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1 Introduction

Let (X,g) be a Kahler manifold with strictly positive holomorphic bisec-
tional curvature. For example, the complex projective space P" satisfies
these requirements. Let 2 CC X be a C*°-smooth pseudoconvex domain.

We will show some vanishing and separation theorems for the d-cohomo-
logy groups with exact support in . This will be done by means of basic
L?-estimates on € with powers of the inverse of the boundary distance as
weight functions. Sobolev-estimates for elliptic operators whose symbol can
be controlled by some power of the boundary distance will be deduced in or-
der to prove regularity results for the minimal L?-solutions of the d-operator.

Similar results under more restrictive assumptions on the ambient Kahler
manifold X (namely compacity and the vanishing of certain cohomology
groups), but under weaker assumptions on the regularity of Q, have been
obtained by Henkin and Iordan [He-Io] using completely different methods.
As a corollary, one can show that some smooth forms, which satisfy the tan-
gential Cauchy-Riemann equations on the boundary of , extend as 0-closed
forms to . One should also consult the related work [Oh], which initiated
this paper.

By duality, we can solve the d-equation for extensible currents on €.
These currents were at first considered by Martineau [Ma]. The analogous
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result in the strongly pseudoconvex case can be found in [Sa] with a very
different proof. As an application, we solve the d-equation in bidegree (0,1)
for smooth forms admitting a distribution boundary value.

The last part is dedicated to the solvability of the d-equation for smooth
forms with polynomial growth, i.e. for forms whose norm can be controlled
by some power of the inverse of the boundary distance. This is done again
by L?-methods and a priori estimates for the minimal solution. We apply
this result to show the vanishing of the Cech-cohomology groups of the sheaf
of germs of holomorphic functions admitting a distribution boundary value.
All these results seem to be new.

2 Elliptic operators of polynomial growth at the
boundary

In this section, we will study the regularity of the equation Lu = f, where L
is an elliptic operator on a C*°-smooth bounded domain in R"™ whose prin-
cipal symbol can be controlled by some power of the boundary distance.

More precisely, let U CC R" be a C°®°-smooth domain, and let L =
2 laj=m @ () D + 37 51 cm bg(z)DP be a differential operator of order m
with smooth coeflicients a,, bg € C*°(U) on U.

We say that L is an elliptic operator of polynomial growth on U if there
exist k,! € N such that

| > aa(2)%] 2 d*(x) |¢]™ for every £ € R (1)
|a|=m
and
|Dag(z)| S d7'7 (@), [DVbg(z)] S dH 1) (2)

for all multiindices «, 8, <y, where d is the boundary distance function of U.

Here we write a < b (resp. b 2 a), if there exists an absolute constant
C > 0 such that a < C - b (resp. b > C - a).



Before we proceed to the precise statement of the main theorem of this
section, we must recall the basic definitions of the Sobolev norms || ||s of
order s on R", s € R,

Il = [ @+ lePylac e

where u € D(R") is a smooth function with compact support in R” and 4
is the Fourier transform of w.

It is clear that for any s € N and u € D(R"), [[ull; ~ X4 <, IDul5.
For u € C*(U) and s € N, ||ul|? is then defined by ||ul|? = Z\alss | D%u)3,
[ullg = [y ul*d.

We define C"(R",U) := {f € C"(R") | suppf C U}.

Theorem 2.1

Let L be a differential operator of polynomial growth of order m with smooth
coefficients on a C*°-smooth domain U CC R™.

Then we have the following a priori estimate

el S lld~ Lull3p + lld = ul§
for some t,T € N and s > 1, u € C*(U).
In particular, if [ [u(z)|?d™N(z)d\(z) < +o00 and Lu € CN(R",U), then
u € CCMN)(R*,U) where s(N) ~ VN for all N > 1.

Proof: It clearly suffices to show the a priori estimate. The last assertion
then follows from the Sobolev lemma (see [Fol).

We prove the estimate by simply expliciting the dependence on d of all
the constants involved in the classical proof of the hypoellipticity of uni-
formely elliptic operators (see [Fol).

Let us fix zy € U and let Bs(xg) be the ball of radius § < 1 centered at
zo. Let u be a smooth function with support in Bs(zg).

First, we assume that bg = 0 for every multiindex . Then we have

(Laou)() = 2r))™ Y aa(zo) € a(€)

|a|=m

where Ly, = L(zo) is the differential operator with frozen coefficients at z.



This implies

(1+ [EP)*[a(@)f < 2™+ €)™ 1+ [€*™) [a©)]? .
S @HEP) ™ (@) +d (o) (L+ €11 ™ |(Zaou) (€)1

by (1). Integrating both sides and using the inequality ||[u|ls—m < ||us—1,
one obtains
lull3 S d7*(@0) || Lagulls—m + llulli—s-

Hence there exists Cy > 0 such that

Jull2 < Co d**(m0) (| Lagull? ., + llull2 ). (3)
We now wish to estimate
Hqu - onUHim = “ Z(aa(m) - aa(xO)) DaUH?im-
o
The estimates (2) yield

|60 (7) — aa(z0)| < C1 d™ " (zo) |0 — |

for some C; > 0 and all o, z, x¢.

Set § = (8CoC2n™d~2k=2-2(0))~2 and fix ¢ € D(Bas(0)) with 0 < ¢ <
1 and ¢ =1 on Bs(0). Suppose u is a smooth function supported in Bs(zg).
Then
(aa(z) — aalz0)) D*u(z) = ¢p(z0 — 7) (aa(r) — aa(z0)) Du(z)

and
sup |¢(zo — z)(an(z) — aoé(a:o))|2 < 4012d_2l_2(:1:0)(52 = (2nmCod_2k(xo))_1.
X
Hence by (2)
l(aa(®) — aa(z0)) Dul2,, < (20™Cod *(z0))™" [|ull?
+ Cod ™55 () ||ul?_,
for some Cy > 0, sp,s1 € N.

Thus, since there are at most n" multiindices « with |a| = m, we have

IZow — Lagully < (2C0d > (20)) ™ [lull? +n™Cad >~ (o) [[ull} 4



Combining this with (3), we then obtain

lullf < d*(z0) | Lulls_pm + d=™0° " (o) |lull3_

for some mg, kg € N.

Next, we consider the case bg # 0. Replacing mg, ky by larger inte-
gers if necessary, we can absorb the additional terms of Lu in the term
d~m0sko(g0)|lul|?_; and still have the estimate

lully < d"*(zo) || Lulli_pm +d ™0 "0 (zo) Jul3_,
We emphasize that all the constants involved are independent of zy € U.

Next, we cover U by balls B, (z;) of the above type, i € N. It is easy
to construct a partition of the unity (6;);cny with respect to this covering
satisfying 3~ , <, |D6;|? < 0;|Ps(6;")| where P is a polynomial of degree s
in one variable. One has

16:ulls < d=*F(z:) [ LOwulls_y, + d™05 750 (2y) | 05u]3_,

for every smooth function v on U.

Replacing my, kg by larger integers if necessary, we get

l6:ulls < C {d™" (xa) |10: L3y, + d™0° 750 () | O3,

+ d-mos—ko () / 0iu%dA}
U

fmosfkoxi ; a ’U,2
<aram R { Y [ oo

la|<s—m
+ [|Gul|?y + /UeiluIQdA} )
for some C, M > 0.
Moreover,
Md "0k (2;) || Gpul3

Mmoo (g / (1 + [£]2)*|67u(&) 2dN
R’I’L

= Md~mos—ko (-Tz')/ (1 + [€[2)* 1 0zu(€)|2d
{1+/€2>2Md~m05 0 (z;)}



iy [ (1+ I ru(e) 2an
{1+[£|2<2Md~ ™05~ k0 (z;)}

1
< §||9WI|§ + C'dmos"Fmos—kostho () ||g;u |2
for some C’ > 0. Thus, by (4),
10ul2 S Y / 0;d=2"| D (Lu)2dX + / 0;d2T” u)|2d\
laj<s—m *U v

for some t,7 € N and s > 1. So

— _ 2
lalls = 11 Gsulls < D 6:ull? S Ild™Lul3_p + 14~ uls
% %

which completes the proof. O

Let us denote by By (U), N € N, the space of C*®°-functions u on U such
that sup,cy [u(z)d™ (z)| < +oo. Then we have the following theorem:

Theorem 2.2

Let L be a differential operator of polynomial growth of order m with smooth
coefficients on a C*°-smooth domain U CC R".
Then we have the following a priori estimate

sup [dVul> < Y0 ([dVD*(Zw)|§ + ldNull
vel lal<[2]+1-m

for some t € R.
In particular, there exists to € N such that if [;; |u(z)|*d*N (z)d\ < +oo and
Lu € By(U), then u € By44,(U).

Proof: By the Sobolev lemma (see [Fol), it suffices to prove the a priori
estimate

T DR A NI A
la<[2]+1-m "~ U

for some t € N. Let us prove this estimate.

Replacing u by dVu and s by [2] + 1 in (4), we have



1OdV el < Mdo(@){ Y /9|D“ (Ld™u)|2d
la|<[Z]+1-m

+lavulfy + [ ola¥uPa)

IA

Mdo(z) { ) / 0;|d™ D*(Lu)|2dX

|| <[F]+1-m
+d (wi)||dNu||[2%} + / 0;|dN u|?d\}
U
for some M’ > 0, cg,c; € N.
Following the proof of theorem 2.1, there exists M"” > 0 such that

M'd () [|d" ul|fay <

< gla¥ulPyy,; + M"d (EIDCoe) @) Va3
Thus

10:aV s S / 0:[dN ' D® (Lu) A
la| <[% }+1 m

+/ 0;]d™ ~tu|2dA
U
for somet € Nand N > 1.

So

1a¥* ulfe S /\dND“ Lu)|*dA + [|d™ull3
la|<[5]+1-m

for N > 1. g

3 Some L2-cohomology groups of the J-operator
on pseudoconvex domains
For the rest of this paper, we will denote by (X, g) an n-dimensional Kéhler

manifold with strictly positive holomorphic bisectional curvature and by
Q CC X a C°-smooth pseudoconvex domain.



Let 0(z) be the distance from z € Q to the boundary of {2 with respect to
the metric g. § is then of class C* near 02 and smooth up to the boundary.
We denote by w, the Kahler form of the metric g on X.

According to a theorem of Elencwajg (see [El], [Su]; [Ta] for the case
X = P7"), the function —logd is plurisubharmonic in €2, and moreover
i00(—log §) > ¢ wy for some ¢ > 0. This implies that {2 admits a strongly
plurisubharmonic exhaustion function, therefore €2 is a Stein manifold.

Moreover, Ohsawa and Sibony ([Oh-Si]) have shown that 2 even admits
a bounded strongly plurisubharmonic exhaustion function. More precisely,
they have shown that for some € > 0, r := —§¢ is strongly plurisubharmonic
in Q and i09r > cte |r| wy.

As —i001og(—r) = _%,2657“ + T%Z'BT A Or, —log(—r) is strongly plurisub-
harmonic near 9€2. Using the smoothing theorem for strongly plurisub-
harmonic functions, we can thus find a smooth strongly plurisubharmonic
function ¢ on Q which coincides with —log(—r) near 9€.

We define w = i00¢. Near 09, we have w > % || wg > cte wy. w is
then a complete Kahler metric on 2. From now on, €2 will be equipped with

this metric. Moreover, we define ¥ = —exp(—¢). Then 7 coincides with r
near 0€2.

Let (E, h) be a hermitian vector bundle on X, and let N € Z. We denote
by L2 ,(Q, E,N) the Hilbert space of (p, g)-forms u with values in E which
satisfy

lul? = /Q w2 p(~F) VAV, < +oc.

Here dV,, is the canonical volume element associated to the metric w,
and | |, is the norm of (p, ¢)-forms induced by w and h.

Let Oy (resp. 8%) be the Hilbert adjoint of & (resp. &) with respect
to the canonical scalar product < , >n of (p,q)-forms with values in E
induced by || ||n-

We recall the Bochner-Kodaira-Nakano identity (see [De2]):

~ =0y +[i0(EN), Al

where 0% = 80y + 050, Oy = 80% +09%0, ©O(Ey) is the curvature
of the bundle Eyx = (E, (—r)Vh) and A is the adjoint of multiplication by w.



iO(Ey) = iN0Op ® Idg +iO(E) = Nw ® Idg +i0(E),
thus this term can be made > w ® Idg by taking N > 1. Therefore if u is
an (n,q)-form with values in E, we obtain

< [i®(EN),Alu,u >y > \uﬁv

if N > 1 (see [De2] for the exact calculation of this curvature term).
Then the Bochner-Kodaira-Nakano identity yields

= %
lulliy < cte ([[9ullly + [Oyullx)

for all (n,g)-forms u with compact support in 2, ¢ > 1. By definition, this
means that Fy is W™ -elliptic for ¢ > 1, N > 1 (see [An-Ve]).

The W™4 -ellipticity immediately implies a vanishing theorem whose
proof is standard (see [An-Ve], [De2]).

Proposition 3.1
Let Q@ CC X be a C*®-smooth pseudoconver domain in a Kdahler manifold
with strictly positive holomorphic bisectional curvature. Let (E,h) be a her-
mitian vector bundle on X. For 1 < g <mn and N > 1 we have

L2 (Q,E,N)nKerd = 9L, , (Q,E,N)nL; (Q,E,N).

n,g—1

By duality (see also lemma 2 in [An-Ve]), E% ist W4 -elliptic for
qg <n — 1. We thus obtain

Proposition 3.2

Let Q@ CC X be a C*®-smooth pseudoconver domain in a Kdahler manifold
with strictly positive holomorphic bisectional curvature. Let (E,h) be a her-
mitian vector bundle on X. For 1 < g<mn—1 and N € —1 we have

L§,(Q,E,N)NKerd =0Lj, ,(Q,E,N)NL§ (Q,E,N).



4 The 0-equation with exact support on some pseu-
doconvex domains

In this section, we will show some vanishing and separation theorems for the
0-cohomology groups with values in a vector bundle E supported in {2:

HP(X,Q,E) = {fe€Cy(X,E)|suppf C Q} NKerd/
0{f € Cy-1(X, E) | suppf C Q}.

This is done by solving the 0-equation in the L2-sense as in section 3
and then applying the results of section 2 to the operator Oy = 00y + Oy 0
for N < 0.

For later use, let us first compare the spaces Liq(Q,E,N ) with the
Hilbert spaces of square-integrable E-valued forms with respect to the point-
wise norm | |,, and the volume element dV,,.

Lemma 4.1
Let u be a (p,q)-form on Q with values in E. We have

S 2 dVi, S luld dVi, S 677 Jul?, dVi,.

Proof: We have w = _er'aér + T%iar A Or with r = —§¢ for some € > 0.
Since 912 is C*°-smooth, all the derivatives of § are bounded. Therefore we
have [0r|,, S 6¢ 1 and |80r|,, S 6¢ 2. Thus w < 6 2wy

In [Oh-Si] it was shown that i90r 2 |r| wy. Thus wy, S w < 6 %w,. The

lemma is then proved in the same way as lemma 3.3 in [Del]. O

From the above lemma, it follows in particular that
C;,q(Xa ﬁ’ E) - LIQ),q(Qa Ea —508 + 31)
for some sp,s1 € R.

Theorem 4.2
Letu € L2 (Q, E,—N) be such that O_yu € C)\ (X, Q).

Then u € C;,(év) (X, Q) where s(N) is a function proportional to VN, N > 1.

10



Proof: The above theorem will be a consequence of the results of sec-
tion 2. Indeed, we will show that [(0_p is an elliptic operator of polynomial
growth on €.

In order to avoid too many sums over too many indices, we will assume
that E is the trivial bundle and restrict our attention to (0,1)-forms. The
general case is handled analogously.

Let zp € 09 and let (z1,... ,2z,) be local holomorphic coordinates of X
in a neighborhood U of zj.

;N\ D do: A dZe wi L1 _&r 1 or or
We have w =14 7 wikdz; A\ dzy, with wix = =; ge,05 T 120z vzy-
Let Lq,..., L, be an orthonormal basis of T1’0X|UQQ with respect to w,

ie. Ly = Ejglc ljkaizj where the /5 have to be determined by the condition

D i<k ZK]- llkzijw” = d;k. It is therefore clear that the [;;, are functions
involving only powers of r and the derivatives of order at most 2 of r.

Let €;,... ,¢ € (Tl’OX)T‘UDQ be the dual basis of Ly, ..., L,.

For u ="

=1 UjEj we then have

_ _ o L
ou = Z Ly(uj)é, N — Z Chjwiek N €
J.k 7kl

where cé- , can be determined by the condition [L;, Ly] = 3, ¢, kfl, because

we have d¢;(Ly, L;j) = —€/([Lg, L;]) by the Cartan formula for d. Therefore
also the cé- « are functions involving only powers of r and the derivatives of
order at most 3 of r.

Now let v = 3, | vg;€xA€; be a smooth (0, 2)-form with compact support
in U N 2. Then we have

L Ou,v>>_N = / ZLk )Tk — chjulvk] )*Ndet(wag)d)\
’]7

- Zzlk—fum ) (—r) N det (wag )X
Q

k!’

— —2”2/ {uga_ vk (—7) N det(wagp))

’]’
—cijulvkj(—r)f det(wqp) tdA

Thus

11



Lo

ol
O yv = = (Lp(vey) + Ukja—Z + Nvgj(—r) o7

kgt

0 _ ] \—
—i—vkjllk—(det(wag))det(wag) 1 + Ukjcgcj)ej
0z

Hence

O-yu = Z LiLy(u;)e; + lower order terms
Jik
- 0%u;
= Z Liklik %Ej + lower order terms
“= leazj
Zij7k7l

where the lower order terms involve only derivatives of order < 1 of u and
multiplication by functions involving only powers of r and derivatives of
some finite order of r.

One can now define Sobolev norms for forms on 2 with values in E using
the metric g. By lemma 4.1, u € L7 (Q, E, —N) satisfies [, |u|2,g §NFIGy,
< +00. The theorem then follows from the estimates in section 2 by taking
into account that the local estimates can be patched together by choosing a
suitable partition of the unity as in the proof of theorem 2.1. O

We are now ready to prove the main theorem of this section.

Theorem 4.3
Let Q CC X be a C®-smooth pseudoconvex domain in a Kahler manifold
with strictly positive holomorphic bisectional curvature. Let E be a holomor-
phic vector bundle on X. Then we have
HPY(X,QE)=0 for1<qg<n-1
and
HP™(X,Q, E) is separated for the usual C*® — topology.
Moreover,
( p,nfl(Xa Q,E)) =

N {f €Cco(X,0,8) | /Qf AR =0VheI2_, (R, B, N) N KerB).
NEN

Proof: Replacing the vector bundle E by AP(T’X)* ® E, it is no loss
of generality to assume p = 0.

12



We will begin by proving the following claim:
Let f € C(’f’q(X,Q,E) NKerd, 1 < g <n-—1, k> 1. Then there exists

C(J)(;) (X, Q, E) such that ou = f with j(k) ~ VE.

Proof of the claim: Let f € C(’)“,q(X, O, E)NKerd, 1<g<n—1, k> 1.
Proposition 2.2 and the remark after lemma 4.1 imply that there exists
u € LOq 1(Q, E, —sok + s1) such that Ju = f in Q for some sp,s1 € R

Moreover, choosing the minimal solution, we may assume 8_80k +st = 0,

ie. O_gphts,u = 8_50k+81f By looking at the computation of 8_50k+81

as in the proof of theorem 4.2, ist is clear that for some mg,m; € N,
*

0 sohrs f € cg};“*ml (X, 9, E).

Applying theorem 4.2, we then have u € C}) | (X, %2, E) with j(k) ~ V.

Let us now prove the theorem.

HYY(X, 0, F) = 0 follows immediately from the above claim and the
hypoellipticity of 0 in bidegree (0,1).

Now assume 1 < ¢ < n —1 and let f € C§5 (X, Q,E) N Kerd. By in-
duction, we will construkt u; € C(’)“,q,l(X, Q, E) such that duy = f and
|uks1 — ukljm—1 < 27%. Tt is then clear that (uj)gen converges to u €
Coo—1(X, 2, E) such that du = f.

Suppose that we have constructed uq, ... ,u;. By the above claim, there
exists agy1 € C(’fjl'il(X,Q,E) such that f = dagy1. We have agy1 — ux €
C(’f’q,l(X, Q,E) N Kerd. Once again by the above claim, there exists g €
Céfle(X, Q, E) satisfying a1 — ug = 0g.

Since E&?I*Q(X’ Q, E) is dense in Cgf;b(X, Q, E), there exists gy.1 €
C§%_o(X,Q, E) such that |g — gey1]k) < 2%

Define ug1 = Q1 —_ggkﬂ € Cg;il(X, O, FE). Then Ouj,1 = f and
[uk+1 — vkl jky—1 = 109 — Ogk+1lik)—1 < 19 — gr+1lr) < 27k,
Thus ug41 has the desired properties.

It remains to show that

5(C(C;,on—l(‘Xa ﬁa E)) =

N {f € (X, B) |/f/\h—0VheL o(Q, B, N) N Kerd).
NeN

13



This clearly implies that H"(X,Q, E) is separated.

It follows from Cauchy’s formula that a holomorphic section u €
L%,O(Q, E*,N) is of polynomial growth (see lemma 4.4 below). Stoke’s for-
mula then implies that the left side of the above equation is contained in
the right side.

Now, let us take f € (\yen{f € Cgf’n(X,ﬁ,E) | [of Nh = 0Vh €
L2 ,(Q, B*, N) N Kerd}.

We first show that for each N € N, N > 1, there exists
Pn € L%,n—l(QaE, —N) satisfying 98y = f.

To see this, we define the linear operator
Ly : oL} o(Q,E*,N) — C
Op — / Ao
Q

First of all, notice that Ly is well-defined because of the moment condi-
tions imposed on f.

By proposition 2.1, (L (22, E*,N)) N L7 (2, E*, N) is a closed sub-
space of L?L,l (Q, E*, N). Applying Banach’s open mapping theorem, we know
that Ly is a continuous linear operator and therefore extends to a continu-
ous linear operator on the Hilbert space L?L,I(Q, E*,N) by the Hahn-Banach
theorem. By the theorem of Riesz, there exists Sy € L%,nq(Qa E,—N) such
that for every ¢ € L2 4(Q2, E*, N) we have

/ﬁN/\aP:Lf(SO) Z/f/\w,
Q Q
ie. 08y = f.
Now the proof follows the same lines as above and we construct (ug)xen €

C(’f,n,l(X, Q, E) converging to u € Com1(X, Q, E) such that ou = f, which
concludes the proof. O

Lemma 4.4 B
Letu € L2 (9, E,N) NKerd. Then |ul,, S o (EN+20421) for some € > 0.

Proof: Let ¢ € 09 and (z1,...,2,) be holomorphic coordinates on a
neighborhood U of ¢ and let (ex)1<a<r (r = rankE) be a local orthonormal

14



frame of (E,h). Then we have u = }7, <, > 5=, h1dzr ® ey on U N Q

with by € O(UNQ) and [ [hr[26VT2PdV,,, < +oo by lemma 4.1 and the
assumption u € LIQ,,O(Q, E,N), where € is such that —r = §¢.

Let z € UNQ and B, CC UNQ be the ball of radius & = 16(z) centered
at z. From Cauchy’s formula, we get

11
2 2

IN

5 57271(.,5) sup 5*(€N+2p) (.’1}) / ‘h1|2(56N+2pd>\
€ Ba () unQ

Therefore |h;(z)|> < constant §—(N+2P+27) (1) with a constant not de-
pending on x, which proves the lemma. O

Corollary 4.5

Let Q CC X be a C®-smooth pseudoconvex domain in a Kdahler manifold
with strictly positive holomorphic bisectional curvature. Let E be a holomor-
phic vector bundle on X. Let f € C;5,(09, E) N Kerd, satisfy the tangential
Cauchy-Riemann equations on 082, ¢ < n — 2.

Then there exists F € Cgf’q(ﬁ, E) such that Faq = f and OF = 0.

For ¢ = n — 1, the same holds true if there ewists f € ;?n_l(ﬁ, E) such

that f|39 = f, such that Of vanishes to infinite order on 8Q and such that

Jo f Nh=0 forall h e L%,p,O(Q,E*,N) N Kerd, for all N € N.

Proof: There exists f € gf’n_l(ﬁ, E) such that _flaﬂ = f and such that
8f vanishes to infinite order on _89 Applying theorem 4.3, one can find a
solution u to the equation du = Jf in such a way that u is of class C*° on (2

and vanishes on ). F = f — u is then the desired extension of f to Q. O

Corollary 4.6 (see [He-Io])

Let Q@ C X be a C*®-smooth pseudoconver domain in a compact Kdahler
manifold with strictly positive holomorphic bisectional curvature. Let E be
a holomorphic vector bundle on X. Assume that HP4(X,E) = 0 and put
D=X\Q

Then for every O-closed form f € Cz‘fq(ﬁ, E), which is smooth up to the
boundary, there exists u € 1?31_1(5, E) such that Ou=f,1<q<n—2.
For ¢ = n — 1, the same holds true if there ezists f € Coon—1(X, E) such
that flﬁ = f, such that 8f vanishes to infinite order on OQ and such that

JoO0f ANh=0 for all h € L2_, ((Q, E*,N) N Kerd, for all N € N,
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Proof: By corollary 4.5, there exists f € pon—1(X, E) such that f‘ﬁ =f

and 8f = 0. As HPY(X, E) =0, we have f = Bu for some u € po—1(X, E).

Then up has the desired properties. O

5 The 0-equation for extensible currents on some
pseudoconvex domains

The results of the preceding section will allow us to solve the d-equation for
extensible currents by duality.

A current T defined on () is said to be extensible, if T' is the restriction
to Q of a current defined on X.

It was shown in [Ma] that if (2 satisfies  (which is always satisfied in our

case), the vector space T?;,,q(Q) of extensible currents on 2 of bidimension
(p, q) is the topological dual of 5% (X, Q).

Theorem 5.1

Let Q CC X be a C*®-smooth pseudoconver domain in a Kahler manifold
with strictly positive holomorphic bisectional curvature.

LetT € ’D;J,q(Q) be an extensible current on Q of bidimension (p,q), ¢ < n—1

such that 0T = 0. Then there exists S € T);,,(H_I(Q) satisfying 08 =T .

Proof: Let T € T);,,q(Q) be an extensible current on 2 of bidimension
(p,q), ¢ < n — 1 such that T = 0.

Consider the operator

Lr: EC;,Oq(X,ﬁ) — C
O — <T,p>

We first notice that Ly is well-defined. Indeed, let ¢ € C5%(X,Q) be
such that dp = 0.
If ¢ = 0, the analytic continuation principle for holomorphic functions yields
p=0,50 <T,p>=0.
If 1 <qg<n-—1,onehas ¢ = da with a € C° ,(X,Q) by theorem 4.3. As

T Pyq—1
’Dp’q__l(Q) is deEse in ;??qq(Xa_Q)a there exists (a;)jen € DP471(Q) such
that Oa; j_>—+>oo Oa in Cp5,_1(X, Q).
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Hence < T, >=<T, Oa >= lim; 400 < T, 50@ >= 0, because 0T = 0.

By theorem 4.3, Ecg?q(X ,Q) is a closed subspace of po+1(X Q), thus a
Fréchet space. Using Banach’s open mapping theorem, Lt is in fact contin-
uous, so by the Hahn-Banach theorem, we can extend L to a continuous
linear operator Ly : Coo1 (X, )) — C, i.e. L7 is an extensible current on

P
Q satisfying
< OLp, @ >= (-1’ < Ly, 0p >= (-1)PH1 < T, ¢ >

for every ¢ € C9(X, Q). Therefore T' = (—1)P*99Ly. O

For the notion of differential forms admitting distribution boundary val-
ues, which is used in the following corollary, we refer the reader to [Lo-To).

Corollary 5.2

Let Q CC X be a C*®-smooth pseudoconver domain in a Kahler manifold
with strictly positive holomorphic bisectional curvature. Let f be a smooth
0-closed (0,1)-form on Q0 admitting a distribution boundary value on O5).
Then there exists a smooth function g on Q admitting a distribution boundary
value on 0K such that Og = f on Q.

Proof: As [ admits a distribution boundary value, we may view f as
an extensible 0-closed current on  (see [Lo-To]). Applying theorem 5.1,
there exists an extensible current S of bidegree (0,0) on €2 such that 9S = T'.

The hypoellipticity of 0 in bidegree (0, 1) yields that $ is in fact a C*-
smooth function on 2. But a C®°-smooth function S, extensible as a current,
such S admits a distribution boundary value, admits itself a distribution
boundary value (see lemma 4.3 in [Sa]). O

6 The 0-equation with polynomial growth on some
pseudoconvex domains

For N € N, we define

B2, 9) = {u € C;5,(Q) | sug|u|g(:v)(5N(:1:) < 400}
fAS
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We say that u € C5%(Q) is of polynomial growth if u € BR(9Q,g) for some
N € N and we denote BY? (Q,9) = Uyeny BRH(Q, 9).

slow

Theorem 6.1

Let Q@ CC X be a C*®-smooth pseudoconver domain in a Kdhler manifold
with strictly positive holomorphic bisectional curvature. Let f € Cp%(82) be
of polynomial growth with 0f =0 on Q, 0 <p <n, 1< q<n. Then there

ezists u € Cyo_1(S2) of polynomial growth such that Ou = f on .

Proof: By lemma 4.1, there exists N > 1 such that f € LfJ’q(Q,(C, N).
Applying proposition 3.1, there exists u € Lqu_l(Q, C, N) satisfying Ou = f.
Choosing the minimal L?-solution, it is no loss of generality to assume

Oyu =0, ie Oyu=0yf.

Taking into account the computation of 5}:, as in the proof of theorem
4.2 (which works for positive N as well), there exists L > 1 such that
oS € B?%(Q,g). By the same arguments as in the proof of theorem 4.2,
we can apply theorem 2.2 to the operator [y to deduce that u is of poly-
nomial growth. O

Corollary 6.2

Let Q CC X be a C*®-smooth pseudoconver domain in a Kdhler manifold

with strictly positive holomorphic bisectional curvature. Then we have
H1(Q,0q0) =0

for every q > 1, where Oq is the sheaf of germs on 0 of holomorphic func-

tions admitting a distribution boundary value.

Proof: We will show that

A 0,0 ] 8. 0,
0 — Oq — B}, (Q,9) — - — B

(2,9) — 0

is an exact sequence of sheaves on Q.Then the de Rham-Weil theorem yields

0, 9. n0,g+1
Hq(Q, @Q) Ker(legw(Q7 g) — legw (Qﬂ g))

R

— F]
Im(By 1 (Q,9) — BYL (9, 9))

slow

and by theorem 6.1, the right side of the above isomorphism is 0 for ¢ > 1.
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(2.9) = BY,

slow

First of all, Ker(B%?

slow

(Q,9)) = Oq was proved in [Lo-To.

To prove the exactness of the rest of the above sequence, we need a ver-
sion of Dolbeault’s lemma. Indeed, we have to prove that for every zy € Q
and every open set V' 3 zp of X and f € BY? (VNQ, g) such that 0f =0 on

V' NQ, there exists an open set U 3 2o contained in V' such that fiyna = 0g,
where g is of polynomial growth on U N €.

If zyp ¢ 09, this follows from the usual Dolbeault lemma by taking U to
be a small ball contained in V.

Let us now consider the case zg € 9§2. We may (see [Oh-Si]) assume that
002 = {r = 0} where r is a smooth function, strictly plurisubharmonic in (2.

Let ¢ := ||z — 29||? — @ for @ < 1 such that {¢ <0} C V. For 8 < 1, we
put ¢ := maxg(r, ), which is a smooth function. Here maxg(t,s) := H'Ts +
xg(552) for t,s € R, and xp is a non-negative real C>-function on R such
that, for allz € R, x5(z) = xp(-2), |z| < x(z) <|z|+8, x5l <1, x5 >0
and xg(z) = |z| if |z] > g

We claim that ¢ is strictly plurisubharmonic in . Indeed, as X,IBI >0,
we have

o 1 r— —~ 4 r— =
i00¢ > 2 (1+ xg(T‘p))aar +501- X;j(T‘P))a&p.

As |x}| <1, and iddr > 0, iddp > 0 in Q, we clearly have i09¢ > 0 in Q.

Now define U = {¢ < 0}. Then U is a C*°-smooth pseudoconvex domain
CC X such that a small part of QU is contained in a small part of 92 around
zo. Thus U satisfies the assumptions of theorem 6.1, therefore the desired
Dolbeault lemma, follows from theorem 6.1, which concludes the proof of the
corollary. O
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