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A. — The problem of quantum stochastic integral representation of opera-
tors in Fock spaces has been studied mainly by Parthasarathy and Sinha [P-S] and Attal [A1].
They obtained results concerning processes of bounded operators. In this article we extend
their results to processes of unbounded operators on the Fock space. We apply these con-
ditions to the characterization of quantum noises and to the characterization of contractive
cocycles.

0. Introduction and notations

For any complex separableHilbert spaceh, we denote by Γ a h b the boson Fock space
over h. We write Φ c Γ a L2 a R d_beb . We denote for f in L2 a R dfb by e a f b the associated
coherent or exponential vector in Φ; the exponential domain is denoted g (see [M3] for
more details). Recall that e a 0 b is the vacuum vector in Φ. We denote Φt h c Γ i L2 aej 0, t klbem ,
Φ n s,t h c Γ i L2 aej s, t klbem and Φ n t c Γ i L2 aej t , o�pqj b=m . Let h0 be a separable Hilbert space andr c h0 s Φ,

r
t h c h0 s Φt h .

We have the well known “continuous tensor product” structurerut
r
t h s Φ n t .

The annihilation, creation and conservation operators are defined on the domain g by the
relations

a vNa f b e a g bNc"w f , g x e a g b
a
d a f b e a g bNc d

dλ
e a g o λf b?yy λ z 0

λ a T b e a g bNc d

dλ
e a eλT g b yy λ z 0 ,

Mots-clés : espace de Fock, calcul stochastique non commutatif, représentation d’opérateurs, cocycles
markoviens.
Classification math. : 81S25, 60H05, 46L53.

1



the derivations being understood in the strong sense, for f , g in L2 a R d b and T �� a L2 a R d b=b , the algebra of all bounded operators on L2 a R d b . The operators a v a f b and
a
d a f b are adjoint to each others on g . If T � is the adjoint of T then λ a T �Ub and λ a T b are
adjoint to each other on g . If f c 1 n 0,t h and if T is the operator of multiplication by f , then
a v a f b , a d a f b and λ a T b are respectively denoted by a vt , a vt and a0t . We put a �t c t I .

Let D0 � h0 a dense linear manifold. We put
�g c D0 s g , the algebraic tensor

product between D0 and g . A family of operators a Xt b t � 0 defined on D0 s g is called an
adapted process with respect to D0 if the following conditions are fulfilled:

i) for all t > 0, Xt i u s e a f 1 n 0,t h b m � r t h and
Xt a u s e a f beb c Xt i u s e a f 1 n 0,t h b m s e a f 1 n t , d	� n b in r t h s Φ n t ;

ii) for all u
�
D0, f

�
L2 a R d b , the map R d�
 r

: t �
 Xt a u s e a f b=b is strongly
measurable.

We denote again a vt , a dt , a0t and a �t the ampliation of the annihilation, creation, number
and time process to

r
. Let us now recall some elements of the Hudson-Parthasarathy’s

quantum stochastic calculus ([H-P1]). Let a H ε
t b t � 0, ε ��
�� , o , � , 0 � be adapted processes

with respect to D0 such that for all u
�
D0, f

�
L2 a R d b and for all t > 0

a 0. 1 b
� t

0 ��� f a s b � 2 � H 0
s a u s e a f b=b � 2 o � H ds a u s e a f beb � 2 o � H �s a u s e a f b=b �

o � f a s b � � H vs a u s e a f beb ��� ds < o�p .

Then the stochastic integral Tt c��
ε � t0 H ε

s da
ε
s is defined as the unique adapted process

with respect to D0 satisfying the relation:

a 0. 2 b w u s e a f b , Tt a v s e a g beb=x c
� t

0

w u s e a f b , � H �s a v s e a g beb
o g a s b H vs a v s e a g b=b o f a s b H ds a v s e a g b=b o f a s b g a s b H 0

s a u s e a g beb��Ex ds .
Let Πt be, for t  0, the orthogonal projection onto

r
t h . If H � c 0, then we have for

s < t , ΠsTtΠs c TsΠs and a Tt b t � 0 is a martingale. Otherwise we say that a Tt b t � 0 is a
semi-martingale. Now recall the extension of Hudson-Parthasarathy’s quantum stochastic

calculus due to Attal-Meyer ([A-M]).

One defines a Dt b t � 0 on r in the following way: if u
�
h0 and f

�
L2 a R d b , Dt a u s

e a f b=b3c f a t b u s e a f 1 n 0,t h b . Thus we have that for a ui b 1 ! i ! n in h0, a f i b 1 ! i ! n in L2 a R d b ,"" n#
i z 1 ui s e a f i b

"" 2 c "" n#
i z 1 ui

"" 2 o � d	�
0

� Dt i n#
i z 1 ui s e a f i bem

"" 2 dt
so that a Dt b t � 0 defines a bounded process from r to L2 a R d , r b . In fact Dt is the amplia-
tion to h0 s Φ of the Dt defined on Φ by Attal in [A2].
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Let a Xt b t � 0 the curve in Φ defined by the following relation: for all f in L2 a R d_b ,
w e a f b , Xt x c � t0 f̄ a s b ds. If a yt b t � 0 is a curve in r such that yt

� r
t h for all t  0 and

� d	�0
� ys � 2 ds < o�p , we can define � d �0

ys dχs by the following relation: for all u
�
h0,

for all f
�
L2 a R dfb

w u s e a f b ,
� d �
0

ys dχs x3c
� d �
0

f a s b w u s e a f b , ys x ds .
By the same way, we define � t0 ys dχs and we haveΠt i � d	�0

ys dχs b3c � t0 ys dχs and

a 0. 3 b u s e a f b0c u s e a 0 b o
� d	�
0

f a s b u s e a f 1 n 0,s h b dχs .

So for all F in
r
, we have F c Π0 a F b o � d	�0

DtF dχt . With these definitions and

properties, Attal and Meyer in [A-M] prove that if Tt c
��
ε � t0 H ε

s da
ε
s with a H ε

t b t � 0, ε
�
��

, o , � , 0 � satisfying (0.1), then for all F � D0 s g , we have
a 0. 4 b TtΠtF c

� t

0

TsDsF dχs o
� t

0

H 0
s DsF dχs o

� t

0

H
d
s ΠsF dχs

o
� t

0

H vs DsF ds o
� t

0

H �s ΠsF ds .

Conversly if a H ε
t b t � 0, ε ��
�� , o , 0, � � are adapted operators such that for all F � D0 s g ,

for all t  0, � t

0

� H 0
s DsF

� 2 ds < o�p ,
� t

0

� H vs DsF � ds < o�p ,� t

0

� H ds ΠsF
� 2 ds < o�p ,

� t

0

� H �s ΠsF
� ds < o�p ,

and if a Tt b t � 0 is a process satisfying (0.4) and such that � t0 � TsDsF � 2 ds < o�p , then
Tt c �

ε � t0 H ε
s da

ε
s . In fact, Attal and Meyer used equation (0.4) for processes defined on

domains which can be different of
�g . A good space of operator processes can be defined

by looking at processes of bounded operators satisfying for all t > 0

a 0. 6 b
� t

0

� H �s � ds < o�p ,
� t

0

� H ε
s
� 2 ds < o�p for ε c o , � and sup

0 ! s ! t � H 0
s
� < o�p .

Clearly these operators satisfy (0.1) and thus Tt c �
ε � t0 H ε

s da
ε
s is well defined on

r
.

S. Attal studies this space of operators in [A1] and denotes it
���
. If we add the condition

that for all t  0, Tt is bounded, then we obtain the space
�
of processes of [A1]. In fact,

we see for example that aε
t , for ε c o , � , 0, belongs to ��� but not to � . It is easy to see that

if Tt c �
ε � t0 H ε

s da
ε
s with a H ε

t b t � 0, ε
��
��

, 0, o , � � satisfying (0.6) then we have for all
t > 0, for all F in

r
, for all 0 < r < s < t ,
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���� ���
� TtΠrF

�
TsΠrF

��� � ΠrF
� � i � ts � H dτ � 2dτ m 1/2 o � ts � H �τ � dτ �� T �t ΠrF

�
T �s ΠrF

��� � ΠrF
� � i � ts � H vτ � 2dτ m 1/2 o � ts � H �τ � dτ �� ΠsTtΠrF

�
TsΠrF

��� � ΠrF
� � ts � H �τ � dτ .

So there existsϕ in L1loc a R d b such that, for all r < s < t , for all F in
r

a 0. 7 b
��� �� a i b

� TtΠrF
�
TsΠrF

� 2 � � ΠrF
� 2 � ts ϕ a τ b dτ

a ii b � T �t ΠrF
�
T �s ΠrF

� 2 � � ΠrF
� 2 � ts ϕ a τ b dτ

a iii b � ΠsTtΠrF
�
TsΠrF

��� � ΠrF
� � ts ϕ a τ b dτ .

Parthasarathy and Sinha in [P-S] prove that a bounded martingale satisfying (0.7) (i) and

(ii) (they called it a regular martingale) belongs to
�
. Attal in [A1] proved that adapted

processes of bounded operators satisfying (0.7), (i), (ii) and (iii)belong to
�
and evenmore:

(i), (ii) and (iii) characterize
�
. Elements of

�
are called regular semi-martingales.

In this paper, we extend these results about stochastic integral representation of

process of operators to the case of unbounded operators.

In the first part we are interested to an another domain
��
in
r
larger than

�g and
we will show that a large class of stochastic integral are defined on this domain.

In the second part, we prove a result about stochastic integral representation of

quasimartingales satisfying some regularity conditions and defined on
��
.

In the third part, we will show some consequences of this theorem.

In the fourth part, we apply the theorem to two situations. First we prove that a clos-

able “noise” (see [C]) defined on
�
is equal to the sum of creation, annihilation and num-

ber processes. Secondly we prove that under a condition of weak differentiability ([A-J-L]),

an adapted contractive cocycle a Vt b t � 0 is the solution of a quantum stochastic differential

equation of the form, Vt c I o �
ε � t0 VsLε da

ε
s where a Lε b ε 	�
 v , d ,0, �
� are operators on h0.

1. A new domain for quantum stochastic integral

Let
�
be the linear manifold generated by e a 0 b and the vectors of the form

� d	�0
g a s b e a f 1 n 0,s h b dχs where g , f belongs to L

2 a R d b .
By (0.3), we have g � � . We denote by j a g , f b3c � d �0

g a s b e a f 1 n 0,s h b dχs . We have

Dt j a g , f b3c g a t b e a f 1 n 0,t h b for almost all t in R d .
4



L (1.1). — Let f
�
L2 a R d_b , T � � a L2 a R d_b=b . Then � is included in the

domain of a v a f b , a d a f b and λ a T b .
Proof. — The symmetric Fock space Φ is the direct sum of all the symmetric

chaoses L2sym a=a R d b n b with the following representation F c �
n

fn
n!
with fn

�
L2sym aea R d b n b

and such that � F � 2 c �
n �

fn �
2

n!
< o�p . We have that e a f b3c �

n

f � n
n!
if f

�
L2 a R d b .

The domain of a � consists of those elements �
n

fn
n!
of Φ such that �

n �
a � fn �

2

n!
< o�p .

If g , f
�
L2 a R d b , then j a g , f b3c d ��

n z 1
ϕn

n!
with

a 1. 2 b ϕn a t1, . . . , tn b3c f a t1 b������ f a tn v 1 b g a tn b for t1 < t2 < ����� < tn .

It is thus easy to see that
�
is included in the domain of a � . We can write with (1.2) that

for t1 < t2 < ����� < tn and n  1
i λ a T b ϕn m a t1, . . . , tn b3c

n v 1#
k z 1 � T a 1 n 0,tn h f b a tk b f a t1 b������ f a tk v 1 b f a tk d 1 b������ f a tn v 1 b g a tn bo T a 1 n tn , d	� n g b a tk b f a t1 b������ f a tk v 1 b f a tk d 1 b������ f a tn b �a 1. 3 b

o T a 1 n 0,tn � 1 h f b a tn b g a tn v 1 b f a tn v 2 b������ f a t1 bo T a 1 n tn � 1 , d	� n g b a tn b f a t1 b������ f a tn v 1 b .
So as T is a bounded operator on L2 a R d_b , we see easily that �

n � 1 �
λ 	 T 
 ϕn �

2

n!
< o�p and

j a g , f b belongs to the domain of λ a T b .
D (1.4). — A quadruplet i a H ε

t b t � 0 m ε 	�
 v ,0, d , �
� of adapted processes of
operators defined onD0 s g is called regular if the following conditions are satisfied:

i) for all t > 0, for all f in L2 a R d b , for all u � D0
sup
s 	 n 0,t h � H 0

s Πs a u s e a f beb � < o�p ,
� t

0

� H vs Πs a u s e a f beb � 2 ds < o�p
ii) the processes a H �t b t � 0 and a H dt b t � 0 are defined on D0 s � and for all u

�
D0,

f
�
L2 a R d b , there exists ϕ a�� , f , u b in L1loc a R d b such that for all g �

L2 a R d b , for
almost all t in R d � H dt Πt a u s j a g , f beb � 2 � � g1 n 0,t h � 2ϕ a t , f , u b� H �t Πt a u s j a g , f beb ��� � g1 n 0,t h � ϕ a t , f , u b� t

0

� H ds a u s e a 0 b � 2 ds < o�p� t

0

� H �s a u s e a 0 b � ds < o�p .
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A regular quadruplet aea H ε
t b t � 0, ε

� 
��
, 0, o , � �Cb satisfies (0.1) and by conse-

quence the operator Tt c �
ε � t0 H ε

s da
ε
s is an adapted process with respect toD0.

L (1.5). — Let a=a H ε
t b t � 0, ε � 
�� , 0, o , � �Cb be a regular quadruplet and Tt c�

ε � t0 H ε
s da

ε
s . For all t  0, Tt can be extended to D0 s � in the sense that for all f , g in

L2 a R d b , for all u in D0
TtΠt a u s j a g , f beb0c

� t

0

g a s b TsΠs a u s e a f b dχs o
� t

0

g a s b H 0
s Πs a u s e a f beb dχs

o
� t

0

H
d
s Πs a u s j a g , f beb dχs o

� t

0

g a s b H vs Πs a u s e a f beb dsa 1. 6 b
o
� t

0

H �s Πs a u s j a g , f beb ds .
Moreover for all u inD0, f in L

2 a R d b , there exists an increasing function α a�� , u, f b : R d�

R d increasing such that for all g in L2 a R d b ,
a 1. 7 b � TtΠt a u s j a g , f beb ��� � g1 n 0,t h � α a t , u, f b .

Proof. — By (0.4), we have that for all u in D0, f in L
2 a R d b ;

TtΠt a u s e a f b=b3c
� t

0

f a s b TsΠs a u s e a f beb dχs o
� t

0

f a s b H 0
s Πs a u s e a f beb dχs

o
� t

0

H
d
s Πs a u s e a f beb dχs o

� t

0

f a s b H vs Πs a u s e a f b ds
o
� t

0

H �s Πs a u s e a f b=b ds ,
and thus by using standard estimates (such as for example: (9.7) of [M3], p. 138), we have

that for all t > 0, sup
0 ! s ! t � TsΠs a u s e a f b=b � < o�p and thus for all u in D0, g , f in L

2 a R d_b ,
� t0 TsDs a u s j a g , f beb dχs is well defined. By using Attal-Meyer’s result, we can definea Tt b t � 0 onD0 s � by (1.6). This implies that� TtΠt a u s j a g , f beb ��� � g1 n 0,t h � � sup

0 ! s ! t � TsΠs a u s e a f beb � o sup
0 ! s ! t � H 0

s Πs a u s e a f b=b �
o � � t

0

� H vs Πs a u s e a f beb � 2 ds � 1/2 o � t

0

ϕ a s, u, f b ds � ,
whereϕ a s, u, f b is given by the hypothesis on the quadruplet aea H ε

t b t � 0, ε ��
�� , 0, o , � �Cb .
C.

(1) All the processes of
���
are defined on D0 s � .
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(2) If Tt c �
ε � t0 H ε

s da
ε
s with a H ε

s b s � 0 regular then by (1.7) we can define � t0 Ts daε
s

for all ε > 0. For all n
�
N, Tt c � t1< � � � <tn ! t daε1

t1
����� daεn

tn where εi
� 
��

, 0, o , � � for
i c 1, . . . , n is well defined on h s � .

We see by formula (0.2), (0.4) and (1.5) that it is not necessary to have quadruplet of

processes a H ε b ε 	�
 v ,0, d , � � defined for all t > 0.

D (1.8). — A quadruplet a H ε b ε 	�
 v ,0, d , � � is called regular on D0 if the
following conditions are satisfied:

H � : D0 s � � 
 L1loc a R d , r ba i b
H
d
: D0 s � � 
 L2loc a R d , r b

H 0 : D0 s g � 
 L
�
loc a R d , r b

H v : D0 s g � 
 L2loc a R d , r b
are linear operators.

(ii) For allu inD0, f in L
2 a R d b , there existϕ a � , u, f b � L1loc a R d b such that for almost

all τ in � d , for all g in L2 a R d b� H dτ Πτ a u s j a g , f b=b � 2 � � g1 n 0,τ h � 2 ϕ a τ, u, f b� H �τ Πτ a u s j a g , f beb ��� � g1 n 0,τ h � ϕ a τ, u, f b .
(iii) Adaptation property: for all u in D0, f in L

2 a R d b , g in L2 a R d b for almost all t in
R d , for all ε,
H ε
t Πt a u s e a f b=b � r t h , H dt Πt a u s j a g , f beb , H �t Πt a u s j a g , f beb � r t h ,

H ε
t a u s e a f beb3c H ε

t Πt a u s e a f beb s e a f 1 n t , d	� n b in r t h s Φ n t if ε c o , � ,
H ε
t a u s j a g , f beb0c H ε

t Πt a u s j a g , f b=b o H ε
t Πt a u s e a f 1 n 0,t h beb s j a g1 n t , d	� n , f 1 n t , d	� n b .

If a H ε b is a regular quadruplet, we can define Tt c �
ε � t0 H ε

s da
ε
s onD0 s � by (1.6).

Furthermore, we have for all g , f in L2 a R d b , for all s � t ,
a 1. 9 b � ΠsTtΠt a u s j a g , f beb � TsΠs a u s j a g , f b=b ��� � t

s

γ a τ b dτ

where γ belongs to L1loc a R d b and depends of u, g , f .
D (1.10). — A curve a xt b t � 0 in r is a quasimartingale if for all t  0,

xt
� r

t h and for all s < t , it exists c a s, t b such that for all subdivisions t0 c s < t1 < ����� <

tn c t of j s, t k , we have n v 1�
i z 0

� Πti a xti � 1
�
xti b ��� c a s, t b .
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Enchev in [E] (see also [M1]) proved that a quasimartingale a xt b t � 0 can always be
written xt c Mt o At where a Mt b t � 0 is a martingale, i.e. for all s < t , ΠsMt c Ms anda At b t � 0 is an adapted process with finite variation in the norm sens and such that � At �
As
��� c a s, t b .

D (1.11). — A curve a xt b t � 0 in r is an absolutely continuous quasi-

martingale if a xt b t � 0 is a quasimartingale and if the quantity c a s, t b given by definition
(1.10) is of the form c a s, t b c � ts ψ a τ b dτ for someψ in L1loc a R d_b .

In this case, we have that At c � t0 a a τ b dτ with for almost all τ, a a τ b in r τ h and� a a τ b � � ψ a τ b . So if a Tt b t � 0 is representable as stochastic integral on D0 s � , then by
(1.9), for allu inD0, for all f , g in L

2 a R dfb , a TtΠt a u s j a g , f beb t � 0 is an absolutely continuous
quasimartingale.

D (1.12). — Let a Tt b t � 0 be an adapted process of operators defined on
D0 s � . a Tt b t � 0 is a quasimartingale (resp. an absolutely continuous quasimartingale) if
for all F in D0 s � , a TtΠtF b t � 0 is a quasimartingale (resp. an absolutely continuous quasi-
martingale).

Wehave seen in lemma (1.1) that if K is a bounded operator of L2 a R d b then λ a K b is
an operator whose domain contains

�
. What about the representability of the associated

martingale a λt a K b=b t � 0?
P (1.13). — a λt a K b=b t � 0 belongs to � � if and only if K is an operator of

multiplication by a bounded function.

Proof. — For f in L2 a R d b , we have λt a K b e a f b0c a d1 � 0,t � K 	 f 1 � 0,t � 
 a e a f beb thus
λt a K b Πr e a f b � λs a K b Πr e a f b3c a d1 � s,t � K 	 f 1 � 0,r � 
 a e a f 1 n 0,r h b=b

and therefore� λt a K b Πr e a f b � λs a K b Πr e a f b � 2 c � t

s � K a f 1 n 0,r h b a τ b � 2 dτ � e a f 1 n 0,r h b � 2 .
By using (0.7), a λt a K b=b t � 0 � � �

implies that there exists ϕ in L1loc a R d b such that for all
r < s < t , for all f in L2 a R d_b ,� t

s � K a f 1 n 0,r h b a τ b � 2 dτ � � t

s

ϕ a τ b dτ .

So K a f 1 n 0,r h b 1 h r, d � n c 0 and by looking at the adjoint, we must have that for all r > 0, for

all f in L2 a R d_b , K a f 1 h r, d	� n b 1 n 0,r h c 0. It is easy to see that these conditions imply that for

all a < b, for all f in L2 a R dfb , K a f 1 n a,b h b c 1 n a,b h K f and so K commutes with the operator
8



of multiplication by indicators and by consequence it is an operator of multiplication by a

bounded function k, and λ a K b c a0k c � d �0
k a s b da0s .

L (1.14). — Let K be an Hilbert-Schmidt operator on L2 a R d b given by a ker-
nelϕ. Then

λt a K b0c
� t

0

H
d
τ da

d
τ o

� t

0

H vτ da vτ
whereH

d
τ c a v

ϕ 	 τ, � 
 1 � 0,τ �
andH vτ c a d

ϕ 	 τ, � 
 1 � 0,τ � .

Proof. — Let H
d
and H v defined as above. Then they give rise to a regular

quadruplet (definition (1.8)) and the operator Tt c � t0 H dτ da
d
τ o � t0 H vτ da vτ is defined

on
�
. By (0.2),

w e a f b , Tt e a g bex c
� t

0

� f̄ a s b w e a f b , H ds e a g bex_o g a s b w e a f b , H vs e a g bex � ds
c"w e a f b , e a g bex

� t

0 � f̄ a s b
� s

0

g a τ b ϕ a s, τ b dτ o g a s b
� s

0

f a τ b ϕ a τ, s b dτ � ds
c"w e a f b , e a g bex

� t

0

f̄ a s b K a g1 n 0,t h b a s b ds
c"w e a f b , a d

1 � 0,t � K 	 g1 � 0,t � 
 e a g bex0c w e a f b , λt a K b e a g b=x . �

This lemma justifies the fact that we have to considerH
d
andH v as operators from

g (or � ) to L2 a R d ,Φ b forϕ a τ, � b is defined only for almost all τ.
An interesting question is the following: what are the bounded operator K on

L2 a R d b such that λt a K b is representable as a stochastic integral on g or � ?

The above results prove that Hilbert-Schmidt operator or multiplication by a

bounded function give representable operators, but we can seewith the example of Journe

in [J-M] that if K is the Hilbert transform, then a λt a K beb t � 0 is not representable, for it is not
a quasimartingale.

We will say that an operator T is representable on
�
if the associated martingale

a Tt b t � 0 is representable on � , i.e. if there exist a regular quadruplet a H ε b ε 	�
 v ,0, d , �
� , a
constant λ in R such that for all t > 0, Tt c λId o �

ε 	�
 v ,0, d , � � � t0 H ε
s da

ε
s .

P (1.15). — Let K a bounded operator in L2 a R d b . λ a K b and λ a K � b are
representable on

�
if and only if there existϕ in L2loc a R d � R d_b , k in L �loc a R dfb such that

K f c
� d	�
0

f a s b ϕ a s, � b ds o k f .
9



Proof. — We suppose that λ a K b and λ a K �Ub are representable on � , the converse
result being already proved.

Let g , f be in L2 a R dfb . We easily see by (1.3) that if s < t ,

Πsλt a K b Πt j a g , f b � λs a K b Πs j a g , f b0c Πsa
d
K 	 g1 � s,t � 
 e a f b .

By hypothesis,

Πsλt a K b Πt j a g , f b � λs a K b Πs j a g , f b0c
� t

s

g a τ b ΠsH vτ Πτe a f b dτ .

This implies

a 1. 16 b Πsa
d
K 	 g1 � s,t � 
 e a f b0c

� t

s

g a τ b ΠsH vτ Πτe a f b dτ .

Let f be 0, we have

a 1. 17 b
� s

0

K a g1 n s,t h b a τ b dχτ c
� t

s

g a τ b ΠsH vτ e a 0 b dτ .

So for all s > 0, for almost all τ > s, ΠsH vτ e a 0 b belongs to the first chaos and so for almost
all τ,H vτ e a 0 b belongs to the first chaos. Letϕ a τ, � b be the associated function in L2 a=j 0, τ k b .
So by (1.17), for all s < t , for all g in L2 a R d b ,
a 1. 18 b 1 n 0,s h K a g1 n s,t h b3c

� t

s

g a τ b ϕ a τ, � b 1 n 0,s h a�� b dτ

and by (1.16) for all f in L2 a R d_b , for all g in L2 a R d_b , for all s < t ,� t

s

g a τ b a d
ϕ 	 τ, � 
 e a f b dχτ c

� t

s

g a τ b ΠsH vτ Πτe a f b dτ

and soH vτ c a d
ϕ 	 τ, � 
 .

Furthermore, for all T > 0, � T0 � H vτ e a 0 b � 2 dτ < o�p and thus� T

0

� � τ

0 �ϕ a τ, s b � 2 ds � dτ < o�p .

By looking at λ a K b ��c λ a K �Ub , we have for almost all τ > 0, the existence ofϕ �Ga τ, � b
in L2 aej 0, τ k b such that for all T > 0, � T0 � � τ

0 �ϕ a τ, s b � 2 ds � dτ < o�p and satisfying for all

g in L2 a R d_b , for all s < t ,

a 1. 19 b 1 n 0,s h K � a g1 n s,t h b3c � t

s

g a τ b 1 n 0,s h ϕ � a τ, � b dτ .

We extendϕ to R2d by definingϕ a s, t b c ϕ � a t , s b for s < t . So for all T > 0,� T

0

� T

0 �ϕ a s, t b � 2 ds dt < o�p
10



and for all g in L2 a R d_b , for all s < t , (1.18) and (1.19) imply

a 1. 20 b
�
1 n 0,s h K a g1 n s,t h b0c 1 n 0,s h � ts g a τ b ϕ a τ, � b dτ

1 n s,t h K a g1 n 0,s h b0c 1 n s,t h � s0 g a τ b ϕ a τ, � b dτ .

We can conclude like in the proof of (1.13), that (1.20) implies the existence of k in L
�
loc a R d_b

such that for all f , for all T > 0,

K a g1 n 0,T h b3c
� T

0

g a τ b ϕ a τ, � b dτ o 1 n 0,T h kg .

Remark. — All the same, we have a kind of representability property for λ a K b by
Maassen’s kernel. If K is a bounded operator in L2 a R d_b with a kernel ϕ not necessary

in L2loc a R d�� R d b (for example the case of the Hilbert operator), we can write λ a K b�c
� � R � � R � ϕ a s, t b da ds da vt .

2. Integral representation

D (2.1). — Let T c a Tt b t � 0 be an absolutely continuous quasimartin-
gale on D0 s � . We say that T is a regular quasimartingale if for all f in L2 a R dfb , for all u
in D0, there existsψ a � , u, f b in L1loc a R d b such that for all g in L2 a R d b , for all r < s < t ,

(2.2) � ΠsTtΠru s j a g , f b � TsΠru s j a g , f b ��� � g1 n 0,r h � � ts ψ a τ, u, f b dτ

(2.3) � TtΠru s j a g , f b � TsΠru s j a g , f b � 2 � � g1 n 0,r h � 2 � ts ψ a τ, u, f b dτ

(2.4) The mapping L2 a R d_b 
 r
, g �
 TtΠt a u s j a g , f beb is closable.

Remark (2.5). — If for all t > 0, Tt is a closable operator then (2.4) is satisfied. The

hypothesis (2.4) implies by using the closed graph theorem that for all f in L2 a R d b , for all
u in D0, the mapping L

2 a R d b 
 r
, g �
 TtΠt a u s j a g , f b=b is bounded.

T (2.6). — AprocessT c a Tt b t � 0 of operators is a regular quasimartingale
if and only if there exists a unique regular quadruplet a H ε b ε 	�
 v ,0, d , � � such that for all t > 0,

Tt c T0 o �
ε � t0 H ε

s da
ε
s on � 0 s � .

Proof. — Let Tt c T0 o �
ε � t0 H ε

s da
ε
s on � 0 s �

with a H ε b ε 	�
 v ,0, d , � � being
a regular quadruplet. Equation(1.9) implies that T c.a Tt b is an absolutely continuous
quasimartingale on � 0 s � . By using (1.6) and (1.7), we prove easily that (2.2), (2.3) and
(2.4) are satisfied and by consequence T is a regular quasimartingale.

11



We now prove the converse result. Let T c a Tt b t � 0 be a regular quasimartin-
gale. We can change Tt in Tt

�
T0 without modifying the hypothesis, so we can sup-

pose T0 c 0. Let u in D0 and f in L
2 a R d b be fixed. By assumption, for all g in L2 a R d b ,

a TtΠt a u s e a 0 b=beb t � 0 and a TtΠt a u s j a g , f b=beb t � 0 are absolutely continuous quasimartingale
and by (1.11) there exists adapted curves from R d to r , τ �
 mτ a g , u, f b , τ �
 aτ a g , u, f b ,
τ �
 mτ a u b and τ �
 aτ a u b . More over for all t > 0, � t0 � mτ a g , u, f b � 2 dτ < o�p ,
� t0 � aτ a g , u, f b � dτ < o�p , � t0 � mτ a u b � 2 dτ < o�p and � t0 � aτ a u b � dτ < o�p and

a 2. 7 b
�
TtΠt a u s e a 0 beb3c � t0 mτ a u b dχτ o � t0 aτ a u b dτ

TtΠt a u s j a g , f beb3c � t0 mτ a g , u, f b dχτ o � t0 aτ a g , u, f b dτ .

Let r > 0 be fixed. By (2.2), we have that � aτ a g1 n 0,r h , u, f b � � � g1 n 0,r h � ψ a τ, u, f b for a.a.
τ > r . We denote by γ the lifting from � � a R d , dt ; r b to � � a R d ; r b the Banach space
of everywhere bounded Borel functions on R d with the uniform norm (see [M3], p. 293).

The function τ �
 aτ 	 g1 � 0,r � ,u,f 

ψ 	 τ,u,f 
 (which we assign the value 0 if ψ a τ, u, f b�c 0) belongs

to � � a k r, o�p�j , dt ; r b , thus we can define a map k r, o�pqj 
 r
, τ �
 Ar,τ a g , u, f b with

Ar,τ a g , u, f b c ψ a τ, u, f b γ i a 	 g1 � 0,r � ,u,f 

ψ 	 � ,u,f 
 m a τ b for τ > r , and we have that for all τ > r , for all

g in L2 a R d_b , � Ar,τ a g , u, f b � � � g1 n 0,r h � ψ a τ, u, f b .
Consequently, the mapping L2 a=j 0, r k b 
 r

, g �
 Ar,τ a g , u, f b defines a bounded linear
operator. AsΠrΠr � c Πr � if r � < r , and by using the lifting γ, we have that for all τ > r > r

�
,

for all g in L2 aej 0, r � klb ,
Ar � ,τ a g , u, f b0c Ar,τ a g , u, f b .

This allows to define Aτ a g , u, f b for all g in �
r<τ

L2 a=j 0, r k b , and we have that � Aτ a g , u, f b ���� g � ψ a τ, u, f b . This defines Aτ a g , u, f b for g in L2 aej 0,τ klb . One easily checks that Aτ a g , u, f b
belongs to

r
τ h . We put H �τ Πτ a u s j a g , f beb c Aτ a g1 n 0,τ h , u, f b and H �τ Πτ a u s e a 0 beb�c

aτ a u b . We have constructed an operator H � : D0 s � 
 L1loc a R d , r b which is adapted
and such that for all u in D0, for all f in L

2 a R d b , for a.a. τ in R d , for all g in L2 a R d b ,
a 2. 8 b � H �τ Πτ a u s j a g , f beb ��� � g1 n 0,τ h � ψ a τ, u, f b .
Now define Kτ a u s j a g , f b=b�c aτ a g , u, f b � H �τ Πτ a u s j a g , f b=b and Kτ a u s e a 0 b=b;c 0.

The operator K : D0 s � 
 L1loc a R d , r b satisfies for all r in R �d , for all u in D0, for all f in
L2 a R d b for a.a. τ > r , for all g in L2 a R �d b ,
a 2. 9 b KτΠr a u s j a g , f b=b c 0 and KτΠr a u s e a 0 beb0c 0 .
By (2.7), we have moreover that for all r < s < t ,

TtΠr a u s j a g , f b=b � TsΠr a u s j a g , f b=b0c
� t

s

mτ a g1 n 0,r h , u, f b dχτ o
� t

s

aτ a g1 n 0,r h , u, f b dτ .

12



So by (2.3) we have, for a.a. τ > r , � mτ a g1 n 0,r h , u, f b � 2 � � g1 n 0,r h � 2ψ̃ a τ, u, f b where
ψ̃ a � , u, f b � L1loc a R d b . Using the same method as above, we construct H d : � 0 s � 

L2loc a R d , r b adapted such that for all u inD0, f in L2 a R d b , a.a. τ in R d for all g in L2 a R d b ,
a 2. 10 b � H dτ Πτ a u s j a g , f b=b ��� � g1 n 0,τ h � ψ̃ a τ, u, f b .
Now define Rτ a u s j a g , f b=b c mτ a g , u, f b � H �τ Πτ a u s j a g , f b=b and Rτ a u s e a 0 beb;c 0.
The operator R : � 0 s � 
 L2loc a R d , r b satisfies for all r in R �d , u in D0, f in L2 a R �d b , for
a.a. τ > r , for all g in L2 a R d b ,
a 2. 11 b Kτ a Πr a u s j a g , f b=beb3c 0 and KτΠr a u s e a 0 beb c 0 .
We have thus

a 2. 12 b TtΠt a u s j a g , f b=b0c
� t

0

Rτ a u s j a g , f beb dχτ o
� t

0

H
d
τ Πτ a u s j a g , f b=b dχτ

o
� t

0

Kτ a u s j a g , f beb dτ o
� t

0

H �τ Πτ a u s j a g , f beb dτ .

Let the linear operator Lu,f , L
2 a R d b �
 L1loc a R d , r b � L1loc a R d , r b � L2loc a R d , r b �

L2loc a R d , r b , g �
 i H d� Π � a u s j a g , f b=b , K � a u s j a g , f beb , H �� Π � a u s j a g , f beb , R � a u s
j a g , f beb m .

By using (2.4), (2.8), (2.10) and (2.12), we see that Lu,f is closable and so by the

closed graph theorem, it is a bounded operator and there exists for all t > 0, u in D0, f in

L2 a R d b , ct a u, f b in R such that for all g in L2 a R d b ,
a 2. 13 b

� � t0 � Kτ a u s j a g , f beb � dτ � � g � ct a u, f b
� t0 � Rτ a u s j a g , f b=b � 2 dτ � � g � 2ct a u, f b

Because of (2.9) and (2.11), we can define processes H v : D0 s g 
 L1loc a R d , r b , L :

D0 s g 
 L2loc a R d , r b by: for u in D0 and f in L2 a R d b ,
H vτ Πτ a u s e a f beb0c Kτ a u s

� T

0

e a f 1 n 0,s h b dχs b
LτΠτ a u s e a f beb0c Rτ a u s

� T

0

e a f 1 n 0,s h b dχs b
where T is any real > τ.

By definition of K and R, H v and L are adapted processes. Let g in L2 a R d b be a
step function given by g c �

i

λi1 n ti ,ti � 1 h for 0 � t0 < t1 < ����� < tn .

We have

Rτ a u s j a g , f b=b c #
i

λi � Rτ

�
u s

� ti � 1

0

e a f 1 n 0,s h b dχs m � Rτ i u s
� ti

0

e a f 1 n 0,s h b dχs � �
c #

i/ti<τ<ti � 1
λiLτΠτ a u s e a f beb

c g a τ b LτΠτ a u s e a f b=b .
13



By the same computation, we have Kτ a u s j a g , f b=b-c g a τ b H vτ Πτ a u s e a f beb . Moreover
(2.13) implies that for all step function g in L2 a R d b , for all T > 0,� T

0 � g a τ b � 2 � LτΠτ a u s e a f beb � 2 dτ � � g � 2cT a u, f b
and � T

0 � g a τ b � � H vτ Πτ a u s e a f beb � dτ � � g � cT a u, f b .
Consequently, for all T > 0, we have

sup
0<τ<T

� LτΠτ a u s e a f beb � 2 � cT a u, f b
and � T

0

� H vτ Πτ a u s e a f b=b � 2 dτ � cT a u, f b 2 ,
and for all g in L2 a R d b ,

Rτ a u s j a g , f b=b0c g a τ b LτΠτ a u s e a f b=b
and

Kτ a u s j a g , f beb3c g a τ b H vτ Πτ a u s e a f b=b .
So by (2.12),

TtΠt a u s j a g , f beb3c
� t

0

LτDτ i u s j a g , f b m dχτ o
� t

0

H
d
τ Πτ i u s j a g , f b m dχτ

o
� t

0

H vτ Dτ i u s j a g , f b=m dτ o
� t

0

H �τ Πτ i u s j a g , f b=m dτ

and

sup
0<t<T

� TtΠt a u s j a g , f beb ��� � g � c̃T a u, f b .
We defineH 0 : D0 s g 
 L

�
loc a R d , r b adapted by

H 0
τΠτ a u s e a g bebNc � TτΠτ a u s e a f beb o LτΠτ a u s e a f b=b .

We finally conclude by the result of S. Attal and P.A. Meyer in [A-M] that Tt c �
ε � t0 H ε

s da
ε
s

on D0 s � .
We now have to prove the uniqueness. Let a H ε b ε 	�
 v ,0, d , �
� a regular quadruplet

such that for all u in D0, g , f in L
2 a R d_b , � �

ε � t0 H ε
s da

ε
s � a u s j a g , f beb
c 0. Let Tt c�

ε � t0 H ε
s da

ε
s . For all u in D0, g , f in L

2 a R d b , r , r � < s < t ,

Πr � a TtΠt
�
TsΠs b Πr a u s j a g , f beb3c 0

and so � ts Πr � H �τ Πr a u s j a g , f beb dτ c 0.
14



So for all r > 0, r
�

> 0, for a.a. τ > r, r
�
, Πr � H �τ a u s j a g , f beb c 0 thus for all r > 0,

for a.a. τ > r ,H �τ Πr a u s j a g , f beb3c 0. But by assumption, for all r > 0, for a.a. τ > r"" H �τ Πτ i u s j a g , f b � Πr a u s j a g , f beb=m "" � i � τ

r � g a s b � 2 ds m 1/2ϕ a τ, u, f b
and thus for a.a. τ,H �τ Πτ a u s j a g , f beb3c 0.

We also have that H �τ Πτ a u s e a 0 b=b�c 0 and so H � c 0. If we look at a TtΠt
�

TsΠs b Πr , we prove by the same method that H
d c 0. So for all t > 0, u in D0, f , g in

L2 a R d b , � t

0

g a τ b H 0
τΠτ a u s e a f b=b dχτ o

� t

0

g a τ b H vτ Πτ a u s e a f beb dτ c 0
and thus for a.a. τ �

g a τ b H 0
τΠτ a u s e a f beb3c 0

g a τ b H vτ Πτ a u s e a f b=b0c 0
and by consequenceH 0 c 0 andH v c 0.

3. Some consequences

a) Operators commuting with projections on
r
t h .

P 3.1. — Let T be a closable operator defined on D0 s � such that for

all t > 0, TΠt c ΠtT : then there exist an unique H : D0 s g 
 L
� a R d , r b and Z : D0 


h0 such that T c � d �0
Hs da

0
s o Z s I .

Moreover, if T is bounded then Ht is bounded for all t and t �
 � H 0
t
� belongs to

L
� a R d b .

Proof. — We define a Tt b t � 0 as usual by TtΠtF c TΠtF c ΠtTF . So if s < t , we

haveΠsTtΠt c ΠsTΠt c TΠs c Ts and T0 c Z s Id. The hypotheses of theorem (2.6) are
satisfied with ψ c 0 and so there exists H : D0 s g 
 L

�
loc a R d , r b such that for all t > 0,

Tt c T0 o � t0 Hs daε
s on D0 s � . If u � D0, f , g in L2 a R d b , we have:

ΠtTt a u s j a g , f b=b3c T0 a u s j a g , f b=bQo
� t

0

g a τ bGi TΠτ a u s e a f beb[o HτΠτ a u s e a f beb=m dχτ

and so for all g in L2 a R d b , for all t > 0, for all F
�
D0 s g

a 3. 2 b
� t

0 � g a τ b � 2 � TΠτF o HτΠτF
� 2 dτ � � a T � T0 b?i � d �

0

g a τ b ΠτF dχτ m � 2 .
15



By consequence, � d	�0 � g a τ b � 2 � TΠτF o HτΠτF
� 2 dτ < o�p and sup

τ 	 R �
� ΠτTF o HτΠτF

� <

o�p and sup
τ 	 R �

� HτΠτF
� < o�p . This implies that H : D0 s g 
 L

� a R d , r b and T c
Z s Id o � d �0

Hs da
0
s . Furthermore, if T is bounded, (3.2) implies that for all g in L

2 a R d_b ,
for all F in D0 s g ,� d	�

0 � g a τ b � 2 � ΠτTF o HτΠτ
� 2 dτ � � g � 2 � F � 2 � T � T0 � 2

and so for all F in D0 s g , for a.a. τ in R d ,� ΠτTF o HτΠτF
��� � F � � T � T0 �

and so � HτΠτF
��� 3 � T � � F � . �

Remark 3.3. — In fact, we have the more precise result: T is an operator defined

onD0 s � satisfying (2.4) and for all t > 0TΠt c ΠtT if and only if there existH : D0 s g 

L
� a R d , r b and Z : D0 
 h0 such that T c � d �0

Hs da
0
s o Z s I .

b) About uniqueness.

Let H : D0 s � 
 L
p
loc a R d , r b , a p c 1 or 2 b such that for all u � D0, for all f in

L2 a R d b , there existsϕ a�� , u, f b in Lploc a R d b such that for a.a. τ, for all g in L2 a R d b ,� HτΠτ a u s j a g , f beb ��� � g1 n 0,τ h � ϕ a τ, u, f b .
This condition onH implies a kind of right continuity forH . That is: for a.a. τ in R d , for all
a τn b n � 0 increasing to a τ b
a 3. 4 b HτΠτn a u s j a g , f beb � 


n � d � HτΠτ a u s j a g , f beb .
For example, if we look at the Malliavin’s gradient,

�
:
� 
 L2 a R d ,Φ b defined by

�
τ j a g , f b;c g a τ b Πτe a f b o f a τ b j a g1 h τ, d	� , f b , we have that �

τΠτn j a g , f b;c 0 if τn < τ

and (3.4) is not fulfilled.

But we have that � t0 �
uda

d
u c a0t .

c) About the results of Parthasarathy and Sinha, Attal andMeyer.

We have recalled their results in (0.6) and (0.7).

Let a Tt b t � 0 be a process of bounded adapted operators which satisfy (0.7). Then for
all F , G in

r
, for all r < s < t , we have

w T �t ΠrF
�
T �s ΠrF, G x3c"w T �t ΠrF

�
T �s ΠrF,ΠtG

�
ΠsG x o�w T �t ΠrF

�
T �s ΠrF,ΠsG x

c"w ΠrF,Πr a TtΠs
�
TsΠs b G x .
16



So (1.7) implies

yy w ΠrF,Πr a TtΠs
�
TsΠs b G x yy � � ΠrF

� �
�
� ts ϕ a τ b dτ � ΠtG

�
πsG

� o � ts ϕ a τ b dτ � ΠrG
� �

and thus,

a 3. 5 b "" Πr a TtΠs
�
TsΠs b G ��� �

� ts ϕ a τ b dτ � ΠtG
�

πsG
� o � ts ϕ a τ b dτ � ΠrG

� .
(0.7) and (3.5) implies that the hypothesis of theorem (2.1) are satisfied and so we have the

existence of a H ε
t b t � 0.

By using the inequalities (0.7) and (3.5), we have that a H ε
τ b , ε

� 
 o , � , � � are
bounded operators which satisfy (0.6). By using proposition 3.1, we see thatH 0

τ is bounded

and that τ 
 � H 0
τ
� belongs to L �loc a R d b .

4. “Noises” defined on �

D 4.1. — A process of operators a Tt b t � 0 defined on � is a noise if for all

s < t , Tt
�
Ts c Id s Ks,t s Id on Φs h s Φ n s,t h s Φ n t with Ks,t being an operator on Φ n s,t h .

T 4.2. — Let a Tt b t � 0 be a noise on � such that each Tt is closable, then

there exist A : R d 
 C, f
�
L2loc a R d_b , g � L2loc a R d b and k � L �loc a R d_b , such that

Tt c A a t b Id o a df 1 � 0,t � o a vg1 � 0,t � o a0k1 � 0,t � .

Proof.

1 We define xt c Tt e a 0 b . We can see that for all s < t , xt
�
xs belongs to Φ n s,t h

and in the same way as in [C], xt c A a t b e a 0 b_o � t0 f a s b dχs with f in L
2
loc a R d b .

We define St c Tt
�
A a t b Id � a df 1 � 0,t � , so we have that a St b t � 0 is a noise on � and

St e a 0 b c 0.
2 Tt is closable on

�
so for all f in L2 a R d b , the mapping L2 a R d b 
 Φ, g �


Tt j a g , f b is bounded because it is linear and closable on all L2 a R d_b . So there exists ht ,f in
L2 aej 0, t k b such that for all g in L2 a R d b ,Π0St j a g , f b3c � t0 g a τ b ht ,f a τ b dτ. But if a < b < t ,

Π0St j a g1 n a,b h , f b3c Π0 a Sb � Sa b j a g1 n a,b h , f b o Π0Sa j a g1 n a,b h , f b
c Π0Sb j a g , f b � Π0Sa j a g , f b .

This implies that 1 n 0,a h ha,f c 1 n 0,a h hb,f and we define h f by hf a s b�c ht ,f a s b if s < t , so

hf
�
L2loc a R d b andΠ0St j a g , f b c � t0 g a τ b hf a τ b dτ.

17



We have to prove that a St b t � 0 is an absolutely continuous quasimartingale
a ΠsStΠt

�
SsΠs b j a g , f b3c a Π0 a St � Ss b Πt j a g , f b=b Πse a f b

and so � a ΠsStΠt
�
SsΠs b j a g , f b � � � e a f b � � t0 � g a τ b � � hf a τ b � dτ. Moreover if r < t ,

StΠr
�
SsΠr c 0 on � , so a Tt b t � 0 is a regular quasimartingale.
So by theorem (2.1), there existH v andH 0 such that St c � t0 H vs da vs o � t0 H 0

s da
0
s .

We define ` a τ b c Π0H vτ e a 0 b and k a τ b0c Π0H
0
τe a 0 b . Let f , g in L2 a R d b and r < s < t ,

StΠt j a g , f 1 n 0,r h b � SsΠs j a g , f 1 n 0,r h b
c
� t

s

g a τ b SτΠre a f b dχτ o
� t

s

g a τ b H 0
τΠre a f b dχτ

o
� t

s

g a τ b H vτ Πre a f b dτ

c"a St � Ss b Πt j a g , f 1 n 0,r h b o Ss a Πt
�

Πs b j a g , f 1 n 0,r h b
c SsΠre a f b s

� t

s

g a τ b dχτ o Πre a f b s a St � Ss b � t

s

g a τ b dχτ .

So � t

s

g a τ b H 0
τΠre a f b dχτ o

� t

s

g a τ b H vτ Πr e a f b dτ

c Πre a f b s a St � Ss b � t

s

g a τ b dχτ

c Πre a f b s
� � t

s

g a τ b H 0
τe a 0 b dχτ o

� t

s

g a τ b H vτ e a 0 b dτ �

so for a.a., τ

�
H 0

τe a 0 b3c k a τ b e a 0 b
H vτ e a 0 b0c ` a τ b e a 0 b and for all r > 0,

for a.a. τ > 0,

�
H 0

τΠr e a f b3c k a τ b Πr e a f b
H vτ Πre a f b0c ` a τ b Πr e a f b .

We define
�
St c a v1 � 0,t � ` o a01 � 0,t � k and Rt c St � �St . We fix t c 1. Let a < b. We have for f , g

in L2 a R d b ,
a 4. 3 b R1 j a g1 n a,b h , f 1 n 0,a h b3c

� b

a

g a τ b RτΠae a f b dχτ .

Let jn c n v 1�
i z 0 � i � 1

n
i
n

g a τ b Π i
n
e a f b dχτ. Then jn

� 

n � d � Π1 j a g , f b and we can prove by (4.3)

that R1 jn
� 


n � d	� � 10 g a τ b RτΠτe a f b dχτ .

As
�
S1 jn

� 

n � d	� �

S1Π1 j a g , f b and
a A a 1 b Id o a df 1 � 0,1 � b jn � 


n � d � a A a 1 b Id o a df 1 � 0,t � b Π1 j a g , f b ,
18



the closability of T1 implies that R1 jn 
 R1Π1 j a g , f b and so
R1Π1 j a g , f b0c

� 1

0

g a τ b RτΠt e a f b dχτ

and so for all t  0, Rt c 0.
Remark. — This is not a new result. We prove in [C] that if a Tt b t � 0 is a noise

on g such that all Tt are closable and for all f in L2 a R d b , the mapping R d 
�� , t �

Π0Tt i e a f b � e a 0 b=m has finite variations on compact sets, then the conclusion of theo-
rem 4.2 is valid.

The condition “Tt closable on
�
” implies that for all f in L2 a R d b , there exists h f

in L2n loc a R d b such that for all g in L2 a R d b , Π0Tt j a g , f b c � t0 g a τ b hf a τ b dτ and so as

Π0Tt i e a f b � e a 0 b m c Π0Tt j a f , f b , t �
 Π0Tt i e a f b � e a 0 b m has finite variations on com-
pact sets. So we can apply the above result of [C].

5. Application to contractive cocycles in Fock space

By solving quantum stochastic differential equations of the form

a 5. 1 b dVt c #
ε

VtLε da
ε
t , V0 c Id

in which L d c L, L0 c W
�
I , L v c �

L � W , L � c iK
� 1

2
L � L and W , K , L are

respectively fixed unitary, bounded selfadjoint and bounded operators, one obtains uni-

tary valued Markovian cocycles (with respect to time shift on Fock space), or covariant

adapted evolutions, whose reduced semigroup is continuous in norm [HP2]. Conversely,

such Markovian cocycles are all solutions of quantum stochastic differential equations of

the form (5.1). These results are shown in [H-L] by using the stochastic integral repre-

sentation theorem for regular Fock martingales [P-S] and basic techniques of the Hudson-

Parthasarathy calculus [HP1].

Clearly norm continuity is not satisfied by the most important semigroups. Thus it

is interesting to weaken this assumption in order to establish a quantum stochastic ana-

logue of Stone’s theorem on one-parameter group of unitary operators. Journe in [J] in-

vestigated the strongly continuous case and showed, under a regularity condition, that a

cocycle can be reconstructed from the infinitesimal generator by a recursive procedure on

the finite particle subspaces. In general the generator will fail to have a common dense

domain and the cocycle will not satisfy any q.s.d.e. Accardi, Journe and Lindsay in [A-J-L]

prove that this cannot happen when the cocycle V satisfies a weak differentiability condi-

tion.
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In the present part we show, by using the stochastic integral representation theorem

(2.1), that under a condition on the cocycle (which is necessary and sufficient and weaker

that the weak differentiability condition of [A-J-L]) that the unitary cocycle V satisfies a

q.s.d.e. of the form (5.1).

Let St denote the right shift on L
2 a R d b , so that for t  0

a St f b a x b3c � f a x � t b if x  t
0 otherwise .

Let Γ a St b be the second quantizations of St . Γ a St b is isometric. For all s  0 and all

bounded operator X in
� a r b , the operator Γ a Ss b XΓ a Ss b � maps h0 s r n t into itself. The

canonical extension to
r
will be denoted by Γ a Ss b XΓ a Ss b � .

D 5.2. — A family a Vt b t � 0 of contraction is a cocycle if it satisfiesV0 c I
and for all s, t  0, Vs d t c VsΓ a Ss b VtΓ a Ss b � .

Let a Pt b t � 0 defined on h0 by Ptu c Π0Vtu. The next lemma is proved in [H-L].

L 5.3. — a Pt b t � 0 is a semigroup of contractions on h0.
D 5.4. — Let a Vt b t � 0 be an adapted cocycle and a Tt b t � 0 be defined by:

for u
�
h0, Ttu c Π0Vt a u s χt b . We will say that a Vt b t � 0 satisfy assumption a H b if

(1) a Pt b t � 0 is strongly continuous with a generator denoted Z on a domain denoted��a Z b .
(2) there exists a dense domain D � ��a Z b such that for all u in D, � Ttu

t
�
t � 0 is

bounded.

D 5.5. — An adapted cocycle a Vt b t � 0 is said to be weakly differentiable
if there exists a dense domain DV of h0 such that for all u in D

V , for all v in h0, for all

f , g
�
L2 a R d b���� 0 a R d b , the mapping t �
 w v s e a f b , Vt a u s e a g bebex is � 1 on R d .
L 5.6. — An adapted weakly differentiable cocycle a Vt b t � 0 satisfies assump-

tion a H b .
Proof. — If we take f c g c 0, we see that for all u in DV , Ptu � u � 


t � 0
0 weakly

in h0 and as a Pt b t � 0 is a contraction, a Pt b t � 0 is strongly continuous so we have (1) of a H b
with DV � �
a Z b .

By using Banach Steinhaus theorem, we see easily that weak differentiability im-

plies that for all u in Dv , for all f
�
L2 a R d_b���� 0,Π0

Vt
t
i u s e a f b � u m is bounded, and so

(2) of a H b is satisfied.
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T 5.7. — Let a Vt b t � 0 be an adapted contractive cocycle satisfying hypoth-
esis a H b . Then there exist a Lε b ε 	�
 v , d , � ,0 � on h0 with domain D such that Vt c I o
� t0 VsLε da

ε
s .

Proof.

1 In order to apply theorem (2.1), we have to prove that for all F in
�
, for all u in

D, a VtΠt a u s F b=b t � 0 is an absolutely continuous quasimartingale.
First case: F c e a 0 b , xt c Vt a u s e a 0 beb . Let s < t ,� Πsxt

�
xs
� c � ΠsVt a u s e a 0 b=b � Vs a u s e a 0 b=b �
c � ΠsVsΓ a Ss b Vt v sΓ a Ss b � a u s e a 0 b=b � Vs a u s e a 0 b=b �� � ΠsΓ a Ss b Vt v sΓ a Ss b � a u s e a 0 b=b � u s e a 0 b �c � Π0Γ a Ss b Vt v sΓ a Ss b � a u s e a 0 b=b � u s e a 0 b �c � Pt v su � u ��� � Zu � a t � s b .

Second case: xt c Vt a u s χt b� Πsxt
�
xs
� c � ΠsVsΓ a Ss b Vt v sΓ a Ss b � a u s χt b � Vs a u s χs b �� � ΠsΓ a Ss b Vt v sΓ a Ss b � a u s χs b � u s χs

�
o � ΠsΓ a Ss b Vt v sΓ a Ss b � a u s χt

�
χs
�

� � a Pt v su � u b s χs
� o � π0Γ a Ss b Vt v sΓ a Ss b � a u s χt

�
χs b ���� s a t � s b � Zu � o � Tt v su � .

So there exists C a u b � R such that � Πsχt
�

χs
��� a t � s b C a u b .

Third case: F c � d	�0
g a s b dχs with g

�
L2 a R d b being a step function. Let yt a g bNc

Π0Vt a u s � t0 g a τ b dχτ b and 0 � t0 < t1 < ����� < tn v 1 � tn c t such that 1 n 0,t h g c
n v 1�
i z 0 λi1 n ti ,ti � 1 h . So

ytk a g b0c Π0Vtk

�
u s

� tk � 1
0

g a τ b dχτ � o λk v 1Π0Vtk i u s χtk
�

χtk � 1 m
c Π0Γ a Stk � 1 b Vtk v tk � 1Γ a Stk � 1 b � �

u s
� tk � 1
0

g a τ b dχτ �
o λk v 1Π0Γ a Sk v 1 b Vtk v tk � 1Γ a Stk � 1 b � a u s χtk

�
χtk � 1 b

c ytk � 1 a g b o Π0Vtk � 1
� i Ptk v tk � 1u � u m s � tk � 1

0

g a τ b dχτ �
o λk v 1Ptk � 1Ttk v tk � 1u
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and thus there exists C a u b independent of g such that for all k c 0, . . . , n � 1,� ytk a g b � ytk � 1 a g b ��� a tk � tk v 1 b C a u b o � λk v 1 � a tk � tk v 1 b C a u b .
This implies that � yt a g b ��� i t o � t0 � g a τ b � dτ m C a u b . And so for all u inD, there existC a u b
such that for all g in L2 a R d_b , for all t ,""" Π0Vt a u s

� t

0

g a τ b dχτ b
""" � �

t o
� t

0 � g a τ b � dτ � C a u b .
If xt c Vt i u s � t0 g a τ b dχτ b ,� Πsxt

�
xs
��� � a Pt v su � u b s � s

0

g a τ b dχτ
� o """ Π0Vt v s

�
u s

� t v s
0

g a s o τ b dχτ � """
� � g � a t � s b � Zu � o � yt v s a g a s o � b=b � .

Fourth case: F c � d �0
g a s b Πse a f b dχs with f , g in L

2 a R d_b .
xt c VtΠt a u s F b3c Vt

�
u s

� t

0

g a s b dχs � o Vt �
u s

� t

0

g a s b?i Πse a f b � e a 0 bem dχs � .
So we only have to study""" ΠsVt

�
u s

� t

0

g a τ b i Πτe a f b � e a 0 b m dτ � � Vs �
u s

� s

0

g a τ b i Πτe a f b � e a 0 b m dτ � """
� """ a Pt v su � u b s � s

0

g a τ b a Πr e a f b � e a 0 b=b dχτ

"""
o """ ΠsΓ a Ss b Vt v sΓ a Ss b � �

u s
� t

s

g a τ b i Πτe a f b � e a 0 b m dχτ � """ .
But� t

s

g a τ b i Πτe a f b � e a 0 b m dχτ c i Πse a f b � e a 0 b m s � t

s

g a τ b dχτ

o Πse a f b s
� t

s

g a τ b?i Πτe a f 1 n s, d � n b � e a 0 b=m dχτ

and so""" ΠsΓ a Ss b Vt v sΓ a Ss b � i u s � t

s

g a τ b a Πτe a f b � e a 0 b=b dχτ m
"""

� � Πse a f b � e a 0 b � """ Π0Vt v s i u s
� t

s

g a τ o s b dχτ � """
o � Πse a f b � """ � t

s

g a τ b i Πτe a f 1 n s, d � n b � e a 0 b m dχτ

"""
and we can conclude by the third case because""" � t

s

g a τ b?i Πτe a f 1 n s, d	� n b � e a 0 b=m dχτ

""" 2 � � t

s � g a τ b � 2 dτ

�
e � ts � f 	 τ 
 � 2 dτ �

1 � .
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2 (2.2) and (2.3) are always satisfied by a Vt b t � 0 because for all F in Φ and u in�
a Z b , for all r < s < t ,� ΠsVt a u s ΠrF b � Vs a u s ΠrF b ��� � Pt v su � u � � ΠrF
��� a t � s b � Zu � � ΠrF

�
and � Vt a u s ΠrF b � Vs a u s ΠrF b � 2 � � ΠrF

� 2 ��a � 2 b��-a=w u � Pt v su, u xeb� 2 � ΠrF
� 2 a t � s b � Zu � � u � .

3 So by theorem2.1we have the representation, Vt c I o �
ε � t0 H ε

s da
ε
s . By using

cocycle property, we can prove as in the proof of [H-L] thatH ε
s c VsLε with a Lε b ε 	�
 � , v , d ,0 �

defined on D and LX c Z .
Remark. — One can prove that if a Pt b t � 0 is continuous in norm then a H b is satis-

fied.

One can also prove that if Z c iH o B with H selfadjoint and B bounded then (2)

of a H b is satisfied too.
The hypothesis (2) of a H b is equivalent to:

for all u in h0, for all v in D, t � � 
 w u, Vt a v s χt bex is � 1.
Fagnola in [F] gives a characterization theorem for weakly differentiable (con-

tractive, isometric and unitary) Makovian cocycles in the Boson Fock space. He studies

the converse result: given a Lε b ε 	�
 � , d , v ,0 � satisfying some condition, does there exist an
unique solution of (5.1) which is a weakly differentiable cocycle?
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