HYPERBOLIC HYPERSURFACES IN \mathbb{P}^{n} OF FERMAT-WARING TYPE

Bernard SHIFFMAN \& Mikhail ZAIDENBERG
Prépublication de l'Institut Fourier n ${ }^{\circ} 523$ (2001)
http://www-fourier.ujf-grenoble.fr/prepublications.html

Abstract

In this note we show that there are algebraic families of hyperbolic, Fermat-Waring type hypersurfaces in \mathbb{P}^{n} of degree $4(n-1)^{2}$, for all dimensions $n \geqslant 2$. Moreover, there are hyperbolic Fermat-Waring hypersurfaces in \mathbb{P}^{n} of degree $4 n^{2}-2 n+1$ possessing complete hyperbolic, hyperbolically embedded complements.

Many examples have been given of hyperbolic hypersurfaces in \mathbb{P}^{3} (e.g., see [ShZa] and the literature therein). Examples of degree 10 hyperbolic surfaces in \mathbb{P}^{3} were recently found by Shirosaki [Shr2], who also gave examples of hyperbolic hypersurfaces with hyperbolic complements in \mathbb{P}^{3} and \mathbb{P}^{4} [Shr1]. Fujimoto [Fu2] then improved Shirosaki's construction to give examples of degree 8. Answering a question posed in [Za3], Masuda and Noguchi [MaNo] constructed the first examples of hyperbolic projective hypersurfaces, including those with complete hyperbolic complements, in any dimension. Improving the degree estimates of [MaNo], Siu and Yeung [SiYe] gave examples of hyperbolic hypersurfaces in \mathbb{P}^{n} of degree $16(n-1)^{2}$. (Fujimoto's recent construction [Fu2] provides examples of degree 2^{n}.) We remark that it was conjectured in 1970 by S. Kobayashi that generic hypersurfaces in \mathbb{P}^{n} of (presumably) degree $2 n-1$ are hyperbolic (for $n=3$, see [DeEl$]$ and [Mc]).

The following result is an improvement of the example of Siu-Yeung [SiYe]:

Theorem 1. - Let $d \geqslant(m-1)^{2}, m \geqslant 2 n-1$. Then for generic linear functions h_{1}, \ldots, h_{m} on \mathbb{C}^{n+1}, the hypersurface

$$
X_{n-1}=\left\{z \in \mathbb{P}^{n}: \sum_{j=1}^{m} h_{j}(z)^{d}=0\right\}
$$

is hyperbolic. In particular, there exist algebraic families of hyperbolic hypersurfaces of degree $4(n-1)^{2}$ in \mathbb{P}^{n}.

[^0]Equivalently, X_{n-1} is the intersection of the Fermat hypersurface of degree d in \mathbb{P}^{m-1} with a generic n-plane. The low-dimensional cases $n \leqslant 4$ of Theorem 1 were given by Shirosaki [Shr1]. Our construction is similar to those of [SiYe] and [Shr1].

On the other hand, examples were given in [Za2] of smooth curves of degree 5 in \mathbb{P}^{2}, with hyperbolically embedded, complete hyperbolic complements. Examples of hyperbolically embedded hypersurfaces in \mathbb{P}^{n} with complete hyperbolic complements were given in [MaNo] for all n, and in [Shrl] for $n \leqslant 4$ (with lower degrees). The following result generalizes the result of Shirosaki [Shrl] to all dimensions.

Theorem 2. - Let $d \geqslant m^{2}-m+1, m \geqslant 2 n$. Then for generic linear functions h_{1}, \ldots, h_{m} on \mathbb{C}^{n+1}, the complement $\mathbb{P}^{n} \backslash X_{n-1}$ of the hypersurface of Theorem 1 is complete hyperbolic and hyperbolically embedded in \mathbb{P}^{n}. In particular, there exist algebraic families of hyperbolic hypersurfaces of degree $4 n^{2}-2 n+1$ in \mathbb{P}^{n} with hyperbolically embedded, complete hyperbolic complements.

In particular, Theorem 2 provides algebraic families of curves of degree 13 in \mathbb{P}^{2}, of surfaces of degree 31 in \mathbb{P}^{3}, and so forth, whose complements are complete hyperbolic and hyperbolically embedded in projective space.

We shall use the following notation and lemma in our proofs of Theorems 1 and 2: We let $\mathrm{Gr}_{m, k}$ denote the Grassmannian of complex codimension k subspaces of \mathbb{C}^{m}, and we write

$$
Q_{m, k}=0_{k} \times \mathbb{C}^{m-k} \in \mathrm{Gr}_{m, k}
$$

Furthermore, for

$$
\begin{aligned}
& 1 \leqslant a \leqslant c \leqslant m \\
& 1 \leqslant b \leqslant c \leqslant a+b
\end{aligned}
$$

we define

$$
\Gamma_{m, a, b, c}=\left\{V \in \mathrm{Gr}_{m, a}: \operatorname{dim} V \cap Q_{m, b} \geqslant m-c\right\}
$$

Lemma 3. $-\operatorname{dim} \operatorname{Gr}_{m, a}-\operatorname{dim} \Gamma_{m, a, b, c}=(m-c)(a+b-c)$.

Proof. - Let $\operatorname{Mat}_{m, a}=\operatorname{Hom}\left(\mathbb{C}^{m}, \mathbb{C}^{a}\right)$, and let $\mathrm{M}_{m, a} \subset \operatorname{Mat}_{m, a}$ denote the surjective homomorphisms. We consider the fiber bundle

$$
\begin{array}{rlr}
G L(a) \rightarrow & \mathrm{M}_{m, a} \\
& \downarrow \pi \\
& \operatorname{Gr}_{m, a}
\end{array} \quad \pi(A)=\operatorname{ker} A
$$

We let

$$
\tilde{\Gamma}:=\pi^{-1}(\Gamma)=\left\{A \in \mathrm{M}_{m, a}: \operatorname{dim}\left(\left.\operatorname{ker} A\right|_{Q_{m, b}}\right) \geqslant m-c\right\} ;
$$

whence

$$
\operatorname{dim} \mathrm{M}_{m, a}-\operatorname{dim} \tilde{\Gamma}=\operatorname{dim} \mathrm{Gr}_{m, a}-\operatorname{dim} \Gamma_{m, a, b, c}
$$

Suppose $A \in \mathrm{M}_{m, a}$; i.e., A is an $a \times m$ matrix of rank a. We consider

$$
\tilde{A}=\left(\begin{array}{cc}
I_{b} & 0 \\
A
\end{array}\right)=\left(\begin{array}{cc}
I_{b} & 0 \\
B & A^{\prime}
\end{array}\right) \in \mathrm{M}_{m, a+b}
$$

where $B \in \operatorname{Mat}_{b, a}, A^{\prime} \in \operatorname{Mat}_{m-b, a}$. Clearly, $\operatorname{ker} \tilde{A}=\left.\operatorname{ker} A\right|_{Q_{m, b}}$ and thus

$$
A \in \widetilde{\Gamma} \Leftrightarrow \operatorname{dim}(\operatorname{ker} \tilde{A}) \geqslant m-c \Leftrightarrow \operatorname{rank} \tilde{A} \leqslant c \Leftrightarrow \operatorname{rank} A^{\prime} \leqslant c-b
$$

It is easily seen that

$$
\operatorname{codim}_{\operatorname{Mat}_{k, l}}\left\{C \in \operatorname{Mat}_{k, l}: \operatorname{rank} C \leqslant r\right\}=(k-r)(l-r)
$$

Therefore,

$$
\begin{aligned}
\operatorname{codim}_{\mathrm{M}_{m, a}} \widetilde{\Gamma} & =\operatorname{codim}_{\mathrm{Mat}_{m-b, a}}\left\{A^{\prime}: \operatorname{rank} A^{\prime} \leqslant c-b\right\} \\
& =[(m-b)-(c-b)][a-(c-b)] \\
& =(m-c)(a+b-c)
\end{aligned}
$$

Proof of Theorem 1. - Consider the Fermat hypersurface

$$
F_{d}:=\left\{\left(z_{1}: \ldots: z_{m}\right) \in \mathbb{P}^{m-1}: \sum_{j=1}^{m} z_{j}^{d}=0\right\}
$$

of degree d in \mathbb{P}^{m-1}. Suppose that $d \geqslant(m-1)^{2}, m \geqslant 2 n-1$. We must show that $X_{d}:=F_{d} \cap \mathbb{P} V$ is hyperbolic for a generic $V \in \mathrm{Gr}_{m, m-n-1}$.

Suppose that $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{C} \rightarrow X_{d}$ is a holomorphic curve. By Brody's theorem $[\mathrm{Br}]$, it suffices to show that f is constant. We write $J_{m}=\{1, \ldots, m\}$. Let

$$
I_{0}=\left\{j \in J_{m}: f_{j}=0\right\}
$$

(Of course, I_{0} may be empty.) We let I_{1}, \ldots, I_{l} denote the equivalence classes in $J_{m} \backslash I_{0}$ under the equivalence relation

$$
j \sim k \Leftrightarrow f_{j} / f_{k}=\text { constant }
$$

We let $k_{\alpha}=\operatorname{card} I_{\alpha}$ and we write

$$
I_{\alpha}=\left\{i(\alpha, 1), \ldots, i\left(\alpha, k_{\alpha}\right)\right\},
$$

for $\alpha=1, \ldots, l$, and also for $\alpha=0$ if $k_{0} \geqslant 1$.
The result of Toda [To], Fujimoto [Ful], and M. Green [Gr] says that for $\alpha=1, \ldots, l$, we have $k_{\alpha} \geqslant 2$ and furthermore the constants

$$
\mu_{\alpha j}:=f_{i(\alpha, j)} / f_{i(\alpha, 1)} \in \mathbb{C} \backslash\{0\} \quad\left(1 \leqslant \alpha \leqslant l, 2 \leqslant j \leqslant k_{\alpha}\right)
$$

satisfy

$$
1+\sum_{j=2}^{k_{\alpha}} \mu_{\alpha j}^{d}=0
$$

Geometrically, the image $f(\mathbb{C})$ is contained in the projective l-plane $Y_{\mu}^{\mathscr{J}}$ given by the equations

$$
z_{i(\alpha, j)}=\mu_{\alpha j} z_{i(\alpha, 1)}, \quad 2 \leqslant j \leqslant k_{\alpha}, 1 \leqslant \alpha \leqslant l ; \quad z_{i(0, j)}=0, \quad 1 \leqslant j \leqslant k_{0}
$$

Here, \mathscr{I} denotes the partition $\left\{I_{0}, I_{1}, \ldots, I_{l}\right\}$ of J_{m}, and $\mu=\left\{\mu_{\alpha j}\right\}$.

Let $\tilde{Y}_{\mu}^{\mathscr{I}} \subset \mathbb{C}^{m}$ be the lift of $Y_{\mu}^{\mathscr{I}}$. Then $\tilde{Y}_{\mu}^{\mathscr{I}} \in \mathrm{Gr}_{m, m-l}$. If $l=1$, then $Y_{\mu}^{\mathscr{I}}$ is a point. Otherwise, we consider $Y_{\mu}^{\mathscr{J}} \cap \mathbb{P} V$ for generic $V \in \mathrm{Gr}_{m, m-n-1}$. Applying Lemma 3 with

$$
a=m-n-1, b=m-l, c=m-2
$$

(changing coordinates to make $\tilde{Y}_{\mu}^{\mathscr{I}}=Q_{m, m-l}$), we conclude that $Y_{\mu}^{\mathscr{I}} \cap \mathbb{P} V$ is either a point or is empty, i.e. $\operatorname{dim}\left(\tilde{Y}_{\mu}^{\mathscr{I}} \cap V\right)<2$, unless V lies in a subvariety of $\mathrm{Gr}_{m, m-n-1}$ of codimension

$$
s=[m-(m-2)][(m-n-1)+(m-l)-(m-2)]=2(m-n-l+1) .
$$

But given a partition \mathscr{I}, the μ-moduli space of $\tilde{Y}_{\mu}^{\mathscr{I}}$ in $\mathrm{Gr}_{m, m-l}$ has dimension

$$
\sum_{\alpha=1}^{l}\left(k_{\alpha}-2\right)=m-k_{0}-2 l \leqslant m-2 l .
$$

Since $m \geqslant 2 n-1$, we have $s \geqslant m-2 l+1$ and thus for generic $V \in \operatorname{Gr}_{m, m-n-1}, Y_{\mu}^{\mathscr{I}} \cap \mathbb{P} V$ is at most a point for all (\mathscr{I}, μ). Since $f(\mathbb{C}) \subset Y_{\mu}^{\mathscr{I}} \cap \mathbb{P} V$ for some $Y_{\mu}^{\mathscr{I}}$, it follows that f must be constant.

Proof of Theorem 2. - Suppose that $d \geqslant m^{2}-m+1, m \geqslant 2 n$. Since by Theorem 1 , X_{n-1} is hyperbolic for generic h_{j}, it suffices to show that any entire curve $f: \mathbb{C} \rightarrow \mathbb{P}^{n} \backslash X_{n-1}$ is constant (see e.g., [Za2]).

We proceed as in the proof of Theorem 1. Suppose that $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{C} \rightarrow \mathbb{P}^{n} \backslash X_{n-1}$ is a holomorphic curve. As before, let $I_{0}=\left\{j \in J_{m}: f_{j}=0\right\}$, and let I_{1}, \ldots, I_{l} denote the equivalence classes in $J_{m} \backslash I_{0}$ under the equivalence relation

$$
j \sim k \Leftrightarrow f_{j} / f_{k}=\text { constant }
$$

Since $d>m(m-1)$, by [To, Ful, Gr] we have

$$
k_{\alpha} \geqslant 2 \text { and } 1+\sum_{j=2}^{k_{\alpha}} \mu_{\alpha j}^{d}=0 \text { for } 2 \leqslant \alpha \leqslant l
$$

after permuting the I_{α} and using our previous notation. (Also, $k_{1} \geqslant 1$, but $1+\sum_{j=2}^{k_{1}} \mu_{1 j}^{d} \neq 0$.) The proof of this result proceeds by considering the map $\left(f_{0}, \ldots, f_{m}\right): \mathbb{C} \rightarrow F_{d} \subset \mathbb{P}^{m}$, where $f_{0}=-\sum_{j=1}^{m} f_{j}^{d}=e^{\varphi}$. (We let $I_{1}=\left\{j: f_{j} / f_{0}=\right.$ constant $\} \neq \varnothing$.) The better estimate for d arises from the fact that f_{0} has no zeros.

As before, the image $f(\mathbb{C})$ is contained in the projective l-plane $Y_{\mu}^{\mathscr{I}}$, and $Y_{\mu}^{\mathscr{I}} \cap \mathbb{P} V$ is either a point or is empty, unless V lies in a subvariety of $\mathrm{Gr}_{m, m-n-1}$ of codimension $s=2(m-n-l+1)$. But this time, the μ-moduli space of $\tilde{Y}_{\mu}^{\mathscr{I}}$ in $\mathrm{Gr}_{m, m-l}$ has dimension

$$
k_{1}-1+\sum_{\alpha=2}^{l}\left(k_{\alpha}-2\right)=m-k_{0}-2 l+1 \leqslant m-2 l+1 .
$$

Since $m \geqslant 2 n$, we have $s>m-2 l+1$ and hence for generic $V \in \operatorname{Gr}_{m, m-n-1}, Y_{\mu}^{\mathscr{J}} \cap \mathbb{P} V$ is a point or is empty for all (\mathscr{I}, μ).

Remark: Note that the algebraic family of degree $d=(m-1)^{2}$ hyperbolic hypersurfaces in \mathbb{P}^{n} constructed in Theorem 1 has dimension $(n+1) m-1$, as does the family of Theorem 2. (Recall that in Theorem 1, $m \geqslant 2 n-1$, whereas in Theorem 2, $m \geqslant 2 n$.) By the stability of hyperbolicity theorems (see [Za2]), in the corresponding projective spaces of degree d hypersurfaces, both families possess open neighborhoods consisting of hyperbolic hypersurfaces, with hyperbolically embedded complements in the second case. We note finally that the best possible lower bound for the degree of a hypersurface in \mathbb{P}^{n} with hyperbolic complement should be $d=2 n+1$ (see [Zal]), and the degree $2 n-3$ hypersurfaces in \mathbb{P}^{n} are definitely not hyperbolic because they contain projective lines. (In fact, starting with $n=6$, these lines are the only rational curves on a generic hypersurface of degree $2 n-3$ in \mathbb{P}^{n}; see [Pa].)

Acknowledgement: We would like to thank Jean-Pierre Demailly and Junjiro Noguchi for useful discussions. The first author also thanks Université Joseph Fourier, Grenoble, and the University of Tokyo for their hospitality.

References

[Br] Brody R. Compact manifolds and hyperbolicity. Trans. Amer. Math. Soc. 235 (1978), 213-219.
[DeEl] Demailly J.-P., El Goul J. Hyperbolicity of generic surfaces of high degree in projective 3-space. Amer. J. Math. 122 (2000), 515-546.
[Ful] Fujimoto H. On meromorphic maps into the complex projective space. J. Math. Soc. Japan 26 (1974), 272-288.
[Fu2] Fujimoto H. A family of hyperbolic hypersurfaces in the complex projective space. Complex Variables (to appear).
[Gr] Green M. Some Picard theorems for holomorphic maps to algebraic varieties. Amer. J. Math. 97 (1975), 43-75.
[MaNo] Masuda K., Noguchi J. A construction of hyperbolic hypersurface of $\mathbb{P}^{n}(\mathbb{C})$. Math. Ann. 304 (1996), 339-362.
[Mc] McQuillan M. Holomorphic curves on hyperplane sections of 3-folds. Geom. Funct. Anal. 9 (1999), 370-392.
[Pa] Pacienza G. Rational curves on general projective hypersurfaces. E-print, math.AG/0010037, Oct. 2000, 21pp.
[ShZa] Shiffman B., Zaidenberg M. Two classes of hyperbolic surfaces in \mathbf{P}^{3}. International J. Math. 11 (2000), 65-101.
[Shrl] Shirosaki M. Hyperbolic hypersurfaces in the complex projective spaces of low dimensions. Kodai Math. J. 23 (2000), 224-233.
[Shr2] Shirosaki M. A hyperbolic hypersurface of degree 10. Kodai Math. J. 23 (2000), 376379.
[SiYe] Siu Y.-T., Yeung S.-K. Defects for ample divisors of abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees. Amer. J. Math. 119 (1997), 1139-1172.
[To] Toda N. On the functional equation $\sum_{i=0}^{p} a_{i} f_{i}^{n_{i}}=1$. Tôhoku Math. J. (2) 23 (1971), 289-299.
[Zal] Zaidenberg M. The complement of a generic hypersurface of degree $2 n$ in $\mathbf{C P}^{n}$ is not hyperbolic. Siberian Math. J. 28 (1987), 425-432.
[Za2] Zaidenberg M. Stability of hyperbolic imbeddedness and construction of examples. Math. USSR Sbornik 63 (1989), 351-361.
[Za3] Zaidenberg M. Hyperbolicity in projective spaces. Proc. Conf. "Diophantine Problemes, Hyperbolic Spaces and related topics", RIMS, Kyoto, Japan, 26-31 October 1992; Tokyo, TIT, 1992, 136-156.

Bernard SHIFFMAN
Department of Mathematics
Johns Hopkins University
Baltimore, MD 21218 (USA)
shiffman@math.jhu.edu

Mikhail ZAIDENBERG
INSTITUT FOURIER
Laboratoire de Mathématiques
UMR5582 (UJF-CNRS)
BP 74
38402 St MARTIN D'HÈRES Cedex (France)
zaidenbe@ujf-grenoble.fr

[^0]: Research of the first author partially supported by NSF grant \#DMS-9800479.
 Math. classification:14J70, 14M99, 32Q45, 32H25, 32H30.
 Keywords: Projective hypersurface, Fermat-Waring hypersurface, Kobayashi hyperbolic.

