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Let X be a complex manifold of complex dimension n. For p ∈ N such that 0 - p - n, we
denote by Ω

p
X the sheaf of germs of holomorphic p-forms on X . If the cohomology groups of

the sheafΩ
p
X are denoted by H r(X ,Ω

p
X ) and the Dolbeault cohomology groups for C

∞-smooth
differential forms and for currents are respectively denoted by H

p,r
∞ (X ) and H

p,r.&/10 (X ), it follows
from the Dolbeault lemma for ∂ and the de Rham-Weil isomorphism that for 0 - r - n

H r
(X ,Ω

p
X ) ' H p,r

∞ (X ) ' H p,r.�/20 (X ) .

The natural map H
p,r
∞ (X ) → H

p,r.&/10 (X )which is actually an isomorphism is called the Dolbeault

isomorphism.

If M is an oriented C
∞-smooth C R manifold, it is then natural to ask which relations may

exist between the cohomology groups of the sheaf of germs of C R C
∞-smooth p-forms on M

and the cohomology groups of the tangential Cauchy-Riemann complex for C
∞-smooth dif-

ferential forms and for currents. Following the method used in the complex case we may hope
to get some answer when there exists a Poincaré lemma for the tangential Cauchy-Riemann
operator.

Let M be an oriented locally embeddable C
∞-smooth C R manifold of real dimension 2n−k

and C R-dimension n − k, and assume moreover M is q-concave, 0 - q - n − k, i.e. the Levi
form of M has at least q positive eigenvalues in all directions. On M we may consider for all p,
0 - p - n, the tangential Cauchy-Riemann complexes

[E
p,∗
](M ) : 0 -→ [E

p,0
](M )

∂b
-→ [E

p,1
](M ) -→ · · · -→ [E

p,n−k
](M ) -→ 0

[D
′p,∗

](M ) : 0 -→ [D
′p,0
](M )

∂b
-→ [D

′p,1
](M ) -→ · · · -→ [D

′p,n−k
](M ) -→ 0

of C
∞-smooth differential forms and currents, whose cohomology groups are respectively de-

noted by H
p,r
∞ (M ) and H

p,r.�/20 (M ). Moreover we denote by H r(M ,Ω
p
M ) the Čech cohomology

groups with coefficients in the sheafΩp
M of germs of C R C

∞-smooth p-forms on M .

Let us recall that by results of Henkin [5], Nacinovich [13] and Nacinovich & Valli [14], the
Poincaré lemma holds for ∂b in bidegree (p, r) if 1 - r - q − 1 and n− k − q + 1 - r - n− k,
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for q � 2, and that each C R distribution extends locally to a holomorphic function as soon as
q � 1.

The main result of this paper is the following theorem.

T 0.1. — Let M be an orientable locally embeddable C
∞-smooth q-concave C R man-

ifold of real dimension 2n − k and C R dimension n − k, 1 - q - n and p an integer such that

0 - p - n. Then the natural map

H p,r
∞ (M ) -→ H p,r.�/20 (M )

is an isomorphism if 0 - r - q − 1 and n − k − q + 2 - r - n − k, is only injective if r = q and

only surjective if r = n − k − q + 1.

For small degrees, i.e. 0 - r - q, the theorem is a direct consequence of the Poincaré
lemma for the tangential Cauchy-Riemann operator and of the de Rham-Weil isomorphism as
in the complex case.

Note that the surjectivity is proved by Hill and Nacinovich in [7] for high degrees, i.e. r �
n− k − q + 1, when M is of hypersurface type, i.e. k = 1. The proof of the result in high degrees
is the object of the present paper. Since M is q-concave, 1 - q - n − k, by a result from Hill
and Nacinovich [9], without loss of generality we may assume for the proof that M is globally
and generically embedded in an n-dimensional complex manifold.

In [8], Hill and Nacinovich have considered the natural map H r(M ,Ω
p
M ) -→ H r

∞(M ) and
given for it analogous surjectivity and injectivity properties.

As a consequence of Theorem 0.1 and Theorem 0.1 in [11] we get a vanishing theorem of
Malgrange’s type for the cohomology of the tangential Cauchy-Riemann complex of currents.

C 0.2. — Let M be an orientable locally embeddable C
∞-smooth, non compact,

connected, 1-concave C R manifold of real dimension 2n − k and C R dimension n − k. Then for

0 - p - n

H p,n−k.�/20 (M ) = 0 .

1. Cohomological preliminaries

Let A be a ring and X = (X p,q)p,q∈Z a double complex of A-modules, which is defined by
the morphisms

d ′ = d ′p,q : X p,q
→ X p+1,q and d ′′ = d ′′p,q : X p,q

→ X p,q+1

satisfying the relations

d ′2 = 0, d ′′2 = 0 and d ′ ◦ d ′′ = d ′′ ◦ d ′.

For a given p ∈ Z, we may consider the simple complex X
p

I = {X p,q , d ′′} and in the same way
for a given q ∈ Z, the simple complex X

q
I I = {X p,q , d ′}, the associated cohomology groups are

denoted respectively by H
q
I I (X

p
I ) and H

p
I (X

q
I I ). Moreover the morphism d ′ (resp. d ′′) induces

a morphism d ′∗ : H
q
I I (X

p
I ) → H

q
I I (X

p+1
I ) (resp. d ′′∗ : H

p
I (X

q
I I ) → H

p
I (X

q+1
I I )), with d ′2∗ = 0
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(resp. d ′′2∗ = 0), and the cohomology groups of this complex are denoted by H
p

I H
q
I I (X ) (resp.

H
q
I I H

p
I (X )).

Assume X satisfies the following finiteness property:

(1) for any ` ∈ Z the set {(p, q) ∈ Z × Z | p + q = `, X p,q
≠ 0} is finite.

Then it is possible to associate to X a simple complex s(X ) by setting s(X )` =
⊕

p+q=`

X p,q

and for
x` = (xp,q)p+q=` ∈ s(X )`, dx` = (d ′xp−1,q+1 + (−1)pd ′′xp,q)p+q=`

whose cohomology groups are H `(s(X )).

Note that the condition (1) is fulfilled in particular if

(2) X p,q = 0 for p ∉ {0, . . . , k}, where k ∈ N is fixed.

T 1.1. — Let f : X → Y be a morphism of double complexes, where X and Y both

satisfy (1). Assume f induces an isomorphism

(3) H
p

I H
q
I I (X ) -→ H

p
I H

q
I I (Y ), f or any pair (p, q).

or

(4) H
q
I I H

p
I (X ) -→ H

q
I I H

p
I (Y ), f or any pair (p, q).

Then the map s( f ) : s(X ) → s(Y ) induced by f between the associated simple complexes

induces for any r ∈ Z an isomorphism

H r
(s(X )) -→ H r

(s(Y )).

Remark. — Under the hypothesis (3), the theorem is proved in ([10], chap. I). To get the
result under the hypothesis (4) we have to apply the previous case to the new double complex
X̂ defined by X̂ p,q = X q,p, d̂ ′p,q = (−1)qd ′′q,p and d̂ ′′p,q = (−1)pd ′q,p.

For section 3 we need a different version of Theorem 1.1.

T 1.2. — Let f : X → Y be a morphism of double complexes, where X and Y both

satisfy (2), and q ∈ Z is a fixed integer. Assume f induces an isomorphism

f
p,r

I I : H r
I I (X

p
I ) -→ H r

I I (Y
p

I ) for 0 - p - k and r � q + 1

and a surjective map

f
p,q

I I : H
q
I I (X

p
I ) -→ H

q
I I (Y

p
I ) for 0 - p - k.

Then the map s( f ) : s(X ) → s(Y ) induced by f between the associated simple complexes

induces an isomorphism

H r
(s(X )) -→ H r

(s(Y )) for r � q + k + 1

and a surjective map

H q+k
(s(X )) -→ H q+k

(s(Y )).
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Proof. — The first assertion follows from Theorem 1.1 applied to truncated complexes as-
sociated to X and Y . Now let us consider the second assertion. Let b ∈ s(Y )q+k such that
db = 0, i.e. b = (b0,q+k, . . . , bk,q)with d ′′b0,q+k = 0 and d ′b j−1,q+k− j+1 + (−1) j d ′′b j ,q+k− j =
0 for j = 1, . . . , k, we have to find a ∈ s(X )q+k and c ∈ s(Y )q+k−1 such that da = 0 and
s( f )(a) = b + dc. We shall construct a = (a0,q+k , . . . , ak,q) and c = (c0,q+k−1, . . . , ck,q−1) by
induction on the first index.

As d ′′b0,q+k = 0, by surjectivity of the map f
0,q+k

I I , we get a0,q+k ∈ X 0,q+k and c0,q+k−1 ∈

Y 0,q+k−1 with d ′′a0,q+k = 0 and s( f )(a0,q+k) = b0,q+k + d ′′c0,q+k−1.

Now assume that, for some j , 0 - j - k − 1, we already got a0,q+k, . . . , a j ,q+k− j and
c0,q+k−1, . . . , c j ,q+k− j−1 with d ′′a0,q+k = 0, d ′ap−1,q+k−p+1 + (−1)pd ′′ap,q+k−p = 0 and

(∗p) s( f )(ap,q+k−p) = bp,q+k−p + d ′cp−1,q+k−p + (−1)pd ′′cp,q+k−p−1

for p = 0, . . . , j (here c−1,q+k = 0). Let us construct a j+1,q+k− j−1 and c j+1,q+k− j−2. As db = 0,
we have

d ′′b j+1,q+k− j−1 = (−1) j d ′b j ,q+k− j .

Using (∗ j)we get

d ′′(b j+1,q+k− j−1 + d ′c j ,q+k− j−1) = (−1) j d ′s( f )(a j ,q+k− j).

Hence the injectivity of f
j+1,q+k− j

I I gives the existence of ã j+1,q+k− j−1 such that

d ′′ã j+1,q+k− j−1 = (−1) j d ′a j ,q+k− j

and
d ′′
[

s( f )(ã j+1,q+k− j−1) − b j+1,q+k− j−1 − d ′c j ,q+k− j−1
]

= 0.

Using the surjectivity of f
j+1,q+k− j−1

I I we can find â j+1,q+k− j−1 and c j+1,q+k− j−2 such that
d ′′â j+1,q+k− j−1 = 0 and

s( f )(a j+1,q+k− j−1) − b j+1,q+k− j−1 − d ′c j ,q+k− j−1

= s( f )(â j+1,q+k− j−1) + (−1) j+1d ′′c j+1,q+k− j−2.

It remains to set a j+1,q+k− j−1 = ã j+1,q+k− j−1 − â j+1,q+k− j−1.

Note that to construct ak,q we used only the injectivity of f
k,q+1

I I and the surjectivity of

f
k,q

I I .

We consider now two special cases of Theorem 1.1.

P 1.3. — Let A = (A p,q)p,q∈Z be a double complex such that A p,q = 0 if p ∉

{0, . . . , k} and α = (αp,q)p,q∈Z a double complex such that αp,q = 0 if p ≠ k for a given

k ∈ N∗. We assume that for each q ∈ Z,

H
p

I (A
q
I I ) = 0 if p - k − 1 and H k

I (A
q
I I ) = αk,q,

then the simple associated complexes s(A) and s(α) are quasi-isomorphic.

Moreover s(α) is quasi-isomorphic to the translated complexαk,·[−k] and the inverse of the

natural isomorphism between H n+k(s(A)) and H n(αk,·) is given by xn
, an+k , where an+k is

the cohomology class of an an+k = (a0,n+k , . . . , ak,n) such that

d ′ap−1,n+k−p+1 + (−1)pd ′′ap,n+k−p = 0 for p = 1, . . . , k

and the image of ak,n by the natural projection from Ak,n on to αk,n is xn .
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P 1.4. — Let B = (B p,q)p,q∈Z be a double complex such that B p,q = 0 if p ∉

{0, . . . , k} for a given k ∈ N∗ and β = (βp,q)p,q∈Z a double complex such that βp,q = 0 if p ≠ 0.

We assume that for each q ∈ Z,

H
p

I (B
q
I I ) = 0 if p � 1 and H 0

I (B
q
I I ) = β0,q ,

then the simple associated complexes s(B) and s(β) are quasi-isomorphic.

Moreover s(β) is quasi-isomorphic to β0,· and the inverse of the natural isomorphism be-

tween H n(β0,·) and H n(s(B)) is given by b
n
→ y n where b

n
is the cohomology class of a bn =

(b0,n, . . . , bk,n−k) such that (b0,n, . . . , bk,n−k) and (y, 0, . . . , 0) are in the same cohomology class

of H n(s(B)).

2. Geometrical preliminaries

C R manifolds.

Let X be a complex manifold of complex dimension n. If M is a C
∞-smooth real subman-

ifold of real codimension k in X , we denote by T C
τ (M ) the complex tangent space to M at

τ ∈ M . Such a manifold M can be represented locally in the form

(5) M = {z ∈ Ω | ρ1(z) = · · · = ρk(z) = 0}

where the ρν ’s, 1 - ν - k, are real C
∞ functions in an open subsetΩ of X . In this representa-

tion we have

(6) T C
τ M =

{
ζ ∈ Cn

|

n�

j=1

∂ρν

∂z j
(τ)ζ j = 0, ν = 1, . . . , k

}

and dimC T C
τ (M ) � n−k for τ ∈ M ∩Ω, where (z1, . . . , zn) are local holomorphic coordinates

in a neighborhood of τ.

The submanifold M is called C R if the number dimC T C
τ (M ) is independent of the point

τ ∈ M , and C R generic if dimC T C
τ (M ) = n−k for every τ ∈ M . In the local representation (5),

M is generic if and only if ∂ρ1 ∧ . . . ∧ ∂ρk ≠ 0 on M .

D 2.1. — Let M be a C
∞-smooth C R generic submanifold of X . We say that M

is q-concave, 0 - q - n − k, if for each τ ∈ M , each local representation of M of type (5)
in a neighborhood of τ in X and each x ∈ R

k\{0}, the quadratic form on T C
τ M defined by

�
α,β

∂2ρx
∂zα∂zβ

(τ)ζαζβ, where ρx = x1ρ1 + · · · + xkρk and ζ ∈ T C
τ M , has at least q negative

eigenvalues.

Tangential Cauchy-Riemann complexes.

Let M be an oriented C
∞-smooth C R generic submanifold of real codimension k in an n-

dimensional complex manifold X . We denote by IM the ideal sheaf in the Grassmann algebra
E of germs of complex valued C

∞-forms on X , that is locally generated by functions which
vanish on M and by their anti-holomorphic differentials.
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On X we have the Dolbeault complexes for the sheaves of germs of smooth forms:

E
p,∗ : 0 -→ E

p,0 ∂
-→ E

p,1 ∂
-→ · · ·

∂
-→ E

p,n
-→ 0,

where E
p, j is the sheaf of germs of complex valued C

∞-forms of bidegree (p, j) on X , 0 -
p, j - n. We set I

p, j
M = IM ∩ E

p, j . Since ∂I
p, j

M ⊂ I
p, j+1

M , for each 0 - p - n, we have
subcomplexes

I
p,∗

M : 0 -→ I
p,0

M
∂
-→ I

p,1
M

∂
-→ · · ·

∂
-→ I

p,n
M -→ 0

of the complex E
p,∗ and hence quotient complexes [E p,∗], defined by the exact sequences of

fine sheaves complexes
0 -→ I

p,∗
M -→ E

p,∗
-→ [E

p,∗
] -→ 0.

The induced differentials are denoted by ∂M . We write the quotient complex as

[E
p,∗
] : 0 -→ [E

p,0
]
∂M
-→ [E

p,1
]
∂M
-→ · · ·

∂M
-→ [E

p,n
] -→ 0,

it is called the tangential Cauchy-Riemann complex of C
∞-smooth forms. If U is an open subset

of X , the cohomology groups of [E p,∗] on M ∩U are denoted by H
p, j
∞ (M ∩U ).

Let FM denote the ideal sheaf of germs of smooth complex valued differential forms on X

that are flat on M , and set F
p, j

M = FM ∩ E
p, j . Note that ∂F p, j

M ⊂ F
p, j+1

M , therefore F
p,∗

M is a
subcomplex of E

p,∗ and the short exact sequence of fine sheaves complex

0 -→ F
p,∗

M -→ E
p,∗

-→ W
p,∗

M -→ 0

defines the complex

W
p,∗

M : 0 -→ W
p,0

M
∂
-→ W

p,1
M

∂
-→ · · ·

∂
-→ W

p,n
M -→ 0

of Whitney germs of forms on M .

It follows from the formal Cauchy-Kowalewsky Theorem for C R generic submanifolds of a
complex manifold (cf. [1]) that the complexes [E p,∗] and W

p,∗
M are quasi-isomorphic (see e.g.

[13]), more precisely

T 2.2. — If M is a C R generic submanifold of real codimension k in X , then for all

p, j � 0 and every open subset U of X with M ∩U ≠ ∅, the maps

H j
(M ∩U , W

p,∗
M ) -→ H p, j

∞ (M ∩U ),

induced by the natural map W
p,∗

M → [E p,∗], are isomorphisms.

In order to define the current ∂M -cohomology groups on M ∩ U , we first consider the
spaces [Dp, j](M ∩U ) of sections of [E p, j] having compact support in M ∩U with their usual
inductive limit topology.

We define [D′p, j](M ∩ U ) as the topological dual of [Dn−p,n−k− j](M ∩ U ). In this way
we obtain, for each 0 - p - n, a complex of sheaves

[D
′p,∗

] : 0 -→ [D
′p,0
]
∂M
-→ [D

′p,1
]
∂M
-→ · · ·

∂M
-→ [D

′p,n
] -→ 0
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whose cohomology on M ∩U we denote by H
p, j.�/20 (M ∩U ).

Let D
′ be the sheaf of currents on X , we denote by D

′
M the subsheaf of D

′ of currents with
support contained in M . Dualizing the formal Cauchy-Kowalewsky Theorem,(cf. [7]), it follows
that the complexes [D′p,∗] and the translated complexes D

′p,∗
M [k] are quasi-isomorphic, more

precisely

T 2.3. — If M is a C R generic submanifold of real codimension k in X , then for all

p, j � 0 and every open subset U of X with M ∩U ≠ ∅, there are natural isomorphisms

H p, j.�/20 (M ∩U ) -→ H p, j+k(
D
′
M (U )

)
.

Simplicial complexes associated to a C R manifold.

Here we denote by M a C
∞-smooth C R generic submanifold of real codimension k in an n-

dimensional complex manifold X . Following the reductions in sections 2 and 3 of [8], without
loss of generality we may assume that M is globally defined by

(7) M = {z ∈ X | ρ1(z) = · · · = ρk(z) = 0}

where the ρν ’s, 1 - ν - k, are real C
∞ functions in X satisfying

(8) ∂ρ1 ∧ . . . ∧ ∂ρk ≠ 0 in X .

For each ν = 1, . . . , k, we setϕν = ρν + ψ
k�

j=1
ρ2

j andϕ0 = −
k�

j=1
ρ j + ψ

k�
j=1
ρ2

j , where ψ is a

positive function of class C
∞ in X . Next let

σ =
{
λ = (λ0, . . . , λk) ∈ R

k+1
| λi � 0,

k�

i=0

λi = 1
}

be the standard k-simplex, with boundary ∂σ . For λ ∈ ∂σ , we setϕλ =
k�
ν=0
λνϕν. By choosing

ψ sufficiently large on each compact subset of M and possibly shrinking X , if M is q-concave,
we can arrange that

(9) for every λ ∈ ∂σ , the Levi form Lϕλ ofϕλ has at least q + k positive eigenvalues,

(10) for every ordered collection of k integers 0 - i1 < . . . < ik - k,

∂ϕi1 ∧ . . . ∧ ∂ϕik
≠ 0 on X ,

(11) if we setΩν = {z ∈ X | ϕν(z) < 0}, ν = 0, . . . , k, then

M =
k⋂

ν=0

Ων , X \M =
k⋃

ν=0

Ων and X =
k⋃

ν=0

Ων .

Let E be a C
∞-differentiable vector bundle over X . Given any open subset U in X , we

denote by Γ(U , E ) the space of smooth sections of E over U . If A is a closed subset of U , we

7



denote by FA(U , E ) the space of sections f ∈ Γ(U , E ) that are flat on A. The space W (A, E )

of Whitney sections of E over A is defined by the exact sequence

0 -→ FA(U , E ) -→ Γ(U , E ) -→ W (A, E ) -→ 0.

We shall say that two closed subsets A and B of U are regularly situated if and only if the se-
quence

0 -→ W (A ∪ B, E ) -→ W (A, E ) ⊕W (B, E ) -→ W (A ∩ B, E ) -→ 0

is exact for any vector bundle E overΩ.

If we consider the system of closed sets U = {Ω0, . . . ,Ωk} defined by (11) then for any
choice of 0 - i0, . . . , ir - k and 0 - j0, . . . , js - k, 0 - r, s - k, the closed setsΩi0 ∩ . . .∩Ωir

andΩ j0 ∩ . . .∩Ω js are regularly situated because of the transversality condition (10) (cf. [15]).
Then we can define the space C

s
∞(U , E ), o - s - k, of alternating cochains of the form

f s = ( f j0··· js ) with f j0··· js ∈ W (Ω j0 ∩ . . . ∩ Ω js , E )

with the coboundary operator

(δ f s
) j0··· js+1 =

s+1�

h=0

(−1)h f j0··· ĵh··· js+1
|Ω j0∩...∩Ω js+1

.

It is easy to verify that

C
0
∞(U , E )

δ
-→ C

1
∞(U , E )

δ
-→ C

2
∞(U , E )

δ
-→ . . .

δ
-→ C

k
∞(U , E ) -→ 0

is a complex. Moreover it follows from Proposition 1 in [13] that the sequence

(12) 0 -→ Γ(X , E )
δ0

-→ C
0
∞(U , E )

δ
-→ C

1
∞(U , E )

δ
-→ · · ·

δ
-→ C

k
∞(U , E ) -→ 0,

where δ0 is defined by δ0 f = ( f
∣∣
Ωs
), is exact.

Let E be a C
∞-differentiable vector bundle over X . Given any open subset U in X we

denote by D
′(U , E ) the space of distribution sections of E over U . For a closed subset A of

X we denote by D
′
A(U , E ) the subspace of distribution sections in D

′(U , E ) having support
contained in A ∩U .

The maps U , D
′(U , E ) and U , D

′
A(U , E ) from the open sets of X to the category of

vector spaces define soft sheaves over X , that we will denote by D
′(E ) and D

′
A(E ) respectively.

Let us fix an open subset Ω ⊂ X , then the sheaf Ď
′
Ω(E ) of extensible distributions in Ω with

values in E is defined by the exact sequence

(13) 0 -→ D
′
X \Ω(E ) -→ D

′
(E ) -→ Ď

′
Ω(E ) -→ 0.

Then alsoĎ
′
Ω(E ) is a soft sheaf and for any open set U in X the spaceĎ

′
Ω(U , E ) of sections of

Ď
′
Ω(E ) over U can be identified to the space of distribution sections of E over Ω ∩U that are

restrictions of distribution sections of E over U . In [12], Martineau proves that if
◦

Ω= Ω, then for
every open set U in X , the spaceĎ

′
Ω(U , E ) is the dual of the subspace of Γ(U , E∗) of smooth

sections of E∗ over U having compact support contained inΩ.

Consider the system of open sets U = {Ω0, . . . ,Ωk} defined by (11), the transversality
condition (10) implies that it is co-regular, i.e. for every open set U in X the system of closed
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sets {U \Ω0, . . . , U \Ωk} is regularly situated. Now we can define the spaceĎ
′s(U , E ), 0 - s -

k, of alternating cochains of the form

T s = (T j0··· js ) with T j0··· js ∈Ď
′
Ω j0∩...∩Ω js

(X , E )

with the coboundary map

(δT s
) j0··· js+1 =

s+1�

h=0

(−1)hT j0··· ĵh··· js+1
|Ω j0∩...∩Ω js+1

and we get a complex

Č
0
(U , E )

δ
-→ Č

1
(U , E )

δ
-→ Č

2
(U , E )

δ
-→ · · ·

δ
-→ Č

k−1
(U , E ) -→ 0.

Moreover it follows from Proposition 2 in [14] that the sequence

(14) 0 -→ Ď
′
X \M (X , E )

δ0

-→ Č
0
(U , E )

δ
-→ Č

1
(U , E )

δ
-→ · · ·

δ
-→ Č

k−1
(U , E ) -→ 0

where δ0 is defined by δ0T = (T |Ω j
), is exact.

Combining the exact sequences (13) and (14) we get the exact sequence

(15) 0 -→ D
′
M (X , E ) -→ D

′
(X , E )

δ0

-→ Č
0
(U , E )

δ
-→ · · ·

δ
-→ Č

k−1
(U , E ) -→ 0.

Let E p,q , 0 - p, q - n, be the vector bundle of (p, q)-forms on X . For each 0 - p - n

and 0 - s - k − 1, using the ∂-operator we associate to the systemsU and U the complexes
(C s

∞(U , E p,∗), ∂) and (Č s(U , E p,∗), ∂). It is easy to verify that then the coboundary mapsδ are
morphisms of complexes. We define the complexes (C−1

∞ (U , E p,∗), ∂) and (Č−1(U , E p,∗), ∂)

by setting

C
−1
∞ (U , E p,∗

) := Γ(X , E p,∗
) and Č

−1
(U , E p,∗

) := D
′
(X , E p,∗

).

With the notations of section 1, we can summarize the previous results in the following way,
since C

k
∞(U , E p,∗) = W (M , E p,∗).

To simplify the notations we set W
p,∗

M (X ) = W (M , E p,∗) and D
′p,q
M (X ) = D

′(X , E p,∗).

P 2.4. — For each 0 - p - n,

1. The double complex C∞ := (C s
∞(U , E p,q))−1 � s � k−1

0 � q � n

satisfies for all q

H s
I (C

q
∞,I I ) = 0 if s - k − 2 and H k−1

I (C
q
∞,I I ) = W

p,q
M (X ).

2. The double complex Č :=
(
Č

s(U , E p,q)
)
−1 � s � k−1

0 � q � n

satisfies for all q

H s
I (Č

q
I I ) = 0 if s � 0 and H−1

I (Č
q
I I ) = D

′p,q
M (X ).

As a C
∞-smooth form on the closure of an open subset of X defines an extensible cur-

rent, there is a natural map between the double complexes C∞ and Č . Considering Proposi-
tions 1.3 and 1.4, it follows from Proposition 2.4 that this natural map induces a map between
H r(M , W

p,∗
M ) and H r+k(M , D

′p,∗
M ).
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P 2.5. — The map between H r(M , W
p,∗

M ) and H r+k(M , D
′p,∗
M ), 0 - r - n − k,

induces by the natural map between C∞ and Č is given by [ f ] , (−1)
k(k−1)

2 [T ], where T is the

current defined by 〈T ,ϕ〉 =
�

M
f ∧ϕ forϕ ∈ D

n−p,n−k−r(X ) and [·] denotes the cohomology

class of the element.

Proof. — To prove this result we have first to introduce some new sets. Let Γi be the subset
ofΩi defined for i = 0, . . . , k by

Γi = Ωi ∩ {z ∈ X | ϕi(z) < ϕ j(z), ∀ j ≠ i}.

For r - s - k, we set

Γi1...is = Ωi1 ∩ . . . ∩ Ωis ∩ {z ∈ X | ϕi1(z) = · · · = ϕis (z) < ϕ j (z), ∀ j ≠ i1, . . . , is}

and Γ01...k = M . We define an orientation on the Γi1···is ’s by taking on Γi , 0 - i - k, the
orientation induced by X and on Γi1···is the orientation of the boundary of Γi1···îν···is

multiplied

by (−1)ν+1. These sets have the following properties : let I = {i1 · · · is} be a multi-index of
length |I | = s, 1 - s - k + 1, then

(16) dimR ΓI = 2n − |I | + 1 and
�

ν∉I

ΓνI = ∂ΓI .

Let f ∈ W
p,r

M (X ) be a ∂-closed Withney section of E p,r over M . Going back to Proposition 1.3,
it follows from 1 in Proposition 2.4 that there exists a family of cochainsγs∈C

s
∞(U , E p,r+k−s−1),

−1 - s - k − 1, such that

(17) δγs + (−1)s∂γs+1 = 0 for − 1 - s - k − 2 and δγk−1 = f .

Recall that γs = {γI , |I | = s + 1}, where γI ∈ W (Ωi0 ∩ . . . ∩ Ωis , E p,r+k−s−1) if I = i0 · · · is ,
0 - s - k − 1 and γ−1 ∈ Γ(X , E p,r+k).

Using the natural map between Withney sections and extensible currents the cochain γs

defines an element, still denoted γs, inČ
s(U , E p,r+k−s−1). Following Proposition 1.4 associ-

ated to Proposition 2.4 we have to prove that ((−1)
k(k−1)

2 T , 0, . . . , 0) and (γ−1, . . . , γk−1) are in
the same cohomology class of the simple complex associated to the double complex Č . Then
the proposition will be an immediate consequence of the next lemma.

In the lemma and in its proof all summations are taken over increasing indices.

L 2.6. — The families of the cochains S`−1 ∈ Č
`−1
(U , E p,r+k−`−1), 0 - ` - k de-

fined for 1 - ` - k − 1 by S`−1 = {SI , |I | = `}, where

SI = (−1)`
k−`�

ν=1

(−1)
1+

ν�
λ=1

λ �

|J |=ν

�
ΓJ

γI J∧

and by

S−1 = (−1)`
k�

ν=1

(−1)
1+

ν�
λ=1

λ �

|J |=ν

�
ΓJ

γJ∧

and Sk−1 = 0 satisfy

(i) δS`−2 + (−1)`−2∂S`−1 = γl−1 for 1 - ` - k

(ii) ∂S−1 = γ−1 − (−1)
k(k−1)

2
�

M
f ∧ .
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Proof. — We shall use the following notation : let K and K̃ be two multi-indexes such that
K̃ ⊂ K , |K̃ | = |K | − 1 we set σ(K , K̃ ) = µ + 1 if the missing index in K̃ is the index that
was at rank µ in K . Consider the assertion (i). Let ϕ ∈ D

n−p,n−k−r+`+1(Ωi1 ∩ . . . ∩ Ωi`) and
I = (i1 · · · i`), 1 - ` - k, then

〈(δS`−2
)I ,ϕ〉 =

�

|Ĩ |=|I |−1
Ĩ⊂I

(−1)σ(I ,Ĩ )
〈S

Ĩ
,ϕ〉

and

〈∂SI ,ϕ〉 = (−1)p+r+k−`
〈SI , ∂ϕ〉.

Using the definition of the S′I s and the Stokes formula associated to (16) we get

〈(δS`−2
)I + (−1)`−2∂SI ,ϕ〉 = AI + BI + CI

where we have

AI = (−1)`−1
�

|J |=1

�
ΓJ

�

|Ĩ |=`−1
Ĩ⊂I

(−1)σ(I ,Ĩ )γ
Ĩ J
∧ϕ +

�

|J |=1

�
ΓJ

∂γI J ∧ϕ

BI = (−1)`−1
(−1)

1+
k−`+1�
λ=1

λ �

|J |=k−`+1

�
ΓJ

�

|Ĩ |=`−1
Ĩ⊂I

(−1)σ(I ,Ĩ )γ
Ĩ J
∧ϕ

+ (−1)k−`
(−1)

1+
k−`�
λ=1

λ �

|J |=k−`+1

�
ΓJ

�

| J̃ |=k−`

J̃⊂J

(−1)σ(J ,J̃ )γ
I J̃
∧ϕ

CI =
k−`�

ν=2

(−1)`−1
(−1)

1+
ν�
λ=1

λ �

|J |=ν

�
ΓJ

�

|Ĩ |=`−1
Ĩ⊂I

(−1)σ(I ,Ĩ)γ
Ĩ J
∧ϕ

+
k−`�

ν=2

(−1)ν−1
(−1)

1+
ν−1�
λ=1

λ �

|J |=ν

�
ΓJ

�

| J̃ |=ν−1
J̃⊂J

(−1)σ(J ,J̃ )γ
I J̃
∧ϕ

−

k−`�

ν=2

(−1)ν(−1)
1+

ν�
λ=1

λ �

|J |=ν

�
ΓJ

∂γI J ∧ϕ.

By definition of the operator δ we have

(δγ)I J =
�

|Ĩ |=|I |−1
Ĩ⊂I

(−1)σ(I ,Ĩ)γ
Ĩ J

+ (−1)|I |
�

| J̃ |=|J |−1
J̃⊂J

(−1)σ(J ,J̃ )γ
I J̃

.
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So the relations (17) and the fact that ∂ f = 0 imply

CI = (−1)`
k−`�

ν=2

(−1)
ν(ν+1)

2
�

|J |=ν

�
ΓJ

(
(δγν+`−2

)I J + (−1)ν+`−2∂γI J
)
∧ϕ = 0

BI = (−1)`(−1)
(k−`+2)(k−`+1)

2
�

|J |=k−`+1

�
ΓJ

(δγk−1
)I J ∧ϕ = 0

AI =
�
Ω

γI ∧ϕ −

k�

j=0

�
Γ j

(
(δγ`) j I + (−1)`∂γ j I

)
∧ϕ =

�
Ω

γI ∧ϕ.

Let us prove now the assertion (ii). Let ϕ ∈ D
n−p,n−k−r(X ), using again the Stokes formula

associated to (16), by definition of S−1 we get

〈∂S−1,ϕ〉 = (−1)p+r+k
〈S−1, ∂ϕ〉

=
k�

ν=1

(−1)

ν�
λ=1

λ �

|I |=ν+1

�
ΓI

(δγν−1
)I ∧ϕ −

k�

ν=1

(−1)

ν+1�
λ=1

λ �

|I |=ν

�
ΓI

∂γI ∧ϕ

= (−1)
(k+1)(k+2)

2

�
M

δγk−1
∧ϕ +

�
Ω

γ−1
∧ϕ

+
k�

ν=2

(−1)1+ ν(ν+1)
2

�

|I |=ν

�
ΓI

(
(δγν−2

)I + (−1)ν∂γI

)
∧ϕ

Then it follows from (17) that�
Ω

γ−1
∧ϕ − 〈∂S−1,ϕ〉 = (−1)

k(k−1)
2

�
M

f ∧ϕ.

Remark. — We may notice that Proposition 2.4 and 2.5 are still true without q-concavity
hypothesis on M , the only thing we have used is the genericity of M .

3. The isomorphism theorem for a single wedge

We denote by X a complex manifold of complex dimension n and by E a holomorphic
vector bundle over X . We are going to generalize the notion of q-convex extension (cp.,e.g., [6])
and prove that some results on q-convex extensions are still valid in our case.

D 3.1. — Let X be an n-dimensional complex manifold, q an integer such that

1 - q - n and D a domain in X . We say that X is a wedge q-convex extension of D if the

following conditions hold:

(i) D meets all the connected components of X .

(ii) There exist some applications ρ j : R×U → R for j = 1, . . . , k, where U is a neighbor-

hood of X \D such that

a) The maps t , ρ j(t , z), j = 1, . . . , k, are continuous fromR into C
∞(U ,R).

12



b) For all t ∈ R, dρ1(t , ·) ∧ · · · ∧ dρk(t , ·) ≠ 0 on U and, for each λ = (λ1, . . . , λk)

with λ j � 0 and
k�

j=1
λ j = 1, the complex Hessian of ρλ(t , ·) =

k�
j=1
λ jρ j(t , ·) has at least

(n − q + 1) positive eigenvalues throughout U .

c) For all z ∈ U and all j = 1, . . . , k, ρ j(·, z) is a decreasing function.

d) D ∩ U =
{

z ∈ U | ρ j(0, z) < 0, j = 1, . . . , k
}

and for each t > 0, the set
{

z ∈ U |

ρ j(t , z) < 0
}
∩ � D is relatively compact in X .

Remark. — If D is a domain in X such that X is an n − q-convex extension in the sense of
[6]1 then it is clear that X is a wedge q-convex extension of D, it is sufficient to consider one
function ρ(z) − t , where ρ is the function from Definition 12.1 in [6] (provided ρ is C

∞) .

D 3.2. — A domain D ⊂⊂ Cn is called a local q-convex wedge, 1 - q - n, if there

exists a finite number of C
∞ functions ρ1, . . . , ρk in a neighborhood UD of D such that

D =
{

z ∈ UD | ρ j(z) < 0, j = 1, . . . , `
}

and the following condition holds : if z ∈ ∂D and 1 - k1 < · · · < kp - `with ρk1(z) = · · · =
ρkp

(z) = 0 then dρk1(z)∧· · ·∧dρkp
(z) ≠ 0 and for all λ1, . . . , λp � 0 with λ1 + · · ·+λp = 1,

the Levi form at z of the function λ1ρk1 + · · · λpρkp
has at least n − q + 1 positive eigenvalues.

D 3.3. — Let X be an n-dimensional complex manifold and q an integer such that

1 - q - n. If A1, A2, V are domains in X , then we say [A1, A2, V ] is a wedge q-convex extension
element in X if the following conditions are fulfilled

(i) A1 ⊂ A2 and A2\A1 ⊂⊂ V ⊂⊂ X ;

(ii) V is contained in some local coordinate patch and there exists a domain D ⊂⊂ V

such that D1 = A1 ∩ D and D2 = A2 ∩ D are biholomorphic to local q-convex wedges and

D2\A1 ∩ A1\D2 = ∅.

L 3.4. — Let ρ j : R × X → R, j = 1, . . . , `, be some applications with the properties

a), b) and c) from Definition 3.1. We set for all α ∈ R

Dα =
{

z ∈ X | ρ j (α, z) < 0, j = 1, . . . , `
}

and we assume there exists α0 > 0 such that if |α| - α0, |α′| < α0 and α′ < α, then Dα\Dα′ is

relatively compact in X .

Then we can find a real number ε > 0 such that for all α,βwith−ε - α - 0 - β - ε, there

exists a finite number of domains (Ai)0 � i � N such that

Dα = A0 ⊂ A1 ⊂ · · · ⊂ AN = Dβ

and for each j, 1 - j - N , A j can be obtained from A j−1 by a wedge q-convex extension

element.

1Note that q-convexity in the sense of Andreotti-Grauert in [6] is called (n − q)-convexity.
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Proof. — This lemma is a generalization of Lemma 12.3 in [6]. The proof is the same: we
define Ap by

Ap =
{

z ∈ X | ρ j(α, z) −
(
ρ j(β, z) − ρ j (α, z)

)
(

p�

ν=1

χν) < 0, j = 1, . . . , `
}

where (χν)1 � ν � N is the partition of unity from the proof of Lemma 12.3 in [6].

Replacing in the proof of Lemma 12.4 of [6], the Henkin-Lieb integral operators by the in-
tegral operators defined by Barkatou [2] to solve the ∂-equation with C

∞ estimates in local
q-convex wedges we get

L 3.5. — Let [A1, A2, V ] be a wedge q-convex extension element in X , 1 - q - n.

i) If q - r - n and if U is a neighborhood of A2\A1, then for any f 1 ∈ Z∞0,r(A1, E ), there

exist f 2 ∈ Z∞0,r(A2, E ) and u ∈ C
∞
0,r−1(A1, E ), such that f 1 − f2 = ∂u on A1 and f1 = f2 on

A1\U .

ii) If q + 1 - r - n, and if U is a neighborhood of A2\A1, then for any f ∈ Z∞0,r(A2, E )

such that f = ∂u1 on A1 with u1 ∈ C
∞
0,r−1(A1, E ), there exists u2 ∈ C

∞
0,r−1(A2, E ) such that

f = ∂u2 on A2 and u1 = u2 on A1\U .

Following the methods used in paragraph 12 of [6], we deduce from Lemmas 3.4 and 3.5
that Theorem 12.14 in [6] is still partially true for wedge q-convex extensions.

T 3.6. — Let D be a domain in X such that X is a wedge q-convex extension of D,

1 - q - n. Then the restriction map H 0,r(X , E ) → H 0,r(D, E ) is an isomorphism for q + 1 -
r - n, and is surjective if r = q.

D 3.7. — A domain D in X with piecewise C
∞-smooth boundary is called a strictly

q-convex wedge in X , 1 - q - n, if there exists a finite number of functions ρ j , j = 1, . . . , `, of

class C
∞ in a neighborhood U∂D of ∂D such that

D ∩U∂D = {z ∈ U∂D | ρ j(z) < 0, j = 1, . . . , `}

and the following condition is fulfilled: for all z ∈ U∂D , dρ1(z)∧· · ·∧dρ`(z) ≠ 0 and for each

λ = (λ1, . . . , λ`)with λ j � 0 and
`�

j=1
λ j = 1, the complex Hessian of ρλ =

`�
j=1
λ jρ j has at least

(n − q + 1)-positive eigenvalues on U∂D

P 3.8. — Let D be a strictly q-convex wedge in X , 0 - q - n − 1, and ρ1, . . . , ρ`
some defining functions for D in a neighborhood U∂D of ∂D. For ε > 0, set Dε = D ∪ {z ∈ U∂D |

ρ j(z) < ε, j = 1, . . . , `}, then for sufficiently small ε, Dε is a wedge q-convex extension of D.

Proof. — Let (Kt )t � 0 be an increasing family of compact subsets of U∂D such that ∂D ⊂

∪t � 0Kt , ∂D∩
◦

K 0≠ ∅, and if t < t ′ then Kt ⊂
◦

K t ′ . Define by (χt )t � 0 an increasing family

of C
∞-functions with compact support in

◦

K t such that 0 - χt - 1 on Kt and χt ≡ 1 on
Kt−1/2. One can choose the family (Kt )t � 0 and the functions (χt )t � 0 such that the map t ,

χt is continuous from [1, +∞] into C
∞(U∂D ,R) and the Levi forms of the χt ’s are uniformly

bounded. For j = 1, . . . , `, set ρ j(t , z) = ρ j(z) − ε
t
|t |
χ|t |(z) for |t | � 1, ρ j(0, z) = ρ j(z) and

14



ρ j(t , z) = ρ j(z) − ε
t 2

|t |χ1(z) for |t | - 1, then the functions ρ j (t , z), j = 1, . . . , `, satisfy all
the conditions of Definition 2.1 as soon as ε is sufficiently small, moreover Dε = D ∪∪t � 0{z ∈

U∂D | ρ j(t , z) < 0, j = 1, . . . , `} and consequently Dε is a wedge q-convex extension of D.

Using Lemmas 3.4 and 3.5, in the same way as in the proof of Theorem 12.15 in [6] we can
prove easily

T 3.9. — Let D be a strictly q-convex wedge with piecewise C
∞-smooth boundary

in X , 1 - q - n. Then the restriction map H 0,r
∞ (D, E ) → H 0,r

∞ (D, E ) is an isomorphism if

q + 1 - r - n and is surjective if r = q.

Moreover if D̃ is a neighborhood of D such that D̃ is a wedge q-convex extension of D, then the

restriction map H 0,r
∞ (D̃, E ) → H 0,r

∞ (D, E ) is an isomorphism if q + 1 - r - n and is surjective

if r = q.

Note that the second assertion of Theorem 3.9 is proved in [8].

In order to extend Theorem 3.9 to current cohomology we need a local result on the Cauchy-
Riemann equation for extensible currents.

P 3.10. — Let D ⊂⊂ C
n be a local q-convex wedge, 1 - q - n. For r with

q - r - n, let T ∈ Ď
′0,r
D (Cn, E ) be an extensible current on D such that ∂T = 0 on D, then there

exists S ∈ Ď
′0,r−1
D (Cn, E ) such that ∂S = T on D.

Recall that by the Hahn-Banach theorem (cp. [12]) Ď
′0,r
D (Cn, E ) is the dual of the space

D
n,n−r

D
(Cn, E∗) of E∗-valued C

∞-smooth (n, n − r)-forms with support contained in D. In
the proof of Proposition 3.10, we shall proceed by duality and we need the following lemma.

L 3.11. — Let D ⊂⊂ C
n be a local q-convex wedge, 1 - q - n. Then for 0 - r -

n − q − 1

∂D0,r

D
(C

n, E ) =
{

f ∈ D
0,r+1
D

(C
n, E ) | ∂ f = 0

}

and hence is a Fréchet space and moreover ∂D
0,n−q

D
(Cn, E ) is also a Fréchet space.

Proof. — If D is defined by D =
{

z ∈ UD | ρ j(z) < 0, j = 1, . . . , `
}

then for sufficiently
small ε > 0, Dε =

{
z ∈ UD | ρ j(z) < ε, j = 1, . . . , `

}
is also a local q-convex wedge and by

smoothing the boundary of Dε we get a q-convex domain with C
∞-smooth boundary D̃ε such

that D ⊂ D̃ε ⊂ Dε. Moreover as D̃ε is q-complete in the sense of Andreotti-Grauert, we have

H 0,r+1
c (D̃ε) = 0 for 0 - r - n − q − 1

and

H
0,n−q+1
c (D̃ε) is Hausdorff

which implies that, if f ∈ D
0,r+1
D

(Cn, E ) verifies ∂ f = 0, if 0 - r - n−q−1, and
�
Cn f ∧g = 0

for all ∂-closed form g ∈ C
∞
n,n−r−1(D̃ε), if r = n− q, then there exists a form h ∈ D

0,r(D̃ε) such
that ∂h = f in Cn.

If r = 0, h is holomorphic inCn\D and vanishes inCn\D̃ε, hence h ≡ 0 onCn\D by analytic
continuation and therefore ������� h ⊂ D which prove the lemma in this case.
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Assume now 1 - r - n − q, then h is ∂-closed on Cn\D and vanishes in a neighborhood
of Cn\D̃ε. It follows from [3] that there exists a C

∞-smooth (0, r − 1)-form u in Cn\D, which
vanishes in a neighborhood of Cn\D̃ε and satisfies ∂u = h in Cn\D. Let ũ be C

∞-smooth
extension of u to Cn then � ����� (h − ∂ũ) ⊂ D and ∂(h − ∂ũ) = f . So we proved that

∂D0,r

D
(C

n, E ) =
{

f ∈ D
0,r+1
D

(C
n, E ) | ∂ f = 0

}
, if 0 - r - n − q − 1

and

∂D
0,n−q

D
(C

n, E ) =
{

f ∈ D
0,n−q+1
D

(C
n, E ) |

�
Cn

f ∧ g = 0, ∀g ∈ C
∞
n,q−1(D̃ε), ∂g = 0

}

and consequently ∂D0,r

D
(Cn, E ) is a Fréchet space for 0 - r - n − q.

Proof of Proposition 3.10. — Let T ∈ Ď
′,0,r
D (Cn, E ) be an extensible current on D such

that ∂T = 0 on D. We define a linear form LT on ∂Dn,n−r

D
(Cn, E∗) by setting LT (∂ϕ) = 〈T ,ϕ〉.

Note that if ∂ϕ = ∂ϕ′, then ϕ − ϕ′ is an (n, n − r)-form of class C
∞, ∂-closed with support

contained in D. By Lemma 3.11, if 1 - n − r - n − q, there exists θ ∈ D
n,n−r−1
D

(Cn, E∗) such

thatϕ−ϕ′ = ∂θ. Since D
n,n−r−1(D, E∗) is dense in D

n,n−r−1
D

(Cn, E∗), there exists a sequence

(θ j) j∈N ⊂ D
n,n−r−1(D, E∗) which converges to θ in D

n,n−r−1
D

(Cn, E∗). Then, as ∂T = 0 on D

we get
〈T ,ϕ −ϕ′〉 = 〈T , ∂θ〉 = lim

j→∞
〈T , ∂θ j〉 = 0

and therefore LT is well defined. Now if n − r = 0, ϕ − ϕ′ is an holomorphic function with
compact support and by analytic continuationϕ = ϕ′ and LT is also well defined.

It follows from the open mapping theorem that LT is continuous, since by Lemma 3.11,
∂Dn,n−r

D
(Cn, E∗) is a Fréchet space. Now we may apply the Hahn-Banach theorem and extends

LT to a continuous linear form on D
n,n−r+1
D

(Cn, E∗) which can be identified to an extensible

(0, r − 1)-current S̃ on D satisfying for allϕ ∈ D
n,n−r

D
(Cn, E∗)

〈S̃, ∂ϕ〉 = 〈T ,ϕ〉

in particular we get ∂S̃ = (−1)r T on D and S = (−1)r S̃ is a solution of ∂S = T on D.

Remark. — Proposition 3.10 is proved in [16] in the case when D is a completely strictly
q-convex domain with C

∞-smooth boundary of a complex manifold.

As in the proof of Lemma 12.4 of [6], from Proposition 3.10 we obtain

L 3.12. — Let [A1, A2, V ] be a wedge q-convex extension element in X , 1 - q - n.

i) If q - r - n and if U is a neighborhood of A2\A1, then for any ∂-closed current

T1 ∈Ď
0,r
A1
(X , E ) there exists a ∂-closed current T2 ∈Ď

0,r
A2
(X , E ) and S ∈ Ď

0,r−1
A1

(X , E ) such that

T1 − T2 = ∂S on A1 and T1 = T2 on A1\U .

ii) If q + 1 - r - n and if U is a neighborhood of A2\A1, then for any ∂-closed current

T ∈ Ď
0,r
A2
(X , E ) such that T = ∂S1 on A1 with S1 ∈ Ď

0,r−1
A1

(X , E ), there exists S2 ∈ Ď
0,r−1
A2

(X , E )

such that

T = ∂S2 on A2 and S1 = S2 on A1\U .
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If U is an open subset of X , we denote byȞ
0,r.&/10 (U , E ) the cohomology groups of extensible

currents on U , i.e. the quotient space

Ď
′0,r
U (X , E ) ∩ ker ∂/∂Ď

′0,r−1
U (X , E ).

Using Lemmas 3.4 and 3.12 similar to the proof of Theorem 12.15 in [6], we get easily

T 3.13. — Let D be a strictly q-convex wedge with piecewise C
∞-smooth boundary

in X , 1 - q - n. Then the natural mapȞ
0,r.&/10 (D, E ) → H 0,r.�/20 (D), whereȞ

0,r.&/10 (D, E ) denotes the

Dolbeault cohomology of the extensible currents on D, is an isomorphism if q + 1 - r - n and

is surjective if r = q.

Moreover if D̃ is a neighborhood of D such that D̃ is a wedge q-convex extension of D then the

restriction map H 0,r.�/20 (D̃, E ) → Ȟ
0,r.&/10 (D, E ) is an isomorphism if q + 1 - r - n and is surjective

if r = q.

From Theorems 3.9 and 3.13, we deduce the following isomorphism corollary

C 3.14. — Let D be a strictly q-convex wedge with piecewise C
∞-smooth boundary

in X , 1 - q - n then the natural map between H 0,r
∞ (D, E ) andȞ

0,r.�/20 (D) is an isomorphism if

q + 1 - r - n and is surjective if r = q.

Proof. — Let D̃ be a neighborhood of D such that D̃ is a wedge q-convex extension of D

then we have the following commutative diagram

H 0,r
∞ (D̃) -→ H 0,r(D)y

y
H 0,r.�/20 (D̃) -→ Ȟ

0,r.�/20 (D)
where the horizontal maps are the restriction maps and the vertical ones are the natural maps.
By the classical Dolbeault isomorphism for complex manifold the first vertical map is an iso-
morphism for all 0 - r - n, moreover by Theorems 3.9 and 3.13 the horizontal maps are
isomorphisms if q + 1 - n and surjective if r = q, therefore the second vertical map is an
isomorphism if q + 1 - r - n and is surjective if r = q.

4. Dolbeault isomorphism in C R manifolds

Let M be an oriented C
∞-smooth C R generic submanifold of real codimension k in an

n-dimensional complex manifold X . Following section 2 we can associate to M a family {Ω0,
Ω1, . . . ,Ωk} of open subsets of X . If moreover M is q-concave then by (9) the open subsets
Ω j0 ∩ · · · ∩ Ω js , 0 - j0, . . . , js - k, are strictly (n − q − k + 1)-convex wedges in X . Now
let us consider the double complexes C∞ and Č associated to U = {Ω0, . . . ,Ωk} and U =
{Ω0, . . . ,Ωk}. It follows from Corollary 3.14 that the double complexes C∞ and Č satisfy the
hypotheses of Theorem 1.2, i.e. the natural map between H r

I I (C
s
∞,I ) and H r

I I (Č
s
I ), −1 - s -

k − 1, is an isomorphism if r � n − k − q + 2 and is surjective if r = n − k − q + 1. Therefore
the natural map between the associated simple complexes induces an isomorphism

(18) H r
(s(C∞)) -→ H r

(s(Č)), r � n − k − q + 2
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and a surjective map

(19) H n−k−q+1
(s(C∞)) -→ H n−k−q+1

(s(Č)) .

Moreover from Propositions 1.3, 1.4, 2.4 and 2.5 we get

(20) H r
(M , W

p,∗
M ) -→ H r+k

(s(C∞)) -→ H r+k
(s(Č)) -→ H r+k

(M , D
′p,∗
M )

for 0 - p - n and 0 - r - n − k, where the first and the last map are isomorphisms

and the composed map is given by [ f ] , (−1)
k(k−1)

2 [T ], where T is the current defined by
〈T ,ϕ〉 =

�
M

f ∧ ϕ for ϕ ∈ D
n−p,n−k−r(X ) and [ · ] denotes the cohomology class of the

element.

Now associating Theorems 2.2 and 2.3 with (18), (19) and (20) we obtain

T 4.1. — Let M be an oriented C
∞-smooth C R generic, q-concave, submanifold,

real codimension k in an n-dimensional complex manifold X , 1 - q - n − k. For all inte-

ger p such that 0 - p - n, the natural map

H p,r
∞ (M ) -→ H p,r.�/20 (M )

is an isomorphism if r � n − k − q + 2 and is surjective if r = n − k − q + 1.

References

[1] A A., F G. & N M., On the absence of Poincaré lemma in tangential Cauchy-

Riemann complexes, Annali della Sc. Norm. Sup. di Pisa, série IV, 8 (1981), 365–404.

[2] BM.Y., C
k estimates for ∂ on q-convex wedges, to appear.

[3] B H., Estimations C
k pour l’opérateur de Cauchy-Riemann dans les domaines à coins q-concaves, en

préparation.

[4] G R., Théorie des faisceaux, Hermann, 1964.

[5] H G.M., Solution des équations de Cauchy-Riemann tangentielles sur des variétés Cauchy-Riemann q-

concaves, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 27–30.

[6] H G.M. & L J., Andreotti-Grauert theory by integral formulas, Progress in Math., 74, Birkhaüser,
1988.

[7] H C.D. & N M., Duality and distribution cohomology of C R manifolds, Annali della Sc. Norm.
Sup. di Pisa, série IV, 22 (1995), 315–339.

[8] H C.D. & N M., On the Cauchy problem in complex analysis, Ann. Math. Pura Appl., 171 (1996),
159–179.

[9] H C.D. & NM., Pseudoconcave CR manifolds, Complex Analysis and Geometry, Lecture Notes in
Pure and Appl. Math.,173, Marcel Dekker,New-York, (1996), 275–297.

[10] KM. & S P., Sheaves on manifolds, Springer Verlag, 1990.

[11] L-TC. & L J., Malgrange’s vanishing theorem in 1-concave C R manifolds, Nagoya Math.
Journal, 157 (2000),59–72.

[12] M A., Distributions et valeurs au bord de fonctions holomorphes, Strasbourg RCP 25 (1966),

18



[13] NM., Poincaré lemma for tangential Cauchy-Riemann complexes, Math. Annalen, 268 (1984), 449–
471.

[14] N M. & V G., Tangential Cauchy-Riemann complexes on distributions, Ann. Math. Pura Appl.,
146 (1987), 123–169.

[15] T J.C., Idéaux de fonctions différentiables, Springer Verlag, 1972.

[16] S S.M., Résolution du ∂ pour les courants prolongeables, Prépublication de l’Institut Fourier 486 (1999),

Christine LAURENT-THIÉBAUT,
INSTITUT FOURIER
Laboratoire de Mathématiques
UMR5582 (UJF-CNRS)
BP 74
38402 St MARTIN D’HÈRES Cedex (France)

and

Jürgen LEITERER,
Institut für Mathematik
Humboldt-Universität zu Berlin
Rudower Chaussee 25
D-12489 Berlin (Germany)

19


