\forall h\in L_{n,0}^{2}(\Omega,E^{*},N)\cap\mathrm{Ker}\overline{\partial}\}.$$

This clearly implies that  $H^{0,n}(X,\overline{\Omega},E)$  is separated.

It follows from Cauchy's formula that a holomorphic section  $u \in L^2_{n,0}(\Omega, E^*, N)$  is of polynomial growth (see lemma 4.4 below). Stoke's formula then implies that the left side of the above equation is contained in the right side.

Now, let us take  $f \in \bigcap_{N \in \mathbb{N}} \{ f \in \mathcal{C}^{\infty}_{0,n}(X,\overline{\Omega},E) \mid \int_{\Omega} f \wedge h = 0 \ \forall h \in L^{2}_{n,0}(\Omega,E^{*},N) \cap \operatorname{Ker}\overline{\partial} \}.$ 

We first show that for each  $N \in \mathbb{N}$ ,  $N \gg 1$ , there exists  $\beta_N \in L^2_{0,n-1}(\Omega, E, -N)$  satisfying  $\overline{\partial} \beta_N = f$ .

To see this, we define the linear operator

$$L_f: \overline{\partial} L^2_{n,0}(\Omega, E^*, N) \longrightarrow \mathbb{C}$$

$$\overline{\partial} \varphi \longmapsto \int_{\Omega} f \wedge \varphi.$$

First of all, notice that  $L_f$  is well-defined because of the moment conditions imposed on f.

By proposition 2.1,  $\overline{\partial}(L^2_{n,0}(\Omega,E^*,N))\cap L^2_{n,1}(\Omega,E^*,N)$  is a closed subspace of  $L^2_{n,1}(\Omega,E^*,N)$ . Applying Banach's open mapping theorem, we know that  $L_f$  is a continuous linear operator and therefore extends to a continuous linear operator on the Hilbert space  $L^2_{n,1}(\Omega,E^*,N)$  by the Hahn-Banach theorem. By the theorem of Riesz, there exists  $\beta_N\in L^2_{0,n-1}(\Omega,E,-N)$  such that for every  $\varphi\in L^2_{n,0}(\Omega,E^*,N)$  we have

$$\int_{\Omega} \beta_N \wedge \overline{\partial} \varphi = L_f(\varphi) = \int_{\Omega} f \wedge \varphi,$$

i.e.  $\overline{\partial}\beta_N = f$ .

Now the proof follows the same lines as above and we construct  $(u_k)_{k\in\mathbb{N}}\in\mathcal{C}^k_{0,n-1}(X,\overline{\Omega},E)$  converging to  $u\in\mathcal{C}^\infty_{0,n-1}(X,\overline{\Omega},E)$  such that  $\overline{\partial}u=f$ , which concludes the proof.

### Lemma 4.4

$$Let \ u \in L^2_{p,0}(\Omega,E,N) \cap \mathrm{Ker}\overline{\partial}. \ \ Then \ |u|_{\omega_g} \lesssim \delta^{-(\epsilon N + 2p + 2n)} \ \ for \ some \ \epsilon > 0.$$

*Proof:* Let  $\zeta \in \partial\Omega$  and  $(z_1, \ldots, z_n)$  be holomorphic coordinates on a neighborhood U of  $\zeta$  and let  $(e_{\lambda})_{1 \leq \lambda \leq r}$   $(r = \operatorname{rank} E)$  be a local orthonormal

frame of (E,h). Then we have  $u=\sum_{1\leq \lambda\leq r}\sum_{|I|=p}h_Idz_I\otimes e_\lambda$  on  $U\cap\Omega$  with  $h_I\in\mathcal{O}(U\cap\Omega)$  and  $\int_{U\cap\Omega}|h_I|^2\delta^{\epsilon N+2p}dV_{\omega_g}<+\infty$  by lemma 4.1 and the assumption  $u\in L^2_{p,0}(\Omega,E,N)$ , where  $\epsilon$  is such that  $-r=\delta^\epsilon$ .

Let  $x \in U \cap \Omega$  and  $B_{\alpha} \subset \subset U \cap \Omega$  be the ball of radius  $\alpha = \frac{1}{2}\delta(x)$  centered at x. From Cauchy's formula, we get

$$\begin{split} |h_I(x)|^2 & \leq & \frac{1}{\pi^n} \frac{1}{\alpha^{2n}} \int_{B_\alpha} |h_I|^2 d\lambda \\ & \lesssim & \delta^{-2n}(x) \sup_{x \in B_\alpha(x)} \delta^{-(\epsilon N + 2p)}(x) \int_{U \cap \Omega} |h_I|^2 \delta^{\epsilon N + 2p} d\lambda \end{split}$$

Therefore  $|h_I(x)|^2 \leq \text{constant } \delta^{-(\epsilon N + 2p + 2n)}(x)$  with a constant not depending on x, which proves the lemma.

### Corollary 4.5

Let  $\Omega \subset\subset X$  be a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain in a Kähler manifold with strictly positive holomorphic bisectional curvature. Let E be a holomorphic vector bundle on X. Let  $f \in \mathcal{C}^{\infty}_{p,q}(\partial\Omega,E) \cap \operatorname{Ker}\overline{\partial}_b$  satisfy the tangential Cauchy-Riemann equations on  $\partial\Omega$ ,  $q \leq n-2$ .

 $\textit{Then there exists } F \in \mathcal{C}^{\infty}_{p,q}(\overline{\Omega},E) \textit{ such that } F_{|\partial\Omega} = f \textit{ and } \overline{\partial} F = 0.$ 

For q=n-1, the same holds true if there exists  $\tilde{f}\in\mathcal{C}^{\infty}_{p,n-1}(\overline{\Omega},E)$  such that  $\tilde{f}|_{\partial\Omega}=f$ , such that  $\overline{\partial}\tilde{f}$  vanishes to infinite order on  $\partial\Omega$  and such that  $\int_{\Omega}\overline{\partial}\tilde{f}\wedge h=0$  for all  $h\in L^2_{n-p,0}(\Omega,E^*,N)\cap \mathrm{Ker}\overline{\partial}$ , for all  $N\in\mathbb{N}$ .

Proof: There exists  $\tilde{f} \in \mathcal{C}^{\infty}_{p,n-1}(\overline{\Omega},E)$  such that  $\tilde{f}_{|\partial\Omega} = f$  and such that  $\overline{\partial} \tilde{f}$  vanishes to infinite order on  $\partial\Omega$ . Applying theorem 4.3, one can find a solution u to the equation  $\overline{\partial} u = \overline{\partial} \tilde{f}$  in such a way that u is of class  $\mathcal{C}^{\infty}$  on  $\overline{\Omega}$  and vanishes on  $\partial\Omega$ .  $F = \tilde{f} - u$  is then the desired extension of f to  $\overline{\Omega}$ .  $\square$ 

#### Corollary 4.6 (see [He-Io])

Let  $\Omega \subsetneq X$  be a  $C^{\infty}$ -smooth pseudoconvex domain in a compact Kähler manifold with strictly positive holomorphic bisectional curvature. Let E be a holomorphic vector bundle on X. Assume that  $H^{p,q}(X,E)=0$  and put  $D=X\setminus \overline{\Omega}$ .

Then for every  $\overline{\partial}$ -closed form  $f \in C^{\infty}_{p,q}(\overline{D},E)$ , which is smooth up to the boundary, there exists  $u \in C^{\infty}_{p,q-1}(\overline{D},E)$  such that  $\overline{\partial}u = f$ ,  $1 \leq q \leq n-2$ . For q = n-1, the same holds true if there exists  $\tilde{f} \in C^{\infty}_{p,n-1}(X,E)$  such

For q=n-1, the same holds true if there exists  $f \in C_{p,n-1}(X,E)$  such that  $\tilde{f}|_{\overline{D}}=f$ , such that  $\overline{\partial} \tilde{f}$  vanishes to infinite order on  $\partial \Omega$  and such that  $\int_{\Omega} \overline{\partial} \tilde{f} \wedge h = 0$  for all  $h \in L^2_{n-p,0}(\Omega, E^*, N) \cap \operatorname{Ker} \overline{\partial}$ , for all  $N \in \mathbb{N}$ .

*Proof:* By corollary 4.5, there exists  $\tilde{f} \in \mathcal{C}^{\infty}_{p,n-1}(X,E)$  such that  $\tilde{f}_{|\overline{D}} = f$  and  $\overline{\partial} \tilde{f} = 0$ . As  $H^{p,q}(X,E) = 0$ , we have  $\tilde{f} = \overline{\partial} u$  for some  $u \in \mathcal{C}^{\infty}_{p,q-1}(X,E)$ . Then  $u_{|\overline{D}}$  has the desired properties.

# 5 The $\overline{\partial}$ -equation for extensible currents on some pseudoconvex domains

The results of the preceding section will allow us to solve the  $\overline{\partial}$ -equation for extensible currents by duality.

A current T defined on  $\Omega$  is said to be *extensible*, if T is the restriction to  $\Omega$  of a current defined on X.

It was shown in [Ma] that if  $\Omega$  satisfies  $\overline{\Omega}$  (which is always satisfied in our case), the vector space  $\check{\mathcal{D}}'_{p,q}(\Omega)$  of extensible currents on  $\Omega$  of bidimension (p,q) is the topological dual of  $\mathcal{C}^{\infty}_{p,q}(X,\overline{\Omega})$ .

#### Theorem 5.1

Let  $\Omega \subset\subset X$  be a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain in a Kähler manifold with strictly positive holomorphic bisectional curvature.

Let  $T \in \check{\mathcal{D}}'_{p,q}(\Omega)$  be an extensible current on  $\Omega$  of bidimension  $(p,q), \ q \leq n-1$  such that  $\overline{\partial}T = 0$ . Then there exists  $S \in \check{\mathcal{D}}'_{p,q+1}(\Omega)$  satisfying  $\overline{\partial}S = T$ .

*Proof:* Let  $T \in \mathcal{D}'_{p,q}(\Omega)$  be an extensible current on  $\Omega$  of bidimension  $(p,q), q \leq n-1$  such that  $\overline{\partial}T = 0$ .

Consider the operator

$$L_T: \qquad \overline{\partial} \mathcal{C}_{p,q}^{\infty}(X, \overline{\Omega}) \longrightarrow \mathbb{C}$$
$$\overline{\partial} \varphi \longmapsto \langle T, \varphi \rangle$$

We first notice that  $L_T$  is well-defined. Indeed, let  $\varphi \in \mathcal{C}^{\infty}_{p,q}(X,\overline{\Omega})$  be such that  $\overline{\partial}\varphi = 0$ .

If q = 0, the analytic continuation principle for holomorphic functions yields  $\varphi = 0$ , so  $\langle T, \varphi \rangle = 0$ .

If  $1 \leq q \leq n-1$ , one has  $\varphi = \overline{\partial} \alpha$  with  $\alpha \in \mathcal{C}^{\infty}_{p,q-1}(X,\overline{\Omega})$  by theorem 4.3. As  $\mathcal{D}^{p,q-1}(\Omega)$  is dense in  $\mathcal{C}^{\infty}_{p,q-1}(X,\overline{\Omega})$ , there exists  $(\alpha_j)_{j \in \mathbb{N}} \in \mathcal{D}^{p,q-1}(\Omega)$  such that  $\overline{\partial} \alpha_j \xrightarrow[j \to +\infty]{} \overline{\partial} \alpha$  in  $\mathcal{C}^{\infty}_{p,q-1}(X,\overline{\Omega})$ .

Hence  $\langle T, \varphi \rangle = \langle T, \overline{\partial} \alpha \rangle = \lim_{i \to +\infty} \langle T, \overline{\partial} \alpha_i \rangle = 0$ , because  $\overline{\partial} T = 0$ .

By theorem 4.3,  $\overline{\partial}\mathcal{C}_{p,q}^{\infty}(X,\overline{\Omega})$  is a closed subspace of  $\mathcal{C}_{p,q+1}^{\infty}(X,\overline{\Omega})$ , thus a Fréchet space. Using Banach's open mapping theorem,  $L_T$  is in fact continuous, so by the Hahn-Banach theorem, we can extend  $L_T$  to a continuous linear operator  $\tilde{L}_T: \mathcal{C}_{p,q+1}^{\infty}(X,\overline{\Omega}) \longrightarrow \mathbb{C}$ , i.e.  $\tilde{L}_T$  is an extensible current on  $\Omega$  satisfying

$$<\overline{\partial} \tilde{L}_T, \varphi> = (-1)^{p+q} < \tilde{L}_T, \overline{\partial} \varphi> = (-1)^{p+q} < T, \varphi>$$

for every  $\varphi \in \mathcal{C}^{\infty}_{p,q}(X,\overline{\Omega})$ . Therefore  $T = (-1)^{p+q} \overline{\partial} \tilde{L}_T$ .

For the notion of differential forms admitting distribution boundary values, which is used in the following corollary, we refer the reader to [Lo-To].

### Corollary 5.2

Let  $\Omega \subset\subset X$  be a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain in a Kähler manifold with strictly positive holomorphic bisectional curvature. Let f be a smooth  $\overline{\partial}$ -closed (0,1)-form on  $\Omega$  admitting a distribution boundary value on  $\partial\Omega$ . Then there exists a smooth function g on  $\Omega$  admitting a distribution boundary value on  $\partial\Omega$  such that  $\overline{\partial}g=f$  on  $\Omega$ .

*Proof:* As f admits a distribution boundary value, we may view f as an extensible  $\overline{\partial}$ -closed current on  $\Omega$  (see [Lo-To]). Applying theorem 5.1, there exists an extensible current S of bidegree (0,0) on  $\Omega$  such that  $\overline{\partial}S = T$ .

The hypoellipticity of  $\overline{\partial}$  in bidegree (0,1) yields that S is in fact a  $\mathcal{C}^{\infty}$ -smooth function on  $\Omega$ . But a  $\mathcal{C}^{\infty}$ -smooth function S, extensible as a current, such  $\overline{\partial}S$  admits a distribution boundary value, admits itself a distribution boundary value (see lemma 4.3 in [Sa]).

# 6 The $\overline{\partial}$ -equation with polynomial growth on some pseudoconvex domains

For  $N \in \mathbb{N}$ , we define

$$B_N^{p,q}(\Omega,g) = \{ u \in \mathcal{C}_{p,q}^{\infty}(\Omega) \mid \sup_{x \in \Omega} |u|_g(x) \delta^N(x) < +\infty \}.$$

We say that  $u \in \mathcal{C}^{\infty}_{p,q}(\Omega)$  is of polynomial growth if  $u \in B^{p,q}_N(\Omega,g)$  for some  $N \in \mathbb{N}$  and we denote  $B^{p,q}_{slow}(\Omega,g) = \bigcup_{N \in \mathbb{N}} B^{p,q}_N(\Omega,g)$ .

#### Theorem 6.1

Let  $\Omega \subset\subset X$  be a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain in a Kähler manifold with strictly positive holomorphic bisectional curvature. Let  $f\in\mathcal{C}^{\infty}_{p,q}(\Omega)$  be of polynomial growth with  $\overline{\partial} f=0$  on  $\Omega$ ,  $0\leq p\leq n$ ,  $1\leq q\leq n$ . Then there exists  $u\in\mathcal{C}^{\infty}_{p,q-1}(\Omega)$  of polynomial growth such that  $\overline{\partial} u=f$  on  $\Omega$ .

*Proof:* By lemma 4.1, there exists  $N \gg 1$  such that  $f \in L^2_{p,q}(\Omega, \mathbb{C}, N)$ . Applying proposition 3.1, there exists  $u \in L^2_{p,q-1}(\Omega, \mathbb{C}, N)$  satisfying  $\overline{\partial} u = f$ . Choosing the minimal  $L^2$ -solution, it is no loss of generality to assume  $\overline{\partial}_N^* u = 0$ , i.e.  $\square_N u = \overline{\partial}_N^* f$ .

Taking into account the computation of  $\overline{\partial}_N^*$  as in the proof of theorem 4.2 (which works for positive N as well), there exists  $L\gg 1$  such that  $\overline{\partial}_N^*f\in B_L^{p,q}(\Omega,g)$ . By the same arguments as in the proof of theorem 4.2, we can apply theorem 2.2 to the operator  $\square_N$  to deduce that u is of polynomial growth.

### Corollary 6.2

Let  $\Omega \subset\subset X$  be a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain in a Kähler manifold with strictly positive holomorphic bisectional curvature. Then we have

$$H^q(\Omega, \mathcal{O}_{\Omega}) = 0$$

for every  $q \geq 1$ , where  $\check{\mathcal{O}}_{\Omega}$  is the sheaf of germs on  $\overline{\Omega}$  of holomorphic functions admitting a distribution boundary value.

*Proof:* We will show that

$$0 \longrightarrow \check{\mathcal{O}}_{\Omega} \longrightarrow B^{0,0}_{slow}(\Omega,g) \stackrel{\overline{\partial}}{\longrightarrow} \cdots \stackrel{\overline{\partial}}{\longrightarrow} B^{0,n}_{slow}(\Omega,g) \longrightarrow 0$$

is an exact sequence of sheaves on  $\overline{\Omega}$ . Then the de Rham-Weil theorem yields

$$H^q(\Omega, \check{\mathcal{O}}_\Omega) \cong rac{\operatorname{Ker}(B^{0,q}_{slow}(\Omega,g) \stackrel{\overline{\partial}}{\longrightarrow} B^{0,q+1}_{slow}(\Omega,g))}{\operatorname{Im}(B^{0,q-1}_{slow}(\Omega,g) \stackrel{\overline{\partial}}{\longrightarrow} B^{0,q}_{slow}(\Omega,g))}$$

and by theorem 6.1, the right side of the above isomorphism is 0 for  $q \ge 1$ .

First of all,  $\operatorname{Ker}(B^{0,0}_{slow}(\Omega,g) \xrightarrow{\overline{\partial}} B^{0,1}_{slow}(\Omega,g)) = \check{\mathcal{O}}_{\Omega}$  was proved in [Lo-To].

To prove the exactness of the rest of the above sequence, we need a version of Dolbeault's lemma. Indeed, we have to prove that for every  $z_0 \in \overline{\Omega}$  and every open set  $V \ni z_0$  of X and  $f \in B^{p,q}_{slow}(V \cap \Omega, g)$  such that  $\overline{\partial} f = 0$  on  $V \cap \Omega$ , there exists an open set  $U \ni z_0$  contained in V such that  $f_{|U \cap \Omega} = \overline{\partial} g$ , where g is of polynomial growth on  $U \cap \Omega$ .

If  $z_0 \notin \partial \Omega$ , this follows from the usual Dolbeault lemma by taking U to be a small ball contained in V.

Let us now consider the case  $z_0 \in \partial \Omega$ . We may (see [Oh-Si]) assume that  $\partial \Omega = \{r = 0\}$  where r is a smooth function, strictly plurisubharmonic in  $\Omega$ .

Let  $\varphi := \|z - z_0\|^2 - \alpha$  for  $\alpha \ll 1$  such that  $\{\varphi < 0\} \subset V$ . For  $\beta \ll 1$ , we put  $\phi := \max_{\beta}(r, \varphi)$ , which is a smooth function. Here  $\max_{\beta}(t, s) := \frac{t+s}{2} + \chi_{\beta}(\frac{t-s}{2})$  for  $t, s \in \mathbb{R}$ , and  $\chi_{\beta}$  is a non-negative real  $\mathcal{C}^{\infty}$ -function on  $\mathbb{R}$  such that, for all  $x \in \mathbb{R}$ ,  $\chi_{\beta}(x) = \chi_{\beta}(-x)$ ,  $|x| \leq \chi_{\beta}(x) \leq |x| + \beta$ ,  $|\chi'_{\beta}| \leq 1$ ,  $\chi''_{\beta} \geq 0$  and  $\chi_{\beta}(x) = |x|$  if  $|x| \geq \frac{\beta}{2}$ .

We claim that  $\phi$  is strictly plurisubharmonic in  $\Omega$ . Indeed, as  $\chi''_{\beta} \geq 0$ , we have

$$i\partial\overline{\partial}\phi \geq \frac{i}{2}(1+\chi'_{\beta}(\frac{r-\varphi}{2}))\partial\overline{\partial}r + \frac{i}{2}(1-\chi'_{\beta}(\frac{r-\varphi}{2}))\partial\overline{\partial}\varphi.$$

As  $|\chi'_{\beta}| \leq 1$ , and  $i\partial \overline{\partial} r > 0$ ,  $i\partial \overline{\partial} \varphi > 0$  in  $\Omega$ , we clearly have  $i\partial \overline{\partial} \phi > 0$  in  $\Omega$ .

Now define  $U = \{\phi < 0\}$ . Then U is a  $\mathcal{C}^{\infty}$ -smooth pseudoconvex domain  $\subset \subset X$  such that a small part of  $\partial U$  is contained in a small part of  $\partial \Omega$  around  $z_0$ . Thus U satisfies the assumptions of theorem 6.1, therefore the desired Dolbeault lemma follows from theorem 6.1, which concludes the proof of the corollary.

# References

[An-Ve] Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Publ. Math. IHES 25, 81–130 (1965).

- [De1] Demailly, J.-P.: Estimations  $L^2$  pour l'opérateur  $\overline{\partial}$  d'un fibré holomorphe semi-positif au-dessus d'une variété Kählérienne complete. Ann. Sci. Ec. Norm. Super. **15**, 457–511 (1982).
- [De2] Demailly, J.-P.: Analytic Geometry. Springer Verlag, to appear.
- [El] Elencwajg, G.: Pseudoconvexité locale dans les variétés Kählériennes. Ann. Inst. Fourier 25, 295–314 (1975).
- [Fo] FOLLAND, G.B.: Introduction to partial differential operators. Princeton University Press and University of Tokyo Press. Princeton, New Jersey (1976).
- [He-Io] Henkin, G.M., Iordan, A.: Regularity of  $\overline{\partial}$  on pseudoconcave compacts and applications. Preprint.
- [Lo-To] LOJACIEWICZ, S., TOMASSINI, G.: Valeurs au bord des formes holomorphes. Several complex variables. Proc. of int. conf., Cortona/Italy 1976-77, 222-246 (1978).
- [Ma] MARTINEAU, A.: Distributions et valeurs au bord des fonctions holomorphes. Oeuvres Martineau, 631-652.
- [Oh] Ohsawa, T.: Pseudoconvex domains in  $\mathbb{P}^n$ : A question on the 1-convex boundary points. Komatsu, G. (ed.) et al., Analysis and geometry in several complex variables. Proc. of the 40th Taniguchi symp. Boston, MA: Birkhäuser. Trends in Math. 239–252 (1999).
- [Oh-Si] Ohsawa, T., Sibony, N.: Bounded P.S.H. functions and pseudo-convexity in a Kähler manifold. Nagoya Math. J. 149, 1–8 (1998).
- [Sa] SAMBOU, S.: Résolution du  $\overline{\partial}$  pour les courants prolongeables. Prépublication de l'Institut Fourier **486** (1999), to appear in Math. Nach.
- [Su] Suzuki, O.: Pseudoconvex domains on a Kähler manifold with positive holomorphic bisectional curvature. Publ. RIMS 12, 191–214 (1976).
- [Ta] Takeuchi, A.: Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif. J. Math. Soc. Japan 16, 159–181 (1964).