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Let X be a complex manifold of complex dimension n. For p € Nsuchthat0 < p < n, we
denote by Q )’z the sheaf of germs of holomorphic p-forms on X. If the cohomology groups of
the sheaf Q )l; are denoted by H" (X, Q }’;) and the Dolbeault cohomology groups for #*-smooth
differential forms and for currents are respectively denoted by HJZ 4 (X) and Hc’f{f (X), it follows
from the Dolbeault lemma for d and the de Rham-Weil isomorphismthatfor0 < r < n

H'(X,QF) ~ HP'(X) ~ HP[(X) .
The natural map HPT(x) — HE! (X) whichis actually an isomorphism is called the Dolbeault
isomorphism.

If M is an oriented #* -smooth CR manifold, it is then natural to ask which relations may
exist between the cohomology groups of the sheaf of germs of CR €~ -smooth p-forms on M
and the cohomology groups of the tangential Cauchy-Riemann complex for € -smooth dif-
ferential forms and for currents. Following the method used in the complex case we may hope
to get some answer when there exists a Poincaré lemma for the tangential Cauchy-Riemann
operator.

Let M be an oriented locally embeddable ¢~ -smooth CR manifold of real dimension 2n—k
and CR-dimension n — k, and assume moreover M is g-concave, 0 < g < n — k, i.e. the Levi
form of M has at least g positive eigenvalues in all directions. On M we may consider for all p,
0 < p < n, the tangential Cauchy-Riemann complexes

[EP71(M) 0 — [£P01(M) 2 [6P1(M) — - -+ — [P F)(M) — 0

[ PFIM) 0 — [@/POYM) 2 [P (M) — - — (@ PP R (M) — 0

of @* -smooth differential forms and currents, whose cohomology groups are respectively de-
noted by Ho’f’r(M ) and Hc'fl’[ (M). Moreover we denote by H" (M, Q ]’\g/[) the Cech cohomology
groups with coefficients in the sheaf Q ]’f/] of germs of CR ¢~ -smooth p-forms on M.

Let us recall that by results of Henkin [5], Nacinovich [13] and Nacinovich & Valli [14], the
Poincaré lemma holds for 517 inbidegree (p,r)ifl1<r<g-landn-k—-g+1<r<n-k
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for g > 2, and that each CR distribution extends locally to a holomorphic function as soon as
q>1.

The main result of this paper is the following theorem.

THEOREM 0.1. — Let M be an orientable locally embeddable € -smooth q-concave CR man-
ifold of real dimension2n — k and CR dimensionn — k, 1 < g < n and p an integer such that
0 < p < n. Then the natural map

HP"(M) — HPI (M)
isanisomorphismif0 L r< g—-landn—k—q+2 < r < n—k, isonlyinjective if r = q and
only surjectiveifr=n—k — q+ 1.

For small degrees, i.e. 0 < r < ¢, the theorem is a direct consequence of the Poincaré
lemma for the tangential Cauchy-Riemann operator and of the de Rham-Weil isomorphism as
in the complex case.

Note that the surjectivity is proved by Hill and Nacinovich in [7] for high degrees, i.e. r >
n—k— qg+1,when M is of hypersurface type, i.e. k = 1. The proof of the result in high degrees
is the object of the present paper. Since M is g-concave, 1 < g < n — k, by a result from Hill
and Nacinovich [9], without loss of generality we may assume for the proof that M is globally
and generically embedded in an n-dimensional complex manifold.

In [8], Hill and Nacinovich have considered the natural map H" (M, Q ]’fd) — H! (M) and
given for it analogous surjectivity and injectivity properties.

As a consequence of Theorem 0.1 and Theorem 0.1 in [11] we get a vanishing theorem of
Malgrange’s type for the cohomology of the tangential Cauchy-Riemann complex of currents.

CoROLLARY 0.2. — Let M be an orientable locally embeddable € -smooth, non compact,
connected, 1-concave CR manifold of real dimension2n — k and CR dimension n — k. Then for
oS psn

HE Ry = 0.

cur

1. Cohomological preliminaries

Let Abearingand X = (XP49) pgez & double complex of A-modules, which is defined by
the morphisms

d =d,,:XP7~ XP" and d" =d),,: xP9 - xPI*!

satisfying the relations
d/Z =0,d”2 =0 and d! o d// — d// o d,.

For a given p € Z, we may consider the simple complex le = {XP4,d"} and in the same way
for a given g € 7, the simple complex Xﬂ = {XP4,d'}, the associated cohomology groups are
denoted respectively by HE(XIp yand H ]p (Xﬂ). Moreover the morphism d’ (resp. d’’) induces
a morphism d, : HIqI(XIp) - HE(XIpH) (resp. d : HIp(Xﬂ) - HIp(XITl)), with d:kz =0



(resp. d./? = 0), and the cohomology groups of this complex are denoted by Hlp HE(X ) (resp.
H H] (X).

Assume X satisfies the following finiteness property:

(1) forany £ € Ztheset {(p,q) € ZxZ | p+ q =¥, X9 + 0} is finite.

Then it is possible to associate to X a simple complex s(X) by setting s(X )g = @ xpd

ptq=1
and for

Xp = (xp,q)p+q=€ S S(X)E; dxy = (d,xpfl,q+1 + (_1)pd”xp,q)p+q:{’
whose cohomology groups are H L(s(X)).

Note that the condition (1) is fulfilled in particular if

2 XP49=0for p¢ {0,..., k},where k € Nis fixed.

THEOREM 1.1. — Let f : X — Y be a morphism of double complexes, where X andY both
satisfy (1). Assume f induces an isomorphism

3) HI”HE(X) — HIPHE(Y), for any pair (p, q).
or
) HH(X) — H{H(Y), forany pair (p,q).

Then the map s( f) : s(X) — s(Y) induced by f between the associated simple complexes
induces for any r € Z an isomorphism

H'(s(X)) — H'(s(Y)).

Remark. — Under the hypothesis (3), the theorem is proved in ([10], chap. I). To get the
result under the hypothesis (4) we have to apply the previous case to the new double complex
X defined by X749 = X7, d), . = (-1)9d, ,and d,, , = (-1)Pd,,

For section 3 we need a different version of Theorem 1.1.

THEOREM 1.2. — Let f : X — Y be a morphism of double complexes, where X andY both
satisfy (2), and q € Z is a fixed integer. Assume [ induces an isomorphism

2T HL(X) — H(YP) foro< p<kandr>q+1
and a surjective map
I HYL(XP) — H (V) foro< p< k.

Then the map s(f) : s(X) — s(Y) induced by f between the associated simple complexes
induces an isomorphism

H'(s(X)) — H'(s(Y)) for r > q+k+1

and a surjective map
H¥(s(X)) — HT*(s(Y)).



Proof. — The first assertion follows from Theorem 1.1 applied to truncated complexes as-
sociated to X and Y. Now let us consider the second assertion. Let b € s(Y)‘7+k such that
db=0,i.e.b= (b gk ..., brg) Withd by g =0and d'bj_y gek—js1+ (-1)Id"bjgrp—j =
Ofor j = 1,...,k, wehaveto find a € s(X)7"¥ and ¢ € s(Y)97%1 such that da = 0 and
s(f)(a) = b+ dc. We shall construct a = (ﬂo,q+k’ . ..,akyq) and ¢ = (CO,q+k71» e, ck,q,l) by
induction on the first index.

As d'" by q+x = 0, by surjectivity of the map fIO]’q+k, we get ag g+k € X049k and Co,g+k-1 €
Y %a+k=1 with d" aggrx = 0and s( f)(ay g+r) = bo,g+i + d” co,gric—1-
Now assume that, for some j, 0 < j < k — 1, we already got ag,g+kr -+ Aj,grk—j and
Co,g+k—-1r+++»Cjg+k—j-1 with d”aﬂ,qﬂc =0, d,ap—l,q+k—p+1 + (_l)pd”ap,zﬁkfp = 0and
4 144
(*p) s(f) (ap,q+k7p) = bp,q+k7p +d Cp-lg+k-p Tt (-1)Pd Cp,g+k—p-1

for p=0,..., j (here c_y g+r = 0). Let us construct a j41,g+k— j—1 and € j+1 g+ j-2. Asdb = 0,
we have
d"bj,gik-j-1=(-1)7d'bj g
Using (* j) we get
A" (bju1,grk—j1 +d cjgre—j-1) = (=DId's(f)(ajgii— )

o s . s i+1,g+k—j _. . ~
Hence the injectivity of fI]I Lark= gives the existence of @ 11 g+ j—1 such that

I~ BRU
d’dj,grk-j—1= (D d aj g

and
144 ~ 4
d’[sCf)(@js1,gek—j-1) = bjr1,g+k—-j-1 — d Cjgik—j-1] = 0.
. .. . jtLgtk—j-1 ”
Using the surjectivity of f;; we can find dji1,g+k- j-1 and ¢j4+1,4+k- j—2 such that

d" a1 ,gik-j-1 =0and
S(@jrr,grk-j-1) = bjrrgrk—j-1 = d'Cjgek-j1

= s(f)@js1,qek-j1) + (DA iy gri—j2.
Itremainsto set a1, g+k— j-1 = Gj+1,g+k— j-1 — 4 j+1,g+k— j—1-

Note that to construct ai,, we used only the injectivity of flli’qﬂ and the surjectivity of

k.q

II . D
We consider now two special cases of Theorem 1.1.
PROPOSITION 1.3. — Let A = (AP9),, ;7 be a double complex such that AP9 = 0 if p ¢

{0,...,k} and o« = («P9) ), 47 a double complex such that xP9 = 0 if p + k for a given
k € N*. We assume that for each q € Z,

HIP(A?I) =0if p<k-1and HIk(A?I) = aka
then the simple associated complexes s(A) and s(x) are quasi-isomorphic.

Moreover s(x) is quasi-isomorphic to the translated complex &* [ — k] and the inverse of the

natural isomorphism between H™ ™ (s(A)) and H™(«*") is given by X" — @"**, where@*"* is

the cohomology class of an atk = (ag,n+ks - - -» Ak,n) Such that

dap i pik-pn+ (—DPd"appip—p=0for p=1,...,k

and the image of ay.,,, by the natural projection from AR on 1o oF7 s X,



PROPOSITION 1.4. — Let B = (BP9),, 4,c7 be a double complex such that BP9 = 0 if p ¢
{0,..., k} foragivenk € N* and B = (BP) p,qez a double complex such that BP9 = 0 if p + 0.
We assume that for each q € Z,

HP(B]) =0 if p> 1 and H} (B}, = g9,

then the simple associated complexes s(B) and s(B) are quasi-isomorphic.

Moreover s(B) is quasi-isomorphic to % and the inverse of the natural isomorphism be-
tween H™(B%") and H"(s(B)) is given by " - ¥" where D" is the cohomology class of a b" =
(bo,ns--.»br,n—i) such that(by y, ..., bg,n—1) and (y,0,...,0) arein the same cohomology class
of H"(s(B)).

2. Geometrical preliminaries

CR manifolds.

Let X be a complex manifold of complex dimension n. If M is a € -smooth real subman-
ifold of real codimension k in X, we denote by T.*(M) the complex tangent space to M at
T € M. Such a manifold M can be represented locally in the form

(5) M={zeQ|pi(z)="---=pr(z) =0}

where the p,’s, 1 < v < k, are real ¢ functions in an open subset Q of X. In this representa-
tion we have

n
op
Cag _ v _ _
(6) TTM—{ge([’HZgj(T)gj—O, v—l,...,k}
Jj=1
and dim¢ TT‘C(M ) = n—kfort € MnQ,where (zy,..., z,) arelocal holomorphic coordinates

in a neighborhood of T.

The submanifold M is called CR if the number dim¢ TT(C(M ) is independent of the point
T € M, and CR genericif dimc TT(C (M) = n— kforevery T € M. In the local representation (5),
M is genericif and only if 9p; A ... A 0pi # 0 on M.

DEFINITION 2.1. — Let M be a € -smooth CR generic submanifold of X. We say that M
is g-concave, 0 < q < n — k, if for each T € M, each local representation of M of type (5)
in a neighborhood of T in X and each x € R¥\{0}, the quadratic form on T.EM defined by

2 —
> azaggﬁ (T)Culp, where py = x1p1 + -+ + x(pr and C € TT‘CM, has at least q negative
B

eigenvalues.

Tangential Cauchy-Riemann complexes.

Let M be an oriented ¢ -smooth CR generic submanifold of real codimension k in an n-
dimensional complex manifold X. We denote by %), the ideal sheaf in the Grassmann algebra
& of germs of complex valued @*-forms on X, that is locally generated by functions which
vanish on M and by their anti-holomorphic differentials.



On X we have the Dolbeault complexes for the sheaves of germs of smooth forms:
EP* .o — PO ignl i iéap,n —0,

where &P/ is the sheaf of germs of complex Valued %”-fo.rms of bidegree (p, j) on X, 0 <
p, j < n. We set JAZ’] = 9y N EPJ. Since 5#1\’;’] - ﬂA’;’JH, foreach 0 < p < n, we have
subcomplexes

p0 0 0

: 1 [l :
g0 —gh” Soght S0 Soght g

of the complex &”* and hence quotient complexes [ &7 *], defined by the exact sequences of
fine sheaves complexes
0— Fh" — &P* — [&P*] — 0.

The induced differentials are denoted by d;;. We write the quotient complex as
0Pk . - p,0 5M op,1 5M 5M 30
[77]:0 — [¢77] = [677] = - - = [¢77] — 0,

itis called the tangential Cauchy-Riemann complex of € -smooth forms. If U is an open subset
of X, the cohomology groups of [&£P*]on M n U are denoted by Ho’f’] (MnU).

Let J) denote the ideal sheaf of germs of smooth complex valued differential forms on X
that are flat on M, and set 9]\’;'1 = Iy N &P, Note that 5.?]]5[’1 C CU}A?’JH, therefore JA’Z* isa
subcomplex of ¢”* and the short exact sequence of fine sheaves complex

L GP* L gbx L wP*
0— F & wh* — 0

defines the complex
Pk, p,0 El pl El El p,n
wh* 0o —wht Lwht Lo Lowh — o

of Whitney germs of forms on M.

It follows from the formal Cauchy-Kowalewsky Theorem for CR generic submanifolds of a
complex manifold (cf. [1]) that the complexes [&P*] and WAZ’* are quasi-isomorphic (see e.g.
[13]), more precisely

THEOREM 2.2. — If M is a CR generic submanifold of real codimension k in X, then for all
p, j = 0 and every open subset U of X with M n U + O, the maps

HIMnU,WE) — HPI(M A U),

induced by the natural map WA’;’* — [&P*], are isomorphisms.

In order to define the current d,,-cohomology groups on M N U, we first consider the
spaces [2P/]1(M n U) of sections of [ &P/ ] having compact supportin M n U with their usual
inductive limit topology.

We define [2'P/](M n U) as the topological dual of [ 2"~ pn=k=j1(M n U). In this way
we obtain, for each 0 < p < n, a complex of sheaves

’ ’ 5 ’ 5 5 ’
(G P*]:0 — [@'PO] M [Pl M ... M (g'P] — 0



whose cohomology on M N U we denote by Hc’fl’rj (MnU).

Let &' be the sheaf of currents on X, we denote by @3\/1 the subsheaf of &’ of currents with
support contained in M. Dualizing the formal Cauchy-Kowalewsky Theorem, (cf. [7]), it follows
that the complexes [ 2 P*] and the translated complexes @;\/1* [ k] are quasi-isomorphic, more
precisely

THEOREM 2.3. — If M is a CR generic submanifold of real codimension k in X, then for all
p, j 2 0 and every open subset U of X with M n U + O, there are natural isomorphisms

HPJ(M nU) — HP TR (@), (U)).

cur

Simplicial complexes associated to a CR manifold.

Here we denote by M a #* -smooth CR generic submanifold of real codimension k in an n-
dimensional complex manifold X. Following the reductions in sections 2 and 3 of [8], without
loss of generality we may assume that M is globally defined by

) M={zeX |pi(z)=---=pr(z) =0}

where the p,’s, 1 < v < k, are real ¢ functions in X satisfying

(8) 0p1 A ... NOpg # 0in X.
k ) k k )
Foreachv =1,..., k, we set ,, =pv+(,U]Z=1pjand(po = —jzzjlpj+tpjzzlpj,wheretplsa

positive function of class #* in X. Next let

k
0={)\=(A0,...,/\k) e R | Ai>o,ZAi=1}
i=0

k
be the standard k-simplex, with boundary do-. For A € 00, weset @ = Y A, @,. By choosing
v=0
y sufficiently large on each compact subset of M and possibly shrinking X, if M is g-concave,

we can arrange that

(9) foreveryA € 0o, the Levi form %, of @, has atleast g + k positive eigenvalues,

(10) for every ordered collection of k integers 0 < i < ... < i < k,

0P A...AO0@; #+ 0 on X,

(11) ifwesetQ, ={ze€ X | p,(z) <0},v=0,...,k,then
k k k
M=, X\M=JQ, and X = JQ,.

v=0 v=0 v=0

Let E be a @~ -differentiable vector bundle over X. Given any open subset U in X, we
denote by [(U, E) the space of smooth sections of E over U. If A is a closed subset of U, we



denote by 4 (U, E) the space of sections f € (U, E) that are flat on A. The space W (A, E)
of Whitney sections of E over A is defined by the exact sequence

0 — 94(U,E) —I(U,E) — W(AE) — 0.

We shall say that two closed subsets A and B of U are regularly situated if and only if the se-
quence
0 — W(AUBE) — W(AE)e W(B,E) — W(ANB,E) — 0

is exact for any vector bundle E over Q.

If we consider the system of closed sets U = {Qy,.. .,ﬁk} defined by (11) then for any
choice of 0 < i, ..., i < kand0 < jo,..., js < k,0 < 1,5 < k, the closed sets Qj, N...NQ;,
and Q joN--N Q js are regularly situated because of the transversality condition (10) (cf. [15]).
Then we can define the space €5 (%, E), 0 < s < k, of alternating cochains of the form

fs=(fj0...js) with fjo...jsEW(ﬁjoﬂ...ﬂﬁjs,E)
with the coboundary operator

s+1

- _1)" .
SV jorjon = DD i lognenoy,, -
h=0

It is easy to verify that

Q@ E) 2w E) > @ E 2 ... 2 @@ E) —o
is a complex. Moreover it follows from Proposition 1 in [13] that the sequence
(12) 01,8 L Qe L e ae L. 2 @k aE) —o,

where 8 is defined by 50 f=f |§s), is exact.

Let E be a ¢*-differentiable vector bundle over X. Given any open subset U in X we
denote by @' (U, E) the space of distribution sections of E over U. For a closed subset A of
X we denote by @A(U, E) the subspace of distribution sections in @' (U, E) having support
containedin An U.

The maps U — %' (U,E) and U ~ D@;‘(U, E) from the open sets of X to the category of
vector spaces define soft sheaves over X, that we will denote by 9’ (E) and @;‘ (E) respectively.
Let us fix an open subset Q C X, then the sheaf @b(E ) of extensible distributions in Q) with
values in E is defined by the exact sequence

(13) 0 — PDx\q(E) — @'(E) — F(E) — 0.
Then also %, (E) is a soft sheaf and for any open set U in X the space 7, (U, E) of sections of

9, (E) over U can be identified to the space of distribution sections of E over Q n U that are

restrictions of distribution sections of E over U. In [12], Martineau proves that if Q= Q, then for
every open set U in X, the space @b(U, E) is the dual of the subspace of (U, E*) of smooth
sections of E* over U having compact support contained in Q.

Consider the system of open sets % = {Qo,...,Q} defined by (11), the transversality
condition (10) implies that it is co-regular, i.e. for every open set U in X the system of closed



sets {U\Qy, ..., U\Qg} is regularly situated. Now we can define the space DU, E),0< s <
k, of alternating cochains of the form

TS = (Tj...j;) with Tj,... e%bmn% (X,E)
with the coboundary map

s+1

sy | A _1\h R
(6T )]0"‘]s+1 Z( 1) TjO"'jh"‘js+1 |Qjom...mst+1
h=0

and we get a complex
& (u,E) > @ (u, ) 2 @, E) 2 .. 2@ U, E) — o

Moreover it follows from Proposition 2 in [14] that the sequence

~ 0 v v hg —
14) 0 — Py (X, BE) =@, E) 2@ (u,p) > .. 2@ (u,E) —o

where 80 is defined by 80T = (T IQ].), is exact.

Combining the exact sequences (13) and (14) we get the exact sequence
_ , 8 o 5 5 k-1
(15) 0— 9,X,E) — Y X,E) —€¢ (UUE) — --- =€ (%,E) — 0.

Let EP9,0 < p,q < n, be the vector bundle of (p, g)-forms on X. Foreach0 < p < n
and 0 < s < k — 1, using the d-operator we associate to the systems % and % the complexes
(€5 (%, EP*),0) and (€°(4a, EP*),0). Itis easy to verify that then the coboundary maps & are
morphisms of complexes. We define the complexes (€' (%, EP'*),3) and (¢~ (%, EP'*),d)
by setting

@M (U, EP*) =T(X,EP*) and @ ‘(% EP*):=2 (X, EP").

With the notations of section 1, we can summarize the previous results in the following way,
since €~ (2, EP*) = W (M, EP*).

To simplify the notations we set WAZ'* (X) =W (M, EP*) and @;V’["q(X) =9 (X,EP*).
ProPOSITION 2.4. — Foreach0 < p < n,

1. The double complex Cy, := (€5 (%, EP)) _1<s<k-1 satisfies for all q
0g<q<n

Hi(C,p=0 if s<k-2 and HfNCI,)=wh9X).

2. The double complex C = (€°(, EP?)) _ <<k satisfies for all g
0 gsn

H{(CIH) =0 if s=0 and H;'(C])=a/7X).

As a @ -smooth form on the closure of an open subset of X defines an extensible cur-
rent, there is a natural map between the double complexes C,, and C. Considering Proposi-
tions 1.3 and 1.4, it follows from Proposition 2.4 that this natural map induces a map between
H™ (M, W)7™) and H™* (M, 2,]").



PROPOSITION 2.5. — The map between H" (M, WA?*) and H™* (M, @;\/’[7'*), 0<r<n—k,
y k(k-1)
induces by the natural map between C, and C is given by [ f] - (=1)" 2 : [T], whereT is the

current defined by (T, ) = fM fApforpe ™ pn=k=1(x) and|-] denotes the cohomology
class of the element.

Proof. — To prove this result we have first to introduce some new sets. Let I'; be the subset
of Q; defined fori =0,..., k by

i=Qin{ze X | @i(z) <@jlz), Vj=*i}.
Forr < s < k, we set
l"ilmis=Q,~l ﬂ...ﬁQisﬂ{ZEX | (pil(z)= "-=CP,'S(Z) <(pj(z), Vj:/: i,e.., s}

and Iy; x = M. We define an orientation on the I;;...; s by takingon I;, 0 < i < k, the
orientation induced by X and onTj,...; the orientation of the boundary of Fil oo multiplied
by (=1)V*L. These sets have the following properties : let I = {i; - - - is} be a multi-index of

length [I| = 5,1 < s < k+1, then

(16) dimgI; =2n— |Il+1 and er1=ar,.
vél

Let f € W]ﬁ’r (X) be a 0-closed Withney section of E”" over M. Going back to Proposition 1.3,
it follows from 1 in Proposition 2.4 that there exists a family of cochains y‘e @2 (@, EP" k=571,
-1 < s < k- 1, such that

(17) Y+ (=1D)%y*"' =0 for -1<s<k-2 and &y '=Ff.

Recall that y* = {yy, |I| = s+ 1}, where y; € W(Qj n...N Qi EPTHR=S=1yif [ = gy - - - g,
0<s< k-1landy ! e (X, EPHK),

Using the natural map between Withney sections and extensible currents the cochain y*
defines an element, still denoted y*, in @* (%, EP7Tk=s—1), Following Proposition 1.4 associ-
ated to Proposition 2.4 we have to prove that ((—1) k(szl) T,0,...,0) and (y’l, ey, yk’l) are in
the same cohomology class of the simple complex associated to the double complex C. Then

the proposition will be an immediate consequence of the next lemma. ]

In the lemma and in its proof all summations are taken over increasing indices.

LEMMA 2.6. — The families of the cochains S'™1 e s (2, EPT+k=0-1y o < ¢ < k de-
fined for1 < £ < k—1byS!=1 = (S, |I| = £}, where

k-t 1+Zv:)\
Si=(-n'y (-1 = Z/YU/\
v=1

1=yl
and by
k 13 A
sT=(n'y (- = Z/}’]/\
v=1 [ Jl=v Iy
and S¥=1 = 0 satisfy

(@) 6872+ (-1)28st =yt for 1< <k
k(k-1)

) 3S'=y'-(-)"z [, fA.

10



Proof. — We shall use the following notation : let K and K be two multi-indexes such that
K c K, II%I = |K| — 1 we set O'(K,I?) = p + 1 if the missing index in K is the index that
was at rank u in K. Consider the assertion (i). Let ¢ € @”_p'”_k_”'e“(()il N...NnQ;) and
I=(ip---ip),1 <<k, then

(6" DLy = 3 17IN(s, @)

T=I11-1
icI

and

(3S1, @) = (~1)P7HEL s By,

Using the definition of the S;s and the Stokes formula associated to (16) we get
(88" %)+ (=1)'728S1, @) = A+ B+ G

where we have

Ap = (—1)“2/ > (—1)"<"7)y7,mp+2/5yump

71=1"1 1= 1=
Tcr
k—éﬂ
1+ A ~
By = (-n'-p =Y S )Py e
T1=k—417 17 ffi=p-1
IcIl
Icif
1+ A ~
CICLEICI VIR Y T ysne
T1=k—+17 1 (Jike
Jer
k-t V
+3 A ~
v=2 =y ITi=e-1
IcI
k-0 v-1
+> A ~
OIEIR I O B S
v=2 Jl=v? Ti=v-1
jcJ
k-t 14322 _
=D DY A Z/ayzwcp.
v=2 7=y /11

By definition of the operator 6 we have

Gyy= Y DTy + (DI N (7P Dy

1Ti=l11-1 J1=171-1
IcI Jci

11



So the relations (17) and the fact that 8 f = 0 imply

vv+1) _ {-2=
[71=v
(k—0+2) (k—+1) P+2)(k 0+1) _
B = (—1)3(—) Z (5;/c Ny A@=0
[J1=k—0+1
A =

k
/yl/\(p—Z/ ((5y€)j1+(—1){)5}’j1)/\(P=/}’I/\‘P-
Q 0T Q

Let us prove now the assertion (ii). Let ¢ € 2"~ pn—k=r(xy, using again the Stokes formula
associated to (16), by definition of S Lwe get

(—~D)PR s Bg)

k' v
> -1 nia’ > (5YV1)1/\<P Z( His Z/aqu)

v=1 | I|=v+1 | I|=v

(k+1) (k+2)
(-1 2 / 5yk‘1A<p+/y‘1A<p
M Q

v(v+l) —
+Z( e Z/ (Y ™)1+ (=1)"3y1) n @
Then it follows from (17) that

[Il=v
/yl — (@7, ) = / Ao
Q

Remark. — We may notice that Proposition 2.4 and 2.5 are still true without g-concavity
hypothesis on M, the only thing we have used is the genericity of M.

(2571, @)

O

3. The isomorphism theorem for a single wedge

We denote by X a complex manifold of complex dimension n and by E a holomorphic
vector bundle over X. We are going to generalize the notion of g-convex extension (cp.,e.g., [6])
and prove that some results on g-convex extensions are still valid in our case.

DEerINITION 3.1. — Let X be an n-dimensional complex manifold, q an integer such that
1 £ g < nand D adomain in X. We say that X is a wedge g-convex extension of D if the
following conditions hold:

(i) D meets all the connected components of X .

(i) There exist some applicationsp j : Rx U — R for j=1,..., k, whereU is a neighbor-
hood of X\ D such that

a) Themapst — p j(t,z), j=1,..., k, are continuous fromR into «>*(U,R).

12



b) Forallt € R, dpi(t,:) A -+ Adpy(t,-) = 0onU and, foreach A = (Ay,...,Ay)
k k

withA; > 0and ) A j = 1, the complex Hessian of px(t,-) = Y Ajp j(t,-) has at least
j=1 j=1

(n — q + 1) positive eigenvalues throughout U .

c)Forallz € Uandall j=1,...,k,p (-, z) is adecreasing function.

ADnNnU=1{ze€U]|pj0,z) <0, j=1,...,k} and foreach t > 0, theset {z € U |
pj(t, z) <0} n CDis relatively compact in X .

Remark. — If D is a domain in X such that X is an n — g-convex extension in the sense of
[6]' then it is clear that X is a wedge g-convex extension of D, it is sufficient to consider one
function p(z) — ¢, where p is the function from Definition 12.1 in [6] (provided p is €*) .

DEFINITION 3.2. — A domain D cC C" is called alocal g-convex wedge, 1 < q < n, if there
exists a finite number of € functionsp,, ..., px in a neighborhood Uy, of D such that

D={ze Uplpijz) <0, j=1,..., ¢}

and the following condition holds : ifz € 0D and1 < ky < -+ - < kp < £ with P (2) ==
pkp(z) =0rthendpy, (2) A~ - - /\dpkp(z) # 0andforall)y,...,Ap Z OwithA1+---+Ap =1,
the Levi form at z of the function A py, + - - - Appy, has at least n — q + 1 positive eigenvalues.

DErFINITION 3.3. — Let X be an n-dimensional complex manifold and q an integer such that
1< g< nIfAy, Ay, V aredomainsin X, then wesay [ A1, Ay, V] isawedge g-convex extension
element in X if the following conditions are fulfilled

(i) A; C Ay and A)\A; cC V cC X;

(ii) 'V is contained in some local coordinate patch and there exists a domain D cC V
such that D, = Ay n D and D, = A, n D are biholomorphic to local q-convex wedges and
Dy)\A1 N A1\Dp, = @.

LEMMA3.4. — Letp;j: Rx X — R, j =1,...,4, be some applications with the properties
a), b) and c) from Definition 3.1. We set for all x € R

DO(:{ZEXij(cx,z) <0, j=1,..., ¢}

and we assume there exists &g > 0 such that if || < &g, |&'| < g and &’ < &, then Dy\D ' is
relatively compact in X .

Then we can find a real number € > 0 such that for all x, B with —¢ < x < 0 < B < ¢, there
exists a finite number of domains (Ai)og i<N such that

Dy=AyCA C---CANy=Dg

and for each j,1 < j < N, Aj can be obtained from A j_1 by a wedge q-convex extension
element.

Note that g-convexity in the sense of Andreotti-Grauertin [6] is called (n — q)-convexity.

13



Proof. — This lemma is a generalization of Lemma 12.3 in [6]. The proof is the same: we
define A, by

p
Ap={zeX |pj(,2) - (pj(B2) - pj(x,2) D x) <0, j=1...4¢|

v=1
where (X,) 1<VEN is the partition of unity from the proof of Lemma 12.3 in [6]. O

Replacing in the proof of Lemma 12.4 of [6], the Henkin-Lieb integral operators by the in-
tegral operators defined by Barkatou [2] to solve the d-equation with @ estimates in local
g-convex wedges we get

LEmMA 3.5. — Let[A;, A2, V'] be a wedge q-convex extension elementin X,1 < g < n.

) Ifq < r< nandifU isaneighborhood of A2\ Ay, then forany f1 € Zg s°.(A1, E), there
exist f» € ZOyr(Ag,E) and u € @O,rfl(Al’E) such that fy — fo» = du on Ay and fi= foon
A\U.

i) Ifq+1 < r < n andifU is a neighborhood of Ay\ Ay, then forany [ € zgj’,(zz, E)
such that f = duy on Ay with u; € @gj’,_l(Zl,E), there exists u, € @(;’f’r_l(zz,E) such that
f =0uy on Ay and uy = up on Ay\U.

Following the methods used in paragraph 12 of [6], we deduce from Lemmas 3.4 and 3.5
that Theorem 12.14 in [6] is still partially true for wedge g-convex extensions.

THEOREM 3.6. — Let D be a domain in X such that X is a wedge q-convex extension of D,
1 < g < n. Then the restriction map HY"(X,E) — HY (D, E) isan isomorphism forg +1 <
r < n, and is surjective if r = g

DEFINITION 3.7. — Adomain D in X with piecewise € -smooth boundary is called a strictly
g-convex wedge in X, 1 < q < n, if there exists a finite number of functionsp j, j =1,..., 4, of
class € in a neighborhood Uyp of 0D such that

DnUyp={ze UaDij(z) <0, j=1,...,‘€}

and the following condition is fulfilled: for allz € Uzp, dp1(2) A - - - Adpy(2) = 0 and for each
! !

A=(Ay,...,Ap) withAj > 0 and > A j = 1, the complex Hessian of py = > A jp j has at least
j=1 j=1

(n — q + 1) -positive eigenvalues on Uyp

PROPOSITION 3.8. — Let D be a strictly g-convex wedgein X,0 < g < n—1,andpy,...,pyp
some defining functions for D in a neighborhood Usp of 0D. Fore > 0, set D = DU {z € Upp |
pi(z) <& j=1,... , £}, then for sufficiently small €, D; is a wedge q-convex extension of D.

Proof. — Let (Kt)¢>0 be an increasing famlly of compact subsets of U;p such that 0D C
Ur>0Ky, 0DN Kozﬁ @, and if t < t’ then Kt CKt Define by (X;);>0 an increasing family

of @*-functions with compact support in K ¢suchthat0 < x < lon Ky and Xy = 1 on
Ki-1/2. One can choose the family (K;);>o and the functions (x;);>o such that the map ¢ ~
X: is continuous from [1, +oo] into € (Upp, R) and the Levi forms of the x;’s are uniformly
bounded. For j=1,...,4,setp(t,z) = pj(z) - |x\t|(z) for [t] > 1,p;(0,2) = pj(z) and
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2
pj(t,z) = pj(z) - sﬁxl(z) for [t| < 1, then the functions p j(t,z), j = 1,..., ¥, satisfy all
the conditions of Definition 2.1 as soon as ¢ is sufficiently small, moreover D = DU U;»o{z €
Up lpj(t,z) <0, j=1,.. ., £} and consequently D, is a wedge g-convex extension of D. [J

Using Lemmas 3.4 and 3.5, in the same way as in the proof of Theorem 12.15 in [6] we can
prove easily

THEOREM 3.9. — Let D be a strictly q-convex wedge with piecewise € -smooth boundary
inX,1 < g < n. Then the restriction map H>" (D, E) — H2"(D, E) is an isomorphism if
q+1 < r < nandis surjective ifr = q

Moreover ifﬁ is a neighborhood of D such that Disa wedge q-convex extension of D, then the
restriction map Hg;r (D,E) — ngf (D, E) isan isomorphism ifq + 1 < r < n and is surjective

fr=q

Note that the second assertion of Theorem 3.9 is proved in [8].

In order to extend Theorem 3.9 to current cohomology we need alocal result on the Cauchy-
Riemann equation for extensible currents.

PrRoOPOSITION 3.10. — Let D cC C" be a local q-convex wedge, 1 < q < n. Forr with
g<r<nleT e @B’r((C”, E) be an extensible current on D such that 0T = 0 on D, then there
exists S € Dy "0r=Ycn EY such thatdS = T on D.

Recall that by the Hahn-Banach theorem (cp. [12]) 9'0 '"(C", E) is the dual of the space
2" "(C" E*) of E*-valued ¢~-smooth (n, n — r)-forms with support contained in D. In
the proof of Proposition 3.10, we shall proceed by duality and we need the following lemma.

LEMMA 3.11. — Let D cC C" be a local g-convex wedge, 1 < q < n. Then for0 < r <
n-q-1
89%(C" E) = {f € 4% (C" E) 13 f =0}

0
and hence is a Fréchet space and moreover o/ (cn,

E) is also a Fréchet space.

Proof. — If Dis definedby D = {z € Uy | pj(z) <0, j=1,...,4¢} then for sufficiently
smalle > 0,D: = {z€ Uz | pj(z) <¢ j= ., ¥} is also a local g- convex wedge and by
smoothlng the boundary of D, we get a g-convex domam with @*-smooth boundary D, such
that D C DE C D,. Moreover as DE is g-complete in the sense of Andreotti-Grauert, we have

HY YD) =0for0<r<n-q-1

and

0,n—q+1

H.’ (DS) is Hausdorff

which implies that, if f € & 0r+1(([” E) verifies 0 f = 0,if0 < n—q—l,andf(c,, frg=0

for all 9-closed form ge € ’n,n—rfl (DE), if r = n— g, then there existsaform h € @O’r(lN)g) such
thatoh = fin C".

If r = 0, his holomorphic in C"\ D and vanishes in (C”\IN)g, hence h = 0 on C"\ D by analytic
continuation and therefore supp & C D which prove the lemma in this case.
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Assume now 1 < r < n — g, then his 0-closed on C"\ D and vanishes in a neighborhood
of (C”\ﬁg. It follows from [3] that there exists a €*-smooth (0, r — 1)-form u in C"\ D, which
vanishes in a neighborhood of (C”\IN)‘S and satisfies du = h in C"\D. Let @i be @®-smooth
extension of u to C" then supp(h — 0@) C Dand d(h — dii) = f. So we proved that

39 (C" E) = {f € 9% N(C"E) |3f =0}, if0<r<n—qg-1

and

a@%”"’(cc",E) ={fe @%”"’“(C”,E) | / fAg=0Vge @y, (D), dg=0}
(Cn

and consequently 5@%r (C", E) isaFréchetspacefor0 < r < n—q. U

Proof of Proposition 3.10. — Let T € @}’)O’r (C", E) be an extensible current on D such
that 0T = 0 on D. We define a linear form Lt on 5@%’”_r(((ﬁ”, E*) by setting Ly (3) = (T, ).
Note that if ¢ = 0¢’, then @ — @’ is an (n, n — r)-form of class €%, d-closed with support
contained in D. By Lemma 3.11,if 1 < n — r < n — g, there exists 0 € @%’”_r_l((t”, E*) such
that  — @’ = 96. Since 2"~ "~"1(D, E*) is dense in @%"_r_l (C™, E*), there exists a sequence
(07) jen € @™ ""1(D, E*) which converges to 0 in 2" ~""1(C", E*). Then, as 3T = 0 on D
we get

(T, —@') =(T,30) = im(T,30;) =0

]—~OO

and therefore Ly is well defined. Now if n — r = 0, @ — @’ is an holomorphic function with
compact support and by analytic continuation ¢ = ¢’ and L is also well defined.

It follows from the open mapping theorem that Lt is continuous, since by Lemma 3.11,
5@%’ "7T(C", E*) is a Fréchet space. Now we may apply the Hahn-Banach theorem and extends

Lt to a continuous linear form on @%”7”1 (C", E*) which can be identified to an extensible
(0, r — 1)-current S on D satisfying for all p € @%’”_r(((ﬁ”, E*)

(S5,39) = (T, )
in particular we get5§ =(-1)"TonDandS = (—l)rgisasolution of 3S = T on D. O

Remark. — Proposition 3.10 is proved in [16] in the case when D is a completely strictly
g-convex domain with ¢ -smooth boundary of a complex manifold.

As in the proof of Lemma 12.4 of [6], from Proposition 3.10 we obtain

LEMMA 3.12. — Let[A;, A2, V'] be a wedge q-convex extension elementin X,1 < g < n.
i) Ifq < r < nandifU is a neighborhood of Ay\A;, then for any d-closed current
T € Q‘Z%I(X, E) there exists a 0-closed current T € @%;(X, E)andS € 92104’{71 (X, E) such that

Ti —Th=0SonA and T = T, on A)\U.
ii) Ifg+1 < r < nandifU is a neighborhood of A\ Ay, then for any d-closed current
T e QZOA’;(X, E) suchthatT = 3S; on A; with S, € Q‘ZOA{*I(X, E), there exists Sp € @2{2’*1 (X,E)

such that
T =0S,0nAyandS; = S, on A)\U.
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0,r

If U is an open subset of X, we denote by H .,

currents on U, i.e. the quotient space

(U, E) the cohomology groups of extensible

10,1 = 70,r—1

9y (X,E) nkerd/ody" (X, E).

Using Lemmas 3.4 and 3.12 similar to the proof of Theorem 12.15 in [6], we get easily

THEOREM 3.13. — Let D be a strictly q-convex wedge with piecewise € -smooth boundary
inX,1 < q < n. Then the natural mapﬁg{lrr(D,E) — Hcoﬁ;(D), whereHS{fr(D, E) denotes the

Dolbeault cohomology of the extensible currents on D, is an isomorphismifqg+1 < r < nand
is surjective if r = q.

Moreover ifﬁ is a neighborhood of D such thatDisa wedge q-convex extension of D then the
restriction map Hcoﬁ;(D, E) - H S{IZ(D, E) is an isomorphismifq + 1 < r < n and is surjective
ifr=gq.

From Theorems 3.9 and 3.13, we deduce the following isomorphism corollary

COROLLARY 3.14. — Let D be a strictly q-convex wedge with piecewise € -smooth boundary
inX,1 < q < nthen the natural map between HOOO’r (D, E) andﬁg{fr(D) is an isomorphism if

q+1 < r < nand is surjective ifr = q.

Proof. — Let Dbea neighborhood of D such that Disa wedge g-convex extension of D
then we have the following commutative diagram

HY"(D) — H*(D)

l |

HOY (D) — HY (D)

cur cur

where the horizontal maps are the restriction maps and the vertical ones are the natural maps.
By the classical Dolbeault isomorphism for complex manifold the first vertical map is an iso-
morphism for all 0 < r < n, moreover by Theorems 3.9 and 3.13 the horizontal maps are
isomorphisms if g + 1 < n and surjective if r = ¢, therefore the second vertical map is an
isomorphismif g+ 1 < r < nand is surjective if r = q. O

4. Dolbeault isomorphism in CR manifolds

Let M be an oriented ¢~ -smooth CR generic submanifold of real codimension k in an
n-dimensional complex manifold X. Following section 2 we can associate to M a family {Q,
Q1,...,Qk} of open subsets of X. If moreover M is g-concave then by (9) the open subsets
Qj,n---nNQj,0< jo,..., js < k, are strictly (n — g — k + 1)-convex wedges in X. Now
let us consider the double complexes C,, and C associated to % = {Qg,...,Qr} and % =
{Qo,...,Q}. It follows from Corollary 3.14 that the double complexes Cy, and C satisfy the
hypotheses of Theorem 1.2, i.e. the natural map between H[I(C;J) and H[I(C‘f), -1 <s<
k — 1, is an isomorphismif r > n — k — g + 2 and is surjective if r = n — k — g + 1. Therefore
the natural map between the associated simple complexes induces an isomorphism

(18) H"(s(Cy)) — H'(s(C)), r>n—k—q+2
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and a surjective map

(19) HV k04 (5(Cy)) — H R0 (5(C)) .

Moreover from Propositions 1.3, 1.4, 2.4 and 2.5 we get
(20) H' (M, W2™) — H™*(5(C)) — H™™(s(C)) — H"™ (M, 2}l

for0 < p < nand 0 < r £ n — k, where the first and the last map are isomorphisms
and the composed map is given by [ f] — (—1) k(szl) [T], where T is the current defined by

(T,p) = fM fApforp e gn-Pn=k=r(x) and [ - ] denotes the cohomology class of the
element.

Now associating Theorems 2.2 and 2.3 with (18), (19) and (20) we obtain

THEOREM 4.1. — Let M be an oriented €* -smooth CR generic, q-concave, submanifold,
real codimension k in an n-dimensional complex manifold X, 1 < q < n — k. For all inte-
ger p such that0 < p < n, the natural map

HP" (M) — HPI (M)

cur

is an isomorphismifr > n — k — q + 2 and is surjectiveifr =n — k — q + 1.

References

[1]1 ANDREOTTI A., FREDRICKS G. & NACINOVICH M., On the absence of Poincaré lemma in tangential Cauchy-
Riemann complexes, Annali della Sc. Norm. Sup. di Pisa, série IV, 8 (1981), 365-404.

[2] BarkaToU M.Y., €* estimates ford on q-convex wedges, to appear.

[3] BERGER H., Estimations @k pour lopérateur de Cauchy-Riemann dans les domaines a coins q-concaves, en
préparation.

[4] GODEMENT R., Théorie des faisceaux, Hermann, 1964.

[5] HeNKIN G.M., Solution des équations de Cauchy-Riemann tangentielles sur des variétés Cauchy-Riemann q-
concaves, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 27-30.

[6] HENKIN G.M. & LEITERER ., Andreotti-Grauert theory by integral formulas, Progress in Math., 74, Birkhatiser,
1988.

[7]1 HiLL C.D. & NaciNovicH M., Duality and distribution cohomology of CR manifolds, Annali della Sc. Norm.
Sup. di Pisa, série IV, 22 (1995), 315-339.

[8] HiLL C.D. & NaciNnovicH M., On the Cauchy problem in complex analysis, Ann. Math. Pura Appl., 171 (1996),
159-179.

[9] HiLL C.D. & NaciNnovicH M., Pseudoconcave CR manifolds, Complex Analysis and Geometry, Lecture Notes in
Pure and Appl. Math.,173, Marcel Dekker,New-York, (1996), 275-297.

[10] KasHIwARA M. & SCHAPIRA P, Sheaves on manifolds, Springer Verlag, 1990.

[11] LAURENT-THIEBAUT C. & LEITERER ]., Malgrange's vanishing theorem in 1-concave CR manifolds, Nagoya Math.
Journal, 157 (2000),59-72.

[12] MARTINEAU A., Distributions et valeurs au bord de fonctions holomorphes, Strasbourg RCP 25 (1966),

18



[13] NaciNovicH M., Poincaré lemma for tangential Cauchy-Riemann complexes, Math. Annalen, 268 (1984), 449—
471.

[14] NaciNovicH M. & VALL G., Tangential Cauchy-Riemann complexes on distributions, Ann. Math. Pura Appl.,
146 (1987),123-169.

[15] TouGeroN J.C., Idéaux de fonctions différentiables, Springer Verlag, 1972.

[16] SamBoU S.M., Résolution du d pour les courants prolongeables, Prépublication de I'Institut Fourier 486 (1999),

Christine LAURENT-THIEBAUT,
INSTITUT FOURIER

Laboratoire de Mathématiques

UMR5582 (UJF-CNRS)

BP 74

38402 St MARTIN D’HERES Cedex (France)

and

Jurgen LEITERER,

Institut fiir Mathematik
Humboldt-Universitidt zu Berlin
Rudower Chaussee 25

D-12489 Berlin (Germany)

19



