STOCHASTIC INTEGRAL REPRESENTATION OF UNBOUNDED OPERATORS IN FOCK SPACES

by Agnès COOUIO
Prépublication de l'Institut Fourier $\mathrm{n}^{\mathrm{o}} 517$ (2000)
http://www-fourier.ujf-grenoble.fr/prepublications.html

Abstract. - The problem of quantum stochastic integral representation of operators in Fock spaces has been studied mainly by Parthasarathy and Sinha [P-S] and Attal [A1]. They obtained results concerning processes of bounded operators. In this article we extend their results to processes of unbounded operators on the Fock space. We apply these conditions to the characterization of quantum noises and to the characterization of contractive cocycles.

0. Introduction and notations

For any complex separable Hilbert space h, we denote by $\Gamma(h)$ the boson Fock space over h. We write $\Phi=\Gamma\left(L^{2}\left(\mathbf{R}_{+}\right)\right)$. We denote for f in $L^{2}\left(\mathbf{R}_{+}\right)$by $e(f)$ the associated coherent or exponential vector in Φ; the exponential domain is denoted \mathcal{E} (see [M3] for more details). Recall that $e(0)$ is the vacuum vector in Φ. We denote $\Phi_{t]}=\Gamma\left(L^{2}([0, t])\right)$, $\Phi_{[s, t]}=\Gamma\left(L^{2}([s, t])\right)$ and $\Phi_{[t}=\Gamma\left(L^{2}\left([t,+\infty[))\right.\right.$. Let h_{0} be a separable Hilbert space and

$$
\mathcal{H}=h_{0} \otimes \Phi, \quad \mathcal{H}_{t]}=h_{0} \otimes \Phi_{t]}
$$

We have the well known "continuous tensor product" structure

$$
\mathcal{H} \simeq \mathcal{H}_{t]} \otimes \Phi_{[t}
$$

The annihilation, creation and conservation operators are defined on the domain \mathcal{E} by the relations

$$
\begin{aligned}
a^{-}(f) e(g) & =\langle f, g\rangle e(g) \\
a^{+}(f) e(g) & =\left.\frac{d}{d \lambda} e(g+\lambda f)\right|_{\lambda=0} \\
\lambda(T) e(g) & =\left.\frac{d}{d \lambda} e\left(e^{\lambda T} g\right)\right|_{\lambda=0}
\end{aligned}
$$

Mots-clés : espace de Fock, calcul stochastique non commutatif, représentation d'opérateurs, cocycles markoviens.
Classification math. : 81S25, 60H05, 46L53.
the derivations being understood in the strong sense, for f, g in $L^{2}\left(\mathbf{R}_{+}\right)$and $T \in$ $\mathcal{B}\left(L^{2}\left(\mathbf{R}_{+}\right)\right)$, the algebra of all bounded operators on $L^{2}\left(\mathbf{R}_{+}\right)$. The operators $a^{-}(f)$ and $a^{+}(f)$ are adjoint to each others on \mathcal{E}. If T^{*} is the adjoint of T then $\lambda\left(T^{*}\right)$ and $\lambda(T)$ are adjoint to each other on \mathcal{E}. If $f=1_{[0, t]}$ and if T is the operator of multiplication by f, then $a^{-}(f), a^{+}(f)$ and $\lambda(T)$ are respectively denoted by a_{t}^{-}, a_{t}^{-}and a_{t}^{0}. We put $a_{t}^{\times}=t I$.

Let $D_{0} \subset h_{0}$ a dense linear manifold. We put $\widetilde{\mathcal{E}}=D_{0} \underline{\otimes} \mathcal{E}$, the algebraic tensor product between D_{0} and \mathcal{E}. A family of operators $\left(X_{t}\right)_{t \geq 0}$ defined on $D_{0} \otimes \mathcal{E}$ is called an adapted process with respect to D_{0} if the following conditions are fulfilled:
i) for all $t>0, \quad X_{t}\left(u \otimes e\left(f 1_{[0, t]}\right)\right) \in \mathcal{H}_{t]}$ and

$$
X_{t}(u \otimes e(f))=X_{t}\left(u \otimes e\left(f 1_{[0, t]}\right)\right) \otimes e\left(f 1_{[t,+\infty}\right) \text { in } \mathcal{H}_{t]} \otimes \Phi_{[t} ;
$$

ii) for all $u \in D_{0}, f \in L^{2}\left(\mathbf{R}_{+}\right)$, the map $\mathbf{R}_{+} \rightarrow \mathcal{H}: t \mapsto X_{t}(u \otimes e(f))$ is strongly measurable.

We denote again $a_{t}^{-}, a_{t}^{+}, a_{t}^{0}$ and a_{t}^{\times}the ampliation of the annihilation, creation, number and time process to \mathcal{H}. Let us now recall some elements of the Hudson-Parthasarathy's quantum stochastic calculus ([H-P1]). Let $\left(H_{t}^{\varepsilon}\right)_{t \geq 0}, \varepsilon \in\{-,+, \times, 0\}$ be adapted processes with respect to D_{0} such that for all $u \in D_{0}, f \in L^{2}\left(\mathbf{R}_{+}\right)$and for all $t>0$

$$
\begin{align*}
& \int_{0}^{t}\left\{|f(s)|^{2}\left\|H_{s}^{0}(u \otimes e(f))\right\|^{2}+\left\|H_{s}^{+}(u \otimes e(f))\right\|^{2}+\left\|H_{s}^{\times}(u \otimes e(f))\right\|\right. \tag{0.1}\\
&\left.+|f(s)|\left\|H_{s}^{-}(u \otimes e(f))\right\|\right\} d s<+\infty
\end{align*}
$$

Then the stochastic integral $T_{t}=\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$ is defined as the unique adapted process with respect to D_{0} satisfying the relation:

$$
\begin{align*}
& \left\langle u \otimes e(f), T_{t}(v \otimes e(g))\right\rangle=\int_{0}^{t}\left\langle u \otimes e(f),\left\{H_{s}^{\times}(v \otimes e(g))\right.\right. \tag{0.2}\\
& \left.\left.\quad+g(s) H_{s}^{-}(v \otimes e(g))+\overline{f(s)} H_{s}^{+}(v \otimes e(g))+\overline{f(s)} g(s) H_{s}^{0}(u \otimes e(g))\right\}\right\rangle d s
\end{align*}
$$

Let Π_{t} be, for $t \geq 0$, the orthogonal projection onto $\mathcal{H}_{t]}$. If $H^{\times}=0$, then we have for $s<t, \Pi_{s} T_{t} \Pi_{s}=T_{s} \Pi_{s}$ and $\left(T_{t}\right)_{t \geq 0}$ is a martingale. Otherwise we say that $\left(T_{t}\right)_{t \geq 0}$ is a semi-martingale. Now recall the extension of Hudson-Parthasarathy's quantum stochastic calculus due to Attal-Meyer ([A-M]).

One defines $\left(D_{t}\right)_{t \geq 0}$ on \mathcal{H} in the following way: if $u \in h_{0}$ and $f \in L^{2}\left(\mathbf{R}_{+}\right), D_{t}(u \otimes$ $e(f))=f(t) u \otimes e\left(f 1_{[0, t]}\right)$. Thus we have that for $\left(u_{i}\right)_{1 \leq i \leq n}$ in $h_{0},\left(f_{i}\right)_{1 \leq i \leq n}$ in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\left\|\sum_{i=1}^{n} u_{i} \otimes e\left(f_{i}\right)\right\|^{2}=\left\|\sum_{i=1}^{n} u_{i}\right\|^{2}+\int_{0}^{+\infty}\left\|D_{t}\left(\sum_{i=1}^{n} u_{i} \otimes e\left(f_{i}\right)\right)\right\|^{2} d t
$$

so that $\left(D_{t}\right)_{t \geq 0}$ defines a bounded process from \mathcal{H} to $L^{2}\left(\mathbf{R}_{+}, \mathcal{H}\right)$. In fact D_{t} is the ampliation to $h_{0} \otimes \Phi$ of the D_{t} defined on Φ by Attal in [A2].

Let $\left(X_{t}\right)_{t \geq 0}$ the curve in Φ defined by the following relation: for all f in $L^{2}\left(\mathbf{R}_{+}\right)$, $\left\langle e(f), X_{t}\right\rangle=\int_{0}^{t} \bar{f}(s) d s$. If $\left(y_{t}\right)_{t \geq 0}$ is a curve in \mathcal{H} such that $y_{t} \in \mathcal{H}_{t]}$ for all $t \geq 0$ and $\int_{0}^{+\infty}\left\|y_{s}\right\|^{2} d s<+\infty$, we can define $\int_{0}^{+\infty} y_{s} d \chi_{s}$ by the following relation: for all $u \in h_{0}$, for all $f \in L^{2}\left(\mathbf{R}_{+}\right)$

$$
\left\langle u \otimes e(f), \int_{0}^{+\infty} y_{s} d \chi_{s}\right\rangle=\int_{0}^{+\infty} \overline{f(s)}\left\langle u \otimes e(f), y_{s}\right\rangle d s
$$

By the same way, we define $\int_{0}^{t} y_{s} d \chi_{s}$ and we have $\Pi_{t}\left(\int_{0}^{+\infty} y_{s} d \chi_{s}\right)=\int_{0}^{t} y_{s} d \chi_{s}$ and

$$
\begin{equation*}
u \otimes e(f)=u \otimes e(0)+\int_{0}^{+\infty} f(s) u \otimes e\left(f 1_{[0, s]}\right) d \chi_{s} \tag{0.3}
\end{equation*}
$$

So for all F in \mathcal{H}, we have $F=\Pi_{0}(F)+\int_{0}^{+\infty} D_{t} F d \chi_{t}$. With these definitions and properties, Attal and Meyer in [A-M] prove that if $T_{t}=\sum_{\varepsilon}^{\infty} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$ with $\left(H_{t}^{\varepsilon}\right)_{t \geq 0}, \varepsilon \in$ $\{-,+, \times, 0\}$ satisfying (0.1), then for all $F \in D_{0} \underline{\otimes} \mathcal{E}$, we have
(0.4) $\quad T_{t} \Pi_{t} F=\int_{0}^{t} T_{s} D_{s} F d \chi_{s}+\int_{0}^{t} H_{s}^{0} D_{s} F d \chi_{s}+\int_{0}^{t} H_{s}^{+} \Pi_{s} F d \chi_{s}$ $+\int_{0}^{t} H_{s}^{-} D_{s} F d s+\int_{0}^{t} H_{s}^{\times} \Pi_{s} F d s$.
Conversly if $\left(H_{t}^{\varepsilon}\right)_{t \geq 0}, \varepsilon \in\{-,+, 0, \times\}$ are adapted operators such that for all $F \in D_{0} \underline{\otimes} \mathcal{E}$, for all $t \geq 0$,

$$
\begin{array}{ll}
\int_{0}^{t}\left\|H_{s}^{0} D_{s} F\right\|^{2} d s<+\infty, & \int_{0}^{t}\left\|H_{s}^{-} D_{s} F\right\| d s<+\infty \\
\int_{0}^{t}\left\|H_{s}^{+} \Pi_{s} F\right\|^{2} d s<+\infty, & \int_{0}^{t}\left\|H_{s}^{\times} \Pi_{s} F\right\| d s<+\infty
\end{array}
$$

and if $\left(T_{t}\right)_{t \geq 0}$ is a process satisfying (0.4) and such that $\int_{0}^{t}\left\|T_{s} D_{s} F\right\|^{2} d s<+\infty$, then $T_{t}=\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$. In fact, Attal and Meyer used equation (0.4) for processes defined on domains which can be different of $\widetilde{\mathcal{E}}$. A good space of operator processes can be defined by looking at processes of bounded operators satisfying for all $t>0$
(0.6) $\int_{0}^{t}\left\|H_{s}^{\times}\right\| d s<+\infty, \int_{0}^{t}\left\|H_{s}^{\varepsilon}\right\|^{2} d s<+\infty$ for $\varepsilon=+,-$ and $\sup _{0 \leq s \leq t}\left\|H_{s}^{0}\right\|<+\infty$.

Clearly these operators satisfy (0.1) and thus $T_{t}=\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$ is well defined on \mathcal{H}. S. Attal studies this space of operators in [A1] and denotes it \mathcal{S}^{\prime}. If we add the condition that for all $t \geq 0, T_{t}$ is bounded, then we obtain the space \mathcal{S} of processes of [A1]. In fact, we see for example that a_{t}^{ε}, for $\varepsilon=+,-, 0$, belongs to \mathcal{S}^{\prime} but not to \mathcal{S}. It is easy to see that if $T_{t}=\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$ with $\left(H_{t}^{\varepsilon}\right)_{t \geq 0}, \varepsilon \in\{-, 0,+, \times\}$ satisfying (0.6) then we have for all $t>0$, for all F in \mathcal{H}, for all $0<r<s<t$,

$$
\left\{\begin{array}{l}
\left\|T_{t} \Pi_{r} F-T_{s} \Pi_{r} F\right\| \leq\left\|\Pi_{r} F\right\|\left\{\left(\int_{s}^{t}\left\|H_{\tau}^{+}\right\|^{2} d \tau\right)^{1 / 2}+\int_{s}^{t}\left\|H_{\tau}^{\times}\right\| d \tau\right\} \\
\left\|T_{t}^{*} \Pi_{r} F-T_{s}^{*} \Pi_{r} F\right\| \leq\left\|\Pi_{r} F\right\|\left\{\left(\int_{s}^{t}\left\|H_{\tau}^{-}\right\|^{2} d \tau\right)^{1 / 2}+\int_{s}^{t}\left\|H_{\tau}^{\times}\right\| d \tau\right\} \\
\left\|\Pi_{s} T_{t} \Pi_{r} F-T_{s} \Pi_{r} F\right\| \leq\left\|\Pi_{r} F\right\| \int_{s}^{t}\left\|H_{\tau}^{\times}\right\| d \tau
\end{array}\right.
$$

So there exists φ in $L_{\text {loc }}^{1}\left(\mathbf{R}_{+}\right)$such that, for all $r<s<t$, for all F in \mathcal{H}

$$
\left\{\begin{array}{rl}
(i) & \left\|T_{t} \Pi_{r} F-T_{s} \Pi_{r} F\right\|^{2} \tag{0.7}
\end{array} \leq\left\|\Pi_{r} F\right\|^{2} \int_{s}^{t} \varphi(\tau) d \tau .\right.
$$

Parthasarathy and Sinha in [P-S] prove that a bounded martingale satisfying (0.7) (i) and (ii) (they called it a regular martingale) belongs to \mathcal{S}. Attal in [A1] proved that adapted processes of bounded operators satisfying (0.7), (i), (ii) and (iii) belong to \mathcal{S} and even more: (i), (ii) and (iii) characterize \mathcal{S}. Elements of \mathcal{S} are called regular semi-martingales.

In this paper, we extend these results about stochastic integral representation of process of operators to the case of unbounded operators.

In the first part we are interested to an another domain $\widetilde{\mathcal{J}}$ in \mathcal{H} larger than $\widetilde{\mathcal{E}}$ and we will show that a large class of stochastic integral are defined on this domain.

In the second part, we prove a result about stochastic integral representation of quasimartingales satisfying some regularity conditions and defined on $\widetilde{\mathcal{J}}$.

In the third part, we will show some consequences of this theorem.
In the fourth part, we apply the theorem to two situations. First we prove that a closable "noise" (see [C]) defined on \mathcal{J} is equal to the sum of creation, annihilation and number processes. Secondly we prove that under a condition of weak differentiability ([A-J-L]), an adapted contractive cocycle $\left(V_{t}\right)_{t \geq 0}$ is the solution of a quantum stochastic differential equation of the form, $V_{t}=I+\sum_{\varepsilon} \int_{0}^{\bar{t}} V_{s} L_{\varepsilon} d a_{s}^{\varepsilon}$ where $\left(L_{\varepsilon}\right)_{\varepsilon \in\{-,+, 0, \times\}}$ are operators on h_{0}.

1. A new domain for quantum stochastic integral

Let \mathcal{J} be the linear manifold generated by $e(0)$ and the vectors of the form $\int_{0}^{+\infty} g(s) e\left(f 1_{[0, s]}\right) d \chi_{s}$ where g, f belongs to $L^{2}\left(\mathbf{R}_{+}\right)$.

By (0.3), we have $\mathcal{E} \subset \mathcal{J}$. We denote by $j(g, f)=\int_{0}^{+\infty} g(s) e\left(f 1_{[0, s]}\right) d \chi_{s}$. We have $D_{t} j(g, f)=g(t) e\left(f 1_{[0, t]}\right)$ for almost all t in \mathbf{R}_{+}.

Lemma (1.1). - Let $f \in L^{2}\left(\mathbf{R}_{+}\right), T \in \mathcal{B}\left(L^{2}\left(\mathbf{R}_{+}\right)\right)$. Then \mathcal{J} is included in the domain of $a^{-}(f), a^{+}(f)$ and $\lambda(T)$.

Proof. - The symmetric Fock space Φ is the direct sum of all the symmetric chaoses $L_{\text {sym }}^{2}\left(\left(\mathbf{R}_{+}\right)^{n}\right)$ with the following representation $F=\sum_{n} \frac{f_{n}}{n!}$ with $f_{n} \in L_{\text {sym }}^{2}\left(\left(\mathbf{R}_{+}\right)^{n}\right)$ and such that $\|F\|^{2}=\sum_{n} \frac{\left\|f_{n}\right\|^{2}}{n!}<+\infty$. We have that $e(f)=\sum_{n} \frac{f^{\otimes n}}{n!}$ if $f \in L^{2}\left(\mathbf{R}_{+}\right)$.

The domain of $a^{ \pm}$consists of those elements $\sum_{n} \frac{f_{n}}{n!}$ of Φ such that $\sum_{n} \frac{\left\|a^{ \pm} f_{n}\right\|^{2}}{n!}<+\infty$.
If $g, f \in L^{2}\left(\mathbf{R}_{+}\right)$, then $j(g, f)=\sum_{n=1}^{+\infty} \frac{\varphi_{n}}{n!}$ with

$$
\begin{equation*}
\varphi_{n}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}\right) \cdots f\left(t_{n-1}\right) g\left(t_{n}\right) \text { for } t_{1}<t_{2}<\cdots<t_{n} . \tag{1.2}
\end{equation*}
$$

It is thus easy to see that \mathcal{J} is included in the domain of $a^{ \pm}$. We can write with (1.2) that for $t_{1}<t_{2}<\cdots<t_{n}$ and $n \geq 1$

$$
\begin{align*}
\left(\lambda(T) \varphi_{n}\right)\left(t_{1}, \ldots, t_{n}\right)=\sum_{k=1}^{n-1}\{ & T\left(1_{\left[0, t_{n}\right]} f\right)\left(t_{k}\right) f\left(t_{1}\right) \cdots f\left(t_{k-1}\right) f\left(t_{k+1}\right) \cdots f\left(t_{n-1}\right) g\left(t_{n}\right) \\
& +T\left(1_{\left[t_{n},+\infty\right.}[g)\left(t_{k}\right) f\left(t_{1}\right) \cdots f\left(t_{k-1}\right) f\left(t_{k+1}\right) \cdots f\left(t_{n}\right)\right\} \tag{1.3}\\
& +T\left(1_{\left[0, t_{n-1}\right]} f\right)\left(t_{n}\right) g\left(t_{n-1}\right) f\left(t_{n-2}\right) \cdots f\left(t_{1}\right) \\
& +T\left(1_{\left[t_{n-1},+\infty[g)\left(t_{n}\right) f\left(t_{1}\right) \cdots f\left(t_{n-1}\right)\right.}\right.
\end{align*}
$$

So as T is a bounded operator on $L^{2}\left(\mathbf{R}_{+}\right)$, we see easily that $\sum_{n \geq 1} \frac{\left\|\lambda(T) \varphi_{n}\right\|^{2}}{n!}<+\infty$ and $j(g, f)$ belongs to the domain of $\lambda(T)$.

Definition (1.4). - A quadruplet $\left(\left(H_{t}^{\varepsilon}\right)_{t \geq 0}\right)_{\varepsilon \in\{-, 0,+, \times\}}$ of adapted processes of operators defined on $D_{0} \otimes \mathcal{E}$ is called regular if the following conditions are satisfied:
i) for all $t>0$, for all f in $L^{2}\left(\mathbf{R}_{+}\right)$, for all $u \in D_{0}$

$$
\sup _{s \in[0, t]}\left\|H_{s}^{0} \Pi_{s}(u \otimes e(f))\right\|<+\infty, \quad \int_{0}^{t}\left\|H_{s}^{-} \Pi_{s}(u \otimes e(f))\right\|^{2} d s<+\infty
$$

ii) the processes $\left(H_{t}^{\times}\right)_{t \geq 0}$ and $\left(H_{t}^{+}\right)_{t \geq 0}$ are defined on $D_{0} \underline{\mathcal{J}}$ and for all $u \in D_{0}$, $f \in L^{2}\left(\mathbf{R}_{+}\right)$, there exists $\varphi(\cdot, f, u)$ in $L_{\text {loc }}^{1}\left(\mathbf{R}_{+}\right)$such that for all $g \in L^{2}\left(\mathbf{R}_{+}\right)$, for almost all t in \mathbf{R}_{+}

$$
\begin{aligned}
\left\|H_{t}^{+} \Pi_{t}(u \otimes j(g, f))\right\|^{2} & \leq\left\|g 1_{[0, t]}\right\|^{2} \varphi(t, f, u) \\
\left\|H_{t}^{\times} \Pi_{t}(u \otimes j(g, f))\right\| & \leq\left\|g 1_{[0, t]}\right\| \varphi(t, f, u) \\
\int_{0}^{t} \| H_{s}^{+}\left(u \otimes e(0) \|^{2} d s\right. & <+\infty \\
\int_{0}^{t} \| H_{s}^{\times}(u \otimes e(0) \| d s & <+\infty
\end{aligned}
$$

A regular quadruplet $\left(\left(H_{t}^{\varepsilon}\right)_{t \geq 0}, \varepsilon \in\{-, 0,+, \times\}\right)$ satisfies (0.1) and by consequence the operator $T_{t}=\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$ is an adapted process with respect to D_{0}.

Lemma (1.5). $-\operatorname{Let}\left(\left(H_{t}^{\varepsilon}\right)_{t \geq 0}, \varepsilon \in\{-, 0,+, \times\}\right)$ be a regular quadruplet and $T_{t}=$ $\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$. For all $t \geq 0, T_{t}$ can be extended to $D_{0} \underline{\otimes} \mathcal{J}$ in the sense that for all f, g in $L^{2}\left(\mathbf{R}_{+}\right)$, for all u in D_{0}

$$
\begin{aligned}
T_{t} \Pi_{t}(u \otimes j(g, f))= & \int_{0}^{t} g(s) \Pi_{s} \Pi_{s}\left(u \otimes e(f) d \chi_{s}+\int_{0}^{t} g(s) H_{s}^{0} \Pi_{s}(u \otimes e(f)) d \chi_{s}\right. \\
& +\int_{0}^{t} H_{s}^{+} \Pi_{s}(u \otimes j(g, f)) d \chi_{s}+\int_{0}^{t} g(s) H_{s}^{-} \Pi_{s}(u \otimes e(f)) d s \\
& +\int_{0}^{t} H_{s}^{\times} \Pi_{s}(u \otimes j(g, f)) d s
\end{aligned}
$$

Moreover for all u in D_{0}, f in $L^{2}\left(\mathbf{R}_{+}\right)$, there exists an increasing function $\alpha(\cdot, u, f): \mathbf{R}_{+} \rightarrow$ \mathbf{R}_{+}increasing such that for all g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\begin{equation*}
\left\|T_{t} \Pi_{t}(u \otimes j(g, f))\right\| \leq\left\|g 1_{[0, t]}\right\| \alpha(t, u, f) \tag{1.7}
\end{equation*}
$$

Proof. - By (0.4), we have that for all u in D_{0}, f in $L^{2}\left(\mathbf{R}_{+}\right)$;

$$
\begin{aligned}
T_{t} \Pi_{t}(u \otimes e(f))= & \int_{0}^{t} f(s) T_{s} \Pi_{s}(u \otimes e(f)) d \chi_{s}+\int_{0}^{t} f(s) H_{s}^{0} \Pi_{s}(u \otimes e(f)) d \chi_{s} \\
& +\int_{0}^{t} H_{s}^{+} \Pi_{s}(u \otimes e(f)) d \chi_{s}+\int_{0}^{t} f(s) H_{s}^{-} \Pi_{s}(u \otimes e(f) d s \\
& +\int_{0}^{t} H_{s}^{\times} \Pi_{s}(u \otimes e(f)) d s
\end{aligned}
$$

and thus by using standard estimates (such as for example: (9.7) of [M3], p. 138), we have that for all $t>0, \sup _{0 \leq s \leq t}\left\|T_{s} \Pi_{s}(u \otimes e(f))\right\|<+\infty$ and thus for all u in D_{0}, g, f in $L^{2}\left(\mathbf{R}_{+}\right)$, $\int_{0}^{t} T_{s} D_{s}(u \otimes j(g, f)) d \chi_{s}$ is well defined. By using Attal-Meyer's result, we can define $\left(T_{t}\right)_{t \geq 0}$ on $D_{0} \otimes \mathcal{J}$ by (1.6). This implies that

$$
\begin{aligned}
\left\|T_{t} \Pi_{t}(u \otimes j(g, f))\right\| \leq & \left\|g 1_{[0, t]}\right\|\left\{\sup _{0 \leq s \leq t}\left\|T_{s} \Pi_{s}(u \otimes e(f))\right\|+\sup _{0 \leq s \leq t}\left\|H_{s}^{0} \Pi_{s}(u \otimes e(f))\right\|\right. \\
& \left.+\left(\int_{0}^{t}\left\|H_{s}^{-} \Pi_{s}(u \otimes e(f))\right\|^{2} d s\right)^{1 / 2}+\int_{0}^{t} \varphi(s, u, f) d s\right\}
\end{aligned}
$$

where $\varphi(s, u, f)$ is given by the hypothesis on the quadruplet $\left(\left(H_{t}^{\varepsilon}\right)_{t \geq 0}, \varepsilon \in\{-, 0,+, \times\}\right)$.

Corollary.
(1) All the processes of \mathcal{S}^{\prime} are defined on $D_{0} \underline{\mathcal{J}}$.
(2) If $T_{t}=\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$ with $\left(H_{s}^{\varepsilon}\right)_{s \geq 0}$ regular then by (1.7) we can define $\int_{0}^{t} T_{s} d a_{s}^{\varepsilon}$ for all $\varepsilon>0$. For all $n \in \mathbf{N}, T_{t}=\int_{t_{1}<\cdots<t_{n} \leq t} d a_{t_{1}}^{\varepsilon_{1}} \cdots d a_{t_{n}}^{\varepsilon_{n}}$ where $\varepsilon_{i} \in\{-, 0,+, \times\}$ for $i=1, \ldots, n$ is well defined on $h \underline{\otimes} \mathcal{J}$.

We see by formula (0.2), (0.4) and (1.5) that it is not necessary to have quadruplet of processes $\left(H^{\varepsilon}\right)_{\varepsilon \in\{-, 0,+, \times\}}$ defined for all $t>0$.

Definition (1.8). - A quadruplet $\left(H^{\varepsilon}\right)_{\varepsilon \in\{-, 0,+, \times\}}$ is called regular on D_{0} if the following conditions are satisfied:

$$
\begin{array}{r}
H^{\times}: D_{0} \underline{\otimes} \mathcal{J} \longrightarrow L_{\mathrm{loc}}^{1}\left(\mathbf{R}_{+}, \mathcal{H}\right) \tag{i}\\
H^{+}: D_{0} \underline{\otimes} \mathcal{J} \longrightarrow L_{\mathrm{loc}}^{2}\left(\mathbf{R}_{+}, \mathcal{H}\right) \\
H^{0}: D_{0} \underline{\otimes} \mathcal{E} \longrightarrow L_{\mathrm{loc}}^{\infty}\left(\mathbf{R}_{+}, \mathcal{H}\right) \\
H^{-}: D_{0} \underline{\otimes} \mathcal{E} \longrightarrow L_{\mathrm{loc}}^{2}\left(\mathbf{R}_{+}, \mathcal{H}\right)
\end{array}
$$

are linear operators.
(ii) For all u in D_{0}, f in $L^{2}\left(\mathbf{R}_{+}\right)$, there exist $\varphi(\cdot, u, f) \in L_{\text {loc }}^{1}\left(\mathbf{R}_{+}\right)$such that for almost all τ in \mathbb{R}_{+}, for all g in $L^{2}\left(\mathbf{R}_{+}\right)$

$$
\begin{aligned}
\left\|H_{\tau}^{+} \Pi_{\tau}(u \otimes j(g, f))\right\|^{2} & \leq\left\|g 1_{[0, \tau]}\right\|^{2} \varphi(\tau, u, f) \\
\left\|H_{\tau}^{\times} \Pi_{\tau}(u \otimes j(g, f))\right\| & \leq\left\|g 1_{[0, \tau]}\right\| \varphi(\tau, u, f) .
\end{aligned}
$$

(iii) Adaptation property: for all u in D_{0}, f in $L^{2}\left(\mathbf{R}_{+}\right), g$ in $L^{2}\left(\mathbf{R}_{+}\right)$for almost all t in \mathbf{R}_{+}, for all ε,
$H_{t}^{\varepsilon} \Pi_{t}(u \otimes e(f)) \in \mathcal{H}_{t]}, \quad H_{t}^{+} \Pi_{t}(u \otimes j(g, f)), \quad H_{t}^{\times} \Pi_{t}(u \otimes j(g, f)) \in \mathcal{H}_{t]}$,
$H_{t}^{\varepsilon}(u \otimes e(f))=H_{t}^{\varepsilon} \Pi_{t}(u \otimes e(f)) \otimes e\left(f 1_{[t,+\infty}\right)$ in $\mathcal{H}_{t]} \otimes \Phi_{[t}$ if $\varepsilon=+, \times$,
$H_{t}^{\varepsilon}(u \otimes j(g, f))=H_{t}^{\varepsilon} \Pi_{t}(u \otimes j(g, f))+H_{t}^{\varepsilon} \Pi_{t}\left(u \otimes e\left(f 1_{[0, t]}\right)\right) \otimes j\left(g 1_{[t,+\infty[}, f 1_{[t,+\infty[}\right)$.
If $\left(H^{\varepsilon}\right)$ is a regular quadruplet, we can define $T_{t}=\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$ on $D_{0} \underline{\mathcal{J}}$ by (1.6).
Furthermore, we have for all g, f in $L^{2}\left(\mathbf{R}_{+}\right)$, for all $s \leq t$,

$$
\begin{equation*}
\left\|\Pi_{s} T_{t} \Pi_{t}(u \otimes j(g, f))-T_{s} \Pi_{s}(u \otimes j(g, f))\right\| \leq \int_{s}^{t} \gamma(\tau) d \tau \tag{1.9}
\end{equation*}
$$

where γ belongs to $L_{\text {loc }}^{1}\left(\mathbf{R}_{+}\right)$and depends of u, g, f.

Definition (1.10). - A curve $\left(x_{t}\right)_{t \geq 0}$ in \mathcal{H} is a quasimartingale if for all $t \geq 0$, $x_{t} \in \mathcal{H}_{t]}$ and for all $s<t$, it exists $c(s, t)$ such that for all subdivisions $t_{0}=s<t_{1}<\cdots<$ $t_{n}=t$ of $[s, t]$, we have $\sum_{i=0}^{n-1}\left\|\Pi_{t_{i}}\left(x_{t_{i+1}}-x_{t_{i}}\right)\right\| \leq c(s, t)$.

Enchev in [E] (see also [M1]) proved that a quasimartingale $\left(x_{t}\right)_{t \geq 0}$ can always be written $x_{t}=M_{t}+A_{t}$ where $\left(M_{t}\right)_{t \geq 0}$ is a martingale, i.e. for all $s<t, \Pi_{s} M_{t}=M_{s}$ and $\left(A_{t}\right)_{t \geq 0}$ is an adapted process with finite variation in the norm sens and such that $\| A_{t}-$ $A_{s} \| \leq c(s, t)$.

Definition (1.11). - A curve $\left(x_{t}\right)_{t \geq 0}$ in \mathcal{H} is an absolutely continuous quasimartingale if $\left(x_{t}\right)_{t \geq 0}$ is a quasimartingale and if the quantity $c(s, t)$ given by definition (1.10) is of the form $c(s, t)=\int_{s}^{t} \psi(\tau) d \tau$ for some ψ in $L_{\mathrm{loc}}^{1}\left(\mathbf{R}_{+}\right)$.

In this case, we have that $A_{t}=\int_{0}^{t} a(\tau) d \tau$ with for almost all $\tau, a(\tau)$ in $\mathcal{H}_{\tau]}$ and $\|a(\tau)\| \leq \psi(\tau)$. So if $\left(T_{t}\right)_{t \geq 0}$ is representable as stochastic integral on $D_{0} \underline{\mathcal{J}}$, then by (1.9), for all u in D_{0}, for all f, g in $L^{2}\left(\mathbf{R}_{+}\right),\left(T_{t} \Pi_{t}(u \otimes j(g, f))_{t \geq 0}\right.$ is an absolutely continuous quasimartingale.

Definition (1.12). - Let $\left(T_{t}\right)_{t \geq 0}$ be an adapted process of operators defined on $D_{0} \otimes \mathcal{J} .\left(T_{t}\right)_{t \geq 0}$ is a quasimartingale (resp. an absolutely continuous quasimartingale) if for all F in $D_{0} \underline{\mathcal{J}},\left(T_{t} \Pi_{t} F\right)_{t \geq 0}$ is a quasimartingale (resp. an absolutely continuous quasimartingale).

We have seen in lemma (1.1) that if K is a bounded operator of $L^{2}\left(\mathbf{R}_{+}\right)$then $\lambda(K)$ is an operator whose domain contains \mathcal{J}. What about the representability of the associated martingale $\left(\lambda_{t}(K)\right)_{t \geq 0}$?

Proposition (1.13). - $\left(\lambda_{t}(K)\right)_{t \geq 0}$ belongs to \mathcal{S}^{\prime} if and only if K is an operator of multiplication by a bounded function.

$$
\begin{aligned}
& \text { Proof. - For } f \text { in } L^{2}\left(\mathbf{R}_{+}\right) \text {, we have } \lambda_{t}(K) e(f)=a_{1_{[0, t]}}^{+} K\left(f 1_{[0, t]}(e(f))\right. \text { thus } \\
& \qquad \lambda_{t}(K) \Pi_{r} e(f)-\lambda_{s}(K) \Pi_{r} e(f)=a_{1_{[s, t]} K\left(f 1_{[0, r]}\right)}^{+}\left(e\left(f 1_{[0, r]}\right)\right)
\end{aligned}
$$

and therefore

$$
\left\|\lambda_{t}(K) \Pi_{r} e(f)-\lambda_{s}(K) \Pi_{r} e(f)\right\|^{2}=\int_{s}^{t}\left|K\left(f 1_{[0, r]}\right)(\tau)\right|^{2} d \tau\left\|e\left(f 1_{[0, r]}\right)\right\|^{2}
$$

By using (0.7), $\left(\lambda_{t}(K)\right)_{t \geq 0} \in \mathcal{S}^{\prime}$ implies that there exists φ in $L_{\text {loc }}^{1}\left(\mathbf{R}_{+}\right)$such that for all $r<s<t$, for all f in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\int_{s}^{t}\left|K\left(f 1_{[0, r]}\right)(\tau)\right|^{2} d \tau \leq \int_{s}^{t} \varphi(\tau) d \tau
$$

So $K\left(f 1_{[0, r]}\right) 1_{] r,+\infty[}=0$ and by looking at the adjoint, we must have that for all $r>0$, for all f in $L^{2}\left(\mathbf{R}_{+}\right), K\left(f 1_{] r,+\infty}\right) 1_{[0, r]}=0$. It is easy to see that these conditions imply that for all $a<b$, for all f in $L^{2}\left(\mathbf{R}_{+}\right), K\left(f 1_{[a, b]}\right)=1_{[a, b]} K f$ and so K commutes with the operator
of multiplication by indicators and by consequence it is an operator of multiplication by a bounded function k, and $\lambda(K)=a_{k}^{0}=\int_{0}^{+\infty} k(s) d a_{s}^{0}$.

Lemma (1.14). - Let K be an Hilbert-Schmidt operator on $L^{2}\left(\mathbf{R}_{+}\right)$given by a kernel φ. Then

$$
\lambda_{t}(K)=\int_{0}^{t} H_{\tau}^{+} d a_{\tau}^{+}+\int_{0}^{t} H_{\tau}^{-} d a_{\tau}^{-}
$$

where $H_{\tau}^{+}=a_{\overline{\varphi(\tau, \cdot)}{ }_{[0, \tau[}^{-}}$and $H_{\tau}^{-}=a_{\varphi(\tau, \cdot) 1_{[0, \tau[}}^{+}$.

Proof. - Let H^{+}and H^{-}defined as above. Then they give rise to a regular quadruplet (definition (1.8)) and the operator $T_{t}=\int_{0}^{t} H_{\tau}^{+} d a_{\tau}^{+}+\int_{0}^{t} H_{\tau}^{-} d a_{\tau}^{-}$is defined on \mathcal{J}. By (0.2),

$$
\begin{aligned}
\left\langle e(f), T_{t} e(g)\right\rangle & =\int_{0}^{t}\left\{\bar{f}(s)\left\langle e(f), H_{s}^{+} e(g)\right\rangle+g(s)\left\langle e(f), H_{s}^{-} e(g)\right\rangle\right\} d s \\
& =\langle e(f), e(g)\rangle \int_{0}^{t}\left\{\bar{f}(s) \int_{0}^{s} g(\tau) \varphi(s, \tau) d \tau+g(s) \int_{0}^{s} \overline{f(\tau)} \varphi(\tau, s) d \tau\right\} d s \\
& =\langle e(f), e(g)\rangle \int_{0}^{t} \bar{f}(s) K\left(g 1_{[0, t]}\right)(s) d s \\
& =\left\langle e(f), a_{1_{[0, t]} K\left(g 1_{[0, t]}\right)}^{+} e(g)\right\rangle=\left\langle e(f), \lambda_{t}(K) e(g)\right\rangle
\end{aligned}
$$

This lemma justifies the fact that we have to consider H^{+}and H^{-}as operators from $\mathcal{E}($ or $\mathcal{J})$ to $L^{2}\left(\mathbf{R}_{+}, \Phi\right)$ for $\varphi(\tau, \cdot)$ is defined only for almost all τ.

An interesting question is the following: what are the bounded operator K on $L^{2}\left(\mathbf{R}_{+}\right)$such that $\lambda_{t}(K)$ is representable as a stochastic integral on \mathcal{E} or \mathcal{J} ?

The above results prove that Hilbert-Schmidt operator or multiplication by a bounded function give representable operators, but we can see with the example of Journe in [J-M] that if K is the Hilbert transform, then $\left(\lambda_{t}(K)\right)_{t \geq 0}$ is not representable, for it is not a quasimartingale.

We will say that an operator T is representable on \mathcal{J} if the associated martingale $\left(T_{t}\right)_{t \geq 0}$ is representable on \mathcal{J}, i.e. if there exist a regular quadruplet $\left(H^{\varepsilon}\right)_{\varepsilon \in\{-, 0,+, \times\}}$, a constant λ in \mathbf{R} such that for all $t>0, T_{t}=\lambda \operatorname{Id}+\sum_{\varepsilon \in\{-, 0,+, \times\}} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$.

Proposition (1.15). - Let K a bounded operator in $L^{2}\left(\mathbf{R}_{+}\right) . \lambda(K)$ and $\lambda\left(K^{*}\right)$ are representable on \mathcal{J} if and only if there exist φ in $L_{\mathrm{loc}}^{2}\left(\mathbf{R}_{+} \times \mathbf{R}_{+}\right), k$ in $L_{\mathrm{loc}}^{\infty}\left(\mathbf{R}_{+}\right)$such that

$$
K f=\int_{0}^{+\infty} f(s) \varphi(s, \cdot) d s+k f
$$

Proof. - We suppose that $\lambda(K)$ and $\lambda\left(K^{*}\right)$ are representable on \mathcal{J}, the converse result being already proved.

Let g, f be in $L^{2}\left(\mathbf{R}_{+}\right)$. We easily see by (1.3) that if $s<t$,

$$
\Pi_{s} \lambda_{t}(K) \Pi_{t} j(g, f)-\lambda_{s}(K) \Pi_{s} j(g, f)=\Pi_{s} a_{K\left(g 1_{[s, t]}\right)}^{+} e(f) .
$$

By hypothesis,

$$
\Pi_{s} \lambda_{t}(K) \Pi_{t} j(g, f)-\lambda_{s}(K) \Pi_{s} j(g, f)=\int_{s}^{t} g(\tau) \Pi_{s} H_{\tau}^{-} \Pi_{\tau} e(f) d \tau
$$

This implies

$$
\begin{equation*}
\Pi_{s} a_{K\left(g 1_{[s, t]}\right.}^{+} e(f)=\int_{s}^{t} g(\tau) \Pi_{s} H_{\tau}^{-} \Pi_{\tau} e(f) d \tau \tag{1.16}
\end{equation*}
$$

Let f be 0 , we have

$$
\begin{equation*}
\int_{0}^{s} K\left(g 1_{[s, t]}\right)(\tau) d \chi_{\tau}=\int_{s}^{t} g(\tau) \Pi_{s} H_{\tau}^{-} e(0) d \tau \tag{1.17}
\end{equation*}
$$

So for all $s>0$, for almost all $\tau>s, \Pi_{s} H_{\tau}^{-} e(0)$ belongs to the first chaos and so for almost all $\tau, H_{\tau}^{-} e(0)$ belongs to the first chaos. Let $\varphi(\tau, \cdot)$ be the associated function in $L^{2}([0, \tau])$. So by (1.17), for all $s<t$, for all g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\begin{equation*}
1_{[0, s]} K\left(g 1_{[s, t]}\right)=\int_{s}^{t} g(\tau) \varphi(\tau, \cdot) 1_{[0, s]}(\cdot) d \tau \tag{1.18}
\end{equation*}
$$

and by (1.16) for all f in $L^{2}\left(\mathbf{R}_{+}\right)$, for all g in $L^{2}\left(\mathbf{R}_{+}\right)$, for all $s<t$,

$$
\int_{s}^{t} g(\tau) a_{\varphi(\tau \cdot \cdot)}^{+} e(f) d \chi_{\tau}=\int_{s}^{t} g(\tau) \Pi_{s} H_{\tau}^{-} \Pi_{\tau} e(f) d \tau
$$

and so $H_{\tau}^{-}=a_{\varphi(\tau,)}^{+}$.
Furthermore, for all $T>0, \int_{0}^{T}\left\|H_{\tau}^{-} e(0)\right\|^{2} d \tau<+\infty$ and thus

$$
\int_{0}^{T}\left(\int_{0}^{\tau}|\varphi(\tau, s)|^{2} d s\right) d \tau<+\infty
$$

By looking at $\lambda(K)^{*}=\lambda\left(K^{*}\right)$, we have for almost all $\tau>0$, the existence of $\varphi^{*}(\tau, \cdot)$ in $L^{2}([0, \tau])$ such that for all $T>0, \int_{0}^{T}\left(\int_{0}^{\tau}|\varphi(\tau, s)|^{2} d s\right) d \tau<+\infty$ and satisfying for all g in $L^{2}\left(\mathbf{R}_{+}\right)$, for all $s<t$,

$$
\begin{equation*}
1_{[0, s]} K^{*}\left(g 1_{[s, t]}\right)=\int_{s}^{t} g(\tau) 1_{[0, s]} \varphi^{*}(\tau, \cdot) d \tau \tag{1.19}
\end{equation*}
$$

We extend φ to \mathbf{R}_{+}^{2} by defining $\varphi(s, t)=\overline{\varphi^{*}(t, s)}$ for $s<t$. So for all $T>0$,

$$
\int_{0}^{T} \int_{0}^{T}|\varphi(s, t)|^{2} d s d t<+\infty
$$

and for all g in $L^{2}\left(\mathbf{R}_{+}\right)$, for all $s<t$, (1.18) and (1.19) imply

$$
\left\{\begin{array}{l}
1_{[0, s]} K\left(g 1_{[s, t]}\right)=1_{[0, s]} \int_{s}^{t} g(\tau) \varphi(\tau, \cdot) d \tau \tag{1.20}\\
1_{[s, t]} K\left(g 1_{[0, s]}\right)=1_{[s, t]} \int_{0}^{s} g(\tau) \varphi(\tau, \cdot) d \tau
\end{array}\right.
$$

We can conclude like in the proof of (1.13), that (1.20) implies the existence of k in $L_{\text {loc }}^{\infty}\left(\mathbf{R}_{+}\right)$ such that for all f, for all $T>0$,

$$
K\left(g 1_{[0, T]}\right)=\int_{0}^{T} g(\tau) \varphi(\tau, \cdot) d \tau+1_{[0, T]} k g
$$

Remark. - All the same, we have a kind of representability property for $\lambda(K)$ by Maassen's kernel. If K is a bounded operator in $L^{2}\left(\mathbf{R}_{+}\right)$with a kernel φ not necessary in $L_{\text {loc }}^{2}\left(\mathbf{R}_{+} \times \mathbf{R}_{+}\right)$(for example the case of the Hilbert operator), we can write $\lambda(K)=$ $\iint_{\mathbf{R}_{+} \times \mathbf{R}_{+}} \varphi(s, t) d a_{s}^{+} d a_{t}^{-}$.

2. Integral representation

Definition (2.1). - Let $T=\left(T_{t}\right)_{t \geq 0}$ be an absolutely continuous quasimartingale on $D_{0} \otimes \mathcal{J}$. We say that T is a regular quasimartingale if for all f in $L^{2}\left(\mathbf{R}_{+}\right)$, for all u in D_{0}, there exists $\psi(\cdot, u, f)$ in $L_{\text {loc }}^{1}\left(\mathbf{R}_{+}\right)$such that for all g in $L^{2}\left(\mathbf{R}_{+}\right)$, for all $r<s<t$,
(2.2) $\left\|\Pi_{s} T_{t} \Pi_{r} u \otimes j(g, f)-T_{s} \Pi_{r} u \otimes j(g, f)\right\| \leq\left\|g 1_{[0, r]}\right\| \int_{s}^{t} \psi(\tau, u, f) d \tau$
(2.3) $\left\|T_{t} \Pi_{r} u \otimes j(g, f)-T_{s} \Pi_{r} u \otimes j(g, f)\right\|^{2} \leq\left\|g 1_{[0, r]}\right\|^{2} \int_{s}^{t} \psi(\tau, u, f) d \tau$
(2.4) The mapping $L^{2}\left(\mathbf{R}_{+}\right) \rightarrow \mathcal{H}, g \mapsto T_{t} \Pi_{t}(u \otimes j(g, f))$ is closable.

Remark (2.5). - If for all $t>0, T_{t}$ is a closable operator then (2.4) is satisfied. The hypothesis (2.4) implies by using the closed graph theorem that for all f in $L^{2}\left(\mathbf{R}_{+}\right)$, for all u in D_{0}, the mapping $L^{2}\left(\mathbf{R}_{+}\right) \rightarrow \mathcal{H}, g \mapsto T_{t} \Pi_{t}(u \otimes j(g, f))$ is bounded.

Theorem (2.6). - A process $T=\left(T_{t}\right)_{t \geq 0}$ of operators is a regular quasimartingale if and only if there exists a unique regular quadruplet $\left(H^{\varepsilon}\right)_{\varepsilon \in\{-, 0,+, \times\}}$ such that for all $t>0$, $T_{t}=T_{0}+\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$ on $\mathcal{D}_{0} \underline{\otimes} \mathcal{J}$.

Proof. - Let $T_{t}=T_{0}+\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$ on $\mathcal{D}_{0} \otimes \mathcal{J}$ with $\left(H^{\varepsilon}\right)_{\varepsilon \in\{-, 0,+, \times\}}$ being a regular quadruplet. Equation(1.9) implies that $T=\left(T_{t}\right)$ is an absolutely continuous quasimartingale on $\mathcal{D}_{0} \otimes \mathcal{J}$. By using (1.6) and (1.7), we prove easily that (2.2), (2.3) and (2.4) are satisfied and by consequence T is a regular quasimartingale.

We now prove the converse result. Let $T=\left(T_{t}\right)_{t \geq 0}$ be a regular quasimartingale. We can change T_{t} in $T_{t}-T_{0}$ without modifying the hypothesis, so we can suppose $T_{0}=0$. Let u in D_{0} and f in $L^{2}\left(\mathbf{R}_{+}\right)$be fixed. By assumption, for all g in $L^{2}\left(\mathbf{R}_{+}\right)$, $\left(T_{t} \Pi_{t}(u \otimes e(0))\right)_{t \geq 0}$ and $\left(T_{t} \Pi_{t}(u \otimes j(g, f))\right)_{t \geq 0}$ are absolutely continuous quasimartingale and by (1.11) there exists adapted curves from \mathbf{R}_{+}to $\mathcal{H}, \tau \mapsto m_{\tau}(g, u, f), \tau \mapsto a_{\tau}(g, u, f)$, $\tau \mapsto m_{\tau}(u)$ and $\tau \mapsto a_{\tau}(u)$. More over for all $t>0, \int_{0}^{t}\left\|m_{\tau}(g, u, f)\right\|^{2} d \tau<+\infty$, $\int_{0}^{t}\left\|a_{\tau}(g, u, f)\right\| d \tau<+\infty, \int_{0}^{t}\left\|m_{\tau}(u)\right\|^{2} d \tau<+\infty$ and $\int_{0}^{t}\left\|a_{\tau}(u)\right\| d \tau<+\infty$ and

$$
\left\{\begin{array}{l}
T_{t} \Pi_{t}(u \otimes e(0))=\int_{0}^{t} m_{\tau}(u) d x_{\tau}+\int_{0}^{t} a_{\tau}(u) d \tau \tag{2.7}\\
T_{t} \Pi_{t}(u \otimes j(g, f))=\int_{0}^{t} m_{\tau}(g, u, f) d x_{\tau}+\int_{0}^{t} a_{\tau}(g, u, f) d \tau
\end{array}\right.
$$

Let $r>0$ be fixed. By (2.2), we have that $\left\|a_{\tau}\left(g 1_{[0, r]}, u, f\right)\right\| \leq\left\|g 1_{[0, r]}\right\| \psi(\tau, u, f)$ for a.a. $\tau>r$. We denote by γ the lifting from $\mathcal{L}^{\infty}\left(\mathbf{R}_{+}, d t ; \mathcal{H}\right)$ to $\mathcal{B}^{\infty}\left(\mathbf{R}_{+} ; \mathcal{H}\right)$ the Banach space of everywhere bounded Borel functions on \mathbf{R}_{+}with the uniform norm (see [M3], p. 293). The function $\tau \mapsto \frac{a_{\tau}\left(g_{[0, r]}, u, f\right)}{\psi(\tau, u, f)}$ (which we assign the value 0 if $\psi(\tau, u, f)=0$) belongs to $\mathcal{L}^{\infty}(] r,+\infty[, d t ; \mathcal{H})$, thus we can define a map $] r,+\infty\left[\rightarrow \mathcal{H}, \tau \mapsto A_{r, \tau}(g, u, f)\right.$ with $A_{r, \tau}(g, u, f)=\psi(\tau, u, f) \gamma\left(\frac{a\left(g 1_{[0, r}, u, f\right)}{\psi(\cdot, u, f)}\right)(\tau)$ for $\tau>r$, and we have that for all $\tau>r$, for all g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\left\|A_{r, \tau}(g, u, f)\right\| \leq\left\|g 1_{[0, r]}\right\| \psi(\tau, u, f)
$$

Consequently, the mapping $L^{2}([0, r]) \rightarrow \mathcal{H}, g \mapsto A_{r, \tau}(g, u, f)$ defines a bounded linear operator. As $\Pi_{r} \Pi_{r^{\prime}}=\Pi_{r^{\prime}}$ if $r^{\prime}<r$, and by using the lifting γ, we have that for all $\tau>r>r^{\prime}$, for all g in $L^{2}\left(\left[0, r^{\prime}\right]\right)$,

$$
A_{r^{\prime}, \tau}(g, u, f)=A_{r, \tau}(g, u, f)
$$

This allows to define $A_{\tau}(g, u, f)$ for all g in $\bigcup_{r<\tau} L^{2}([0, r])$, and we have that $\left\|A_{\tau}(g, u, f)\right\| \leq$ $\|g\| \psi(\tau, u, f)$. This defines $A_{\tau}(g, u, f)$ for g in $L^{2}([0, \tau])$. One easily checks that $A_{\tau}(g, u, f)$ belongs to $\mathcal{H}_{\tau]}$. We put $H_{\tau}^{\times} \Pi_{\tau}(u \otimes j(g, f))=A_{\tau}\left(g 1_{[0, \tau]}, u, f\right)$ and $H_{\tau}^{\times} \Pi_{\tau}(u \otimes e(0))=$ $a_{\tau}(u)$. We have constructed an operator $H^{\times}: D_{0} \otimes \mathcal{J} \rightarrow L_{\text {loc }}^{1}\left(\mathbf{R}_{+}, \mathcal{H}\right)$ which is adapted and such that for all u in D_{0}, for all f in $L^{2}\left(\mathbf{R}_{+}\right)$, for a.a. τ in \mathbf{R}_{+}, for all g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\begin{equation*}
\left\|H_{\tau}^{\times} \Pi_{\tau}(u \otimes j(g, f))\right\| \leq\left\|g 1_{[0, \tau]}\right\| \psi(\tau, u, f) \tag{2.8}
\end{equation*}
$$

Now define $K_{\tau}(u \otimes j(g, f))=a_{\tau}(g, u, f)-H_{\tau}^{\times} \Pi_{\tau}(u \otimes j(g, f))$ and $K_{\tau}(u \otimes e(0))=0$. The operator $K: D_{0} \otimes \mathcal{J} \rightarrow L_{\text {loc }}^{1}\left(\mathbf{R}_{+}, \mathcal{H}\right)$ satisfies for all r in \mathbf{R}_{+}^{*}, for all u in D_{0}, for all f in $L^{2}\left(\mathbf{R}_{+}\right)$for a.a. $\tau>r$, for all g in $L^{2}\left(\mathbf{R}_{+}^{*}\right)$,

$$
\begin{equation*}
K_{\tau} \Pi_{r}(u \otimes j(g, f))=0 \text { and } K_{\tau} \Pi_{r}(u \otimes e(0))=0 . \tag{2.9}
\end{equation*}
$$

By (2.7), we have moreover that for all $r<s<t$,
$T_{t} \Pi_{r}(u \otimes j(g, f))-T_{s} \Pi_{r}(u \otimes j(g, f))=\int_{s}^{t} m_{\tau}\left(g 1_{[0, r]}, u, f\right) d \chi_{\tau}+\int_{s}^{t} a_{\tau}\left(g 1_{[0, r]}, u, f\right) d \tau$.

So by (2.3) we have, for a.a. $\tau>r,\left\|m_{\tau}\left(g 1_{[0, r]}, u, f\right)\right\|^{2} \leq\left\|g 1_{[0, r]}\right\|^{2} \tilde{\psi}(\tau, u, f)$ where $\tilde{\psi}(\cdot, u, f) \in L_{\text {loc }}^{1}\left(\mathbf{R}_{+}\right)$. Using the same method as above, we construct $H^{+}: \mathcal{D}_{0} \otimes \mathcal{J} \rightarrow$ $L_{\text {loc }}^{2}\left(\mathbf{R}_{+}, \mathcal{H}\right)$ adapted such that for all u in D_{0}, f in $L^{2}\left(\mathbf{R}_{+}\right)$, a.a. τ in \mathbf{R}_{+}for all g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\begin{equation*}
\left\|H_{\tau}^{+} \Pi_{\tau}(u \otimes j(g, f))\right\| \leq\left\|g 1_{[0, \tau]}\right\| \tilde{\psi}(\tau, u, f) \tag{2.10}
\end{equation*}
$$

Now define $R_{\tau}(u \otimes j(g, f))=m_{\tau}(g, u, f)-H_{\tau}^{\times} \Pi_{\tau}(u \otimes j(g, f))$ and $R_{\tau}(u \otimes e(0))=0$. The operator $R: \mathcal{D}_{0} \underline{\otimes} \mathcal{J} \rightarrow L_{\text {loc }}^{2}\left(\mathbf{R}_{+}, \mathcal{H}\right)$ satisfies for all r in \mathbf{R}_{+}^{*}, u in D_{0}, f in $L^{2}\left(\mathbf{R}_{+}^{*}\right)$, for a.a. $\tau>r$, for all g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\begin{equation*}
K_{\tau}\left(\Pi_{r}(u \otimes j(g, f))\right)=0 \text { and } K_{\tau} \Pi_{r}(u \otimes e(0))=0 \tag{2.11}
\end{equation*}
$$

We have thus

$$
\begin{align*}
T_{t} \Pi_{t}(u \otimes j(g, f))= & \int_{0}^{t} R_{\tau}(u \otimes j(g, f)) d x_{\tau}+\int_{0}^{t} H_{\tau}^{+} \Pi_{\tau}(u \otimes j(g, f)) d x_{\tau} \tag{2.12}\\
& +\int_{0}^{t} K_{\tau}(u \otimes j(g, f)) d \tau+\int_{0}^{t} H_{\tau}^{\times} \Pi_{\tau}(u \otimes j(g, f)) d \tau
\end{align*}
$$

Let the linear operator $L_{u, f}, L^{2}\left(\mathbf{R}_{+}\right) \mapsto L_{\mathrm{loc}}^{1}\left(\mathbf{R}_{+}, \mathcal{H}\right) \times L_{\mathrm{loc}}^{1}\left(\mathbf{R}_{+}, \mathcal{H}\right) \times L_{\mathrm{loc}}^{2}\left(\mathbf{R}_{+}, \mathcal{H}\right) \times$ $L_{\text {loc }}^{2}\left(\mathbf{R}_{+}, \mathcal{H}\right), g \mapsto\left(H_{\cdot}^{+} \Pi .(u \otimes j(g, f)), K .(u \otimes j(g, f)), H_{\cdot}^{\times} \Pi_{.}(u \otimes j(g, f)), R .(u \otimes\right.$ $j(g, f))$).

By using (2.4), (2.8), (2.10) and (2.12), we see that $L_{u, f}$ is closable and so by the closed graph theorem, it is a bounded operator and there exists for all $t>0, u$ in D_{0}, f in $L^{2}\left(\mathbf{R}_{+}\right), c_{t}(u, f)$ in \mathbf{R} such that for all g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\left\{\begin{array}{l}
\int_{0}^{t}\left\|K_{\tau}(u \otimes j(g, f))\right\| d \tau \leq\|g\| c_{t}(u, f) \tag{2.13}\\
\int_{0}^{t}\left\|R_{\tau}(u \otimes j(g, f))\right\|^{2} d \tau \leq\|g\|^{2} c_{t}(u, f)
\end{array}\right.
$$

Because of (2.9) and (2.11), we can define processes $H^{-}: D_{0} \underline{\otimes} \mathcal{E} \rightarrow L_{\text {loc }}^{1}\left(\mathbf{R}_{+}, \mathcal{H}\right), L:$ $D_{0} \underline{\otimes} \mathcal{E} \rightarrow L_{\text {loc }}^{2}\left(\mathbf{R}_{+}, \mathcal{H}\right)$ by: for u in D_{0} and f in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\begin{aligned}
H_{\tau}^{-} \Pi_{\tau}(u \otimes e(f)) & =K_{\tau}\left(u \otimes \int_{0}^{T} e\left(f 1_{[0, s]}\right) d \chi_{s}\right) \\
L_{\tau} \Pi_{\tau}(u \otimes e(f)) & =R_{\tau}\left(u \otimes \int_{0}^{T} e\left(f 1_{[0, s]}\right) d \chi_{s}\right)
\end{aligned}
$$

where T is any real $>\tau$.
By definition of K and R, H^{-}and L are adapted processes. Let g in $L^{2}\left(\mathbf{R}_{+}\right)$be a step function given by $g=\sum_{i} \lambda_{i} 1_{\left[t_{i}, t_{i+1}\right]}$ for $0 \leq t_{0}<t_{1}<\cdots<t_{n}$.

We have

$$
\begin{aligned}
R_{\tau}(u \otimes j(g, f)) & =\sum_{i} \lambda_{i}\left\{R_{\tau}\left(u \otimes \int_{0}^{t_{i+1}} e\left(f 1_{[0, s]}\right) d \chi_{s}\right)-R_{\tau}\left(u \otimes \int_{0}^{t_{i}} e\left(f 1_{[0, s]}\right) d \chi_{s}\right)\right\} \\
& =\sum_{i / t_{i}<\tau<t_{i+1}} \lambda_{i} L_{\tau} \Pi_{\tau}(u \otimes e(f)) \\
& =g(\tau) L_{\tau} \Pi_{\tau}(u \otimes e(f))
\end{aligned}
$$

By the same computation, we have $K_{\tau}(u \otimes j(g, f))=g(\tau) H_{\tau}^{-} \Pi_{\tau}(u \otimes e(f))$. Moreover (2.13) implies that for all step function g in $L^{2}\left(\mathbf{R}_{+}\right)$, for all $T>0$,

$$
\int_{0}^{T}|g(\tau)|^{2}\left\|L_{\tau} \Pi_{\tau}(u \otimes e(f))\right\|^{2} d \tau \leq\|g\|^{2} c_{T}(u, f)
$$

and

$$
\int_{0}^{T}|g(\tau)|\left\|H_{\tau}^{-} \Pi_{\tau}(u \otimes e(f))\right\| d \tau \leq\|g\| c_{T}(u, f)
$$

Consequently, for all $T>0$, we have

$$
\sup _{0<\tau<T}\left\|L_{\tau} \Pi_{\tau}(u \otimes e(f))\right\|^{2} \leq c_{T}(u, f)
$$

and

$$
\int_{0}^{T}\left\|H_{\tau}^{-} \Pi_{\tau}(u \otimes e(f))\right\|^{2} d \tau \leq c_{T}(u, f)^{2}
$$

and for all g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
R_{\tau}(u \otimes j(g, f))=g(\tau) L_{\tau} \Pi_{\tau}(u \otimes e(f))
$$

and

$$
K_{\tau}(u \otimes j(g, f))=g(\tau) H_{\tau}^{-} \Pi_{\tau}(u \otimes e(f))
$$

So by (2.12),

$$
\begin{aligned}
T_{t} \Pi_{t}(u \otimes j(g, f))= & \int_{0}^{t} L_{\tau} D_{\tau}(u \otimes j(g, f)) d \chi_{\tau}+\int_{0}^{t} H_{\tau}^{+} \Pi_{\tau}(u \otimes j(g, f)) d \chi_{\tau} \\
& +\int_{0}^{t} H_{\tau}^{-} D_{\tau}(u \otimes j(g, f)) d \tau+\int_{0}^{t} H_{\tau}^{\times} \Pi_{\tau}(u \otimes j(g, f)) d \tau
\end{aligned}
$$

and

$$
\sup _{0<t<T}\left\|T_{t} \Pi_{t}(u \otimes j(g, f))\right\| \leq\|g\| \tilde{c}_{T}(u, f)
$$

We define $H^{0}: D_{0} \underline{\otimes} \mathcal{E} \rightarrow L_{\text {loc }}^{\infty}\left(\mathbf{R}_{+}, \mathcal{H}\right)$ adapted by

$$
H_{\tau}^{0} \Pi_{\tau}(u \otimes e(g))=-T_{\tau} \Pi_{\tau}(u \otimes e(f))+L_{\tau} \Pi_{\tau}(u \otimes e(f))
$$

We finally conclude by the result of S. Attal and P.A. Meyer in [A-M] that $T_{t}=\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$ on $D_{0} \otimes \mathcal{J}$.

We now have to prove the uniqueness. Let $\left(H^{\varepsilon}\right)_{\varepsilon \in\{-, 0,+, \times\}}$ a regular quadruplet such that for all u in D_{0}, g, f in $L^{2}\left(\mathbf{R}_{+}\right),\left(\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}\right)(u \otimes j(g, f))=0$. Let $T_{t}=$ $\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$. For all u in D_{0}, g, f in $L^{2}\left(\mathbf{R}_{+}\right), r, r^{\prime}<s<t$,

$$
\Pi_{r^{\prime}}\left(T_{t} \Pi_{t}-T_{s} \Pi_{s}\right) \Pi_{r}(u \otimes j(g, f))=0
$$

and so $\int_{s}^{t} \Pi_{r^{\prime}} H_{\tau}^{\times} \Pi_{r}(u \otimes j(g, f)) d \tau=0$.

So for all $r>0, r^{\prime}>0$, for a.a. $\tau>r, r^{\prime}, \Pi_{r^{\prime}} H_{\tau}^{\times}(u \otimes j(g, f))=0$ thus for all $r>0$, for a.a. $\tau>r, H_{\tau}^{\times} \Pi_{r}(u \otimes j(g, f))=0$. But by assumption, for all $r>0$, for a.a. $\tau>r$

$$
\left\|H_{\tau}^{\times} \Pi_{\tau}\left(u \otimes j(g, f)-\Pi_{r}(u \otimes j(g, f))\right)\right\| \leq\left(\int_{r}^{\tau}|g(s)|^{2} d s\right)^{1 / 2} \varphi(\tau, u, f)
$$

and thus for a.a. $\tau, H_{\tau}^{\times} \Pi_{\tau}(u \otimes j(g, f))=0$.
We also have that $H_{\tau}^{\times} \Pi_{\tau}(u \otimes e(0))=0$ and so $H^{\times}=0$. If we look at $\left(T_{t} \Pi_{t}-\right.$ $\left.T_{s} \Pi_{s}\right) \Pi_{r}$, we prove by the same method that $H^{+}=0$. So for all $t>0, u$ in D_{0}, f, g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\int_{0}^{t} g(\tau) H_{\tau}^{0} \Pi_{\tau}(u \otimes e(f)) d X_{\tau}+\int_{0}^{t} g(\tau) H_{\tau}^{-} \Pi_{\tau}(u \otimes e(f)) d \tau=0
$$

and thus for a.a. τ

$$
\left\{\begin{array}{l}
g(\tau) H_{\tau}^{0} \Pi_{\tau}(u \otimes e(f))=0 \\
g(\tau) H_{\tau}^{-} \Pi_{\tau}(u \otimes e(f))=0
\end{array}\right.
$$

and by consequence $H^{0}=0$ and $H^{-}=0$.

3. Some consequences

a) Operators commuting with projections on $\mathcal{H}_{t]}$.

Proposition 3.1. - Let T be a closable operator defined on $D_{0} \underline{\otimes} \mathcal{J}$ such that for all $t>0, T \Pi_{t}=\Pi_{t} T:$ then there exist an unique $H: D_{0} \underline{\otimes} \mathcal{E} \rightarrow L^{\infty}\left(\mathbf{R}_{+}, \mathcal{H}\right)$ and $Z: D_{0} \rightarrow$ h_{0} such that $T=\int_{0}^{+\infty} H_{s} d a_{s}^{0}+Z \otimes I$.

Moreover, if T is bounded then H_{t} is bounded for all t and $t \mapsto\left\|H_{t}^{0}\right\|$ belongs to $L^{\infty}\left(\mathbf{R}_{+}\right)$.

Proof. - We define $\left(T_{t}\right)_{t \geq 0}$ as usual by $T_{t} \Pi_{t} F=T \Pi_{t} F=\Pi_{t} T F$. So if $s<t$, we have $\Pi_{s} T_{t} \Pi_{t}=\Pi_{s} T \Pi_{t}=T \Pi_{s}=T_{s}$ and $T_{0}=Z \otimes \mathrm{Id}$. The hypotheses of theorem (2.6) are satisfied with $\psi=0$ and so there exists $H: D_{0} \underline{\otimes} \mathcal{E} \rightarrow L_{\text {loc }}^{\infty}\left(\mathbf{R}_{+}, \mathcal{H}\right)$ such that for all $t>0$, $T_{t}=T_{0}+\int_{0}^{t} H_{s} d a_{s}^{\varepsilon}$ on $D_{0} \underline{\mathcal{J}}$. If $u \in D_{0}, f, g$ in $L^{2}\left(\mathbf{R}_{+}\right)$, we have:
$\Pi_{t} T_{t}(u \otimes j(g, f))=T_{0}(u \otimes j(g, f))+\int_{0}^{t} g(\tau)\left(T \Pi_{\tau}(u \otimes e(f))+H_{\tau} \Pi_{\tau}(u \otimes e(f))\right) d X_{\tau}$ and so for all g in $L^{2}\left(\mathbf{R}_{+}\right)$, for all $t>0$, for all $F \in D_{0} \underline{\otimes} \mathcal{E}$

$$
\begin{equation*}
\int_{0}^{t}|g(\tau)|^{2}\left\|T \Pi_{\tau} F+H_{\tau} \Pi_{\tau} F\right\|^{2} d \tau \leq\left\|\left(T-T_{0}\right)\left(\int_{0}^{+\infty} g(\tau) \Pi_{\tau} F d X_{\tau}\right)\right\|^{2} \tag{3.2}
\end{equation*}
$$

By consequence, $\int_{0}^{+\infty}|g(\tau)|^{2}\left\|T \Pi_{\tau} F+H_{\tau} \Pi_{\tau} F\right\|^{2} d \tau<+\infty$ and $\sup _{\tau \in \mathbf{R}^{+}}\left\|\Pi_{\tau} T F+H_{\tau} \Pi_{\tau} F\right\|<$ $+\infty$ and $\sup _{\tau \in \mathbf{R}^{+}}\left\|H_{\tau} \Pi_{\tau} F\right\|<+\infty$. This implies that $H: D_{0} \otimes \mathcal{E} \rightarrow L^{\infty}\left(\mathbf{R}_{+}, \mathcal{H}\right)$ and $T=$ $Z \otimes \operatorname{Id}+\int_{0}^{+\infty} H_{s} d a_{s}^{0}$. Furthermore, if T is bounded, (3.2) implies that for all g in $L^{2}\left(\mathbf{R}_{+}\right)$, for all F in $D_{0} \otimes \mathcal{E}$,

$$
\int_{0}^{+\infty}|g(\tau)|^{2}\left\|\Pi_{\tau} T F+H_{\tau} \Pi_{\tau}\right\|^{2} d \tau \leq\|g\|^{2}\|F\|^{2}\left\|T-T_{0}\right\|^{2}
$$

and so for all F in $D_{0} \otimes \mathcal{E}$, for a.a. τ in \mathbf{R}_{+},

$$
\left\|\Pi_{\tau} T F+H_{\tau} \Pi_{\tau} F\right\| \leq\|F\|\left\|T-T_{0}\right\|
$$

and so

$$
\left\|H_{\tau} \Pi_{\tau} F\right\| \leq 3\|T\|\|F\| .
$$

Remark 3.3. - In fact, we have the more precise result: T is an operator defined on $D_{0} \otimes \mathcal{J}$ satisfying (2.4) and for all $t>0 T \Pi_{t}=\Pi_{t} T$ if and only if there exist $H: D_{0} \otimes \mathcal{E} \rightarrow$ $L^{\infty}\left(\mathbf{R}_{+}, \mathcal{H}\right)$ and $Z: D_{0} \rightarrow h_{0}$ such that $T=\int_{0}^{+\infty} H_{s} d a_{s}^{0}+Z \otimes I$.

b) About uniqueness.

Let $H: D_{0} \underline{\otimes} \mathcal{J} \rightarrow L_{\text {loc }}^{p}\left(\mathbf{R}_{+}, \mathcal{H}\right),(p=1$ or 2$)$ such that for all $u \in D_{0}$, for all f in $L^{2}\left(\mathbf{R}_{+}\right)$, there exists $\varphi(\cdot, u, f)$ in $L_{\text {loc }}^{p}\left(\mathbf{R}_{+}\right)$such that for a.a. τ, for all g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\left\|H_{\tau} \Pi_{\tau}(u \otimes j(g, f))\right\| \leq\left\|g 1_{[0, \tau]}\right\| \varphi(\tau, u, f)
$$

This condition on H implies a kind of right continuity for H. That is: for a.a. τ in \mathbf{R}_{+}, for all $\left(\tau_{n}\right)_{n \geq 0}$ increasing to (τ)

$$
\begin{equation*}
H_{\tau} \Pi_{\tau_{n}}(u \otimes j(g, f)) \underset{n \rightarrow+\infty}{\longrightarrow} H_{\tau} \Pi_{\tau}(u \otimes j(g, f)) \tag{3.4}
\end{equation*}
$$

For example, if we look at the Malliavin's gradient, $\nabla: \mathcal{J} \rightarrow L^{2}\left(\mathbf{R}_{+}, \Phi\right)$ defined by $\nabla_{\tau} j(g, f)=g(\tau) \Pi_{\tau} e(f)+f(\tau) j\left(g 1_{]_{\tau,+\infty}}, f\right)$, we have that $\nabla_{\tau} \Pi_{\tau_{n}} j(g, f)=0$ if $\tau_{n}<\tau$ and (3.4) is not fulfilled.

But we have that $\int_{0}^{t} \nabla_{u} d a_{u}^{+}=a_{t}^{0}$.
c) About the results of Parthasarathy and Sinha, Attal and Meyer.

We have recalled their results in (0.6) and (0.7).
Let $\left(T_{t}\right)_{t \geq 0}$ be a process of bounded adapted operators which satisfy (0.7). Then for all F, G in \mathcal{H}, for all $r<s<t$, we have

$$
\begin{aligned}
\left\langle T_{t}^{*} \Pi_{r} F-T_{s}^{*} \Pi_{r} F, G\right\rangle & =\left\langle T_{t}^{*} \Pi_{r} F-T_{s}^{*} \Pi_{r} F, \Pi_{t} G-\Pi_{s} G\right\rangle+\left\langle T_{t}^{*} \Pi_{r} F-T_{s}^{*} \Pi_{r} F, \Pi_{s} G\right\rangle \\
& =\left\langle\Pi_{r} F, \Pi_{r}\left(T_{t} \Pi_{s}-T_{s} \Pi_{s}\right) G\right\rangle
\end{aligned}
$$

So (1.7) implies
$\left|\left\langle\Pi_{r} F, \Pi_{r}\left(T_{t} \Pi_{s}-T_{s} \Pi_{s}\right) G\right\rangle\right| \leq\left\|\Pi_{r} F\right\|\left\{\sqrt{\int_{s}^{t} \varphi(\tau) d \tau}\left\|\Pi_{t} G-\pi_{s} G\right\|+\int_{s}^{t} \varphi(\tau) d \tau\left\|\Pi_{r} G\right\|\right\}$ and thus,

$$
\begin{equation*}
\left\|\Pi_{r}\left(T_{t} \Pi_{s}-T_{s} \Pi_{s}\right) G\right\| \leq \sqrt{\int_{s}^{t} \varphi(\tau) d \tau}\left\|\Pi_{t} G-\pi_{s} G\right\|+\int_{s}^{t} \varphi(\tau) d \tau\left\|\Pi_{r} G\right\| \tag{3.5}
\end{equation*}
$$

(0.7) and (3.5) implies that the hypothesis of theorem (2.1) are satisfied and so we have the existence of $\left(H_{t}^{\varepsilon}\right)_{t \geq 0}$.

By using the inequalities (0.7) and (3.5), we have that $\left(H_{\tau}^{\varepsilon}\right), \varepsilon \in\{+,-, \times\}$ are bounded operators which satisfy (0.6). By using proposition 3.1, we see that H_{τ}^{0} is bounded and that $\tau \rightarrow\left\|H_{\tau}^{0}\right\|$ belongs to $L_{\text {loc }}^{\infty}\left(\mathbf{R}_{+}\right)$.

4. "Noises" defined on \mathcal{J}

Definition 4.1. - A process of operators $\left(T_{t}\right)_{t \geq 0}$ defined on \mathcal{J} is a noise if for all $s<t, T_{t}-T_{s}=\mathrm{Id} \otimes K_{s, t} \otimes \mathrm{Id}$ on $\Phi_{s]} \otimes \Phi_{[s, t]} \otimes \Phi_{[t}$ with $K_{s, t}$ being an operator on $\Phi_{[s, t]}$.

Theorem 4.2. - Let $\left(T_{t}\right)_{t \geq 0}$ be a noise on \mathcal{J} such that each T_{t} is closable, then there exist $A: \mathbf{R}_{+} \rightarrow \mathbf{C}, f \in L_{\mathrm{loc}}^{2}\left(\mathbf{R}_{+}\right), g \in L_{\mathrm{loc}}^{2}\left(\mathbf{R}_{+}\right)$and $k \in L_{\mathrm{loc}}^{\infty}\left(\mathbf{R}_{+}\right)$, such that

$$
T_{t}=A(t) \mathrm{Id}+a_{f 1_{[0, t]}}^{+}+a_{g_{[0, t]}}^{-}+a_{k 1_{[0, t]}}^{0}
$$

Proof.
1 We define $x_{t}=T_{t} e(0)$. We can see that for all $s<t, x_{t}-x_{s}$ belongs to $\Phi_{[s, t]}$ and in the same way as in $[\mathrm{C}], x_{t}=A(t) e(0)+\int_{0}^{t} f(s) d x_{s}$ with f in $L_{\text {loc }}^{2}\left(\mathbf{R}_{+}\right)$.

We define $S_{t}=T_{t}-A(t) \operatorname{Id}-a_{f 1_{[0, t]}}^{+}$, so we have that $\left(S_{t}\right)_{t \geq 0}$ is a noise on \mathcal{J} and $S_{t} e(0)=0$.

2 $\quad T_{t}$ is closable on \mathcal{J} so for all f in $L^{2}\left(\mathbf{R}_{+}\right)$, the mapping $L^{2}\left(\mathbf{R}_{+}\right) \rightarrow \Phi, g \mapsto$ $T_{t} j(g, f)$ is bounded because it is linear and closable on all $L^{2}\left(\mathbf{R}_{+}\right)$. So there exists $h_{t, f}$ in $L^{2}([0, t])$ such that for all g in $L^{2}\left(\mathbf{R}_{+}\right), \Pi_{0} S_{t} j(g, f)=\int_{0}^{t} g(\tau) h_{t, f}(\tau) d \tau$. But if $a<b<t$,

$$
\begin{aligned}
\Pi_{0} S_{t} j\left(g 1_{[a, b]}, f\right) & =\Pi_{0}\left(S_{b}-S_{a}\right) j\left(g 1_{[a, b]}, f\right)+\Pi_{0} S_{a} j\left(g 1_{[a, b]}, f\right) \\
& =\Pi_{0} S_{b} j(g, f)-\Pi_{0} S_{a} j(g, f)
\end{aligned}
$$

This implies that $1_{[0, a]} h_{a, f}=1_{[0, a]} h_{b, f}$ and we define h_{f} by $h_{f}(s)=h_{t, f}(s)$ if $s<t$, so $h_{f} \in L_{\mathrm{loc}}^{2}\left(\mathbf{R}_{+}\right)$and $\Pi_{0} S_{t} j(g, f)=\int_{0}^{t} g(\tau) h_{f}(\tau) d \tau$.

We have to prove that $\left(S_{t}\right)_{t \geq 0}$ is an absolutely continuous quasimartingale

$$
\left(\Pi_{s} S_{t} \Pi_{t}-S_{s} \Pi_{s}\right) j(g, f)=\left(\Pi_{0}\left(S_{t}-S_{s}\right) \Pi_{t} j(g, f)\right) \Pi_{s} e(f)
$$

and so $\left\|\left(\Pi_{s} S_{t} \Pi_{t}-S_{s} \Pi_{s}\right) j(g, f)\right\| \leq\|e(f)\| \int_{0}^{t}|g(\tau)|\left|h_{f}(\tau)\right| d \tau$. Moreover if $r<t$, $S_{t} \Pi_{r}-S_{s} \Pi_{r}=0$ on \mathcal{J}, so $\left(T_{t}\right)_{t \geq 0}$ is a regular quasimartingale.

So by theorem (2.1), there exist H^{-}and H^{0} such that $S_{t}=\int_{0}^{t} H_{s}^{-} d a_{s}^{-}+\int_{0}^{t} H_{s}^{0} d a_{s}^{0}$. We define $\ell(\tau)=\Pi_{0} H_{\tau}^{-} e(0)$ and $k(\tau)=\Pi_{0} H_{\tau}^{0} e(0)$. Let f, g in $L^{2}\left(\mathbf{R}_{+}\right)$and $r<s<t$,

$$
\begin{aligned}
& S_{t} \Pi_{t} j\left(g, f 1_{[0, r]}\right)-S_{s} \Pi_{s} j\left(g, f 1_{[0, r]}\right) \\
&=\int_{s}^{t} g(\tau) S_{\tau} \Pi_{r} e(f) d \chi_{\tau}+\int_{s}^{t} g(\tau) H_{\tau}^{0} \Pi_{r} e(f) d \chi_{\tau} \\
& \quad+\int_{s}^{t} g(\tau) H_{\tau}^{-} \Pi_{r} e(f) d \tau \\
&=\left(S_{t}-S_{s}\right) \Pi_{t} j\left(g, f 1_{[0, r]}\right)+S_{s}\left(\Pi_{t}-\Pi_{s}\right) j\left(g, f 1_{[0, r]}\right) \\
&=S_{s} \Pi_{r} e(f) \otimes \int_{s}^{t} g(\tau) d \chi_{\tau}+\Pi_{r} e(f) \otimes\left(S_{t}-S_{s}\right) \int_{s}^{t} g(\tau) d X_{\tau}
\end{aligned}
$$

So

$$
\begin{aligned}
\int_{s}^{t} g(\tau) & H_{\tau}^{0} \Pi_{r} e(f) d x_{\tau}+\int_{s}^{t} g(\tau) H_{\tau}^{-} \Pi_{r} e(f) d \tau \\
& =\Pi_{r} e(f) \otimes\left(S_{t}-S_{s}\right) \int_{s}^{t} g(\tau) d x_{\tau} \\
& =\Pi_{r} e(f) \otimes\left(\int_{s}^{t} g(\tau) H_{\tau}^{0} e(0) d x_{\tau}+\int_{s}^{t} g(\tau) H_{\tau}^{-} e(0) d \tau\right)
\end{aligned}
$$

so for a.a., $\tau\left\{\begin{array}{l}H_{\tau}^{0} e(0)=k(\tau) e(0) \\ H_{\tau}^{-} e(0)=\ell(\tau) e(0)\end{array}\right.$ and for all $r>0$,
for a.a. $\tau>0,\left\{\begin{array}{l}H_{\tau}^{0} \Pi_{r} e(f)=k(\tau) \Pi_{r} e(f) \\ H_{\tau}^{-} \Pi_{r} e(f)=\ell(\tau) \Pi_{r} e(f)\end{array}\right.$.
We define $\widetilde{S}_{t}=a_{1_{[0, t]} \ell}^{-}+a_{1_{[0, t]}^{0} k}^{0}$ and $R_{t}=S_{t}-\widetilde{S}_{t}$. We fix $t=1$. Let $a<b$. We have for f, g in $L^{2}\left(\mathbf{R}_{+}\right)$,

$$
\begin{equation*}
R_{1} j\left(g 1_{[a, b]}, f 1_{[0, a]}\right)=\int_{a}^{b} g(\tau) R_{\tau} \Pi_{a} e(f) d \chi_{\tau} \tag{4.3}
\end{equation*}
$$

Let $j_{n}=\sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}} g(\tau) \Pi_{\frac{i}{n}} e(f) d X_{\tau}$. Then $j_{n} \underset{n \rightarrow+\infty}{\longrightarrow} \Pi_{1} j(g, f)$ and we can prove by (4.3) that $R_{1} j_{n} \underset{n \rightarrow+\infty}{\longrightarrow} \int_{0}^{1} g(\tau) R_{\tau} \Pi_{\tau} e(f) d \chi_{\tau}$.

$$
\text { As } \widetilde{S}_{1} j_{n} \underset{n \rightarrow+\infty}{\rightarrow} \widetilde{S}_{1} \Pi_{1} j(g, f) \text { and }
$$

$$
\left(A(1) \operatorname{Id}+a_{f 1_{[0,1]}}^{+}\right) j_{n} \underset{n \rightarrow+\infty}{\longrightarrow}\left(A(1) \operatorname{Id}+a_{f 1_{[0, t]}}^{+}\right) \Pi_{1} j(g, f),
$$

the closability of T_{1} implies that $R_{1} j_{n} \rightarrow R_{1} \Pi_{1} j(g, f)$ and so

$$
R_{1} \Pi_{1} j(g, f)=\int_{0}^{1} g(\tau) R_{\tau} \Pi_{t} e(f) d \chi_{\tau}
$$

and so for all $t \geq 0, R_{t}=0$.

Remark. - This is not a new result. We prove in [C] that if $\left(T_{t}\right)_{t \geq 0}$ is a noise on \mathcal{E} such that all T_{t} are closable and for all f in $L^{2}\left(\mathbf{R}_{+}\right)$, the mapping $\mathbf{R}_{+} \rightarrow \mathbb{C}, t \mapsto$ $\Pi_{0} T_{t}(e(f)-e(0))$ has finite variations on compact sets, then the conclusion of theorem 4.2 is valid.

The condition " T_{t} closable on \mathcal{J} " implies that for all f in $L^{2}\left(\mathbf{R}_{+}\right)$, there exists h_{f} in $L_{[l o c}^{2}\left(\mathbf{R}_{+}\right)$such that for all g in $L^{2}\left(\mathbf{R}_{+}\right), \Pi_{0} T_{t} j(g, f)=\int_{0}^{t} g(\tau) h_{f}(\tau) d \tau$ and so as $\Pi_{0} T_{t}(e(f)-e(0))=\Pi_{0} T_{t} j(f, f), t \mapsto \Pi_{0} T_{t}(e(f)-e(0))$ has finite variations on compact sets. So we can apply the above result of [C].

5. Application to contractive cocycles in Fock space

By solving quantum stochastic differential equations of the form

$$
\begin{equation*}
d V_{t}=\sum_{\varepsilon} V_{t} L_{\varepsilon} d a_{t}^{\varepsilon}, \quad V_{0}=\mathrm{Id} \tag{5.1}
\end{equation*}
$$

in which $L_{+}=L, L_{0}=W-I, L_{-}=-L^{*} W, L_{\times}=i K-\frac{1}{2} L^{*} L$ and W, K, L are respectively fixed unitary, bounded selfadjoint and bounded operators, one obtains unitary valued Markovian cocycles (with respect to time shift on Fock space), or covariant adapted evolutions, whose reduced semigroup is continuous in norm [HP2]. Conversely, such Markovian cocycles are all solutions of quantum stochastic differential equations of the form (5.1). These results are shown in [H-L] by using the stochastic integral representation theorem for regular Fock martingales [P-S] and basic techniques of the HudsonParthasarathy calculus [HP1].

Clearly norm continuity is not satisfied by the most important semigroups. Thus it is interesting to weaken this assumption in order to establish a quantum stochastic analogue of Stone's theorem on one-parameter group of unitary operators. Journe in [J] investigated the strongly continuous case and showed, under a regularity condition, that a cocycle can be reconstructed from the infinitesimal generator by a recursive procedure on the finite particle subspaces. In general the generator will fail to have a common dense domain and the cocycle will not satisfy any q.s.d.e. Accardi, Journe and Lindsay in [A-J-L] prove that this cannot happen when the cocycle V satisfies a weak differentiability condition.

In the present part we show, by using the stochastic integral representation theorem (2.1), that under a condition on the cocycle (which is necessary and sufficient and weaker that the weak differentiability condition of [A-J-L]) that the unitary cocycle V satisfies a q.s.d.e. of the form (5.1).

Let S_{t} denote the right shift on $L^{2}\left(\mathbf{R}_{+}\right)$, so that for $t \geq 0$

$$
\left(S_{t} f\right)(x)= \begin{cases}f(x-t) & \text { if } x \geq t \\ 0 & \text { otherwise }\end{cases}
$$

Let $\Gamma\left(S_{t}\right)$ be the second quantizations of $S_{t} . \Gamma\left(S_{t}\right)$ is isometric. For all $s \geq 0$ and all bounded operator X in $\mathcal{B}(\mathcal{H})$, the operator $\Gamma\left(S_{s}\right) X \Gamma\left(S_{s}\right)^{*}$ maps $h_{0} \otimes \mathcal{H}_{[t}$ into itself. The canonical extension to \mathcal{H} will be denoted by $\overline{\Gamma\left(S_{s}\right) X \Gamma\left(S_{s}\right)^{*}}$.

Definition 5.2. - A family $\left(V_{t}\right)_{t \geq 0}$ of contraction is a cocycle if it satisfies $V_{0}=I$ and for all $s, t \geq 0, V_{s+t}=V_{s} \overline{\Gamma\left(S_{s}\right) V_{t} \Gamma\left(S_{s}\right)^{*}}$.

Let $\left(P_{t}\right)_{t \geq 0}$ defined on h_{0} by $P_{t} u=\Pi_{0} V_{t} u$. The next lemma is proved in [H-L].

Lemma 5.3. - $\left(P_{t}\right)_{t \geq 0}$ is a semigroup of contractions on h_{0}.

Definition 5.4. - Let $\left(V_{t}\right)_{t \geq 0}$ be an adapted cocycle and $\left(T_{t}\right)_{t \geq 0}$ be defined by: for $u \in h_{0}, T_{t} u=\Pi_{0} V_{t}\left(u \otimes X_{t}\right)$. We will say that $\left(V_{t}\right)_{t \geq 0}$ satisfy assumption (H) if
(1) $\left(P_{t}\right)_{t \geq 0}$ is strongly continuous with a generator denoted Z on a domain denoted $\mathcal{D}(Z)$.
(2) there exists a dense domain $D \subset \mathcal{D}(Z)$ such that for all u in $D,\left\{\frac{T_{t} u}{t}\right\}_{t \geq 0}$ is bounded.

Definition 5.5. - An adapted cocycle $\left(V_{t}\right)_{t \geq 0}$ is said to be weakly differentiable if there exists a dense domain D^{V} of h_{0} such that for all u in D^{V}, for all v in h_{0}, for all $f, g \in L^{2}\left(\mathbf{R}_{+}\right) \cap \mathcal{C}_{0}\left(\mathbf{R}_{+}\right)$, the mapping $t \mapsto\left\langle v \otimes e(f), V_{t}(u \otimes e(g))\right\rangle$ is \mathcal{C}^{1} on \mathbf{R}_{+}.

Lemma 5.6. - An adapted weakly differentiable cocycle $\left(V_{t}\right)_{t \geq 0}$ satisfies assumption (H).

Proof. - If we take $f=g=0$, we see that for all u in $D^{V}, P_{t} u-u \underset{t \rightarrow 0}{\longrightarrow} 0$ weakly in h_{0} and as $\left(P_{t}\right)_{t \geq 0}$ is a contraction, $\left(P_{t}\right)_{t \geq 0}$ is strongly continuous so we have (1) of (H) with $D^{V} \subset \mathcal{D}(Z)$.

By using Banach Steinhaus theorem, we see easily that weak differentiability implies that for all u in D^{v}, for all $f \in L^{2}\left(\mathbf{R}_{+}\right) \cap \mathcal{C}^{0}, \Pi_{0} \frac{V_{t}}{t}(u \otimes e(f)-u)$ is bounded, and so (2) of (H) is satisfied.

Theorem 5.7. - Let $\left(V_{t}\right)_{t \geq 0}$ be an adapted contractive cocycle satisfying hypothesis (H). Then there exist $\left(L_{\varepsilon}\right)_{\varepsilon \in\{-,+, \times, 0\}}$ on h_{0} with domain D such that $V_{t}=I+$ $\int_{0}^{t} V_{s} L_{\varepsilon} d a_{s}^{\varepsilon}$.

Proof.
1 In order to apply theorem (2.1), we have to prove that for all F in \mathcal{J}, for all u in $D,\left(V_{t} \Pi_{t}(u \otimes F)\right)_{t \geq 0}$ is an absolutely continuous quasimartingale.

First case: $F=e(0), x_{t}=V_{t}(u \otimes e(0))$. Let $s<t$,

$$
\begin{aligned}
\left\|\Pi_{s} x_{t}-x_{s}\right\| & =\left\|\Pi_{s} V_{t}(u \otimes e(0))-V_{s}(u \otimes e(0))\right\| \\
& =\left\|\Pi_{s} V_{s} \overline{\Gamma\left(S_{s}\right) V_{t-s} \Gamma\left(S_{s}\right)^{*}}(u \otimes e(0))-V_{s}(u \otimes e(0))\right\| \\
& \leq\left\|\Pi_{s} \overline{\Gamma\left(S_{s}\right) V_{t-s} \Gamma\left(S_{s}\right)^{*}}(u \otimes e(0))-u \otimes e(0)\right\| \\
& =\left\|\Pi_{0} \Gamma\left(S_{s}\right) V_{t-s} \Gamma\left(S_{s}\right)^{*}(u \otimes e(0))-u \otimes e(0)\right\| \\
& =\left\|P_{t-s} u-u\right\| \leq\|Z u\|(t-s) .
\end{aligned}
$$

Second case: $x_{t}=V_{t}\left(u \otimes \chi_{t}\right)$

$$
\begin{aligned}
&\left\|\Pi_{s} x_{t}-x_{s}\right\|=\left\|\Pi_{s} V_{s} \overline{\Gamma\left(S_{s}\right) V_{t-s} \Gamma\left(S_{s}\right)^{*}}\left(u \otimes \chi_{t}\right)-V_{s}\left(u \otimes \chi_{s}\right)\right\| \\
& \leq\left\|\Pi_{s} \overline{\Gamma\left(S_{s}\right) V_{t-s} \Gamma\left(S_{s}\right)^{*}}\left(u \otimes \chi_{s}\right)-u \otimes \chi_{s}\right\| \\
& \quad+\| \Pi_{s} \overline{\Gamma\left(S_{s}\right) V_{t-s} \Gamma\left(S_{s}\right)^{*}}\left(u \otimes \chi_{t}-\chi_{s} \|\right. \\
& \leq\left\|\left(P_{t-s} u-u\right) \otimes \chi_{s}\right\|+\left\|\pi_{0} \Gamma\left(S_{s}\right) V_{t-s} \Gamma\left(S_{s}\right)^{*}\left(u \otimes x_{t}-\chi_{s}\right)\right\| \\
& \leq \sqrt{s}(t-s)\|Z u\|+\left\|T_{t-s} u\right\| .
\end{aligned}
$$

So there exists $C(u) \in \mathbf{R}$ such that $\left\|\Pi_{s} \chi_{t}-\chi_{s}\right\| \leq(t-s) C(u)$.

Third case: $F=\int_{0}^{+\infty} g(s) d \chi_{s}$ with $g \in L^{2}\left(\mathbf{R}_{+}\right)$being a step function. Let $y_{t}(g)=$ $\Pi_{0} V_{t}\left(u \otimes \int_{0}^{t} g(\tau) d \chi_{\tau}\right)$ and $0 \leq t_{0}<t_{1}<\cdots<t_{n-1} \leq t_{n}=t$ such that $1_{[0, t]} g=$ $\sum_{i=0}^{n-1} \lambda_{i} 1_{\left[t_{i}, t_{i+1}\right]}$. So

$$
\begin{aligned}
y_{t_{k}}(g)= & \Pi_{0} V_{t_{k}}\left(u \otimes \int_{0}^{t_{k-1}} g(\tau) d x_{\tau}\right)+\lambda_{k-1} \Pi_{0} V_{t_{k}}\left(u \otimes x_{t_{k}}-\chi_{t_{k-1}}\right) \\
= & \Pi_{0} \overline{\Gamma\left(S_{t_{k-1}}\right) V_{t_{k}-t_{k-1}} \Gamma\left(S_{t_{k-1}}\right)^{*}}\left(u \otimes \int_{0}^{t_{k-1}} g(\tau) d \chi_{\tau}\right) \\
& \quad+\lambda_{k-1} \Pi_{0} \overline{\Gamma\left(S_{k-1}\right) V_{t_{k}-t_{k-1}} \Gamma\left(S_{t_{k-1}}\right)^{*}}\left(u \otimes x_{t_{k}}-\chi_{t_{k-1}}\right) \\
= & y_{t_{k-1}}(g)+\Pi_{0} V_{t_{k-1}}\left(\left(P_{t_{k}-t_{k-1}} u-u\right) \otimes \int_{0}^{t_{k-1}} g(\tau) d \chi_{\tau}\right) \\
& \quad+\lambda_{k-1} P_{t_{k-1}} T_{t_{k}-t_{k-1}} u
\end{aligned}
$$

and thus there exists $C(u)$ independent of g such that for all $k=0, \ldots, n-1$,

$$
\left\|y_{t_{k}}(g)-y_{t_{k-1}}(g)\right\| \leq\left(t_{k}-t_{k-1}\right) C(u)+\left|\lambda_{k-1}\right|\left(t_{k}-t_{k-1}\right) C(u)
$$

This implies that $\left\|y_{t}(g)\right\| \leq\left(t+\int_{0}^{t}|g(\tau)| d \tau\right) C(u)$. And so for all u in D, there exist $C(u)$ such that for all g in $L^{2}\left(\mathbf{R}_{+}\right)$, for all t,

$$
\left\|\Pi_{0} V_{t}\left(u \otimes \int_{0}^{t} g(\tau) d X_{\tau}\right)\right\| \leq\left(t+\int_{0}^{t}|g(\tau)| d \tau\right) C(u)
$$

If $x_{t}=V_{t}\left(u \otimes \int_{0}^{t} g(\tau) d X_{\tau}\right)$,

$$
\begin{aligned}
\left\|\Pi_{s} x_{t}-x_{s}\right\| & \leq\left\|\left(P_{t-s} u-u\right) \otimes \int_{0}^{s} g(\tau) d \chi_{\tau}\right\|+\left\|\Pi_{0} V_{t-s}\left(u \otimes \int_{0}^{t-s} g(s+\tau) d \chi_{\tau}\right)\right\| \\
& \leq\|g\|(t-s)\|Z u\|+\left\|y_{t-s}(g(s+\cdot))\right\|
\end{aligned}
$$

Fourth case: $F=\int_{0}^{+\infty} g(s) \Pi_{s} e(f) d \chi_{s}$ with f, g in $L^{2}\left(\mathbf{R}_{+}\right)$.
$x_{t}=V_{t} \Pi_{t}(u \otimes F)=V_{t}\left(u \otimes \int_{0}^{t} g(s) d X_{s}\right)+V_{t}\left(u \otimes \int_{0}^{t} g(s)\left(\Pi_{s} e(f)-e(0)\right) d X_{s}\right)$.
So we only have to study

$$
\begin{aligned}
\| \Pi_{s} V_{t}\left(u \otimes \int_{0}^{t} g(\tau)\right. & \left.\left(\Pi_{\tau} e(f)-e(0)\right) d \tau\right)-V_{s}\left(u \otimes \int_{0}^{s} g(\tau)\left(\Pi_{\tau} e(f)-e(0)\right) d \tau\right) \| \\
\leq & \left\|\left(P_{t-s} u-u\right) \otimes \int_{0}^{s} g(\tau)\left(\Pi_{r} e(f)-e(0)\right) d x_{\tau}\right\| \\
& +\left\|\Pi_{s} \overline{\Gamma\left(S_{s}\right) V_{t-s} \Gamma\left(S_{s}\right)^{*}}\left(u \otimes \int_{s}^{t} g(\tau)\left(\Pi_{\tau} e(f)-e(0)\right) d x_{\tau}\right)\right\|
\end{aligned}
$$

But

$$
\begin{aligned}
\int_{s}^{t} g(\tau)\left(\Pi_{\tau} e(f)-e(0)\right) d \chi_{\tau}= & \left(\Pi_{s} e(f)-e(0)\right) \otimes \int_{s}^{t} g(\tau) d \chi_{\tau} \\
& +\Pi_{s} e(f) \otimes \int_{s}^{t} g(\tau)\left(\Pi_{\tau} e\left(f 1_{[s,+\infty[}\right)-e(0)\right) d \chi_{\tau}
\end{aligned}
$$

and so

$$
\begin{aligned}
\| \Pi_{s} \overline{\Gamma\left(S_{s}\right) V_{t-s} \Gamma\left(S_{s}\right)^{*}}\left(u \otimes \int_{s}^{t} g(\tau)\right. & \left.\left(\Pi_{\tau} e(f)-e(0)\right) d \chi_{\tau}\right) \| \\
\leq & \left\|\Pi_{s} e(f)-e(0)\right\|\left\|\Pi_{0} V_{t-s}\left(u \otimes \int_{s}^{t} g(\tau+s) d \chi_{\tau}\right)\right\| \\
& +\left\|\Pi_{s} e(f)\right\|\left\|\int_{s}^{t} g(\tau)\left(\Pi_{\tau} e\left(f 1_{[s,+\infty[}\right)-e(0)\right) d x_{\tau}\right\|
\end{aligned}
$$

and we can conclude by the third case because

$$
\left\|\int_{s}^{t} g(\tau)\left(\Pi_{\tau} e\left(f 1_{[s,+\infty[}\right)-e(0)\right) d \chi_{\tau}\right\|^{2} \leq \int_{s}^{t}|g(\tau)|^{2} d \tau\left(e^{\int_{s}^{t}|f(\tau)|^{2} d \tau}-1\right)
$$

2 (2.2) and (2.3) are always satisfied by $\left(V_{t}\right)_{t \geq 0}$ because for all F in Φ and u in $\mathcal{D}(Z)$, for all $r<s<t$,

$$
\left\|\Pi_{s} V_{t}\left(u \otimes \Pi_{r} F\right)-V_{s}\left(u \otimes \Pi_{r} F\right)\right\| \leq\left\|P_{t-s} u-u\right\|\left\|\Pi_{r} F\right\| \leq(t-s)\|Z u\|\left\|\Pi_{r} F\right\|
$$

and

$$
\begin{aligned}
\left\|V_{t}\left(u \otimes \Pi_{r} F\right)-V_{s}\left(u \otimes \Pi_{r} F\right)\right\|^{2} & \leq\left\|\Pi_{r} F\right\|^{2} \times(-2) \Re\left(\left\langle u-P_{t-s} u, u\right\rangle\right) \\
& \leq 2\left\|\Pi_{r} F\right\|^{2}(t-s)\|Z u\|\|u\|
\end{aligned}
$$

3 So by theorem 2.1 we have the representation, $V_{t}=I+\sum_{\varepsilon} \int_{0}^{t} H_{s}^{\varepsilon} d a_{s}^{\varepsilon}$. By using cocycle property, we can prove as in the proof of [H-L] that $H_{s}^{\varepsilon}=V_{s} L_{\varepsilon}$ with $\left(L_{\varepsilon}\right)_{\varepsilon \in\{\times,-,+, 0\}}$ defined on D and $L_{X}=Z$.

Remark. - One can prove that if $\left(P_{t}\right)_{t \geq 0}$ is continuous in norm then (H) is satisfied.

One can also prove that if $Z=i H+B$ with H selfadjoint and B bounded then (2) of (H) is satisfied too.

The hypothesis (2) of (H) is equivalent to:

$$
\text { for all } u \text { in } h_{0} \text {, for all } v \text { in } D, t \longmapsto\left\langle u, V_{t}\left(v \otimes \chi_{t}\right)\right\rangle \text { is } \mathcal{C}^{1} .
$$

Fagnola in $[\mathrm{F}]$ gives a characterization theorem for weakly differentiable (contractive, isometric and unitary) Makovian cocycles in the Boson Fock space. He studies the converse result: given $\left(L_{\varepsilon}\right)_{\varepsilon \in\{\times,+,-, 0\}}$ satisfying some condition, does there exist an unique solution of (5.1) which is a weakly differentiable cocycle?

REFERENCES

[A-J-L] L. Accardi, J.-L. Journe, J.-M. Lindsay. - On Multi-Dimensionnal Markovian Cocycles, Quantum Probabilities and Applications, IV, Lecture Notes in Math. 1396 (1989), 59-67.
[A1] S. Attal. - An algebra of non commutative bounded semi-martingales. Square and angle quantum brackets, Journal of Funct. Anal. 124 (1994), 292-332.
[A2] S. Attal. - Classical and Quantum Stochastic Calculus, Quantum Prob. Comm. X (1998), 1-52.
[A-M] S. Attal, P.A. Meyer. - Interpretation probabiliste et extension des intégrales stochastiques non commutatives, Sém. de Probabilités, XXVII, Springer Verlag, LNM 1557 (1993), 312-327.
[C] A. CoQuio. - Why are there only three quantum noises?, to appear in Prob. Th. Rel. Fields.
[E] O. Enchev. - Hilbert space valued quasimartingales, Bull. Unione Mat. Ital. 2 (1988), 19-39.
[F] F. Fagnola. - Characterization of isometric and unitary weakly differentiable cocycles in Fock space, Quantum Probability and related topics VIII (Année ?), 143-164.
[H-L] R.L. Hudson, J.M. Lindsay. - On characterizing quantum stochastic evolutions, Math. Proc. Camb. Phil. Soc. 102 (1987), 363-369.
[H-P1] R.L. Hudson, K.R. Parthasarathy. - Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys. 93 (1984), 301-323.
[H-P2] R.L. Hudson, K.R. Parthasarathy. - Stochastic dilations of uniformly continuous completely, positive semigroups, Acta Appl. Math. 2 (1984), 353-398.
[J] J.L. Journe. - Structures des cocycles Markoviens sur l'espace de Fock, Prob. Th. Rel. Fields 75 (1987), 291-316.
[J-M] J.L. Journe, P.A. Meyer. - Une martingale d'opérateurs bornés, non représentable en intégrale stochastique, Séminaire de probas, Université de Strasbourg, 1984/1985.
[M1] P.A. Meyer. - Quasimartingales hilbertiennes, Séminaire de Probabilités, XXII, Springer LNM 1321 (1988), 86-88.
[M2] P.A. Meyer. - Représentation de martingales d'opérateurs, Séminaire de Probabilités XXVII, Springer LNM 1557 (1993), 97-105.
[M3] P.A. Meyer. - Quantum Probability for probabilists, Springer LNM 1538 (1993), 287 p.
[P-S] K.R. Parthasarathy, K.B. Sinha. - Stochastic Integral Representation of Bounded Quantum Martingales in Fock Spaces, J. Funct. Anal. 67 (1986), 126-151.

Agnès COQUIO
Université de Grenoble I
Institut Fourier
UMR 5582 du CNRS et de l'UJF
UFR de Mathématiques
B.P. 74

38402 ST MARTIN D'HÈRES Cedex (France)
email: Agnes.Coquio@ujf-grenoble.fr
(21 septembre 2000)

