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A. — Parthasarathy and Sunder have proved in [P-S] that the set of coher-
ent vectors associated to the indicator function of Borel sets is total in the boson Fock space
Γ(L2( e +; f )). In this article we study the space generated by coherent vectors associated to
the union of n intervals. We give a complete characterization of their orthogonal space in
terms of their chaos expansion. By the way, we recover Parthasarathy -Sunder’s result in a
very simple way. In the cases of the Brownian motion or Poisson process interpretation of
the Fock space, our result characterizes those random variables which are orthogonal to the
exponential of any sum of n increments of the Brownian motion or Poisson process.

I – The Fock space and main results

Let g be the set of finite subsets of hji . Then glk!m
n nPo g n where g n is the set of n-

element subsets of hpi (with g 0 k�qPr=s ). The set g n can be clearly identified to the simplex
Σn ktq 0 < t1 < uvuvu < tn w hxs and thus inherits the Lebesgue measure structure of h n .
By putting the Dirac mass δ y on g 0, we have finally equipped g with a measured space

structure. Elements of g are denoted by small greek letters σ, α, β, uzuvu Any element f of
L2 { g ; |p} is thus of the form

f k�~
n nPo fn

Keywords : Fock space, coherent vectors, Brownian motion, chaotic expansions.
Math. classification : 60H99, 81R30.
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with f0 w | and fn w L2 { Σn ; |j} , n � 0 and
�
f
�
2
L2 ����� k�� f0 � 2 	�
~

n � 1
�
fn
�
2
L2 � Σn �

k�� f0 � 2 	�
~
n � 1


0<t1< ����� <tn � fn

{ t1, . . . , tn }�� 2 dt1 uvuzu dtn .
The above expression is simply denoted, with obvious notations,

�
f
�
2
L2 ����� k


� � f { σ }�� 2 dσ .

The space L2 { g�} is denoted Φ and called the Fock space (it is the usual symmetric, or bo-

son, Fock space over L2 { h i } ).
The following lemma is very helpfull (cf. [L-P]).

�
Σ-. — If f is a positive (resp. integrable) measurable function on g���g ,

then the function

g { σ }6k ~
α � σ

f { α,σ � α }
is positive (resp. integrable) measurable on g and we have

�

� f { α, β } dαdβ k  � g { σ } dσ .

Particular elements of Φ will be of interest for us: the coherent (or exponential) vec-

tors: for any u w L2 { h i } define ε { u } to be the element of Φ defined by
�
ε { u }�� { σ }6k��

s n σ

u { s } .
We then have

�
ε { u } � 2Φ k e � u � 2L2 � ���� .

The coherent vectors are linearly independent and total inΦ. If ! is a dense subset

of L2 { h i } , it is also easy to check that " { !�} k q ε { u } ; u w ! s is total in Φ. The open

problem is to characterise all those subsets ! # L2 { h i } such that " { !�} is total in Φ

(this problem is far from being obvious even in the case where L2 { h i } is replaced by | !).
In [P-S], Parthasarathy and Sunder have proved that if one take ! k�q%$ B ; B is a bounded
Borel subset of h i s then " { !�} is total in Φ. Note that by the continuity of the mapping

u &' ε { u } , it suffices to take ! k q($ B ; B is the union of disjoint bounded intervals ofh i s to get the same conclusion.
In this article we consider, for all n w*) , the space En generated by the q ε { u } ; u

is the indicator of the union of n bounded intervals of h i s . We first recover Parthasarathy
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-Sunder result in a much simpler way. We characterise E �n , the orthogonal space of En in
Φ, completely, showing that the typical element f of E �n is as follows:

f k ~
q nPo fq , where fq w L

2 { g q } , q w )
with

� f0, f1, . . . , fn null� f2n i 1, f2n i 2, . . . can be chosen arbitrarily (modulo a small integrability condition)� fn i 1, fn i 2, . . . , f2n are uniquely determined by the choice of f2n i 1, f2n i 2, . . ..

II – Probabilistic interpretations

It is interesting to note that our results have nice probabilistic interpretations in

terms of the Brownian motion and Poisson process.

Let { Ω, � , P } be the Wiener space and { wt } t � 0 be the canonical Brownian motion
onΩ. It is well-known that every randomvariable f w L2 { Ω, � , P } admits a unique chaotic
expansion

f k�� � f � 	�
~
q � 1


0<t1< ����� <tq fq

{ t1, . . . , tq } dωt1 uvuzu dωtq

with fq w L2 { Σq } for all q w )�� . We also have
�
f
�
2
L2 � Ω � k � � � f ��� 2 	�
~

q � 1

0<t1< ����� <tq � f

{ t1, . . . , tq }�� 2 dt1 uvuzu dtq .
Thus the space L2 { Ω, � , P } canonically identifies to our Fock space Φ (simply by identify-

ing the coefficients { fq } q nPo ; the norm is then the same in both spaces).

If u belongs to L2 { h i } , the element of L2 { Ω, � , P } which corresponds to ε { u } is
simply the Doleans’ exponential

ε { u }xk exp �  

0

u { s } dωs 	 1

2

 

0

u { s } 2 ds 
 .
If u k $�� s1,t1  � ����� � � sn ,tn  is the indicator of the union of n bounded intervals then

ε { u }xk exp { wt1 	 ws1 	 uzuvu 	 wtn 	 wsn } exp � 	 1

2
{ t1 	 s1 	 uvuzu 	 tn 	 sn }�� .

Thus our space En is exactly the space of random variables generated by exponentials of

the sum of n increments of the Brownian motion.
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What we have said for the Brownian motion, also holds for the compensated Pois-

son process Xt k Nt 	 t , t w h i , on its canonical space. In this context, we have
ε { u }6k e ���0 u � s � dXs �

s

{ 1 	 u { s } ∆Xs } e � u � s � ∆Xs

k e
�
s

u � s � ∆Ns � � �
0

u � s � ds � �
s

u � s � ∆Ns �
s

{ 1 	 u { s } ∆Ns }
k e � � �0 u � s � ds �

s

{ 1 	 u { s } ∆Ns } .
In the case where u k $ B this gives, where λ denotes the Lebesgue measure,

ε { u }6k e � λ � B � �
s n B
{ 1 	 ∆Ns }

k e � λ � B � �
s � B;

∆Ns �� 0
2

k e � λ � B � 2# � s n B;∆Ns �� 0 	
thus

ε � $ � s1,t1  � ����� � � sn ,tn  � k e � � t1 � s1 i ����� i tn � sn � 2Nt1 � Ns1 i ����� i Ntn � Nsn .
Thus, in this case, our space En is the space generated by the exponentials of sums of n

increments of the Poisson process (times ln 2).

III – A simple proof of Parthasarathy -Sunder’s result

We come back to the general setting of the Fock space Φ. For any f w Φ we put for

all t w h i , all σ w g , �
Dt f � { σ }6k f { σ 
�q t sP} $ σ � � 0,t � .

It is easy to check by the
�
Σ-lemma (cf. [Att]) that 


0


� �
�
Dt f � { σ }�� 2 dσ dt k �

f
�
2
Φ 	 � f { rK}�� 2 < � .

Thus Dt f is a well-defined element of Φ, for almost all t . Furthermore, for all g w Φ we

have (same reference as above)

�
f , g 6k f { rK} g { rK} 	  


0

�
Dt f , Dt g  dt .

Finally note that

Dt ε
{ u }6k u { t } ε { u $ � 0,t  }
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for a.a. t .

Let n w*) be fixed. Define En to be the subspace of finite linear combinations of
ε { u } , with

u k $ � s1 ,t1  � ����� � � sn ,tn 
for s1 � t1 � s2 � t2 � uzuvu � sn � tn w h i .

Let E �n be the orthogonal space of En in Φ. As ε { 0 }�k δ y , we clearly have E0 k
L2 { g 0 }�k | δ y and E �0 k2q f w Φ ; f { rK}�k 0 s .

Note that En # Em and E �m # E �n for all n � m.

P 1. — If f belongs to E �n for some n � 1, then Dt f belongs to E �n � 1
for almost all t .

Proof. — If f belongs to E �n then f belongs to E �0 and thus f { rK} k 0. Now, we

have, for all s1 � t1 � uvuzu � sn � tn

0 k �
f , ε { $ � s1,t1  � ����� � � sn ,tn  } 

k n~
i � 1

 ti

si

�
Dt f , ε

{ $ � s1 ,t1  � ����� � � si ,t  }  dt .
Deriving with respect to tn at tn k t gives the following: for all s1 � t1 � uvuzu � sn , for

almost all t � sn �
Dt f , ε

{ $ � s1,t1  � ����� � � sn ,t  } 6k 0 .
The above expression is continuous in s1, t1, . . . , sn , thus we have: for almost all t , for all

s1 � t1 � uvuvu � sn � t �
Dt f , ε

{ $ � s1,t1  � ����� � � sn ,t  } 6k 0 .
Taking sn k t we get �

Dt f , ε
{ $ � s1,t1  � ����� � � sn � 1,tn � 1  } 6k 0 .

Now, if s1 � t1 � uvuzu � sn � 1 � tn � 1 and t w � si , ti � we have
�
Dt f , ε

{ $�� s1,t1  � ����� � � sn � 1,tn � 1  } �k �
Dt f , ε

{ $�� s1,t1  � ����� � � si ,t  } k lim
ti � t
ti>t

�
Dt f , ε

{ $ � s1,t1  � ����� � � si ,ti  } 
k 0 .

Finally, if t w � ti , si i 1 � , we have�
Dt f , ε

{ $�� s1,t1  � ����� � � sn � 1,tn � 1  } 6k �
Dt f , ε

{ $�� s1,t1  � ����� � � si ,ti  } 6k 0 . �
We thus have an easy proof of Parthasarathy -Sunder’s result.
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T 1. — The space m
n

En is dense in Φ .

Proof. — If f belongs to �
n

E �n , f { rK} k 0 and Dt f belongs to �
n

E �n for almost

all t . Thus
�
Dt f � { rV}�k 0 but �Dt f � { rV} is equal to f { q t sG} . Thus the first chaos of f vanishes.

Furthermore, DsDt t belongs to �
n

E �n for almost all { s, t } and thus f { q s, t sG}�k�
DsDt � { rK}�k 0 for almost all { s, t } . And so on, by induction we get f { σ }�k 0 for a.a.

σ w g .

IV – A characterization of E
�
n

IV.1. Introduction.

For any f k �
q

fq belonging toΦwewrite fq  k f1
	 uvuzu 	 fq , f � q k fq

	 fq i 1 	 uzuvu ,
etc. The space Φ

� q  is the space L2 { g q } , the space Φq  is L2 � qm
i � 0 g i � and Φ

� q is L2 � 
m
i � q g i � .

The characterization we are going to prove implies that the space q h w Φ
� 2n i 1;

there exists f w E �n with f � 2n i 1 k h s is dense in Φ
� 2n i 1 and that, given any such h there

exists a unique f w E �n such that f � 2n i 1 k h. Furthermore, we will make explicit the so

announced bijection between this dense subspace and E �n .
IV.2. The enlarged Fock space.

In order to state our result we need to introduce a family { Aq } q nPo of projectors and
this will be easier on an enlargement of the Fock space. Let �Φ be defined by

�Φ k�� measurable functions f on g such that, for all N � 1, all T � 0,
� N #σ � f { σ }�� $ σ � � 0,T  dσ < ��� .

The following remarks and notations will be of constant use in the sequel:

Remark 1. — Let q w ) . For each f w �Φ, the vectors fq , fq  and f � q are in �Φ
(obvious).

Notation. — For each q w ) , let �Φ � q  , �Φ � q , �Φq  be defined in the obvious way, in the
same way as the corresponding definitions for Φ.
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Remark 2. — The space Φ is a subspace of �Φ (left to the reader).

Remark 3. — For any f w �Φ and any t w h i , we put� �
t f � { σ }�k f { σ 
�q t sG} .

Then
�
t f belongs to �Φ for almost all t . Indeed, take N � 1 and T � 0, for any S � T we

have S

0


� �
� �

t f � { σ }�� $ σ � � 0,T  N #σdσ dt �
 S

0


� � f { σ 

q t sP}�� $ σ � � t 	 � � 0,S  N #σ � � t 	 dσ dt

k  � { #β }�� f { β }�� $ β � � 0,S  N #βdβ (by the
�
Σ-lemma)

which is finite for #βN #β � { N 	 1 } #β.
Remark 4. — If f belongs to �Φ, if B is a bounded Borel set in h i , then f ε { $ β }

is integrable on g . Indeed, take T w hji such that β # �
0, T � , then � f { σ } ε { $ β } { σ }��6k

� f { σ }�� $ σ � β � � f { σ }�� $ σ � � 0,T  which is integrable.
Notation. — If f belongs to �Φ and if β is a bounded Borel set in h i , we write�

f , ε { $ β }  for 
f { α } $ α � Bdα .

IV.3. The characterising projectors.

For σ w g q , we write σ1, σ2, . . . ,σq the elements of σ, arranged in the increasing

order.

If #σ k 2p, we write � σ � for union of n intervals�
σ1,σ2 � 
�uzuvu 
 � σ2p � 1,σ2p � ;

if #σ k 2p 	 1, then � σ � denotes the union of intervals�
σ1,σ2 � 
�uzuvu 
 � σ2p � 1,σ2p � .

In any case, we write ε � σ  for ε { $ � σ  } . Note that if #σ is odd the ε � σ  does not depend on
maxσ.

For any σ w g , we write �
σ for

�
σ1 uzuvu � σ#σ , and

� y�k I . Note that for all s, t ,
�
s

�
t k �

t

�
s .

L 3. — Let f w �Φ, then Af defined on g by�
Af � { σ }6k ���

σ f , ε � σ  
7



belongs to �Φ.

Proof. — LetN � 1 and T � 0 be fixed. Write
ϕ { α,σ }6k f { α 
 σ } $ α � � σ  $ σ � � 0,T  N #σ

defined on g � g . Thenϕ is measurable and satisfies
���(� �ϕ { α,σ }�� dα dσ �


���(� � f { α 
 σ }�� $ α � σ � � 0,T  N # � α � σ � dα dσ

k  � 2#β � $ β � � 0,T  N #β dβ < � .

Thus, by Fubini’s theorem, we have that the mapping

σ &'

� ϕ { α,σ } dα k � �

σ f , ε � σ  �$ σ � � 0,T  ) #σ
is measurable and integrable on g .

For any q w ) , we define Aq as the operator from �Φ to �Φ such that�
Aq f � { σ }6k � Af � { σ } $ #σ � q .

P 4. — Let q w ) . The operator Aq is a projector from �Φ onto �Φ � q  .
Moreover AqAr k 0 if r < q. If q k 0 then Aq f k f0. If q k 1 then Aq f k f1. If q k 2p 	 1
then �

A2p i 1 f � { q σ1, . . . ,σ2p i 1 sG}�k �
A2pDσ2p � 1 f � { q σ1, . . . ,σ2p sG} ,

for a.a. σ k2q σ1, . . . ,σ2p i 1 s .
Proof. — All these results are simple verifications from the definitions.

P 5. — Let p w ) and f w �Φ, then the mapping
{ σ1,σ2, . . . ,σ2p } & 	 ' �

f , ε { $ � σ1,σ2  � ����� � � σ2p � 1,σ2p  } 
admits a.e. on Σ2p a

∂2p

∂σ1 ����� ∂σ2p
derivative and one has

�
A2p f � { σ }�k { 	 1 } p ∂2p

∂σ1 uzuvu ∂σ2p

�
f , ε � σ  �$ #σ � 2p a.e. on g ,

and �
A2p i 1 f � { σ }�k { 	 1 } p ∂2p

∂σ1 uvuvu ∂σ2p

� �
σ2p � 1 f , ε � σ   $ #σ � 2p i 1 a.e. on g .

The above proposition is an easy consequence of the following lemma, which will

be of constant use in the sequel.
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L 6. — Let f w �Φ, let B1, B2 be two bounded Borel sets of h i . Let � a, b � be
an interval of h i with

max B1 � a < b � min B2 .

Then

i) the mapping { s, t } &' �
f , ε { $ B1 � � s,t  � B2 }  is continuous on � a, b � � � a, b � ;

ii) themapping { s, t } &' �
f , ε { $ B1 � � s,t  � B2 }  is derivable in s and t w � a, b � with deriva-

tives given by

∂

∂t

�
f , ε { $ B1 � � s,t  � B2 } �k � �

t f , ε
{ $ B1 � � s,t  � B2 }  a.e.

∂

∂s

�
f , ε { $ B1 � � s,t  � B2 } �k � �

s f , ε
{ $ B1 � � s,t  � B2 }  a.e..

Proof.

i) comes from Lebesgue’s theorem:

when { sn , tn } tends to { s, t } , then f { σ }�$ σ � B1 � � sn ,tn  � B2 tends to f { σ }�$ σ � B1 � � s,t  � B2 a.e.
on g and � f { σ }�� $ σ � B1 � � sn ,tn  � B2 is dominated by � f { σ }�� $ σ � � 0,T  (where T satisfies T �
max B2) which is integrable.

ii) Let us prove the formula for t :

we have t

s

���
x f , ε

{ $ σ � B1 � � s,x  � B2 }  dx k
 t

s


� f { σ 
:q x sP} $ σ � B1 � � s,x  � B2 dσ dx

k  � f { β }�$ β � B1 � � s,t  � B2 $ # � β � � s,t  � � 1 dβ

k  f { β }�$ β � B1 � � s,t  � B2dβ 	

f { β } $ β � B1 � B2 dβ

k �
f , ε { $ B1 � � s,t  � B2 }  	 �

f , ε { $ B1 � B2 } 
which gives the desired formula.

For n w ) , let us define
Bn k I 	 { I 	 A0 } { I 	 A1 }Nuzuvu { I 	 A2n } .

P 7. — The operator Bn is a projector from �Φ onto �Φ2n  .
Proof. — The fact that Bn is a projector comes immediately from A2q k Aq and

AsAr k 0 for r < q. As each Aq , for q � n, has its range included in �Φ2n  , the same
holds for Bn . To show that Bn is onto, just notice that if f w �Φ � q  for some q � 2n, then{ I 	 A0 } { I 	 A1 }Nuvuzu { I 	 A2n } f k { I 	 A0 }Nuvuzu { I 	 Aq } f k 0 and thus Bn f k f .
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Let
�
n be the set of f w Φ such that Bn f belongs to Φ.

P 8. — The space
�
n is dense in Φ.

Proof. — Let Φ0,0 be q f w Φ ; � k � 1 and τ � 0 with
f { σ }6k f { σ } $ #σ � k $ σ � � 0,T  s .

Then Φ0,0 is dense in Φ and is contained in
�
n (for Aq f w Φ0,0 for all q w�) and all

f w Φ0,0).

Remark. — The above proof also implies that
�
n � Φ

� 2n i 1 is dense in Φ
� 2n i 1.

IV.4. Characterization of E �n .
We finally come to our characterization.

T 8. — Let n w ) . Let f w Φ. The following assertions are equivalent.

i) f w E �n .
ii) Aq f k 0 for all q � 2n.

iii) Bn f k 0.
iv) There exists h w Φ such that

f k { I 	 A0 } { I 	 A1 }Nuvuzu { I 	 A2n } h .
v) f � 2n i 1 w �

n and f2n  k 	 Bn f � 2n i 1.
Proof of Theorem 8.

ii) � iii) is obvious since Aq f k 0 for each q � 2n implies { I 	 A0 } { I 	 A1 }Nuvuzu { I 	
A2n } f k f .

iii) � iv) comes from the fact that Bn is a projector.

iv) � ii) comes from AqAr k 0 if r < q and A2q k Aq .
v) � iv) since iv) is equivalent,by definition of Bn , to “ � h w Bn ; f k { I 	 Bn } h”,

and since Bn projects
�
n onto Φ2n  .

We are just left to prove i) � ii).

The case n k 0 is obvious. So by induction our result is equivalent to proving
f w E �n � � f w E �n � 1 , A2n f k 0 , A2n � 1 f k 0 ,
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knowing that f w E �p � � f w E �p � 1 , A2p f k 0 , A2p � 1 f k 0 for each p < n.

� : Take f w E �n . Of course f belongs to E �n � 1. By Proposition 1, we know that
Dt f w E �n � 1 for almost all t w h i . Thus by induction hypothesis A2n � 2Dt f k 0. This

exactly means
�
A2n � 1 f � { σ }�k 0, a.e. on g , i.e. A2n � 1 f k 0. We are left to prove A2n f k 0,

nnnn i.e.
���

σ f , ε � σ  �k 0 for almost all σ such that #σ k 2n. This comes immediately

from
�
f , ε � σ  �k 0 (since f w E �n ) and � � σ f , ε � σ  �k { 	 1 } n ∂2n

∂σ1
� ∂σ2n

�
f , ε � σ   a.e. on g 2n.

� : Take f w E �n � 1, with A2n f k 0 and A2n � 1 f k 0. Wewant to prove � f , ε � σ  �k 0
for every σ such that #σ k 2n. By a continuity argument it is enough to do it a.e. This will

come step by step as follows.

First step: From A2n f k 0, i.e.
� �

σ f , ε � σ  /k 0 a.e. we deduce, by Lemma 6, that���
σ1 ����� σ2n � 1 f , ε � σ   does not depend on σ2n and is equal (making σ2n tend to σ2n � 1) to���
σ1 ����� σ2n � 1 f , ε � σ2n � 1,2n   , where σ2n

� 1,2n k σ �2q σ2n � 1,σ2n s . But this last equality is�
A2n � 1 f � { σ1, . . . ,σ2n � 1 } which is null by hypothesis. We have proved that

� �
σ1 ����� σ2n � 1 f , ε � σ  �k 0 a.e. on g 2n .

General step: Suppose we have
� �

σ1 ����� σj f , ε � σ   k 0 a.e. on g 2n , with j � 2n 	 1.
Then, as above,

���
σ1 ����� σj � 1 f ,ε � σ �  does not depend on σj � 1 and is equal (making σj tend

to σj i 1) to � � σ1 ����� σj � 1 f , ε � σj,j � 1   (where σ j,j i 1 k σ ��q σj ,σj i 1 s ). But this quantity is
∂
j � 1

∂σ1 ����� ∂σj � 1
�
f , ε � σj,j � 1   a.e. and � f , εσj,j � 1  /k 0 since #σ j,j i 1 k 2n 	 2 and f w E �n � 1 by

hypothesis. So we have

���
σ1 ����� σj � 1 f , ε � σ  �k 0 a.e. on g 2n .

Last step: With j k 1, i.e. ��� σ1 f , ε � σ  6k 0 a.e. on g 2n , we arrive to � f , ε � σ  �k 0 a.e.
on g 2n and so f w E �n .

The following consequence of Theorem 8 together with Proposition 1 gives more

details on the construction of the elements of E �n .
P 9. — Let n w ) . The orthogonal projection of E �n on Φ

� 2n i 1 is equal
to

�
n � Φ

� 2n i 1. For each h belonging to this dense subspace ofΦ � 2n i 1, there exists a unique
f w E �n such that f � 2n i 1 k h. The coefficients f0, f1, . . . , f2n of f are given by

fq k 	 { Bn } qh , 0 � q � 2n

where { Bn } q is the q-th coefficient of Bn , given by
{ Bn } q k Aq � �

q i 1 � j � 2n

{ I 	 Aj } , 0 � q � 2n .

Moreover, the n 	 1 first coefficients f0, f1, . . . , fn of f all vanish.
11



Proof. — The equivalence between i) and v) in Theorem 8 shows that the spaceq h w Φ
� 2n i 1; � f w E �n such that f � 2n i 1 k h s is equal to �

n � Φ
� 2n i 1 (which is dense in

Φ
� 2n i 1, see remark at the end of IV.3), and that any f w E �n is determined by its projection

h k f � 2n i 1 with f2n  k 	 Bnh.
To compute the coefficients { Bn } q , 0 � q < 2n, write down, for g w �Φ :{ Bng } q k �

I 	 { I 	 A0 } { I 	 A1 }Nuzuvu { I 	 A2n } g � qk gq 	 � { I 	 Aq }Nuvuzu { I 	 A2n } g � qk Aq { I 	 Aq i 1 }Nuvuzu { I 	 A2n } g
(the result for q k 2n is evident).

The fact that the n 	 1 first coefficients f0, f1, . . . , fn of any f w E �n must vanish

comes from repeated applications of Proposition 1.

Remark. — The fact that each element of E �n is determined by its projection f � 2n i 1
is equivalent, by linearity, to E �n � Φ2n  k q 0 s . This last equality is an immediate conse-
quence of the following lemma, which we think could be of independent interest.

L 10. — Let u1, . . . , un be the indicators of n disjoint bounded intervals ofh i . Then one has, for a.a. σ w g
~

0 � p � n
~

1 � j1<j2< ����� <jp � n

{ 	 1 } pε { u j1 	 uvuzu 	 ujp } { σ }
k�~

k � n ~
k1 ��� � � � kn � k
kj � 1, � j � 1,...,n

�
u
0k1
1 � u0k22 � uvuvu � u0knn � { σ }

where
�
u
0k1
1 � u0k22 � uvuvu � u0knn � { σ }6k 1 if the k1 first elements ofσ lie in u1, the k2 following

ones lie in u2, . . . , the kn last elements of σ lie in un , and
�
u
0k1
1 � u0k22 � uvuvu � u0knn � { σ }6k 0

otherwise.

Proof. — Writing down the left hand side for a fixedσ, the formula above is just an

expression of the usual inclusion-exclusion principle.

Proposition 9 shows that for each 0 � q � n, the coefficient { Bn } q is equal to the
natural projector Iq of �Φ onto �Φq . We have not been able to derive a direct proof of this fact.
That is, to prove that

Aq
{ I 	 Aq i 1 }Euvuvu { I 	 A2n }�k Iq for q � n .

Another challenge is to develop Bn in order to givemore explicit formulas for fn i 1, . . . , f2n .
The coefficient { Bn } 2n k A2n is evident. We give in Propositions 11 and 14 below expres-

sions for { Bn } 2n � 1 and { Bn } 2n � 2, just to put in evidence a certain underlying complexity.
12



IV.5. Some additional computations.

P 11. — Let n � 1. One has, for each h w �Φ, for a.a. σ w g 2n � 1,�
A2n � 1 { I 	 A2n } h � { σ }�k ~

1 � i � 2n � 1
{ 	 1 } i i 1 � A2n � 2 � σih � { σi } .

The proof of Proposition 11 is based on two lemmas.

L 12. — Let g w �Φ be such that A2ng k 0. Then for almost all σ w g 2n � 1,
the quantity

�
A2n � 2

�
σi f � { σi } is independent of i w q 1, . . . , 2n 	 1 s .

Proof of Lemma 12. — Let i w q 1, . . . , 2n 	 2 s . By hypothesis we have, for a.a.
σ w g 2n � 1 and a.a. t w � σi ,σi i 1 � , that ��� σ � t g , ε � σ � t  �k 0. By Lemma 6 this im-

plies
� �

σg , ε � σ � t   is independent of t . Making t tend to σi or σi i 1 gives � � σg , ε � σi  0k���
σg , ε � σi � 1   .

L 13. — Let σ w g 2n � 1, then
~

1 � i � 2n � 1
{ 	 1 } i i 1 $ � σi  k 0 .

Proof of Lemma 13. — Evaluating the left hand side on any x w h i , gives the
same number of sign 	 and sign 	 in the sum.

Proof of Proposition 11. — DefineCn,2n � 1 on �Φ by{ Cn,2n � 1h } { σ }xk ~
1 � i � 2n � 1

{ 	 1 } i i 1 { A2n � 2 � σih } { σi }�$ #σ � 2n � 1
for each h w �Φ and a.a. σ w g . By Lemma 12, if g w �Φ is such that A2ng k 0 then

Cn,2n � 1g k A2n � 1g . Thus for each h w �Φ. Cn,2n � 1 { I 	 A2n } h k A2n � 1 { I 	 A2n } h. But by
Lemma 8 we have Cn,2n � 1A2n k 0. Finally Cn,2n � 1 k A2n � 1 { I 	 A2n } .

P 14. — Let n � 1. One has for each h w �Φ and a.a. σ w g 2n � 2�
A2n � 2 { I 	 A2n � 1 } { I 	 A2n } h � { σ }

k ~
1 � i<j � 2n � 2

{ 	 1 } i i j i 1 � A2n � 4 � σi ,σjh � { σi,j } 	 { n 	 2 } � A2n � 2h � { σ } .
We again need two lemmas.

L 15. — Let g w �Φ be such that A2ng k 0 and A2n � 1g k 0. Then for a.a.

σ w g 2n � 2, the quantity � A2n � 4 � σiσjh � { σi,j } is independent of i, j with 1 � i < j � 2n 	 2.
13



Proof of Lemma 15. — Apply Lemma 12 to
� �

σj f � { σj } and to � � σi f � { σi } .
L 16. — Let σ w g 2n � 2. Then

~
1 � i<j � 2n � 2

ε � σi,j  { α }�k { n 	 2 } ε � σ  { α } if #α k 1 or #α k 2 .

Proof of Lemma 16. — For each k w q 1, . . . , 2n 	 1 s define
Jk k � { i, j } ; 1 � i < j � 2n 	 2 and � σk ,σk i 1 ��# � σi,j � � .

Note that:

� if k is odd then { i, j } w Jk if and only if i and j are on the same side of k 	 1
2
;

� if k is even then { i, j } w Jk if and only if i and j are not on the same side of k 	 1
2
.

� for p � q we have

~
2p � i<j � 2q

{ 	 1 } i i j i 1 k ~
2p i 1 � i<j � 2q

{ 	 1 } i i j i 1 k ~
2p i 1 � i<j � 2q i 1

{ 	 1 } i i j i 1
k ~

2p i 2 � i<j � 2q i 1
{ 	 1 } i i j i 1 k q 	 p .

To get Lemma 16 for #α k 1 we have to prove that for 1 � k � 2n 	 3 the quantity�
� i,j � n Jk

{ 	 i } i i j i 1 equals n 	 2 if k is odd and equals 0 if k is even. This comes immediately
from the remarks above:

� if k k 2p 	 1 then
~� i,j � n Jk

{ 	 1 } i i j i 1 k ~
1 � i<j � 2p i 1

{ 	 1 } i i j i 1 	 ~
2p i 2 � i<j � 2n � 2

{ 	 1 } i i j i 1
k p 	 { n 	 1 } 	 { p 	 1 }�k n 	 2� if k k 2p then

~� i,j � n Jk
{ 	 1 } i i j i 1 k ~

1 � i<j � 2p
2p � 1 � j � 2n � 2

{ 	 1 } i i j i 1 k 0 .
Finally, to get Lemma 16 for #α k 2 we have to prove that if h and k are between

1 and 2n 	 1, we have �
� i,j � n Jh � Jk

{ 	 1 } i i j i 1 k n 	 2 if h and k are odd, 0 otherwise. That
comes again in the same way as above.

Proof of Proposition 14. — DefineCn,2n � 2 on �Φ by�
Cn,2n � 2h � { σ }6k � ~

1 � i<j � 2n � 2
{ 	 1 } i i j i 1 { A2n � 4 � σiσjh } { σi,j }

	 { n 	 2 } { A2n � 2h } { σ }�� $ #σ � 2n � 2
14



for each h w �Φ and a.a. σ w g .
By Lemma 15, if g w �Φ is such that A2ng k 0 and A2n � 1g k 0 then Cn,2n � 2g k

A2n � 2g (use
�

1 � i<j � 2n � 1
{ 	 1 } i i j i 1 k n 	 1). So for each h w �Φ, we have

Cn,2n � 2 { I 	 A2n � 1 } { I 	 A2n } h k A2n � 2 { I 	 A2n � 1 } { I 	 A2n } h .
But by Lemma 16, we have Cn,2n � 2A2n k 0 and C2n,2n � 2A2n � 1 k 0. Thus Cn,2n � 2 k
A2n � 2 { I 	 A2n � 2 } { I 	 A2n } .
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