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Abstract

In this note we show that there are algebraic families of hyperbolic, Fermat-Waring
type hypersurfaces in P” of degree 4(n — 1), for all dimensions n > 2. Moreover, there are
hyperbolic Fermat-Waring hypersurfaces in P" of degree 4n> — 2n+1 possessing complete
hyperbolic, hyperbolically embedded complements.

Many examples have been given of hyperbolic hypersurfaces in P3 (e.g., see [ShZa] and
the literature therein). Examples of degree 10 hyperbolic surfaces in P3 were recently found
by Shirosaki [Shr2], who also gave examples of hyperbolic hypersurfaces with hyperbolic com-
plements in P3 and P* [Shrl]. Fujimoto [Fu2] then improved Shirosaki’s construction to give
examples of degree 8. Answering a question posed in [Za3], Masuda and Noguchi [MaNo] cons-
tructed the first examples of hyperbolic projective hypersurfaces, including those with com-
plete hyperbolic complements, in any dimension. Improving the degree estimates of [MaNo],
Siu and Yeung [SiYe] gave examples of hyperbolic hypersurfaces in P" of degree 16(n — 1)2.
(Fujimoto’s recent construction [Fu2] provides examples of degree 2".) We remark that it was
conjectured in 1970 by S. Kobayashi that generic hypersurfaces in P" of (presumably) degree
2n — 1 are hyperbolic (for n = 3, see [DeEl] and [Mc]).

The following result is an improvement of the example of Siu-Yeung [SiYe]:

THEOREM 1. — Letd > (m — 1)?, m > 2n — 1. Then for generic linear functions hy, .. .,hy,
on C""1, the hypersurface

m
X1 =123 hi@d =0
Jj=1

is hyperbolic. In particular, there exist algebraic families of hyperbolic hypersurfaces of degree
4(n-1)? inP".
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Equivalently, X,,_; is the intersection of the Fermat hypersurface of degree d in P! with
a generic n-plane. The low-dimensional cases n < 4 of Theorem 1 were given by Shirosaki
[Shr1]. Our construction is similar to those of [SiYe] and [Shr1].

On the other hand, examples were given in [Za2] of smooth curves of degree 5 in P2, with
hyperbolically embedded, complete hyperbolic complements. Examples of hyperbolically em-
bedded hypersurfaces in P with complete hyperbolic complements were given in [MaNo] for
all n, and in [Shrl] for n < 4 (with lower degrees). The following result generalizes the result of
Shirosaki [Shr1] to all dimensions.

THEOREM 2. — Letd > m? — m+ 1, m > 2n. Then for generic linear functions hy, .. .,hny,

on C"*1, the complement P"* \ X,,_, of the hypersurface of Theorem 1 is complete hyperbolic
and hyperbolically embedded in P". In particular, there exist algebraic families of hyperbolic
hypersurfaces of degree 4n®> — 2n + 1 in P with hyperbolically embedded, complete hyperbolic
complements.

In particular, Theorem 2 provides algebraic families of curves of degree 13 in P2, of surfaces
of degree 31 in P3, and so forth, whose complements are complete hyperbolic and hyperboli-
cally embedded in projective space.

We shall use the following notation and lemma in our proofs of Theorems 1 and 2: We let
Gr ., i denote the Grassmannian of complex codimension k subspaces of C, and we write

Qmk =0 X (Cmik € GIy k-

Furthermore, for

1 < a £ ¢ £ m
1 < b < ¢ < a+b’
we define
rm,a,b,cz{vEGrm,a:dimVﬁQm’b>m—c}.
LemMA 3. — dim Grp,q — dim Iy, qpc = (M= c)(a+b—c).

Proof. — Let Mat,;, , = Hom(C",C%), and let M, , ¢ Mat,, , denote the surjective ho-
momorphisms. We consider the fiber bundle

GL(a) — My,

L m(A) =kerA .
GIya
We let
T=n'h={A€ My,q ¢ dim (kerAIQm‘b> >m-—c};
whence

dimM,, , — dimT = dim Gryp,q — dimIy, 5 pc -

Suppose A € My, 4; i.e., Ais an a X m matrix of rank a. We consider

~ (I, 0 I, 0
e () (4 ) e




where B € Mat, 4, A” € Mat,,_,,. Clearly, ker A = ker A| Qum,» @and thus
AeT o dim(kerA) >m—-c < rankA< c < rankA <c-b.

It is easily seen that

codimMatk'l{C € Matg;:rankC<ri=(k-r)(l—-r1).

Therefore,
codimMm‘ulN" = codimyag,, ,,{A :rankA" < ¢ - b}
= [(m—=b) - (c—Dblla-(c-D)]
= (m-c¢)a+b-oc).
O
Proof of Theorem 1. — Consider the Fermat hypersurface

m
Ej={(z1:...:2p) € P71 Zz‘;=0
Jj=1

of degree d in P"*~!. Suppose thatd > (m—1)?, m > 2n— 1. We must show that X; := F; NPV
is hyperbolic for a generic V € Gty m—n-1.

Suppose that f = (f1,..., fm) : C = X; is aholomorphic curve. By Brody’s theorem [Br],
it suffices to show that f is constant. We write J,,, = {1,...,m}. Let

h=1{j€Jm: fj=0}.

(Of course, Iy may be empty.) We let I, . ..,I; denote the equivalence classes in J,; \ Iy under
the equivalence relation
J~k < fjl fr = constant.

We let ky = card Iy and we write
IO( = {l(a)l)l .. .,i(o‘,ko()} »

foroe=1,...,l,andalsofor x = 0if ky > 1.

The result of Toda [To], Fujimoto [Ful], and M. Green [Gr] says thatfor x = 1, ...,l, we have
kx = 2 and furthermore the constants

Hej = fie j)/ ficw1) € C\ {0} A<, 2< j<ky)

satisfy

Geometrically, theimage f(C) is contained in the projective /-plane Yuﬂ given by the equations
Zi(e, j) = HajZi(e1)» 2SS JL kol S x< [ zio, ) =0, 1< j<ko.

Here, .# denotes the partition {ly, 1y, ...,I;} of J,, and p = {pyj}.



Let V" c C"betheliftof v,;”. Then ¥;” € Gr,p,n_;.If I = 1, then ¥;” isa point. Otherwise,
we consider Yuﬂ N PV for generic V € Gry, m—n—1. Applying Lemma 3 with

a=m-n-1,b=m-1lL,c=m-2

(changing coordinates to make ?uy = Qum,m-1), we conclude that Yf N PV is either a point or
is empty, i.e. dim(?f N V) < 2,unless V lies in a subvariety of Gr;; ;;,—,—1 of codimension

s=m-(m-2)][m-n-D+m-01)-(m-2)]=2m-n-1+1).

But given a partition ¢, the y-moduli space of ?uy in Gr,y, 5,7 has dimension

1
Z(ka—2)=m—k0—2l<m—21.
o=1

Since m > 2n — 1, wehave s > m — 21 + 1 and thus for generic V € Gr;, m-n-1, Yf NPV
is at most a point for all (#,u). Since f(C) C Yf N PV for some Yf , it follows that f mustbe
constant. O

Proof of Theorem 2. — Suppose that d > m? — m + 1, m > 2n. Since by Theorem 1,
X1 is hyperbolic for generic £ j, it suffices to show that any entire curve f : C — P"\ X, 1 is
constant (see e.g., [Za2]).

We proceed as in the proof of Theorem 1. Suppose that f = (f1,..., fm) : C = P"\ X,
is a holomorphic curve. As before, let Iy = {j € J, : f j= 0}, and let I;,...,I; denote the
equivalence classes in Jj; \ Iy under the equivalence relation

Jj~k < fjl frx = constant.

Since d > m(m — 1), by [To, Ful, Gr] we have

kq
ke>2and 1+ pl;=0for2<a< !,
j=2
after permuting the I, and using our previous notation. (Also, k; > 1, but 1 + ZI;I:Z uf i * 0.
The proof of this result proceeds by considering the map ( fo, ..., fm) : C — F; C P™, where
fo=- Zr]flzl f]‘.i =e¥. (Weletl = {j: fjl fo = constant} # &.) The better estimate for d
arises from the fact that fy has no zeros.

Asbefore, theimage f(C) is contained in the projective /-plane y? ,and Yuﬂ NPV iseithera
point or is empty, unless V lies in a subvariety of Gr;;,, ;,—,—1 of codimension s = 2(m—n—1[+1).
But this time, the p-moduli space of Yf in Gr,y, 5, has dimension

)
k1—1+2(ka—2)=m—k0—21+1<m—21+1.

=2

Since m > 2n, we have s > m — 2/ + 1 and hence for generic V. € Gt m-n-1, Yuy N PVisa
point or is empty for all (.#,u). U



Remark: Note that the algebraic family of degree d = (m — 1)2 hyperbolic hypersurfaces in P”
constructed in Theorem 1 has dimension (n+ 1) m — 1, as does the family of Theorem 2. (Recall
thatin Theorem 1, m > 2n—1, whereas in Theorem 2, m > 2n.) By the stability of hyperbolicity
theorems (see [Za2]), in the corresponding projective spaces of degree d hypersurfaces, both
families possess open neighborhoods consisting of hyperbolic hypersurfaces, with hyperboli-
cally embedded complements in the second case. We note finally that the best possible lower
bound for the degree of a hypersurface in P" with hyperbolic complement should be d = 2n+1
(see [Zal]), and the degree 2n—3 hypersurfaces in P" are definitely not hyperbolic because they
contain projective lines. (In fact, starting with n = 6, these lines are the only rational curves on
a generic hypersurface of degree 2n — 3 in P"; see [Pa].)
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