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ABsTRACT. — The problem of quantum stochastic integral representation of opera-
tors in Fock spaces has been studied mainly by Parthasarathy and Sinha [P-S] and Attal [A1].
They obtained results concerning processes of bounded operators. In this article we extend
their results to processes of unbounded operators on the Fock space. We apply these con-
ditions to the characterization of quantum noises and to the characterization of contractive
cocycles.

0. Introduction and notations

For any complex separable Hilbert space h, we denote by I'( h) the boson Fock space
over h. We write ® = T['(L?(R;)). We denote for f in L?(R;) by e(f) the associated
coherent or exponential vector in ®; the exponential domain is denoted £ (see [M3] for
more details). Recall that (0) is the vacuum vector in ®. We denote ¢, = I'(Z*([0, 1])),
@), g = I(L*([s,7])) and &}, = ['(L?*([£, +00[)). Let hg be a separable Hilbert space and

H=hyQ, ’Ht] = h0®¢‘[].
We have the well known “continuous tensor product” structure
H ~ 'H,] ® Py
The annihilation, creation and conservation operators are defined on the domain & by the

relations

a (fe(g) = (£, 8)e(g)

@ ()elg) = elg + A1),

NDelg) = e@Tg)],,

Mots-clés : espace de Fock, calcul stochastique non commutatif, représentation d’opérateurs, cocycles
markoviens.
Classification math. : 81525, 60H05, 46L53.



the derivations being understood in the strong sense, for f, g in L?(Ry) and T €
B(L?(Ry)), the algebra of all bounded operators on L?(R). The operators a~(f) and
a*t(f) are adjoint to each others on £. If T* is the adjoint of T then A(T*) and A(T) are
adjoint to each otheron . If f = 1jo,, and if T is the operator of multiplication by f, then
a= (f), a*(f) and A(T) are respectively denoted by a; , a; and a’. We put @ = tI.

Let Dy C hy a dense linear manifold. We put £ = Dy®E, the algebraic tensor
product between Dy and €. A family of operators (XI)IZO defined on Dy®€ is called an
adapted process with respect to D if the following conditions are fulfilled:

i) forallz>0, X;(u® e(flp,yg)) € H,and
X (u®e(f)) = X (u®e(flpn)) ® e(fltoo)) iNHy @ P

i) forallu € Dy, f € L*(Ry), themapRy — H : t — X, (u ® e(f)) is strongly
measurable.

We denote again a; , a;", a’ and a;,* the ampliation of the annihilation, creation, number
and time process to H. Let us now recall some elements of the Hudson-Parthasarathy’s
quantum stochastic calculus ([H-P1]). Let (H; ) >0, € € {—, +, X, 0} be adapted processes
with respect to Dy such that for all u € Dy, f € L?(Ry.) and forall £ > 0

(0.1) /0 {If(S)IZIIH?(u ® e())II* + 1H (u® e(£))II* + [|H (u @ e())|

HIONIHS (e eI} ds < +oo.

Then the stochastic integral T; = ) fot H:dda; is defined as the unique adapted process

&
with respect to Dy satisfying the relation:

(0.2)  (u@e(f) Ti(ve e(g))) = /0[<u ® e(f), {H (v® e(g))

+g(s)H; (v @ e(g)) + f(s)H (v @ e(g)) + F ()8 () H (u® e(g)) })ds .
Let I1; be, for ¢ > 0, the orthogonal projection onto H . If H X = 0, then we have for
s < t, [T Iy = Tl and (T;);>0 is a martingale. Otherwise we say that (7;);>¢ is a
semi-martingale. Now recall the extension of Hudson-Parthasarathy’s quantum stochastic
calculus due to Attal-Meyer ([A-M]).
One defines (D;) ;>0 on H in the following way: if u € ho and f € L*(Ry), D/(u®
e(f)) = f()u® e(f1y,). Thus we have that for (u;)1<i<n in ho, (fi)1<i<n in L*(Ry),

n n +00 n
IS we el = ul+ [ W e )] ar

so that (D) ;>0 defines a bounded process from H to L*(Ry, H). In fact D; is the amplia-
tion to iy ® ® of the D; defined on ¢ by Attal in [A2].
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Let (X;):>o the curve in ¢ defined by the following relation: for all f in L*(Ry),
(e(f), X;) = fot f(s) ds. If (y+)s>0 is a curve in H such that y; € H,j forall r > 0 and
f0+°° [lys||*> ds < +o0, we can define f0+°° ¥s dxs by the following relation: for all u € hy,
forall f € L*(Ry)

+o0 +o0
wour), [ wax)= [ TEHws (1)) ds.
0 0
By the same way, we define fot ¥s dxs and we have Ht( f0+°° Vs dxs) = fot s dxs and
+00
(0.3) ue(f) =u®e(0) + (s)u® e(flypq) dxs -

0

So for all F in ‘H, we have F = TIy(F) + f0+°° DF dx,. With these definitions and

properties, Attal and Meyer in [A-M] prove that if T, = ) fot H{ da with (Hf) >0, € €
&

{-,+, X, 0} satisfying (0.1), then for all F € Dy ® £, we have

t

t t
(0.4) T,I1,F = / T,D,F dx; + / H?D,F dx; + / HTIF dys
0 0 0

t t
+/ H;Dsts+/ HXTI,F ds .
0 0

Conversly if (H;);>0, € € {—,+,0, x } are adapted operators such that forall F € Dy ® &,
forallr > 0,

3 t
/ |HDF||* ds < +o0, / ||H; DsF|| ds < +o0,
0 0
t t
/ \[FFTLE|P ds < oo, / [ HXTLF|] ds < +00,
0 0

and if (T;),>¢ is a process satisfying (0.4) and such that fot | TsDsF||? ds < +o0, then
T, =3, fot HE da$ . In fact, Attal and Meyer used equation (0.4) for processes defined on
&

domains which can be different of £. A good space of operator processes can be defined
by looking at processes of bounded operators satisfying for all £ > 0

t t
(0.6) / [|[H|| ds < 400, / [|HE||* ds < +oofore = 4+, —and sup ||HY|| < +oo0.
0 0 0<s<t

Clearly these operators satisfy (0.1) and thus T, = > fot HE dat is well defined on H.
&

S. Attal studies this space of operators in [Al] and denotes it S’. If we add the condition
that for all ¢+ > 0, T; is bounded, then we obtain the space S of processes of [Al]. In fact,
we see for example that a, for e = +, —, 0, belongs to S’ but not to S. It is easy to see that
itT, =), fot H{ dai with (H});>0, € € {—,0,+, x} satisfying (0.6) then we have for all

&
t>0,forall FinH,forall0<r<s<t,



1/2
N0 F = T F < I FI Y N Pan) 2 + ) )
t _ 1/2 t
17711, F = T, < I FI (S Rar) Y + 1 )
|70, F — TILF|| < ||ILF|| [ || HZ || dT .

So there exists @ in L}, (R4 ) such that, forall r < s < 7, forall F in H

(i) ||ITILF = TILE|? < ||LF|? [ o(7) dt
(0.7) (i) 770 F = T F|P < (IFR [ o(T) dr
(iii) ||NTILF — TILF|| < ||ILF|| [ o(7) dt.

Parthasarathy and Sinha in [P-S] prove that a bounded martingale satisfying (0.7) (i) and
(ii) (they called it a regular martingale) belongs to S. Attal in [A1] proved that adapted
processes of bounded operators satisfying (0.7), (i), (ii) and (iii) belong to S and even more:
(i), (i) and (iii) characterize S. Elements of S are called regular semi-martingales.

In this paper, we extend these results about stochastic integral representation of
process of operators to the case of unbounded operators.

In the first part we are interested to an another domain JinH larger than £ and
we will show that a large class of stochastic integral are defined on this domain.

In the second part, we prove a result about stochastic integral representation of
quasimartingales satisfying some regularity conditions and defined on 7.

In the third part, we will show some consequences of this theorem.

In the fourth part, we apply the theorem to two situations. First we prove that a clos-
able “noise” (see [C]) defined on J is equal to the sum of creation, annihilation and num-
ber processes. Secondly we prove that under a condition of weak differentiability ([A-]-L]),
an adapted contractive cocycle (V) t>0 is the solution of a quantum stochastic differential
equation of the form, V; = 1+ ) fot VsLe dai where (Le)eec{— +0,x} are operators on hy.

&

1. A new domain for quantum stochastic integral

Let J be the linear manifold generated by e(0) and the vectors of the form
f0+°° g(s)e(f 1)) dxs where g, f belongs to L*(Ry.).

By (0.3), we have £ C J. We denote by j(g, f) = f0+°° g(s)e(f1jp,q) dxs. We have
Dij(g f) = g(t)e(f1),q) for almost all # in R
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Lemma (1.1). — Let f € L*(Ry), T € B(L?*(R4)). Then J is included in the
domain ofa= (f), a*(f) and A(T).

Proof. — The symmetric Fock space ® is the direct sum of all the symmetric
chaoses L, ((R+.)") with the following representation F = 3 % with f, € L5, ((R4)")
n

and such that ||F||? = 3 % < +00. We have that e(f) = %8!" if f € L>(Ry).
n n

£ 02
The domain of a* consists of those elements % of ® such that ) | %«i—oo.
n n

+oo
Ifg, f € L*(Ry), then j(g, f) = > & with
n=1
(1.2) @ty ..o ty) =f(a) - f(tnr) g(ty) for <t <---<1tp.

It is thus easy to see that 7 is included in the domain of a*. We can write with (1.2) that
forty<th<:---<tpbandn >1

(AD)P) (100 12) = 3 { T(Upag VL (0) -+ (i) (1) (111
k=1
(1.3) + T(1y4,,400(8) (t) f (1) - - f (te—1) f (trt1) - "f(tn)}

+ T(Lo,1, ) /) (1) 8(tn1) f (tn—2) - -~ f (1)
+ T,y 40018 (E) f (11) -+ f (tn1) -

So as T is a bounded operator on L?(R..), we see easily that 7”)‘”2:)””2 < 400 and
n>1
j(g, f) belongs to the domain of A(T). m

DEFINITION (1.4). — A quadruplet ((Hf),zg)se{_ 0t x
operators defined on Dy®E is called regular if the following conditions are satisfied:

} of adapted processes of

i) forallt >0, forall f in L*(Ry.), forall u € Dy

t
sup ||H{Ts(u® e(f))]| < +oo, /IIH;Hs(u®e(f))||2ds<+oo
s€[0,7] 0

ii) the processes (H;);>o and (H;");>o are defined on Dy®J and for all u € Dy,
f € L*(Ry), there exists (-, f, u) in L} (R4) such that for all g € L*(Ry), for
almost all t in Ry

1H T (e @ (g, NI < gl qllPe(t, £ u)

1H T (u @ j(g I < llgtpoqllele £ u)

t
/IWﬂu@dWFm<+w
0
t
/ [HX (4 ® e(0)]] ds < +00.
0
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A regular quadruplet ((Hf);>0, € € {—,0,4,x}) satisfies (0.1) and by conse-
quence the operator Ty = ) fot HE daf is an adapted process with respect to Dy.
&

LEmMA (1.5). — Let ((H;):>0,€ € {—,0,+, X}) be aregular quadruplet and T; =
> fot HE daf. For allt > 0, T; can be extended to Dy®.J in the sense that for all f, g in
&

I[*(Ry.), forall u in Dy
T (u® j(g f)) = / ¢() T, (u ® e(f) dxs + / $() HOTL, (1 ® e(f)) dxs
(1.6) + / HATL(u ® (g, f)) dxs + / ¢(5)H; Ty(u® e(f)) ds

+ / HXT(u® j(g, f)) ds.
0

Moreover for all u in Dy, f in L*(Ry ), there exists an increasing function «(-, u, f) : Ry —

R increasing such that for all g in L*(Ry.),

(1.7) 170 (u @ j(8 S < (18110, (2, 1 f) -

Proof. — By (0.4), we have that for all uin Dy, f in L*(R.);
(e o)) = [ SOLMe () dx+ [ £ e(f) ax.
0 0
e dn) ax+ [ 5@ e ) ds
0 0

+ / HX (4 ® e(f)) ds,

and thus by using standard estimates (such as for example: (9.7) of [M3], p. 138), we have
that forall z > 0, sup ||TsI1;(u ® e(f))|| < +oo and thus for all u in Dy, g, f in L*(R4),
0<s<t

fot TsDs(u ® j(g, f)) dxs is well defined. By using Attal-Meyer’s result, we can define
(Tt) >0 on Dy®J by (1.6). This implies that

171 (@ jg, )l Sllgl[o,[]ll{ sup [|73Ms(u ® e(f))ll + sup [|H{Ts(u® e(f))]
0<s<t 0<s<

t

+ (/0[ 1 Hy s (u @ e(f))]I? ds) 1/2 +/0 Pl uf) ds}’

where @(s, u, f) is given by the hypothesis on the quadruplet ((H;) >0, €€{—,0,+, X }).®

COROLLARY.

(1) All the processes of S' are defined on Dy®.7 .
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@QIT, =Y, fot H da with (Hf) >0 regular then by (1.7) we can define fot T da

&
foralle > 0. Foralln € N, T, = [, _ daj ---da;’ wheree; € {—,0,+,x} for
i=1,...,niswell defined on h®J .

We see by formula (0.2), (0.4) and (1.5) that it is not necessary to have quadruplet of
processes (H®)¢c—,0,+,x} defined for all £ > 0.

DEFINITION (1.8). — A quadruplet (H)ec{— 0,+,x} is called regular on Dy if the
following conditions are satisfied:

(i) H* : Dy ® J — Ligc(R+, H)
HY:Dy®J — 2. (R, H)
H :Dy®E — L2(Ry, H)
H :Dy®& — LA.(Ry, H)
are linear operators.
(i) Forallu in Dy, f in L*(Ry), there exist (-, u, f) € L\ (Ry) such that for almost
allTinRy, forall g in [*(Ry)

1HF e (u® (g A < Mgl @(T w f)
1HZ T (u @ j(8, I < 18l ll (T, f) .
(iii) Adaptation property: for all u in Dy, f in L*(Ry.), g in L*(R4.) for almost all t in
Ry, foralle,
Hil(u®e(f)) € Hy Hi M (u® j(g f)), H'M(u® j(g f)) € Hy,
Hi (u® e(f)) = HiTl(u® e(f)) ® e(f1[400) inHy ® P, ife = +, X,
Hi(u® j(g f)) = Hli(u® j(g f)) + HiT:(u @ e(f10,)) ® j(8L[t400s f L[t00]) -

If (H¢) is a regular quadruplet, we can define T, = > fot H{ daé on Dy®J by (1.6).
&
Furthermore, we have for all g, f in L?(R4.), forall s < ¢,
t
(1.9) M7l (u @ j(g, f)) — Tols(u @ j(g, )| < / y(7) dt
N

where y belongs to L] (R) and dependsof u, g, f.

DERINITION (1.10). — A curve (x;);>0 in H is a quasimartingale if for all t > 0,
X € Hﬂ and for all s < t, it exists c(s, t) such that for all subdivisionsty = s < <--- <

n—1
tn = t of[s, t], we have ) |11 (xs,, — x5;)|| < (s, 1).
i=0



Enchev in [E] (see also [M1]) proved that a quasimartingale (x;);>o can always be
written x;, = M; + A; where (M;);>¢ is a martingale, i.e. for all s < t, [I;M; = M; and
(A¢) >0 is an adapted process with finite variation in the norm sens and such that ||A; —
Agl] < (s, 1).

DEerINITION (1.11). — A curve (xz)[zo in H is an absolutely continuous quasi-
martingale if (x;);>o is a quasimartingale and if the quantity c(s, t) given by definition
(1.10) is of the form c(s, t) = f; w(T) dt for some g in L (Ry).

In this case, we have that A, = fot a(t) dt with for almost all T, a(t) in H and
[la(T)]| < w(7). Soif (T;):>0 is representable as stochastic integral on Dy®.7, then by
(1.9), forall uin Dy, forall f, gin L*(Ry), (T:I1,(u®j(g, f)) >0 is an absolutely continuous
quasimartingale.

DERINITION (1.12). — Let (T;);>0 be an adapted process of operators defined on
Do®J . (T;) >0 is a quasimartingale (resp. an absolutely continuous quasimartingale) if
forall F in Dy®J, (T;I1;F) >0 IS a quasimartingale (resp. an absolutely continuous quasi-
martingale).

We have seen in lemma (1.1) that if K is a bounded operator of L?(R;.) then A(K) is
an operator whose domain contains 7. What about the representability of the associated
martingale (A;(K))>0?

PROPOSITION (1.13). — (A;(K));>0 belongs to S’ if and only if K is an operator of
multiplication by a bounded function.

Proof. — For f in L*(Ry), we have A,(K)e(f) = ai‘[o,;]K(fl[o,x])(e(f)) thus

MR e(f) = AKIre(f) = 5.y (e(F10,)
and therefore
IA:(K)re(f) = As(K)re(f)|* = / |K(f 1j0,7) () dt [le(f 110,77 -

By using (0.7), (A+(K))>0 € S’ implies that there exists @ in L} (Ry) such that for all
r<s<tforall fin L?*(R,),

[ ki ars [ o ar.

So K(f l[o,r]) 1}, +00[ = 0 and by looking at the adjoint, we must have that for all r > 0, for
all f in L*(Ry), K(f 1} 400) 1[0, = 0. It is easy to see that these conditions imply that for
alla < b, forall f in L*(Ry), K(f1{44)) = 1[4, K[ and so K commutes with the operator
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of multiplication by indicators and by consequence it is an operator of multiplication by a

bounded function k, and A(K) = a? = 0+°° k(s) da®.

LEmMa (1.14). — Let K be an Hilbert-Schmidt operator on L?(R..) given by a ker-

/H"'da +/ H_ da;
where H = a— and HY =

(1) 1o "’( Mo

nel . Then

Proof. — Let HY and H~ defined as above. Then they give rise to a regular
quadruplet (definition (1.8)) and the operator T; = fot Hf dat + fot H dag is defined
on J. By (0.2),

(e(f), Tve(g / {F(5)e(F). HE e(g)) + g(s)e(f), HT e(g)) } ds

= (elf), ())/{f'( )| ews 0 ar+ g0 T ol arlas

/f K(g10,q)(s) ds
) (8 = (el A(Ke(g)) .

This lemma justifies the fact that we have to consider H* and H ™~ as operators from
& (or J) to L*(Ry, ®) for (T, -) is defined only for almost all T.

An interesting question is the following: what are the bounded operator K on
L*(Ry) such that A,(K) is representable as a stochastic integral on € or J 2

The above results prove that Hilbert-Schmidt operator or multiplication by a
bounded function give representable operators, but we can see with the example of Journe
in [J-M] that if K is the Hilbert transform, then (A;(K)) ;>0 is not representable, for it is not
a quasimartingale.

We will say that an operator T is representable on 7 if the associated martingale
(T;) >0 is representable on 7, i.e. if there exist a regular quadruplet (H®).e{—0+,x}> @

constant A in Rsuch that for all ¢ > 0, T; = Ald + > fot H¢ dat.
ee{—0+,x}

ProPOSITION (1.15). — Let K a bounded operator in L?(R4.). A(K) and A(K*) are
representable on J if and only if there exist @ in L (R4 x Ry), k in L2 (R4.) such that

+oo

Kf= |  fO)els)ds+kf.
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Proof. — We suppose that A(K) and A(K™*) are representable on 7, the converse
result being already proved.

Let g, f bein L?(R,.). We easily see by (1.3) that if s < ¢,
A (K j(g, f) — As(K)sj(g, f) = HsaZ(gl[s’t])e(f) .

By hypothesis,

mmmegn—Mmegﬂz/gummnmqu

This implies
t
(1.16) 1y ef) = / (I H Tre(f) dr
Let f be 0, we have
S 3
(1.17) | K@@ ax = [ gonaze) ar.
0 s

So for all s > 0, for almost all T > s, [1;H e(0) belongs to the first chaos and so for almost
all T, H e(0) belongs to the first chaos. Let (T, -) be the associated function in L?([0, T]).
So by (1.17), for all s < ¢, for all g in L?(R4.),

(1.19) 14K (&) = [ 8Pl 140 dr

and by (1.16) for all f in L?(R,.), for all gin L2(R, ), forall s < t,
t
N

[ 8ot dxe = [ gt ne(s) ar

- — t
andso Hy = Aop(r,)

Furthermore, for all T > 0, fOT ||[H; e(0)]|? dT < 400 and thus

/OT (/OT (T, 5)[? ds) dt < +o00.

Bylooking at A(K)* = A(K*), we have for almost all T > 0, the existence of @* (T, -)
in L2([0, 7]) such that for all T > 0, fOT (fOT |p(T,s)|? ds) dt < 400 and satisfying for all
gin L2(Ry), forall s < t,

t
(1.19) 1mﬁwmm=/g®mmﬂvwr

We extend @ to R%. by defining (s, 1) = @*(t, s) for s < £. So forall T > 0,

// (s, 1)|? dsdt < +00
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and for all g in L?(Ry.), for all s < ¢, (1.18) and (1.19) imply
1o, K(815,9) = 1[0, fsst g(Mo(r,) dr
10 K(810) = 115 Jo &(D@(7,-) dT.

We can conclude like in the proof of (1.13), that (1.20) implies the existence of k in L° (R4.)
such that for all f, forall T > 0,

(1.20)

T
K(8lj1) = / g (r,) dT+ gk
0

Remark. — All the same, we have a kind of representability property for A(K) by
Maassen’s kernel. If K is a bounded operator in L?(R; ) with a kernel @ not necessary
in IZ (R4 x Ry) (for example the case of the Hilbert operator), we can write A(K) =

ffR+><R+ (s, t) da} da; .

2. Integral representation

DEeFINITION (2.1). — LetT = (TI)IZO be an absolutely continuous quasimartin-
gale on Dy ® J. We say that T is a regular quasimartingale if for all f in L*(R..), for all u
in Dy, there exists ¢(-, u, f) in L\ .(Ry) such that for all g in L*(Ry.), forallr < s < f,

@2 LT u®jg f) = Tu® j(g Il < llgloqll f; (t u f) dr
@3) TMue j(gf) - Tue jg NI* <lglpall* J, ¢(tu f) dr
(2.4) The mapping L>(Ry) — H, g — T,J1,(u ® j(g, f)) is closable.

Remark (2.5). — Ifforall t > 0, T} is a closable operator then (2.4) is satisfied. The
hypothesis (2.4) implies by using the closed graph theorem that for all f in L?(R..), for all
uin Dy, the mapping L?(Ry) — H, g = T,11,(u ® j(g, f)) is bounded.

THEOREM (2.6). — Aprocess T = (T;)>o of operators is a regular quasimartingale
ifand only if there exists a unique regular quadruplet (H*).c{_ o,+,x} such thatforall t > 0,
T, = To+ Y. [y H dat on Dy®J .
&

Proof. — LetT, = Ty + Zfot H; dai on Dy ® J with (H®)ec(— 0+,x} being
&

a regular quadruplet. Equation(1.9) implies that T = (T) is an absolutely continuous
quasimartingale on Dy ® J. By using (1.6) and (1.7), we prove easily that (2.2), (2.3) and
(2.4) are satisfied and by consequence T is a regular quasimartingale.
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We now prove the converse result. Let T = (T;);>o be a regular quasimartin-
gale. We can change T; in T; — Ty without modifying the hypothesis, so we can sup-
pose Ty = 0. Let u in Dy and f in L?(Ry) be fixed. By assumption, for all g in L2(Ry.),
(T:11; (u®e(0))) >0 and (T;11,(u®j(g, f))) >0 are absolutely continuous quasimartingale
and by (1.11) there exists adapted curves from Ry to H, T — m(g, u, f), T — a-(g u, f),
T+ me(u) and T = ar(u). More over for all t > 0, [ [|m-(g u, f)||* dT < +o0,
fot llac(g, u, f)|| dT < +0o0, fot || (u)||?> dT < +00 and fot ||ar(u)]| dT < +o00 and

(2.7) { il (4 ® e(0)) = fj me(u) it + [ an(w) dr
Ttnt(u ® ](g’f)) = fot mT(g' u’f) dx+ fot a-r(g' u’f) dt.

Let r > 0 be fixed. By (2.2), we have that ||a-(g1joq, u f)|| < [lglp,llw(T, u f) for aa.
T > r. We denote by y the lifting from £ (R, dt; H) to B®(Ry; H) the Banach space

of everywhere bounded Borel functions on Ry with the uniform norm (see [M3], p. 293).
% (which we assign the value 0 if (7, u, f) = 0) belongs
to L2(]r, +00[, dt; H), thus we can define a map |r, +oo[— H, T — Ay-(g u, f) with
Ar(gu ) =yw(T, u,f)y(%) (7) for T > r, and we have that for all T > r, for all

gin L*(Ry),

The function T +—

[4r(g w Il < llgtjonll w(T w f) .

Consequently, the mapping L?([0,7]) — H, g — A,+(g u, f) defines a bounded linear
operator. As I1,I1,, = I+ if ' < r, and by using the lifting y, we have thatforall T > r > r/,
for all g in L([0, r']),

Ar',‘f(gr u;f) = Ar,T(g; u;f) .

This allows to define A-(g, u, f) forall g in |J L*([0, r]), and we have that ||A-(g, u, f)]| <

<t

llgllw(T, u, f). This defines A-(g, u, f) for g in L?([0,7]). One easily checks that A-(g, u, f)
belongs to H). We put HTI-(u ® j(g, f)) = Ar(glp, & f) and HX T+ (u ® e(0)) =
ar(u). We have constructed an operator H* : Dy ® J — L{_(R+,H) which is adapted
and such that for all u in Dy, for all f in L*(R), fora.a. T in Ry, for all g in L?(Ry.),

(2.8) I1H7 T (u @ j(g I < gl lle(T,uw f) -

Now define K+ (u ® j(g, f)) = a:(g u, f) — HXTl(u ® j(g, f)) and K+ (u ® e(0)) = 0.
The operator K : Dy®J — L (R4, M) satisfies for all r in R%., for all u in Dy, for all f in
L*(Ry) foraa. 7> r,forall gin L*(RY),

(2.9) K, (u® j(g f)) =0 and K:I1,(u® e(0)) = 0.

By (2.7), we have moreover thatforall r < s < f,

t

1L (u®j(g, £))— T (u® (g, )) = / me(glio,, o f) dxe+ / ar(gl  f) d.
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So by (2.3) we have, for a.a. T > 7, [|[mc(glj,y, u, )II* < |10l @(T, w, f) where
P(u f) € L. (Ry). Using the same method as above, we construct HT : Dy®J —
L2 (R4, H) adapted such that for all u in Dy, f in L*(R4), a.a. Tin Ry for all g in L?(R4),

(2.10) IH e (u @ (g A < llgljonlld (T f) .

Now define R-(u ® j(g, f)) = m(g u, f) — H*Tl:(u ® j(g, f)) and R (u ® e(0)) = 0.
The operator R : Dy®J — L2 (R4, H) satisfies for all r in R, w in Dy, f in L*(R%.), for
aa. T>r, forall gin L*(Ry),

(2.11) K (M, (u® j(g, f))) = 0 and KI1,(u ® e(0)) =0.

We have thus
t

(2.12) Trﬂr(u®j(g;f))=/0 Re(u@j(g f)) de+/0[Hi"HT(u®j(g;f))de

+ / Ke(u® j(g, f)) dr + / HX T, (u® (g, f)) d.

Let the linear operator Ly, s, L*(Ry) — L\ (Rt H) x LL.(Ry, H) x L2 (Ry, H) x
Lic(Re M), g = (HFTL(u® j(g, 1)), K(u® j(g f)), H*TL(u & j(g f)), R(u®
i(8.£)))-

By using (2.4), (2.8), (2.10) and (2.12), we see that L, s is closable and so by the

closed graph theorem, it is a bounded operator and there exists for all ¢ > 0, u in Dy, f in
IL*(Ry), ¢/(u, f) in R such that for all g in L?(Ry.),

{IJ I (u@ i(s, )| d < llgle:(w. 1)

Jo 1Re(u® j(g P)IP dr < liglPei (e )

Because of (2.9) and (2.11), we can define processes H~ : Dy®E — L (R4, H), L :
Do®E — L. (R4, H) by: for uin Dy and f in L?(R4),

loc

(2.13)

Ho T (u®e(f)) = K (u ®/0 e(f1jo,) dxs)

T
Ll (u e(f)) = Re(u@ [ e(f10) dx)
0
where T is any real > T.

By definition of K and R, H~ and L are adapted processes. Let g in L?(R;) be a
step function givenby g = 3 A1y, ;. for0 <o <ty <--- <ty
i

We have

Ri(u® j(g f))

73

ZAi{RT(u(X’ /Ot’”rl e(flp,q) dxs) — RT(u®/0 e(flpg) dxs)}

S ALl (u® e(f))

i/ti<T<tl‘+1

= 8(M)LT(u®e(f)).
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By the same computation, we have K+(u ® j(g, f)) = g(7)H; +(u ® e(f)). Moreover
(2.13) implies that for all step function g in L?(Ry.), forall T > 0,

/0 |g(T)PIILTe(u ® e(£))||* dT < |lgl*er(u, f)
and

T
/ lg(D)[1Hy Te(u @ e(f))]| dr < [[gller(w, f) -
0
Consequently, for all T > 0, we have

sup [|LTe(u® e(f))I* < er(u, f)

0<7<T
and ’
[ eI ar < ertu s,
0
and for all g in L*(Ry.),
R (u® j(g f)) = g(t) L - (u ® e(f))
and
K(u®j(g f)) = g(m)H N (u® e(f)).
So by (2.12),

T (u® j(g f)) =/0tLrDT(u®j(g,f)) de+/otHT+HT(u®j(g,f)) dx+

+/ H D (u® j(g f)) dT+/ HY T (u® j(g, f)) dr
0 0

and
sup || T, (u® j(g )|l < llgller(u f) .

0<t<T
We define H? : Dy®E — L2 (R4, H) adapted by

HM(u ® e(g)) = —Telle(u ® e(f)) + Lelle(u ® e(f)) -
We finally conclude by the result of S. Attal and PA. Meyer in [A-M] that T, = ) fot HE dat
on Dy®J . )

We now have to prove the uniqueness. Let (H¢) ee{— 0+ x} aregular quadruplet
such that for all uin Dy, g, f in L2(Ry), (Zfot HE daﬁ)(u ®j(g. f) = 0. Let T; =
&

> [y HE dat. Forall uin Dy, g, f in L*(Ry), 1, 1! < s <t,
&

My (TeT, = TSI (4 @ (g, f)) = 0
and so fst M HXT(u® j(g f)) dt = 0.
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Soforallr > 0,7 > 0,foraa v>rr, [I.H*(u® j(g f)) = 0thusforall r > 0,
fora.a. 7> r, H*I1,(u ® j(g, f)) = 0. But by assumption, forall r > 0, fora.a. 7> r

| (u® (g f) = T (u® j(g )| < (/T Ig(s) ds)@(r, u, 1)

and thus fora.a. T, HXTl (v ® j(g, f)) = 0.

We also have that HXT:(u ® e(0)) = 0and so H* = 0. If we look at (T,I1, —
T,I1s)T1,, we prove by the same method that HY = 0. Soforall t > 0, uin Dy, f,gin
L*(Ry),

/ (L (4 ® e(f) dx» + / (O H T (1 ® o(f)) dr = 0

and thus fora.a. T
{ g(M)HM(u® e(f)) =
g(NH Mc(u®e(f)) =

and by consequence H® = 0and H~ = 0. [ |

0
0

3. Some consequences

a) Operators commuting with projections on H K

ProposITION 3.1. — Let T be a closable operator defined on Dy®J such that for
all t > 0, TT1; = I1,T: then there exist an unique H : Dy®@E — L®°(Ry,H) and Z : Dy —
ho such that T = f0+°° Hyda? +Z® I.

Moreover, if T is bounded then H; is bounded for all t and t — ||H?|| belongs to
L®(Ry).

Proof. — We define (T;);>¢ as usual by T,I1,F = TII,F = II,TF. Soif s < t, we
have Il T;I1; = TI;TTl; = TTl; = Ty and Ty = Z ®Id. The hypotheses of theorem (2.6) are
satisfied with ¢ = 0 and so there exists H : DyQE — L2 (R4, H) such that for all £ > 0,
T, =Ty + fot H; dat on Dy®J. If u € Dy, f, gin L*(R,.), we have:

T (u®jg f)) = To(u®j(g;f))+/0 g(T) (T (u® e(f)) + Hell(u® e(f))) dx+

and so forall gin L?(Ry), forall > 0, forall F € Dy®&E
t “+o0
(3.2) / Ig(ORITTLE + HeL F|]2 dr < [[(T — To) / g(D)1,F dxs) .
0 0
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By consequence, f0+°° |g(T)?|| T+ F + H 1, F||? dT < 400 and sup |1 TF + HI1F|| <
TERT
+o00 and sup ||H{II:F|| < 400 . This implies that H : Dy@E — LRy, H) and T =
TERT

Z®1d+ f0+°° H; da®. Furthermore, if T is bounded, (3.2) implies that for all g in L?(R4.),
for all Fin Dy®€,

+oo
/ lg(D) PN TF + He I ||* dv < [|glI* [|FI* 1T — Toll?
0
and so for all Fin Dy®¢&, fora.a. Tin Ry,
N+ TF + Ho I F|| < ||F|| || T — Tol|

and so
|H-T1F|| < 3||T|| || F]| . u

Remark 3.3. — In fact, we have the more precise result: T is an operator defined
on Dy®.7 satisfying (2.4) and forall ¢ > 0 TT1; = I1, T ifand only if there exist H : DyQE —
L®(Ry,H) and Z : Dy — hg such that T = f0+°° Hyda? +Z Q1.

b) About uniqueness.

Let H : Dy®J — L (R+,H), (p = 1or2) such that forall u € Dy, forall f in
L?(Ry), there exists (-, u, f) in L (R4) such that for a.a. T, for all g in L*(Ry.),
1 H(u @ (g, £ < I8 qlle(T, u f) -
This condition on H implies a kind of right continuity for H. Thatis: for a.a. Tin R, for all

(Tn)n>0 increasing to (1)

(3.4) HIlr, (u® j(g, f)) n_>_+)oo H: I (u® j(g, f)) -

For example, if we look at the Malliavin’s gradient, V : J — L?*(R4,®) defined by

Vj(g ) = g(mre(f) + f(1) (8,400 f), we have that VI1r,j(g, f) = 0if T, < T
and (3.4) is not fulfilled.

But we have that [, V,da;j = af.

c) About the results of Parthasarathy and Sinha, Attal and Meyer.
We have recalled their results in (0.6) and (0.7).

Let (T;) >0 be a process of bounded adapted operators which satisfy (0.7). Then for
all F, Gin H, forall r < s < t, we have
(T}T1,F — T}TL,F, G) = (T}TI,F — T*T,E11,G — [1,G) + (T/TI,F — T*I1,E T1,G)
= (I, E 11, (T — T,I1)G) .
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So (1.7) implies

(M1, E T1( T4 — T4l G)| < ||n,p||{ L (1) dr||11,G— G| + [ @(7) dT||HrG||}

and thus,
3.5) N7 - T G| < 4/ [ (1) dTlI,G — 7G| + [ @(7) dT||I1, G|

(0.7) and (3.5) implies that the hypothesis of theorem (2.1) are satisfied and so we have the
existence of (Hf)>o.

By using the inequalities (0.7) and (3.5), we have that (HZ), ¢ € {+,—, x} are
bounded operators which satisfy (0.6). By using proposition 3.1, we see that H? is bounded
and that T — ||H?|| belongs to L (Ry.).

4. “"Noises” defined on 7

DERINITION 4.1. — A process of operators (T;) ;> defined on J is a noise if for all
s<t,T; =T, =1d ® K;; ® Id on®y & P[5 ® P, with K;,, being an operator on ®[y ).

THEOREM 4.2. — Let (TI)IZO be a noise on J such that each T; is closable, then
thereexistA: Ry = C, f € L% (Ry), g € IZ (Ry) and k € L2 (Ry), such that

T, = ()Id—{—afl[ +a;  +ay

81[0,1] o]

Proof.

We define x; = T[e(O) We can see that for all s < #, x; — x; belongs to &
and in the same way as in [C], x; = ) + fo s) dxswith f in L2 (R4).

We define S; = T; — A(t)Id — afl[o,r]’ so we have that (S;);>o is a noise on 7 and
Sie(0) = 0.

T, is closable on 7 so for all f in L?(Ry), the mapping L*(R.) — &, g —

T:j(g, f) is bounded because it is linear and closable onall L?(Ry). So there exists h; f in
L([0, £]) such that for all gin L*(Ry.), 1y S;j(g, f fo T)hyp(7) dt. Butifa< b <,

MoS: j(g1(an), f) = Mo(Sp — Sa)j(gl[a,b],f) + M0Saj (810} f)
=oSpj(g, f) — MoSaj(g. f) -
This implies that 1jg g ey = 1[0 4 hbf and we define hy by hy(s) = hyp(s) if s < ¢, so
hy € L2 (Ry) and ToS:j(g, f) = [y g(T)hy (1) dr.
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We have to prove that (S;) >0 is an absolutely continuous quasimartingale

(MsST, — Ss“s)j(g,f) = (ﬂo(Sr — ST j(g, £))Tse(f)

and so ||(T1;SI1, — SiI15)j(g, )l < le(H)I| fo |g(T)| |hs(T)| dT. Moreover if r < ¢,
S, — SI1, = 0on J,s0 (T;) >0 isa regular quasimartingale.

So by theorem (2.1), there exist H~ and H° such that S, = fot H; dag +f0t H? dal.
We define £(T) = IoH; e(0) and k(1) = [MoH e(0). Let f,gin L*(Ry)and r < s < f,

SiT1:j(g flo,) — SsT1sj(g, f1jo,n)
= [ smsinets) axe+ [ gmetr) ax,
+/ g(T)H: Me(f) dt
= (St — ST, j(g flo,n) + Ss(Mr — ) j(g, f11o,17)
= sel)® [ g0 dx, + el 5= ) [ ¢(r) axr

So

/ ¢(T) HOMLe(f) dxy + / g(T)H: Te(f) d
= e(f) ® (5, — S5) / g(7) dxe

=) ( [ stmme) ax,+ [ strnc e ar)

H%(0) = k(7)e(0
sofora.a., T T ©) ()e(0) andforall r > 0,
H-e(0) = £(7)e(0)

HYTlre(f) = k(T)M e(f)

Hy Te(f) = £(T)e(f)

We define §[ = al_[O,t]'e + a?[o’t]k and R, = S; — §t We fixt = 1. Let a < b. We have for f, g
in L2(Ry),

fora.a. T> 0, {

b
(1.9) R(@asy F1a) = [ (R Me(s) dx:.
Let j, = 2_: flﬂ (f) dx+. Then j, = I, j(g, f) and we can prove by (4.3)

that Ry j, el fo T)R.Ie(f) dx- .

As Sljn n_>—+>oo Sll'llj(g,f) and

(A + afy, Vin =2 (A0 +afy (. f)

—+00
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the closability of T; implies that Ry j, — RiI1;j(g, f) and so

1
R f) = [ g(R () dxr
0
andsoforallt > 0, Ry = 0. [ |

Remark. — This is not a new result. We prove in [C] that if (T}) />0 is a noise
on & such that all T; are closable and for all f in L?(R;), the mapping R+ — C, t —
Mo T; (e(f) — e(0)) has finite variations on compact sets, then the conclusion of theo-

rem 4.2 is valid.

The condition “T; closable on J” implies that for all f in L*(R;.), there exists hy
in L[ZIOC(R+) such that for all g in L>(Ry), T T;j(g, f) = fot g(T)hs(7) dt and so as
Mo T; (e(f) — e(0)) = Mo Ty j(f, f), t = Mo T;(e(f) — e(0)) has finite variations on com-
pact sets. So we can apply the above result of [C].

5. Application to contractive cocycles in Fock space

By solving quantum stochastic differential equations of the form

(5.1) dv, =Y Vil da;, Vo =1d
&

inwhich Ly = L, Ly = W—-1,L_ = —L*W, Ly = iK — %L*L and W, K, L are
respectively fixed unitary, bounded selfadjoint and bounded operators, one obtains uni-
tary valued Markovian cocycles (with respect to time shift on Fock space), or covariant
adapted evolutions, whose reduced semigroup is continuous in norm [HP2]. Conversely,
such Markovian cocycles are all solutions of quantum stochastic differential equations of
the form (5.1). These results are shown in [H-L] by using the stochastic integral repre-
sentation theorem for regular Fock martingales [P-S] and basic techniques of the Hudson-
Parthasarathy calculus [HP1].

Clearly norm continuity is not satisfied by the most important semigroups. Thus it
is interesting to weaken this assumption in order to establish a quantum stochastic ana-
logue of Stone’s theorem on one-parameter group of unitary operators. Journe in [J] in-
vestigated the strongly continuous case and showed, under a regularity condition, that a
cocycle can be reconstructed from the infinitesimal generator by a recursive procedure on
the finite particle subspaces. In general the generator will fail to have a common dense
domain and the cocycle will not satisfy any q.s.d.e. Accardi, Journe and Lindsay in [A-]J-L]
prove that this cannot happen when the cocycle V satisfies a weak differentiability condi-
tion.
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In the present part we show, by using the stochastic integral representation theorem
(2.1), that under a condition on the cocycle (which is necessary and sufficient and weaker
that the weak differentiability condition of [A-]J-L]) that the unitary cocycle V satisfies a
g.s.d.e. of the form (5.1).

Let S; denote the right shift on L2(R;.), so that for ¢ > 0
(su)() = {Slxmn) e
0

otherwise .
Let [(S;) be the second quantizations of S;. T[(S;) is isometric. For all s > 0 and all
bounded operator X in B(H), the operator ['(S;)XT(S;)* maps hy ® Hj, into itself. The
canonical extension to H will be denoted by I'(S;) XT(S;)*.

DEFINITION 5.2. — A family (V;) >0 of contraction is a cocycle if it satisfies Vo = I
andforalls, t > 0, Vy, = V[(Ss) V,T(Ss)*.

Let (P;) >0 defined on hg by P;u = Iy V;u. The next lemma is proved in [H-L].
Lemma 5.3. — (Py) >0 IS a semigroup of contractions on hy.

DERINITION 5.4. — Let (V;);>0 be an adapted cocycle and (T;);>o be defined by:
foru € ho, Tyu = To Vi (u ® x;). We will say that (V;),>¢ satisfy assumption (H) if

(1) (Pr)zzo is strongly continuous with a generator denoted Z on a domain denoted
D(2).

(2) there exists a dense domain D C D(Z) such that for all u in D, {%}
bounded.

i>0 18

DEEINITION 5.5. — An adapted cocycle (V;)>¢ is said to be weakly differentiable
if there exists a dense domain DV of hy such that for all u in DV, for all v in hy, for all
f.g € I*(Ry) N Co(Ry), the mapping t = (v ® e(f), Vi(u® e(g))) isC' onRs.

LEMMA 5.6. — An adapted weakly differentiable cocycle (V;) > satisfies assump-
tion (H).

Proof. — Ifwetake f = g = 0, we see that for all uin DV, P;u — u t—0> 0 weakly
—
in hy and as (P;) >0 is a contraction, (P;);> is strongly continuous so we have (1) of (H)
with DV C D(Z).

By using Banach Steinhaus theorem, we see easily that weak differentiability im-
plies that for all uin DY, forall f € L?(Ry) N C° My (u ® e(f) — u) is bounded, and so
(2) of (H) is satisfied.
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THEOREM 5.7. — Let(V;);>o be an adapted contractive cocycle satisfying hypoth-

esis (H). Then there exist (L¢)ec{— + x,0} On hy with domain D such that V; = I +
) ViLe dat.

Proof.

In order to apply theorem (2.1), we have to prove that for all F in 7, for all u in
D, (ViI1;(u ® F)) ;>0 is an absolutely continuous quasimartingale.

First case: F = ¢(0), x, = V,(u ® e(0)). Lets < t,
IMsx: — x| = [[TsVi(u © €(0)) — V(u @ e(0))]|
= || VsT(Ss) Vi sT(Ss)* (u @ e(0)) — Vi(u ® e(0))]]
< ITT(Se) Vie sT(S)* (u @ €(0)) — u @ e(0)|
= ||Tol(Ss) Ve sT(Ss)* (v @ e(0)) — u ® e(0)||
= 1Pr—su — ul| < [|Zul|(z —5).

Second case: x; = V,(u ® x;)

[ITsxe = x| = ||Hsvsm(u®?<t) = Vs(u® x|l
< [ITLT(Se) Ve sT(86)* (u @ xs) — u @ xsl|
+ [ITGT(S5) VesT(Se)* (4 ® Xt = Xs|
< (Pe—su—u) & Xsl| + [|mrol (Ss) Ve—sT(Ss) " (u ® Xe—x5)||
< Vs(t = )| Zul| + | Te—sull -

So there exists C(u) € Rsuch that ||TT;x; — xs|| < (¢ — s)C(u).

Third case: F = f0+oo g(s) dxs with g € L?(Ry) being a step function. Let y;(g)
My Ve(u ® fot g(t)dx:)and 0 < fp < f; < -+ < t,—1 < t, = tsuch that o8 =

n

—1
2 Ailjgg,)- SO
i=0

=l

fk—1
v (8) = novtk(u@a/ g(7) dxe ) + ATl Vi (1 ® x4, — Xy )
0

fk—1
= nor(stlc_l)Vtk*flc_lr(sfk_l)* (u ® / g(T) dXT)
0

+ Ak—lnor(sk—l)V[k—tk_lr(stk_l)*(u ® th - th_l)

fk—1
= ytk—l(g) + oV, ((P[k—tk—lu - u) ®/ g(7) dX‘r)
0

+ A1 Py Th—t_ U
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and thus there exists C(u) independent of g such that forall k =0, ..., n—1,

175 (8) = yu_y (O < (1 = 1) C() + Ak | (8 — 161) C(w) -

This implies that [|y;(g)|| < (¢+ fot |g(T)| d7) C(u). And so for all uin D, there exist C(u)
such that for all g in L?(R..), for all ¢,

MoV, dx-)| < dr) C(u) .
[moviwe [ e axo)| < (e+ [ lstolar)cw
Ifx = V(u® [, g(t) dx-),
Hst_ s < Pt—s - d‘r HVt—s B d‘r
I =5 < NP = 0 [ ge) el + [avics (ue [ g+ 7) ane)|
< llgll(t = 91 Zull + [lye—s(g(s + NI
Fourth case: F = f0+°° g(s)[se(f) dxs with £, gin L2(Ry).

5= Vil (ue F) = Vi (u@ /otg(s) ax:) + Vi(u® /otg(s)(ﬂse(f) ~ ¢(0)) dx.)

So we only have to study
Hl_[th(u % /Ofg(T) (Tee() — e(0)) dv) — Vs (u® /0 g(0)(MTee(f) — e(0)) dr) H

<

(=)@ [ gn)ine(s) - e(0) dx|

+ VT (ue [ st - e0) axs)

But
t

/ () (rel) — e(0)) dxr =(Te(f) = e(0)) ® [ s,

+Mee(f) ® / ¢(7) (Tee(f 1 1o0)) — €(0)) dxe

and so
t

[NV (e [ g metr) - e(0) axo)|

<[|Mse(f) — e(0)| ‘HOVrS(”®/stg(T+s) dXT)H

[ 60 e 1) = €00) |

+ el |

and we can conclude by the third case because

| / () (e 1) — €(0)) x| < / e ar(ef VO 1),
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(2.2) and (2.3) are always satisfied by (V;);>o because for all F in ¢ and u in
D(Z),forallr <s<t,

T Ve(u ®@ I, F) = Vs(u @ T, F)|| < ||Pr—su — ul| ||TTF[| < (¢ = s)||Zu|| ||TT-F|
and ) )
|Vi(u ® I, F) — Vs(u @ I, F) || < ([T, F||* x (=2)R({u — Pr—su, u))
< 2||0,F|* (¢ — )| Zul| [ul|.

So by theorem 2.1 we have the representation, V; = I+ fot HE dag. By using
&

cocycle property, we can prove as in the proof of [H-L] that Hf = VL, with (L;) ee{x,—+0}
definedon Dand Ly = Z. [ |

Remark. — One can prove that if (P;);>¢ is continuous in norm then (H) is satis-
fied.

One can also prove that if Z = iH + B with H selfadjoint and B bounded then (2)
of (H) is satisfied too.

The hypothesis (2) of (H) is equivalent to:

forall u in hy,forall vin D, t+— (u, V;(v® x,)) is CL.

Fagnola in [F] gives a characterization theorem for weakly differentiable (con-
tractive, isometric and unitary) Makovian cocycles in the Boson Fock space. He studies
the converse result: given (L)sc{x,+,—,0} satisfying some condition, does there exist an
unique solution of (5.1) which is a weakly differentiable cocycle?
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