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Abstract

We investigate in a geometrical way the sieving process of 021 β 3 for obtaining the Delone

set 0 β 4 051 β 3 of β - integers where β is a Perron number in the context of linear asymp-

totic invariants associated with a canonical inductive system constructed from β . When

β is a Pisot number, we exhibit a canonical cut-and-project scheme, a model set associated

with 0 β and so prove that it is a Meyer set. We show how to lift up the elements of 0 β to

a subset 687:9 of the lattice 0 m ; m < degree β = , lying about the dominant eigenspace of

the companion matrix of β . We deduce from this linearized version of 0 β (i) the existence

of a finite number of elements g1, g2, >?>@> , gη A 0�Bβ of small norm such that the semi-groupC 1 g1, g2, >@>?> , gη 3 contains 0�Bβ except possibly a finite number of elements close to the ori-

gin, (ii) an upper bound for the integer 7 taking place in the relation

x, y A 0 β <�D x E y ; resp.x F y = A 1

β G 0 β

if x E y and x F y have finite β- expansions.

1. Introduction

Gazeau [43], Burdik et al [2] have shown how to construct a Delone-Meyer set H β [37] from

the dense finitely generated H - module H8I β JLKNM , where β > 1 is a Pisot-Vijayaraghavan number

Math. classification : 11,52.

Keywords : quasicrystal, Perron number, Pisot number, β-numeration.
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(called Pisot- or PV-number also) of degree m > 1, i.e. a real algebraic integer, root of an irre-

ducible polynomial of the form X m � am � 1X m � 1 � am � 2X m � 2 ��������� a1X � a0 , ai
� H

where all the Galois conjugates β
�
i � , i 	 1, 2, ����� , m � 1 of β 	 β

�
0 � satisfy 
 β

�
i � 
 < 1 for all

i 	 1, 2, ����� , m � 1. The sieving process, obtained algebraically, is based on the β - expansion of

real numbers [4] [5], and provides uniformly discrete and relatively dense sets of points in M .

The aims of the present work consist in studying asymptotic linear invariants (cut-and-

project schemes, . . . ) in M m , canonically associated with Delone-Meyer sets H β , and the

geometrical counterpart of this sieving process. Here β is a Perron number, a β -number or a

Pisot number, of degree m . In � 3, we redefine H β as an inductive limit � . We show in � 4 that

the asymptotic linear invariants associated with this inductive limit arise from the real Jordan

decomposition of M m under the action of the companion operator of β , and from the real and

complex embeddings of the number field �� β � when β is an arbitrary Perron number. This

allows us to construct explicitely suitable cut-and-project schemes and to define the linearized

version of H β . The latter is called ����� and is a discrete subset of H m . When β is a Pisot

number, we investigate in � 5 the additive properties of ����� . In particular, we give, thanks to

this geometrical approach, new proofs of some recent results using the dynamics of self-similar

tilings and the symbolics of β - numeration applied to the aperiodic tilings of the real line

[20, 21, 2, 18, 28, 29]. Namely, we provide a geometrical interpretation of the finite sets T and

T � in the relations [2]

H��β � H��β K H��β � T (1)

H��
β
� H��

β
K H β � T � (2)

and an upper bound of the integer � in

x, y
� H �β 	�� x � y

� H β/β � (3)

when x � y and x � y have finite β-expansions. Masakova et al [29], Frougny et al [20, 2,

18] proved that an additive law � can be set on H β for which �,H β, ��� is isomorphic (but

not isometric) to �,H , � � for some quadratic Pisot numbers β . Here, we give a geometrical

description of a finite subset of H β for which any element of H β , except possibly a finite number

of them, can be expressed as an integral nonegative combination of them. In other terms, it

generates a semi-group of finite type covering almost entirely H β . This uses the existence of a

covering radius of ��� .

2. Context of Mathematical Quasicrystals and Classification of Delone Sets

Cut-and-project schemes and model sets are nowadays commonly used for modelling qua-

sicrystals with suitable choices of windows and parameters in the internal space [32]. In such

a state of matter, there is no average lattice. On the contrary, incommensurate structures do

have an average lattice. For both of them, a periodization in a space of higher dimension is per-

formed and crystallographic groups in dimension higher than 3 are necessary to understand the
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geometry of atomic sites [33]. But the new definition of a crystal [34] covers much more than

quasicrystals or incommensurate structures. It is basically a Delone set for which the spectral

measure is pure point. The definition of a crystal has been extended in 1991 to take into consid-

eration aperiodic crystals in general. There exist various classes of Delone sets which are more

general than model sets, so-called mathematical quasicrystals [14] [15] [16], generically named

in an attempt to cover the field of aperiodic crystals. Just above the class of model sets is the class

of Meyer sets [36] since a Meyer set is always a subset of a certain model set (Theorem 9.1 in [37]).

A Meyer set is already not necessarily a crystal (see for instance Verger-Gaugry et al [40] [41] with

the Thue-Morse quasicrystal). There is a lack of criteria for saying that a Delone set is deprived

of diffuse (continuous) measures in its spectrum. Of course, it is a formidable task to find such

criteria, if any [38] [39]. This objective seems unreachable at present. Delone sets can be roughly

classified by the complexity of local configurations. When G is a finite group acting on M k , k � n,

and X is a G - cluster in M k of total length n or 2n (total number of points in the finite union of

orbits of points which constitute X , viewed as a shellable discrete object), the construction of a

cut-and-project scheme is canonical from this G - cluster in M n [42]. Here, local order is fairly

regular in the sense it is globally controlled by a finite symmetry group. This allows to introduce

naturally G - clustering in Meyer sets. Such Delone sets inherit local structures in G - clusters by

partial repetition and translation. As Meyer sets on the real line, cite the Thue-Morse quasicrystal

[40], G-cluster sets [42], H β when β is a Pisot number [2], sets of vertices of aperiodic tilings [38]

[45] [46] [47] [48] [21], constructions from algebraic numbers [29] [44], etc. A Delone set Λ is said

to be a finitely generated Delone set if H8IΛ � Λ J is finitely generated [14] [15]. It is said to be a

Delone set of finite type if Λ � Λ is such that its intersection with any closed ball is finite. The

class of finitely generated Delone sets is strictly larger than the class of Delone set of finite type.

Obviously, the latter one contains the class of Meyer sets.

Hof [30] [31] has developed the mathematics of diffraction for arbitrary Delone sets through

the notion of autocorrelation measure. The class of Delone sets which can be called crystals inter-

sects a priori all the classes of Delone sets, i.e. mathematical quasicrystals, which are mentioned

above. Model sets are crystals. Indeed, Hof [30] has proved that all model sets, i.e. quasiperi-

odic point sets obtained with windows of boundaries of Lebesgue measure zero in the internal

space, have a pure point spectrum. See also a review article by Moody about diffraction of model

sets in [35]. Another direction to study the spectral measure of Delone sets was carried out by

Verger-Gaugry et al [41] by decomposing the Fourier transform of the autocorrelation measure

of an arbitrary Delone set on lattices which intersect the given Delone set and by characterizing

arithmetically the rarefaction laws of points and their critical exponents, associated with their

distributions at infinity.

Diffraction laws of the set of β- integers will be reported elsewhere.

3. An inductive system

For all x
� M , denote by � x � the usual integer part of x, and by � x � 	 x � � x � its usual

fractional part. We follow the presentation given in [2] for β - expansions of real numbers. If
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� α0, α1, ����� � and � γ0, γ1, ����� � are finite or infinite sequences of non-negative integers with the

same number of terms, we write

� α0, α1, ����� � < � γ0, γ1, ����� �

when αn < γn for the first n for which αn �	 γn (lexicographical order). Let β > 1 be a real

number. We write � α0, α1, α2, ����� � � β � for

α0 �
α1

β �
α2

β2 � �����

A representation in base β of a real number x � 0 is an infinite sequence of integers � xi � k � i � ��� ,

such that

x 	 xkβk � xk � 1βk � 1 � ����� � x1β � x0 � x � 1β
� 1 � x � 2β

� 2 � �����

for a certain integer k � 0, where xi
� � 0, 1, ����� , I β J � if β ���� , and xi

� � 0, 1, ����� , β � 1 � if

β
���

. Denote A 	 � 0, 1, ����� , I β J � in the first case. If β is an integer, A will be � 0, 1, ����� , β � 1 �
instead, but we are mostly interested in this contribution by algebraic numbers β of degree

greater than or equal to 2 and we will discard this second case. The integral part of x is xkβk �
xk � 1βk � 1 � ����� � x1β � x0 and the fractional part of x is x � 1β

� 1 � x � 2β
� 2 � ����� . Such a

representation of x can be computed by the so-called “greedy algorithm”. There exists k
� H

such that βk � x < βk � 1. This gives xk 	 I x/βk J . Let rk 	 � x/βk � . Then, for k > i � �	� , put

xi 	 I βri � 1 J and ri 	 � βri � 1 � . If k < 0 � x < 1 � , we put x0 	 x � 1 	 ����� 	 xk � 1 	 0.

On the other hand, Renyi [4] has developed for a non-integer β the notion of “f -expansion”

with f � x ��	 1 for β < x, f � x ��	 x/β for 0 � x � β. This process gives a representation

of x in base β for its fractional part: x 	 x0.x � 1x � 2x � 3 . . . , where x0 	 � x � , x � 1 	 � β � x � � ,

x � 2 	 � β � β � x � � � , and so on. The sequences � x � 1, x � 2, x � 3, . . . � (forgetting about the x0) ob-

tained in this way form a subset in A 
 invariant under the shift: σ : � x � 1, x � 2, x � 3, . . . ���
� x � 2, x � 3, x � 4, . . . � , whose closure takes the name of β - shift. T � x � 	 � βx � is an ergodic trans-

formation sending I 0, 1 � onto itself. We will call any closed σ - invariant subset S of A 
 a sym-

bolic dynamical system on A. The language L � S � associated with S is the set of words which can

be built from S:

� yn � n � 0
�

S  yp . . . yq
�

L � S � for all p � q

and the real number whose representation in base β is yp . . . yq is � yp , . . . , yq � � β � . The Renyi

representation of x 	 x0.x � 1x � 2x � 3 . . . in base β takes the name of β- expansion of x. From

the greedy algorithm, we see that the representation of β in base β is β 	 1.β, whereas the β -

expansion of β is, say

β 	 t1 �
t2

β �
t3

β2 � . . .

where t1 	 � β � , ti
�

A. Setting T 0 � x � 	 x and inductively T n � 1 � 	 T n � 1 � � β � � 	 � βT n � 1 � 1 � �
for n � 1 we have canonically ti 	 � βT i � 1 � 1 � � for i � 1. Dividing the above equation by β

itself gives the so-called Rényi β - expansion of 1, dβ � 1 � 	 t1β
� 1 � t2β

� 2 � ����� 	 0.t1t2
����� ,

while the representation in base β of 1 given by the greedy algorithm is 1. We will say that the β -
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expansion of β is finite when β 	 � t1, t2, ����� , tm � � β � with some integer m � 1. In the following,

we will denote

c1c2c3
����� 	

�
t1t2t3

����� if the β - development dβ � 1 � 	 0.t1t2
����� is infinite

� t1t2
����� tm � 1 � tm

� 1 � � ω if dβ � 1 � is finite and equal to 0.t1t2
����� tm

(1)

where � � ω means that the word within � � is indefinitely repeated. Since m � 2 , we always

have c1 	 t1 	 � β � .

T 3.1. — [5] If the β - expansion of β is

β 	 t1 �
t2

β �
t3

β2 � ����� (2)

with ti
�

A for all i � 1 and if � b0, b1, ����� � is a sequence of non-negative numbers whose tail,

in the case in which the β - expansion of β is finite, does not coincide with � cn � , a necessary and

sufficient condition for the existence of x with β - expansion

x 	 b0 �
b1

β �
b2

β2 � �����

is that

� bn , bn � 1, ����� � < � t1, t2, ����� � (3)

for all n � 1. In particular, � tn , tn � 1, ����� � < � t2, t3, ����� � for all n � 2.

This is a maximality condition for the elements of S. We now extend the β - shift to A � .

This means that we keep this maximality condition to sieve the infinite sequences of integers

� xi � k � i � ��� , such that x 	 xk xk � 1
����� x1x0.x � 1x � 2

����� is a positive real number. Only certain

representations become allowed.

D 3.2. — Denote H �β 	 � xk βk � xk � 1βk � 1 � ����� � x1β � x0 
 xi
�

A, k � 0, and

� xj , xj � 1, ����� , x1, x0, 0, 0, ����� � < � c1, c2, ����� � for all j, 0 � j � k � the discrete subset of M � . The

set H β 	 H �β ��� � H �β � is called the set of β - integers.

H �β is the set of integral parts of β - developments. Set H �β 	 � H �β . The Rényi β - expansion

of 1 and the maximality condition with c1c2 . . . are then sufficient to exhaust all the possibilities

of enumeration of β - expansions of β - integers. Note that the element 1 belongs to H �β , but the

Rényi β - expansion of 1 does not; of course, its integral part is 0 and 0 belongs to H �β .

For instance, with τ 	 1 ��� 5
2 , t1t2

����� 	 110 . . . and c1c2
����� 	 1010 . . . . No sequence

xk xk � 1 . . . representing an element x of H τ contains the lexicographically impossible word 11.

Those w 		� � �j 
 � k w � j β
� j developed by the greedy algorithm which obey the maximality

condition � w � j , w � j � 1, . . . � < � c1, c2, . . . � for all j � 1 and for which w � � p � s � 	 w � p for all

p � p0, where p0 � 1, for some positive integer s, are said to have a recurrent tail and are named
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β - numbers. Their β - expansion is periodic after a certain rank. Those β - numbers having a

tail composed of zeroes after a certain rank are called simple β - numbers [5]. It is known that β -

numbers are algebraic integers of degree p0 � s (with s minimal).

Let us turn now to algebraic numbers. When β is real positive and an algebraic integer, it is

the solution of an irreducible (minimal) polynomial of the form,

P � X � 	 X m � am � 1X m � 1 � am � 2X m � 2 � ����� � a1X � a0 , ai
� H (4)

with m 	 degree β � 1. Replacing X by β in the above polynomial and dividing the equality

by βm � 1, we can see that β is a simple β - number of β - expansion am � 1 � am � 2β
� 1 � ����� �

a1β
� m � 2 � a0β

� m � 1 when the following condition is fulfilled

� an , an � 1, ����� � < � am � 1, am � 2, ����� , a0, 0, 0, ����� � (5)

for all n � m � 2, with all a j ’s positive integers. This condition is restrictive and the coefficients

of the above minimal polynomial do not obey necessarily this rule. Note that the results obtained

by Parry [5] are valid for polynomials in H I β J for which β is a root but that are not necessarily

irreducible. In other terms, it may exist a polynomial PP � X ��	 X m � � � m � 1
n 
 0 a �nX n (the letter

”P” is for Parry) in the ideal P � X ��H8I β J which has a dominant coefficient equal to 1 and the other

coefficients a �j negative such that similar inequalities as (5) are fulfilled with the a �j ’s, but such

that the inequalities (5) are not fulfilled with the coefficients of P � X � . Relations between the

minimal polynomial P � X � and PP � X � were already outlined by Frougny and Solomyak [20].

Links between β - numbers and other algebraic numbers have already been investigated.

T 3.3. — (Bertrand [7], Schmidt [8]) Let θ be a Pisot number. We have

x
� �� θ � � � the θ - expansion of x has a recurrent tail (6)

In particular, θ is a θ - number.

Since the set of Pisot numbers is closed (Cassels [9], Chapter VIII, Theorem III) and that the

set of simple β - numbers is everywhere dense in I 1; � � I (Parry [5], Theorem 5), there are many

more β - numbers on the positive real line than Pisot numbers. Their behaviour is closely related

since the conjugates of a β - number are also bounded : they have an absolute value less than 2

([5], Theorem 4). Pisot - numbers are interesting since they provide Meyer sets H β by the sieving

process of H I β J (Burdik et al [2], Theorem 2.4).

A Perron number β is a real algebraic integer β � 1 whose remaining conjugates β
�
i � are

of absolute value strictly less than β. A Lind number β has the same definition except we allow

at least one conjugate of β to have β as absolute value (Lagarias [14] has named such algebraic

integers from Lind’s works [17]; similarly Douglas Lind had previously proposed the terminology

Perron numbers for some algebraic integers from Perron’s works). From [5], all β - numbers � 2

are Perron numbers. In the present contribution, we are dealing with Perron numbers where the

conjugates lie within certain discs centred at the origin in the complex plane (for instance, for

Pisot numbers, the open unit disc). Perron has proved that, when all the conjugates of β ( β >

1, degβ 	 m ) belong to the open unit disc, then the polynomial P � X � � H8I X J , satisfying
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P � β � 	 0, degP � X � 	 m and leading coefficient equal to 1, is necessarily irreducible over  or

over a quadratic imaginary field. Results about irreducibility can be found in Brauer [6]. We will

assume throughout this paper that P � X � is irreducible, but it is a weak assumption as soon as

m > 2 and β a Pisot number.

We now assume that β > 1 is an algebraic integer, without any restriction on the coefficients

of its minimal polynomial P � X � . We will construct an inductive system � � n , f
p

n � p � n � m using

the minimal polynomial of β. In the inductive limit � of this inductive system, we will charac-

terize a discrete subset � K�� associated with the supplementary conditions (3) arising from

the existence of β - expansions and represent H β from � , that is from some selected points lying

in the lattice H m in M m . The inductive system associated with β is given by a collection of H -

modules �
n 	NH n for all integer n � m

and arrows f
p

n :
�

p
� � � n, p � n, which are H - linear maps, constructed as follows. For any

p 	 n, f
p

p 	 I d. For any n � m,

f n � 1
n :

�
n � 1

� � � n : � xn , xn � 1, ����� , x1, x0 � � � � x �n � 1, x �n � 2, ����� , x �1, x �0 �
such that � n

i 
 0 xiβ
i 	 � n � 1

j 
 0 x �j βj by replacing βm by its polynomial expression am � 1βm � 1 �
am � 2βm � 2 � ����� � a1β � a0 in the term of highest degree xnβn 	 � xnβn � m � βm. We obtain

x �j 	 xnaj � xj , for all j
� � n � m, n � m � 1, ����� , n � 1 � and x �j 	 xj for j

� � 0, 1, . . . , n �
m � 1. We set f

p
n 	 f

p
p � 1 � f

p � 1
p � 2 � ����� � f n � 1

n for all p > n. These transition mappings are

transitive by construction : for all integers i, k, j such that i � k � j � m, f i
j 	 f i

k � f k
j . There

are several ways to reduce the expression � n
i 
 0 xiβ

i instead of only transforming the term of

highest degree. However, since � 1, β, β2, ����� , βm � 1 � is a free system in �� β � (its discriminant is

� � 1 � m � m � 1 �
2 N � � β � / � � P � � β � � �	 0, where N � � β � / � is the usual algebraic norm) and a basis in H I β J ,

the decomposition � n
i 
 0 xiβ

i into � m � 1
i 
 0 x � �i βi becomes unique at the rank n 	 m.

�
n

f n � 1
n����� �

m

H8I β J	���������� 	 H I β J

�
n � 1

	
gngn � 1 gm

f n � 2
n � 1 f m � 1

m�����f n
n � 1

�

H I β J 	
Figure 1: The inductive limit � isomorphic to H8I β J .

In the (external) sum 	 � �n 
 m

�
n , we have the equivalence relation which identifies Xi

� �
i

and Xj
� �

j :

Xi 
 Xj
� � there exists k, with m � k � i, j such that f i

k � Xi � 	 f
j

k � Xj �
For all n � m, denote gn :

�
n
� � H I β J : � xn � 1, xn � 2, ����� , x1, x0 � � � � n � 1

d 
 0 xjβ
j . It is a

morphism of H - modules, and gm is one-to-one. We have Xi 
 Xj if and only if f i
mXi 	 f

j
mXj ,
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which is equivalent to gm � f i
mXi ��	 gm � f j

mXj � . We deduce the H - isomorphism (for � )

� 	 lim ind
�

n � H I β J
Since H I β J and H I X J / � P � X � � are isomorphic as rings, � is naturally endowed with a ring struc-

ture. Consider now the subsets, for all n � m

� n : 	 � � xn � 1, xn � 2, ����� , x1, x0 � � An 
 xn � 1 �	 0, and, for all d � n � 1,

� xd , xd � 1, ����� , x0, 0, 0, ����� � < � c1, c2, ����� � �

We have the inclusions � n K � n, n � m, and gn � � n �$K H �β is the set of positive β - expansions

with strictly n digits with no fractional part. This set is finite and

H β 	
� ��

n 
 m

gn � � � n � (7)

The diagram in figure 1 is commutative. The subsystem � � n , f
p

n � , using the equivalence relation


 , gives

H β 	 gm

�
� ��

n 
 m

f n
m � � � n ���

as a Delone subset of H8I β J . This provides � 	 lim ind � n K � in the inductive limit.

The arrows f
p

n are H - linear, but the sets � n, n � m, � have no algebraic structure a priori.

However, Burdik et al [18] have recently shown that � is endowed with an internal law � when

m 	 2, for some values of the minimal polynomial: when it is X 2 � aX � 1, with a � 3 and

X 2 � aX � 1, with a � 1, and � � , ��� is a group isomorphic to �,H , � � .

4. Linear asymptotic invariants

The arrow gm : H m � H8I β J in the construction of the inductive limit � is a H - isomorphism.

Therefore, we have a bijection gm : � � �n 
 m f n
m � � � n � K H m � H β. We investigate now the

image of H β under g
� 1

m . We will show that the inductive limit � is canonically associated with a

cut-and-project scheme around some eigensubspaces in M m and points on H m gathered around

these eigensubspaces.

L 4.1. — For all integer k � m, � k is not empty. It contains at least the elements

� r, 0, 0, ����� , 0 � for any r
� � 1, 2, ����� , c1 � where c1 	 t1 	 � β � is the first digit in the β -

expansion of 1.

Proof. — Recall that we have assumed m � 2. Since β > 1, c1 	 t1 	 � β � is at least equal to

1. The condition � r, 0, 0, ����� , 0, ����� � < � c1, c2, ����� � ensures that all the elements � r, 0, 0, ����� , 0 �
are in � k .

Applying gk to such elements � r, 0, 0, ����� , 0 � , we see that we are looking for the linear asymp-

totic behaviour of the elements rβk in M m , with r
� � 1, 2, ����� , c1 � . By linearity, it suffices to

10



understand the linear asymptotic behaviour of βk , that is of f k
m � � 1, 0, 0, ����� , 0 � � 	 g

� 1
m �

gk � � 1, 0, 0, ����� , 0 � � 	 g
� 1

m � βk � � M m when k tends to infinity. This will also be sufficient to un-

derstand the linear asymptotic behaviour of any polynomial rβk � rk � 1βk � 1 � ����� � r2β2 � r1β � r0

whose dominant monomial is rβk . The number of such polynomials is given by the number of

words of length k � 1 which are lexicographically possible.

T 4.2. — [19] Let 0.t1t2t3
����� the Rényi development of 1. The number dk of words

rk rk � 1rk � 2 . . . r2r1, ri
�

A of length k (rk �	 0) of the language L � β � is given by the following

recurrence relations:

- if t1, t2, ����� is not ending with zeroes, then d0 	 1, ����� , dk 	 t1dk � 1 � t2dk � 2 � ����� � tk d0 � 1,

- if t1, t2, ����� is ending with zeroes (ti �	 0 and ti � 1ti � 2
����� 	 00 ����� ) then:

d0 	 1, ����� , dk 	 t1dk � 1 � t2dk � 2 � ����� � tk d0 � 1 for all k 	 1, 2, ����� i � 1

dk 	 t1dk � 1 � t2dk � 2 � ����� � ti dk � i , k � i

We have

lim
k � � dk

βk
	 1

β � 1

�
t1

β �
2t2

β2 �
3t3

β3 � ������� (1)

For simple β- numbers, A.Bertrand-Mathis [24] has developed other formulas for dk from

the matrix associated with the Markov topological β- shift.

A   .— If the Rényi development of 1 is finite and equal to 0.am � 1am � 2
����� a1a0 so

that β becomes a simple β-number � ti 	 am � i � , then

P � � β �
βm � 1 � β � 1 � 	 lim

k � � � dk

βk
(2)

where P � X � is given by (4). The limit limk � � � dk
βk tells us how many words we have asymp-

totically relatively to the powers of β (it measures in the intuitive sense the richness of the lan-

guage L � β � ). In the case in which β is a β - number, we obtain rich languages when the ratio
P �
�
β �

βm � 1
�
β � 1 � is large. Obviously, when β is an arbitrarily large β-number (or Pisot number), this

ratio goes to zero since all the conjugates remain in a fixed disc in the complex plane. For in-

stance, for L � τ � , with τ root of P � X � 	 X 2 � X � 1, we have 1 	 0.11 as τ - expansion

and limk � � � dk
τk 	�� 5 which is comparatively large; on the contrary, the language L � β � with

β the Pisot number, root of the equation P � X � 	 X 2 � aX � 1 , a > 1 is poorer and poorer when

a is tending to infinity.

Let us go back to the general situation. For all k � 0 , write βk 	 zm � 1,kβm � 1 �
zm � 2,k βm � 2 � ����� � z1,k β � z0,k , where all the integers z0,k , z1,k , ����� , zm � 1,k belong to H .

Denote

Zk 	

�������� z0,k

z1,k

z2,k
...

zm � 1,k

	�





� B 	 B
�
0 � 	

�������� 1

β

β2

...

βm � 1

	�





� B
�
j � 	

�������� 1

β
�
j �

β
�
j � 2
...

β
�
j � m � 1

	�





�
11



where the elements β
�
j � , j

� � 1, 2, ����� , m � 1 � are the conjugate roots of β 	 β
�
0 � in the minimal

polynomial of β . The transposed vector of Zk is denoted by t Zk . Set

�
k 	

�������� βk

β
�
1 � k

β
�
2 � k
...

β
�
m � 1 � k

	�





� and Q 	

�������� 0 1 0 ����� 0

0 0 1 ����� 0
...

...
. . . 0

0 0 ����� 1

a0 a1
����� am � 1

	�





�
the m � m matrix with coefficients in H . t Q, denoting the transposed matrix of Q, is the com-

panion matrix of P � X � . For all p, k
� � 0, 1, ����� , m � 1 � , we have: zp,k 	 δp,k the Kronecker

symbol.

L 4.3. — For all k � 0, we have Zk � 1 	 t Q Zk .

Proof. — This is trivial if k < m � 1. If k � m � 1, write

βk � 1 	 β � βk 	 β � zm � 1,k βm � 1 � zm � 2,kβm � 2 � ����� � z1,kβ � z0,k � 	

� zm � 2,k � am � 1zm � 1,k � βm � 1 � � zm � 3,k � am � 2zm � 1,k � βm � 2 � ����� � � z0,k � a1zm � 1,k � β � a0zm � 1,k

since βm 	 am � 1βm � 1 � am � 2βm � 2 � ����� � a1β � a0. Hence, the result in a matrix form.

Denote

C 	

������ 1 β β2 ����� βm � 1

1 β
�
1 � β

�
1 � 2 ����� β

�
1 � m � 1

...
...

...
...

1 β
�
m � 1 � β

�
m � 1 � 2 ����� β

�
m � 1 � m � 1

	�



�
the Vandermonde matrix of order m. We obtain C Zk 	 �

k by the real and complex em-

beddings of  I β J since all the coefficients z j,k , j
� � 0, 1, ����� , m � 1 � are integers and remain

invariant.

T 4.4. — If β is a Perron number of degree m and minimal polynomial P � X � and if

v1 denote the vector defined by the first column of C
� 1, then

lim
k � � � Zk�

Zk
� exists and is equal to u : 	 v1�

v1
� (3)

Moreover, all the components of v1 are real and belong to the H - module
H I β J

βm � 1P � � β � .

Proof. — Since P � X � is minimal, all the roots of P � X � are distinct. Hence, the determinant of

C is � i<j � β
�
i � � β

�
j � � and is not zero Let C

� 1 	 � ξi j � . Then C � C � 1 	 I , that is

ξ1i � ξ2iβ
�
j � � ξ3iβ

�
j � 2 � ����� � ξmiβ

�
j � m � 1 	 δi,j � 1 (4)
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for all i 	 1, 2, . . . , m, and j 	 0, 1, . . . , m � 1. On the other hand, the Lagrange interpolating

polynomials associated with � β, β
�
1 � , β

�
2 � , . . . , β

�
m � 1 � � are given by

Ls � X � 	
m � 1�

j � 0
j �
 s

X � β
�
j �

β
�
s � � β

�
j � s 	 0, 1, . . . , m � 1

For m arbitrary complex numbers y1, y2, ����� , ym , denote

σr 	 σr � y1, y2, ����� , ym � 	 �
1 � i1 � i2 ��������� ir � m

r�
j 
 1

yij

the r-th elementary symmetric function of the m numbers y1, y2, ����� , ym . The degree of Ls � X � is

m � 1 and Ls � X � can be expressed as

Ls � X ��	
m � 1

�
r 
 0

� � 1 � r σ

�
s �

r X m � r � 1/

m � 1�
r � 0
r �
 s

� β
�
s � � β

�
r � �

where σ

�
s �

r 	 σr � β, β
�
1 � , ����� , β

�
s � 1 � , β

�
s � 1 � , ����� , β

�
m � 1 � � denotes the r-th elementary symmet-

ric function of the m � 1 numbers β, β
�
1 � , ����� , β

�
s � 1 � , β

�
s � 1 � , ����� , β

�
m � 1 � where β

�
s � is missing.

Since these polynomials satisfy Ls � β
�
k � � 	 δs,k for all s, k 	 0, 1, ����� , m � 1, comparing with

(4), we obtain, by identification of the coefficients

ξji 	
� � 1 � m � jσ

�
i � 1 �

m � j

m � 1�
r � 0

r �
 i � 1

� β
�
i � 1 � � β

�
r � �

	 � � 1 � m � jσ

�
i � 1 �

m � j

P � � β
�
i � 1 � �

for all i, j 	 1, 2, ����� , m. We have

Ls � X � 	
m

�
j 
 1

ξj,s � 1X j � 1 s 	 0, 1, ����� , m � 1

Now C � Zk 	 �
k for all k � 0, hence Zk 	 C

� 1 � �
k . Each component zi,k , 0 � i �

m � 1, k � 0 of Zk can be expressed as

zi,k 	
m

�
j 
 1

ξi � 1,jβ
�
j � 1 � k (5)

Since β is a Perron number, we have 
 β
�
j � 
 < β for all j, 1 � j � m � 1. Hence, for all

j, 1 � j � m � 1

lim
k � � � �

β
�
j �

β
� k

	 0

and, therefore

lim
k � � � zi,k

βk
	 ξi � 1,1 i 	 0, 1, ����� , m � 1
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Moreover,

lim
k � � �

�
m � 1

�
i 
 0


 zi,k 
 2 � 1/2

βk
	 lim

k � � � �
Zk

�
βk

	
���� m � 1

�
i 
 0


 ξi � 1,1 
 2 	 �
v1

�

hence the result. The fact that all the components of v1 are real and belong to the H - module

H I β J / � βm � 1P � � β � � comes from the following more accurate proposition.

P 4.5. — The components of v1 are

ξj,1 	 aj � 1βj � 1 � aj � 2βj � 2 � ����� � a1β � a0

βj P � � β � j 	 1, 2, ����� , m

In particular,

ξm,1 	 1

P � � β �

Proof. — First L0 � X � 	 � m
j 
 1 ξj,1X j � 1 and

P � X � 	 X m � am � 1X m � 1 � am � 2X m � 2 � ����� � a1X � a0 	
m � 1�
j 
 0

� X � β
�
j � � 	 L0 � X � � X � β � P � � β �

P � X � is an element of H I X J , P � � X � also. All the coefficients of L0 � X � are satisfying the following

relations

� βP � � β � ξ1,1 	 � a0

� βP � � β � ξ2,1 � ξ1,1P � � β � 	 � a1

� βP � � β � ξ3,1 � ξ2,1P � � β � 	 � a2

...

� βP � � β � ξm,1 � ξm � 1,1P � � β � 	 � am � 1

ξm,1P � � β � 	 1 (6)

We deduce the result recursively from ξ1,1.

Let uB : 	 B/
�
B

�
the unit vector and πB the orthogonal projection mapping onto the

eigenspace M B .

T 4.6. — Under the assumptions of theorem 4.4, we have:

� i � u � uB 	 �
B

� � 1 �
v1

� � 1 > 0

� ii � lim
k � � � �

Zk � 1
�

�
Zk

� exists and is equal to β .

(iii) u is an eigenvector of t Q of eigenvalue β. The eigenspace of M m associated with the eigen-

value β of t Q is M u . (iv) B is an eigenvector of the adjoint matrix � t Q ��� 	 Q associated with

the eigenvalue β and for all x
��� m

lim
k � � � � t Q � k

βk
� x ��	 � x � B � v1 (7)
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Proof. — (i) and (ii) First we have v1
� B 	 1 by definition of the inverse matrix C

� 1 . Hence

u � B 	 �
v1

� � 1 > 0 . Then, for all k � 0,

t Zk B 	 βk 	 �
Zk

� t � Zk�
Zk

� � u � u � B > 0

which tends to infinity when k tends to � � . Since u � Zk/
�
Zk

�
tends to zero when k goes to

infinity,
�
Zk

�
behaves at infinity like βk/ � u � B � , hence the limit.

(iii) For all k � 0, we have

t Qu 	 t Q � u � Zk�
Zk

� �
Zk�
Zk

� � 	 t Q � u � Zk�
Zk

� � �
�
Zk � 1

�
�
Zk

� Zk � 1�
Zk � 1

�

The first term is converging to zero and the second one to βu, when k goes to infinity, from

theorem 4.4. Hence, the result since all the roots of P � X � are distinct and the (real) eigenspace

associated with β is 1 - dimensional.

(iv) It is clear that B is an eigenvector of the adjoint matrix Q . If h0, h1, ����� , hm � 1
� �

, x 	� m � 1
j 
 0 hj Zj , where Z0, Z1, ����� , Zm � 1 is the canonical basis of

� m , we have

� t Q � k
βk

� x � 	
m � 1

�
j 
 0

hjβ
� k Zk � j 	

m � 1

�
j 
 0

hjβ
j

�
Zk � j

βk � j
�

but, from the proof of theorem 4.4, lim
k � � � Zk � j

βk � j
	 v1 and � m � 1

j 
 0 hjβ
j 	 x � B .

R . — (i) Note that B has strictly positive components while v1 may have negative

components according to the signs of the coefficients ai . The equality (7) is already given by the

Perron-Frobenius theory, e.g. Ruelle [10] p136, Gantmacher [11], chap XIII, or Minc [12], but,

here, the matrix t Q has not necessarily non-negative entries. The prominent lines are neverthe-

less those generated by the two eigenvectors B and v1 , resp. of the matrix t Q and its adjoint

Q .

(ii) The result (ii) provides a straightforward way of computing β by means of purely vector

methods.

From proposition 4.5 and theorem 4.4, we can formulate a basis of eigenvectors in
� m (com-

plexication space of M m ) of the complexification t Q � :
� m � � m of the operator t Q . From it,

we will deduce a basis of eigenvectors of t Q as an operator on the real vector space M m , in the

case in which β has non real conjugates [22]. Obviously, the complexification Q � of the adjoint

operator � t Q ��� 	 Q admits � B, B
�
1 � , B

�
2 � , ����� , B

�
m � 1 � � as a basis of eigenvectors in

� m of

respective eigenvalues β, β
�
1 � , β

�
2 � , ����� , β

�
m � 1 � . Let s � 1 , resp. t , the number of real, resp.

complex (up to conjugation), embeddings of the number field �� β � . We have m 	 s � 2t .

Assume the conjugates of β are (up to permutation leaving β fixed, the first s elements real and

grouping by pairs the complex conjugates):

β, β
�
1 � , ����� , β

�
s � 1 � , β

�
s � , β

�
s � 1 � , ����� , β

�
m � 2 � 	 β

�
s � 2t � 2 � , β

�
m � 1 � 	 β

�
s � 2t � 1 �

where β, β
�
1 � , ����� , β

�
s � 1 � are real and β

�
s � 2j � 	 β

�
s � 2j � 1 � are complex with non zero imaginary

part, for all j 	 0, 1, ����� , t � 1 . Write r j 	 
 β
�
s � 2j � 
 	 
 β

�
s � 2j � 1 � 
 and β

�
s � 2j � 	 rj � cos � θj � �
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i sin � θj � � , for all j 	 0, 1, ����� , t � 1. Denote by Diag � a1, a2, ����� , aq � a square matrix having

as coefficients zero everywhere except on the diagonal where the diagonal elements are the a j ’s.

These entries can be complex numbers, real numbers or real Jordan blocks.

C 4.7. — (i) A basis of eigenvectors of t Q � is given by the collection of m column

vectors � Wk � k 
 1,2, ����� ,m , of respective components

ξj,k 	 aj � 1β
�
k � 1 � j � 1

� aj � 2β
�
k � 1 � j � 2

� ����� � a1β
�
k � 1 � � a0

β
�
k � 1 � j P � � β

�
k � 1 � � j 	 1, 2, ����� , m

In particular,

ξm,k 	 1

P � � β
�
k � 1 � �

In this basis, the matrix of the operator t Q � is

Diag � β, β
�
1 � , ����� , β

�
s � 1 � , β

�
s � , β

�
s � 1 � , ����� , β

�
s � 2t � 2 � , β

�
m � 1 � 	 β

�
s � 2t � 1 � �

(ii) A real Jordan form for the operator t Q is given by

Diag � β, β
�
1 � , ����� , β

�
s � 1 � , D1, D2, ����� , Dt �

in the basis of eigenvectors � V j � j 
 1, ����� ,m with

V1 	 W1 	 v1, V2 	 W2, ����� , Vs 	 Ws

Vs � 2j � 1 	 Im � Ws � 2j � 1 � , Vs � 2j � 2 	 Re � Ws � 2j � 1 � , j 	 0, 1, ����� , t � 1

and the real Jordan blocks D j are 2 � 2 and equal to�
rj cos θj

� rj sin θj

rj sin θj rj cos θj
�

(iii) a real Jordan form of the adjoint operator � t Q ����	 Q is given by the same matrix

Diag � β, β
�
1 � , ����� , β

�
s � 1 � , D1, D2, ����� , Dt �

in the basis of eigenvectors � Xj � j 
 1, � ��� ,m with

X1 	 B, X2 	 B
�
1 � , X3 	 B

�
2 � , ����� , Xs 	 B

�
s � 1 �

Xs � 2j � 1 	 Im � B
�
s � 2j � � , Xs � 2j � 2 	 Re � B

�
s � 2j � � , j 	 0, 1, ����� , t � 1

In particular, if K denotes the real field

K 	  � β, β
�
1 � , ����� , β

�
s � 1 � , Im � β

�
s � � , Re � β

�
s � � , ����� , Im � β

�
m � 2 � � , Re � β

�
m � 2 � � �

Q and t Q are equivalent over K : there exists a m � m invertible matrix U with entries in

K such that
t Q 	 U

� 1QU
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Proof. — We know that

� t Q � v1 	 βv1 (8)

where t Q has rational entries, and that v1 has components in the H - module β1 � m � P � � β � � � 1 H I β J .

Hence, applying component by component to equation (8) the  - automorphisms of
�

which

are the real and complex embeddings of the number field  � β � , we deduce

� t Q � W j 	 β
�
j � 1 � W j , j 	 1, 2, ����� , m

and the diagonal form of the complexification operator t Q � . In a suitable basis of M m , the

matrix of the operator t Q admits a real Jordan form (e.g. [22]); this decomposition by Jordan

blocks on the diagonal is done when some conjugates of β have non zero imaginary parts. The

restrictions of t Q to the real t Q - invariant subspaces of M m have no nilpotent parts since all

the roots of P � X � are distinct, and therefore the real Jordan blocks are 2 � 2 .

Similarly

QB 	 βB

hence

QB
�
j � 	 β

�
j � B
�
j � , j 	 0, 1, ����� , m � 1

Obviously Q and t Q have the same eigenvalues. A real Jordan form of Q is the same as for t Q .

The corresponding basis is classically given by the Xi ’s (e.g. [22]). Since all the components of

W j and Xj belong to K , there exist two matrices U1, U2 with entries in K such that

t Q 	 U
� 1

1 Diag � β, β
�
1 � , ����� , β

�
s � 1 � , D1, D2, ����� , Dt � U1

Q 	 U
� 1

2 Diag � β, β
�
1 � , ����� , β

�
s � 1 � , D1, D2, ����� , Dt � U2

Note that in general

t Diag � β, β
�
1 � , ����� , β

�
s � 1 � , D1, D2, ����� , Dt � �	 Diag � β, β

�
1 � , ����� , β

�
s � 1 � , D1, D2, ����� , Dt �

Hence, U 	 U
� 1

2 U1 satisfies the equivalence relation

t Q 	 U
� 1QU

If K g is the smallest number field such that K g /  is a Galois extension containing β , hence

finite, the field K is included in M�� K g . If we assume s 	 m (no complex embeddings for

�� β � ) and �� β � /  is a Galois extension, then K 	  � β � . In general, K is a finite real extension

of the field of rationals which contains strictly �� β � .

We now construct the Delone set H β of β -integers on the line M uB by (cut and) projection

from the lattice H m .

D 4.8. — A cut and project scheme consists of a direct product E � D of an euclidean

space E of finite dimension and a locally compact abelian group D , and a lattice L in E � D so

that with respect to the natural projections p1 : E � D � E , p2 : E � D � D ,

(i) p1 restricted to L is one to one,

(ii) p2 � L � is dense in D .
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We denote by p1 � L � 	 M and by � the mapping p2 � � p1 �
L
� � 1 from M to D .

T 4.9. — Denote by � the linear subspace of M m orthogonal to E 	 M B,

π � 	 I d � πB , and by L 	 H m . Set

� � 	 � xk Zk � xk � 1Zk � 1 � ����� � x1Z1 � x0Z0 
 xi
�

A, k � 0 , and

� xj , xj � 1, ����� , x1, x0, 0, 0, ����� � < � c1, c2, ����� � for all j, 0 � j � k �

the t Q - invariant subset of L . Then:

(i) the map
k

�
j 
 0

xjβ
j �

k

�
j 
 0

xj Zj : H �β � � � is a bijection, and, if we denote by

F any real t Q - invariant subspace of M m , by πF the projection to F along its t Q - invariant

complementary space and by H �
β � F � 	 πF � � � � , all the diagrams are commutative:

� � � � t Q� � � � � �

πF � � � � πF

H��
β � F �

�
β � F �� � H��

β � F �
where β

�
F � is one of the real conjugate of β if dim F = 1, otherwise β

�
F � is one of the 2 � 2 real

Jordan blocks Dj of corollary 4.7,

(ii) we have

πB � ����� � 	 H β

uB�
B

�

and

βπB � � � � ��K πB � ����� � , hence β H β K H β,

(iii) � E ��� , L � is a cut and project scheme.

Proof. — (i) For all k � 0 the element βk is uniquely associated with the equivalence class

in the inductive system � � n , f
p

n � whose representants are � 1, 0, 0, ����� � at the rank k and Zk at

the rank m by the relation t Zk B 	 βk . The image of the map g
� 1

m : H I β J � H m restricted

to H �β ensures the surjectivity. Let us show that it is injective. Assume there exists a non-zero

element
k

�
j 
 0

xjβ
j in H β such that

k

�
j 
 0

xj Zj 	 0 . Since t � � k
j 
 0 xj Zj � B 	 0 	 � k

j 
 0 xj β
j ,

this would mean that zero could be represented by a non-zero element. This is impossible by

construction, from the fact that the greedy algorithm provides a system of numeration (Fraenkel

[13]). The operator t Q is commuting with the projection mappings to the t Q - invariant sub-

spaces. For an arbitrary t Q - invariant subspace F , the invariance of ��� by t Q induces the

invariance by multiplication by β
�
F � of its projection to F .

(ii) for all k � 0 , we have

πB � Zk � 	 βk
�
B

� uB
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Hence the result by H - linearity. Similarly, since the operator t Q is leaving ����� invariant,

we have that p1 � ����� � is left invariant by multiplication by β . It is important to note that the

discrete set p1 � � � � � is invariant by multiplication by β but the M - span of it is not t Q -

invariant, that is invariant by multiplication by β , since it is generally not an eigenspace (see

proposition 4.12 below) of the operator t Q .

(iii) The set � Z0, Z1, ����� , Zm � 1 � is exactly the canonical basis of M m . Any

X 	
m � 1

�
j 
 0

hj Zj
�

L 	 H m, hj
� H

is projected by p1 	 πB : X � � X � uB � uB to � m � 1
j 
 0 hjβ

j uB in the H -module H I β J uB .

The map p1 � � m
is bijective since the family � βj uB 
 j 	 0, 1, ����� , m � 1 � is free over H . The

fact that p2 � L � 	 π � � L � is dense in � arises from Kronecker’s theorem ([36], Appendix B)

because β is an algebraic integer of degree m . Recall that 1 	 β0, β1, ����� , βm � 1 are m real

numbers linearly independent over  . Hence, if x0, x1, ����� , xm � 1 are m real numbers such

that the vector X of components � x j � j 
 0,1,...,m � 1 belongs to � , and ε > 0 , then there exist

a real number w and m rational integers u0, u1, ����� , um � 1 such that 
 x0
� β0w � u0 
 �

ε, ����� , 
 xm � 1
� βm � 1w � um � 1 
 � ε . In other terms, there exists a point U

� H m of

components � uj � j 
 0,1,...,m � 1 such that its image by π � is close to the given X up to ε for an

arbitrary ε . Hence the result.

P 4.10. — (i) For any a0, a1, ����� , ak
� H , k � 0, we have

πB

�
k

�
i 
 0

ai Zi � 	 � k
i 
 0 aiβ

i

�
B

� uB (9)

and conversely, any polynomial in β on the line generated by uB/
�
B

�
can be uniquely lifted up

to a H -linear combination of the Zi ’s with the same coefficients.

(ii) Denote by (see corollary 4.7 for the definition of Xi )

uB,i 	

���� ���
1�

Xi
� Xi , i 	 1, 2, ����� , s

1���
Xi

�
2 �

�
Xi � 1

�
2 � 1/2 Xi , i 	 s � 1, ����� , m, with i � � s � 1 � even

1���
Xi � 1

�
2 �

�
Xi

�
2 � 1/2 Xi , i 	 s � 1, ����� , m, with i � � s � 1 � odd

the unit vectors (with uB 	 uB,1 ) and, for all i 	 1, 2, ����� , s , πB,i : M m � M uB,i the orthogonal

projections to the 1-dimensional eigenspaces of Q , resp. i 	 s � 1, ����� , m with i � � s � 1 � even,

πB,i : M m � M uB,i � M uB,i � 1 the orthogonal projections to the 2-dimensional eigenspaces of Q .

For any a0, a1, ����� , ak
� H , k � 0, we have

πB,i �
k

�
j 
 0

aj Zj � 	
� k

j 
 0 ajβ
�
i � 1 � j

�
Xi

� uB,i i 	 1, 2, ����� , s

and, for all i 	 s � 1, ����� , m with i � � s � 1 � even,

πB,i �
k

�
j 
 0

aj Zj � 	
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1

� �
Xi

�
2 �

�
Xi � 1

�
2 � 1/2

�
Re � � k

j 
 0 aj β
�
i � 1 � j � Im � � k

j 
 0 ajβ
�
i � 1 � j �

� Im � � k
j 
 0 ajβ

�
i � 1 � j � Re � � k

j 
 0 ajβ
�
i � 1 � j � � �

uB,i

uB,i � 1
�

Proof. — (i) is obtained by linearity from theorem 4.6 (ii) and (iii) since p1 � � m
is bijective.

(ii) Applying now the real embeddings of �� β � to the relation

πB �
k

�
j 
 0

aj Zj � 	 � �
k

�
j 
 0

aj Zj � � uB � uB 	
� k

j 
 0 ajβ
j

�
B

� uB

gives, for all i 	 1, 2, ����� , s ,

πB,i �
k

�
j 
 0

aj Zj ��	 � �
k

�
j 
 0

aj Zj � � uB,i � uB,i 	
� k

j 
 0 ajβ
�
i � 1 � j

�
B
�
i � 1 � � uB,i

and the result. Similarly the complex embeddings applied to the above relation provide as or-

thogonal projections, with i 	 s � 1, ����� , m with i � � s � 1 � even

1�
B
�
i � 1 � �

2
� �

k

�
j 
 0

aj Zj � � B
�
i � 1 � � B

�
i � 1 �

from which, by means of corollary 4.7, we deduce the orthogonal projection on the real plane

generated by uB,i and uB,i � 1 .

D 4.11. — A subset Λ of a finite dimensional euclidean space E is a model set (also

called a cut and project set) if there exists a cut and project scheme � E � D, L � and a relatively

compact set Ω of D with non empty interior such that

Λ 	 � p1 � l � 
 l
�

L, p2 � l � � Ω � 	 � v
�

M 
 v � � Ω �

The set Ω is called the acceptance window.

The problem is now the following. In general, for an arbitrary Perron number β , the dom-

inant eigenspaces M u , resp. M uB , of the matrices t Q , resp. its adjoint Q , are distinct. The

vectors Zk gather angularly about the eigenspace M u and not about the line M uB from theorem

4.4. But H β is naturally formed, up to the scaling constant
�
B

� � 1 , by projection on M uB from

theorem 4.9. If we set an acceptance window Ω about the origin in the internal space � the

number of integers k such that p2 � Zk � � Ω will be finite. Consequently, it becomes a pri-

ori impossible to embed H β in a model set on the line M uB using the cut-and-project scheme

� E � � , L � of theorem 4.9 when u �	 uB . Recall that if Λ is a relatively dense subset of M ,

then Λ is a Meyer set if and only if there exists a model set which contains Λ ([37], p 431). In

particular, it seems difficult to prove by this process and the above mentioned cut-and-project

scheme � E ��� , L � that Zβ is a Meyer set when β is a Pisot number, although this result holds

(Meyer, [36]). This requires new constructions. In the following, up till the end of this paragraph,

let us consider only Pisot numbers.

First, consider the case of equality u 	 uB and show that it is rarely occuring.
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P 4.12. — The equality case u 	 uB is satisfied if and only if β is a Pisot number

of degree 2, root > 1 of the polynomial X 2 � aX � 1 , with a � 1 .

Proof. — Indeed, the condition u 	 uB is equivalent to v1 colinear to B , that is

ξj,1β
� j � 1 is a non zero constant independent of j 	 1, 2, ����� , m (with the notations of proposi-

tion 4.5). We see that if β is such a Pisot number, such equalities hold. Conversely, equating the

two terms indexed by j 	 0 and j 	 m , we obtain a0βm � 2 	 1 , that is necessarily m 	 2 and

a0 	 1 . The Perron number β is then a Pisot number of negative conjugate � β
� 1 which

satisfies β2 � a1β � 1 	 0 , where a1 	 β � β
� 1 is an integer greater or equal than 1. This is the

only possibility of quadratic Pisot number with constant term � 1 (Frougny et al, [20], Lemma

3).

When this equality condition u 	 uB is satisfied, we have the following result.

P 4.13. — When β is a Pisot number of degree 2, root > 1 of the polynomial X 2 �
aX � 1 , with a � 1 , H β is a Meyer set, i.e. H β is relatively dense and, if Ωa denotes the acceptance

window I � cau � ; � ca u �8J in � , with

ca 	 � 1 � aβ � � β �� 2 � aβ � β � 1 � and Λa 	 � v
�

p1 �,H 2 � 
 v � � Ωa �

the model set, we have the following inclusion

πB � ��� � � K Λa

Proof. — Indeed, by proposition 4.12 we have u 	 uB . With the notations of theorem 4.9,

� E � � , L � is a cut-and-project scheme of M 2 , with E 	 M u 	 M uB . We will show that the model

set Λa in E contains πB � ��� � � 	 H β

�
B

� � 1uB . Since H β is isometric to
�
B

�
πB � ��� � � ,

this will be enough for showing the result. Recall that � Z0, Z1 � is the canonical basis of M 2 and

for all j 	 0, 1, 2, ����� , Zj 	 � t Q � j Z0 . Hence, if g denotes an arbitrary element of ��� , it can

be written g 	 xk � t Q � k Z0 � xk � 1 � t Q � k � 1Z0 � ����� � x1 � t Q � Z0 � x0Z0 for a certain integer

k � 0 with xi
�

A and � xj , xj � 1, ����� , x1, x0, 0, 0, ����� � < � c1, c2, ����� � for all j, 0 � j � k . Recall

that A 	 � 0, 1, ����� , � β � � . Denote by

u � 	 �
B

� � 1

� � β

1
�

the unit vector of � . We have Z0 	 su � s � u � with s 	 �
B

� � 1 and s � 	 � β
�
B

� � 1 . We can

write

g 	
k

�
j 
 0

xj � t Q � j Z0 	
k

�
j 
 0

xj � sβj u � s � � � 1 � j β
� j u � �

Thus π � � g ��	 s � � k
j 
 0 xj � � 1 � j β

� j u � and

�
π � � g � � � 
 s � 
 � β � �

�
�
j 
 0

β
� j 	 
 s � 
 � β � 1

1 � β
� 1
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which is equal to ca since
�
B

� 	 � 2 � aβ . This constant is independent of k . Hence we have

p1 � g � � 	 πB � g � � 	 π � � g � � Ωa , that is the inclusion πB � ����� � K Λa .

Now, H β is relatively dense since it is a self-similar tiling of the line with a finite set of pro-

totiles (2) whose corresponding lengths are � �
B

� � 1T i � 1 ��
 i 	 0, 1 � (Thurston, [28]) with the

notations of � 3 . We have T 0 � 1 ��	 1 and T 1 � 1 ��	 β � a . Now apply theorem 9.1 (i) in [37].

R .— (i) The bound ca was already given by Burdik et al ([2], � 4) when β is the golden

mean τ 	 � 1 � � 5 � /2 . In this case, a 	 1 and c1 	 τ3/ � 1 � τ2 . The set H τ is a Meyer

set and there exists a finite set Gτ such that H τ
� H τ K H τ � Gτ . A first estimate of this set

Gτ is � 0, � τ
� 1, � τ

� 2 � and more detailed algebraic considerations can be found about Gβ in

[2] when a �	 1 , and also in Masakova et al [29].

(ii) The above model sets and Meyer sets built in dimension 2 from Pisot numbers can be

found again from the non crystallographic root system of type A1 as shown in Patera [49].

In the following, we will construct another cut-and-project scheme � E � � D � , L � � which will

allow us to deal with the generic case u �	 uB and complex conjugates of β . Let E � 	 M uB and

L � the standard lattice H m . We chose for D � the direct sum of all the t Q - invariant subspaces

of M m except M u .

We will assume that β is a Pisot number from now on. The eigenspaces F corresponding to

real or complex β
�
j � with 
 β

�
j � 
 < 1 are such that when restricted to these subspaces, the norm

obeys � � t Q � v � 	 β
�
v

�
, v

� M u
� � t Q � v �

F 	 λF
�
v

�
F , v

�
F, 0 < λF < 1

(we write for short λF instead of 
 β
�
j � 
 ). Let πF : M m � F be the projection to F along the

complementary direct sum. We denote by
�

the class of eigenspaces of t Q except M u . Set

D � 	 � F ��� F and πD � 	 � F ��� πF

We have D � � M uB 	 � 0 � . Indeed, if we had B
�

D � , we should obtain

lim
k � � � � t Q � k B

� 	 0

but B has a non trivial component on the line M u (theorem 4.6) and u is an eigenvector of
t Q with eigenvalue β strictly greater than unity. Hence, a component of � t Q � k B is going to

infinity when k goes to � � . This is a contradiction.

Since E � � D � � M m and the restriction of p1 : M m � E � to L � 	 H m is obviously one-to-

one, we have a � - operation from M 	 p1 � L � � to D � : x
�

M � x � 	 πD � � � p1 � � m
� � 1 � x � .

Let

� 	 �
m � 1

�
j 
 0

αj Zj 
 αj
� I 0; 1 J for all j 	 0, 1, ����� , m � 1 � (10)

be the unit cell of H m constructed on the standard orthogonal basis � Z0, Z1, ����� , Zm � 1 � . Recall

that, when dim F = 2, πF � � � is a closed polygon in the plane and that the restriction of the
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action of t Q to F is a rotation followed by a contraction (corollary 4.7). Set

δF 	 max
x ��� �

πF � x � �
, µF 	 min � � m, mδF � , F

� �

It is reached by one of the
�
πF � Zq � �

for a certain integer q
� � 0, 1, ����� , m � 1 � since the

extremal points of the convex πF � � � arise from the extremal points of
�

. It can be easily

computed from the components of Zq , q 	 0, 1, ����� , m � 1 in the basis of eigenvectors Vi , i 	
1, 2, ����� , m (corollary 4.7). If g 	 � k

j 
 0 xj Zj is an arbitrary element of � � with k 	 dm � 1 ,

and d an integer � 1 , then

g 	
d � 1

�
q 
 0

m � 1

�
l 
 0

xqm � l � t Q � qmZl 	
d � 1

�
q 
 0

� t Q � qm

�
m � 1

�
l 
 0

xqm � l Zl �
Hence

p1 � g � � 	 πD � � g ��	 �
F ���

d � 1

�
q 
 0

�
� t Q �

F
� qmπF

�
m � 1

�
l 
 0

xqm � l Zl ���
and

�
πD � � g �

� � �
F ���

d � 1

�
q 
 0

� β � λ
qm
F

�
πF

�
m � 1

�
l 
 0

Zl � �

� �
F ���

� β � µF

� ��
q 
 0

λ
qm
F 	 � β � �

F ���

µF

1 � λm
F

This constant is independent of d , hence of k 	 dm � 1 . It is easy to check that it is also an

upper bound for
�
πD � � g �

�
even though k is not congruent to � 1 modulo m , and also for any

g
� � ��� . Now, H β is obtained, as an aperiodic tiling, by concatenation of a finite number

of prototiles on the line (Thurston, [28]) and therefore p1 � ��� � � is relatively dense. For any

F
� �

, let

cF 	 � β � µF

1 � λm
F

(11)

ΩF 	
�

closed interval centred at 0 in F of length 2cF i f dimF 	 1

closed disc centred at 0 in F of radius cF i f dimF 	 2

and

Ω 	 � F ��� ΩF (12)

be the compact subset of D � . If Λ denotes the model set:

Λ 	 � v
�

p1 �,H m � 
 v � � Ω � (13)

we have the inclusion

p1 � ����� � K Λ

Let us show that � E � � D � , L � � with the two projection mappings πB and πD � is a cut-and-

project scheme: it remains to show that πD � � L � � is dense in D � . It suffices to show that πF � L � � is
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dense in F for all F
� �

. But πF � L � � is a H - module in F which is structurally the direct

sum of a dense part and a discrete part (e.g. Descombes [23], theorem 2.3.7). With the algebraic

numbers appearing in the components of the vectors V j , j 	 1, 2, ����� , m (corollary 4.7), it is

clear that the discrete part is always trivial. Indeed, the minimal polynomial P � X � of β is such

that: 1) a0 �	 0 (for having a degree of β equal to m ), and 2) one of the coefficients ai , i
�

� 1, 2, ����� , m � 1 � is not equal to zero (to consider by assumption that β is a Perron number

and not a Lind number). This forces at least one of the components of V j to have sufficently

non-zero ( H - linearly independent) algebraic numbers, j 	 1, m. Therefore, applying theorem

in Moody [37], and since H β is isometric to
�
B

�
πB � ����� � , we have proved the following result.

T 4.14. — (i) � M m � E � � D � , L � 	 H m � , with the two projection mappings p1 	
πB : M m � E � and πD � 	 � F ��� πF : M m � D � , is a cut-and-project scheme,

(ii) If β is a Pisot number of degree m � 2 , with Ω defined by equation (12), we have

p1 � ��� � � K Λ 	 � v
�

p1 �,H m � 
 v � � Ω �
Consequently, if β is a Pisot number of degree m � 2 , then H β is a Meyer set.

5. Additive properties of ���

In this paragraph, β is a Pisot number of degree m � 2 . In the first part A), we shall deal with

representing the elements of � � as non-negative integral combinations of a fixed set of some

of them of small norm. Actually we show that this can be done up to a finite set of them which

can be easily described. We will be also concerned in part B) with understanding the geometrical

origin of the finite sets T and T � in the relations (1), (2) and (3) of � 1.

A) Recall that when β is a Pisot number, the elements of ��� � are within a band about the

dominant eigenspace M u of t Q . Set π : 	 π � u with the notations of theorem 4.9. Let π
�

be

the orthogonal projection mapping of image M u and π � 	 I d � π
�

. For θ > 0 , define the

cone about the dominant eigenspace M u

Kθ 	 � x
� M m 
 θ �

πD � � x �
� � �

π � x � �
, 0 � π � x � � u �

For r, w > 0 , define

Kθ � r ��	 � x
�

Kθ 
 �
π � x � � � r �

Kθ � r, w � 	 � x
�

Kθ 
 r � �
π � x � � � w �

If
�

is an arbitrary subset of M m , denote by sg � � � the semigroup generated by
�

(under

the addition). Let ρ be the covering radius of the subset ����� KNH m . In other terms, ρ is the

smallest positive real number such that for any z
� M m such that πD � � z � � Ω and π � z � � u � 0 ,

the closed ball B � z, ρ � contains at least one element of ��� � . A lower bound for ρ is given by

the covering radius of the lattice H m (Rogers, [26]). From equation (11) and decomposing any

vector of M m in the basis � B, V2, V3, ����� , Vs � 2t � , we see that an upper bound for ρ is given by

1

2

�
B

� � 1max � 1, β � t1, β2 � t1β � t2, ����� , βq � k � 1 � t1βq � k � 2 � t2βq � k � 3 ����� � tq � k � 1 �
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� � β � �
F ���

µF

1 � λm
F

	 1

2

�
B

� � 1 � � β � �
F ���

µF

1 � λm
F

for a Renyi-development of 1 which is (see � 3; Bertrand [7]; Burdik et al [2], Theorem 2.3;

Thurston [28])

dβ � 1 ��	 0.t1t2
����� tq � tq � 1tq � 2

����� tq � k � ω

Define

M : 	 � 2 �
1

� uB
� u � � � β � �

F ���

µF

1 � λm
F

P 5.1. — (i) For each θ > 0 , there exists an integer j0 	 j0 � θ � such that

Zj
�

Kθ for all j � j0 .

(ii) If t Q is nonnegative, and min � ξj,1 
 j 	 1, 2, ����� , m � > 2 � 2 � 1�
uB � u � � � 1M , then

j0 � θ � 	 0 for all 0 < θ < θmin where

θmin : 	 � 2 � � 2 �
1

� uB
� u � � M

� 1 min � ξj,1 
 j 	 1, 2, ����� , m �

Proof. — (i) Fix an arbitrary θ > 0 . We have just to prove that π � Z j � � u tends to � � and

not to � � when j goes to � � . Write

Zj 	 π � Zj � � � Zj
� π � Zj � ��	 π

�
� Zj � � π � � Zj � , j � 0

hence

�
π � Zj � � π

�
� Zj � � 	 �

π � � Zj � � � Zj
� π � Zj � � � � �

π � � Zj � �
�

�
Zj
� π � Zj � �

	 �
π � � Zj

� π � Zj � � �
�

�
Zj
� π � Zj � � � 2 � β � �

F ���

µF

1 � λm
F

(1)

On the other hand

�
πB � π

�
� Zj � � � πB � Zj � � 	 � � Zj

� u � � uB
� u � uB

� �
B

� � 1βj uB
�

	 
 � Zj
� u � � uB

� u � � �
B

� � 1βj 
 � � β � �
F ���

µF

1 � λm
F

(2)

Hence, since uB
� u > 0 from theorem 4.6,


 Zj
� u � � uB

� u � � 1 �
B

� � 1βj 
 � � β �
� uB

� u � �
F ���

µF

1 � λm
F

(3)

Consequently

�
π � Zj � � � uB

� u � � 1 �
B

� � 1βj u
� 	 �

π � Zj � � π
�
� Zj � � π

�
� Zj � � � uB

� u � � 1 �
B

� � 1βj u
�

� �
π � Zj � � π

�
� Zj � �

�
�

π
�
� Zj � � � uB

� u � � 1 �
B

� � 1βj u
�
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��� 2 �
1

� uB
� u � � � β � �

F ���

µF

1 � λm
F

	 M (4)

We obtain that π � Zj � � u tends to � � as � uB
� u � � 1 �

B
� � 1βj u when j � � � . Denote

κ : 	 1 �
θ

� 2 � � uB
� u � � 1 � > 1

There exists j0 such that

Zj
� u � κM , j � j0

A a consequence

π � Zj � � u � Zj
� u � � uB

� u � � 1 �
B

� � 1βj ��� κ � 1 � M > 0, j � j0

We claim that Zj
�

Kθ for all j � j0 . Indeed, since
�
πD � � Zj � � � � 2 � � uB

� u � � 1 � � 1M , the

inequality θ
�
πD � � Zj � � � �

π � Zj � � 	 π � Zj � � u is satisfied for all j � j0 .

(ii) Computation of j0. — Assume all the entries of the companion matrix t Q of β non-

negative. Recall that all the coefficients � a j � j 
 0,1, ����� m � 1 arising from the minimal polynomial

P � X � are nonnegative, with a0 �	 0 and at least one of ak ’s, k 	 1, 2, ����� , m � 1 non zero

since β is assumed to be a Pisot number and not a Salem number. Hence, from proposition 4.5,

we have

ξ1,1 	 π
�
� Z0 � 	 Z0

� u 	 a0

βP � � β � > 0

and ξj � 1,1 	 π
�
� Zj ��	 Zj

� u, j 	 1, 2, ����� m � 1 with

min � ξj,1 
 j 	 1, 2, ����� m � 1 � � a0

βmP � � β � > 0

since P � � β � > 0 . Because � Z0, Z1, ����� , Zm � 1 � is the canonical basis of M m , any Zj , j � m ,

can be written as an integral combination of the elements of this basis with positive coefficients.

Hence,

Zj
� u � min � ξl,1 
 l 	 1, 2, ����� , m � 1 � j � 0

But


π � Zj � � u � Zj
� u 
 � 2 � 2 � � uB

� u � � 1 � � 1M j � 0

Therefore, by assumption,

π � Zj � � u � min � ξl,1 
 l 	 1, 2, ����� , m � 1 � � 2 � 2 � � uB
� u � � 1 � � 1M > 0 j � 0

Hence, by definition of θmin , for all j � 0

�
π � Zj � � � θmin � 2 � � uB

� u � � 1 � � 1M � θ
�
πD � � Zj � �

that is, for all j � 0, for all θ, 0 < θ � θmin , we have Zj
�

Kθ .

We have more.
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P 5.2. — For all g 	
k

�
i 
 0

xi Zi
� � � , we have

�
π � g � � �

V1
�

�
k

�
i 
 0

xiβ
i � u

� � M (5)

Proof. — The inequalities (1), (2), (3) and (4) in the proof of proposition 5.1 (i) are valid for

arbitrary elements of � � . Since u � uB 	 �
B

� � 1 �
V1

� � 1 by theorem 4.6, we deduce the result.

We have now the following situation. Up to the scaling factor
�
B

� � 1 , H β is obtained iso-

metrically by orthogonal projection to the line M uB . Recall that

πB � g � � uB 	 �
B

� � 1
k

�
i 
 0

xiβ
i (6)

This exact result on the dominant eigenspace M uB of the adjoint operator Q is replaced, on the

dominant eigenspace M u of the companion matrix t Q by an approximate linear mapping L (in

the sense of Moody [37], � 8): it can be formulated by

L : � � � M , g � L � g ��	 π � g � � u

with H I ��� J 	 H m . L is an homomorphism (defined in [37]) from ��� to M and from

����� to M by extension. In some sense, H β is obtained “folded” from � ��� on the line

M u with prototiles possibly counted negatively if the matrix t Q has negative entries, as it can be

seen from equation (5).

R . — (i) Even though the matrix t Q has negative entries, it may occur that for certain

values of θ > 0 we have j0 � θ � 	 0 . Hence j0 � θ � � 	 0 for all θ � , 0 < θ � � θ . In other terms,

a cone Kθ may contain all the Zj ’s. We shall be concerned with maximal values of θ for which

j0 � θ � has minimal value.

(ii) Let θ > 0 . For any g
� ��� and any λ > 0 such that λg

� ��� , we have g
�

Kθ 	��
λg
�

Kθ . This property comes from the definition of the cone Kθ .

We now turn to the question of generating the elements of � � by some of them over the

positive integers. We need at first a lemma.

L 5.3. — [17] Let θ > 0 . If δ 	 � 2θ � 2 � � 1 and x
�

K2θ with
�
π � x � � 	 π � x � � u > 4,

then

I x � Kθ � 1, 3 �%J � K2θ contains a ball of radius δ.

Proof. — [17] Take y 	 2u � 3 � π � x � � u � � 1πD � � x � . We show that the ball centred at x � y and

of radius δ satisfies our claim. Suppose
�
z

�
< δ . Then x � y � z

�
K2θ . Indeed,

2θ
�
πD � � x � y � z � � � 2θ

� �
1 � 3

� π � x � � u �
� �

πD � � x �
�
� δ �
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�
�
1 � 3

� π � x � � u � � � π � x � � u � � 2θ

2θ � 2
	 � π � x � � u � � 2 � 2

2θ � 2

but πD � � y ��	 2 . We deduce

2θ
�
πD � � x � y � z � � � π � x � y � z � � u

Let us show that y � z
�

Kθ . We have

2θ
�
πD � � y �

� 	 2θ � 3 � π � x � � u � � 1 �
πD � � x �

� � 3 � π � x � � u � � 1 � π � x � � u ��	 3

therefore

θ
�
πD � � y � z � � � θ � �

πD � � y �
�
� δ � � 3

2 �
θ

2θ � 2
	 2 � 1

2θ � 2
� π � y � z � � u

Now, since δ < 1 , we have the inequalities 1 � π � y � z � � u � 3 , establishing the result.

T 5.4. — Let θ > 0 . For any r such that r > ρ � 2θ � 2 � , we have

K2θ � ��� K sg � Kθ � r � � ��� � (7)

Proof. — Lemma (5.3) implies the following assertion: if x
�

K2θ is such that π � x � � u >

4r with r > ρ � 2θ � 2 � , then I x � Kθ � r, 3r �%J � K2θ contains a ball of radius rδ > ρ . But ρ is

by definition the covering radius of ����� , hence this ball intersects ��� .

Let
� 	 Kθ � 4r � � � � the finite point set of ��� . We show that K2θ � � � K sg � � � .

Indeed, K2θ � 4r � ��� � K sg � � � . We now proceed inductively. Suppose K2θ � r � � ��� � K
sg � � � for some r � � 4r . We show that this implies K2θ � r � � r � � � � K sg � � � , which

suffices by induction.

Take g
� ��� � I K2θ � r � � r � K2θ � r �%J . From the preceding lemma and the above, there

exists an element, say y , in ��� , contained in I g � Kθ � r, 3r �%J � K2θ � r � � . By assumption,

y
�

sg � � � and y 	 g � x for some x
�

Kθ � r, 3r � � � � K sg � � � . Therefore g 	 x � y
�

sg � � � � sg � � � K sg � � � . This concludes the induction.

L 5.5. — For any θ > 0 , the set

� � � θ � : 	 � x
� � � 
 πD � � x � � Ω, x �� Kθ � ρ � 2θ � 2 � � , x �� K2θ �

is finite.

Proof. — This is clear since all the elements g of ��� such that π � g � � u > 2ρ � 2θ � 2 � belong

to K2θ .

We are concerned with putting possible additive structures on the whole of � � � � � (and

therefore on H β by projection by πB ) and try to have cones of the type K2θ for θ well-chosen,

that is for values of θ small enough: this has for consequence to eliminate a minimal number of

elements of � ��� � � lying outside such cones. Unfortunately, there is no reason that this should

be tractable when the coefficients ai are negative, or even positive.
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Define

θf : 	 max � θ > 0 
 # � ����� θ � � is minimal �

From proposition 5.1, if t Q is nonnegative and the condition (ii) satisfied, we see that

# � ����� θ � � 	 0 when θ is close to zero and precisely we have θ f � θmin/2 > 0 .

T 5.6. — Minimal decomposition. — Any element

g
� ����� � ��� θf �

can be expressed as a integral nonnegative combination of elements of the finite point set

Kθf � ρ � 2θf � 2 � � � � �

Proof. — Applying theorem 5.4 with θ 	 θ f and r 	 ρ � 2θf � 2 � gives the result.

The ideal situation would be to deal with ����� θf � reduced to the empty set. By projection

to M uB , we would obtain any element of H β from a finite number of elements of small norm of

this set. We deduce from proposition 5.1 that this situation is more likely to occur when t Q is

nonnegative. Theorem 5.6 implies that there exist elements g1, g2, ����� , gη
� H �β of small norm

such that the semi-group
� I g1, g2, ����� , gη J contains H �β except possibly a finite number of

elements close to the origin.

B) Let us turn now to the geometrical counterpart of the sets T and T’ of � 1. Let us make

at first some remarks concerning the sharpness of the band defined by Ω about the eigenspace

M u with respect to the β- numeration. Similarly as in � 4, equation (10), we denote

��� 	 �
m � 1

�
j 
 0

αj Zj 
 αj
� I � 1; 1 J for all j 	 0, 1, ����� , m � 1 � (8)

We have

δF 	 max
x ����� �

πF � x � �
, , F

� �

Hence the band

� v
� M m 
 v � � Ω �

could have been defined from
� �

instead of
�

in � 4. This means that the elements of

� � only occupy a part of this band, that this band is not sharp for the β- integers lifted up to

H m . This absence of sharpness may be observed, with the τ- integers, in figure 3 in [2] where a

shift occurs in the drawing close to the origin. Indeed, the band defined by
� �

is symmetrical

with respect to the origin (invariant by inversion) and this is not the case of the one represented

in that contribution.

Let R > 0 and I be an arbitrary interval of M . We denote by

�
I ,R : 	 � x

� M m 
 πD � � x � �
R

� β � Ω, πB � x � � uB
� I�

B
� �

the slice of the band defined by R�
β � Ω and I�

B
� about the eigenspace M u .
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L 5.7. — Let R � 0 and FR 	 � frac � z � 
 z 	 akβk � ak � 1βk � 1 � ����� � a1β �
a0, ai

� H , 
 ai 
 � R � K I 0, 1 � . Then FR is a finite subset of H I β J and

FR K � �
B

�
πB � g � � uB 
 g � ��� 0,1 � ,R �

�
β � � H m �

In particular Card � FR � � Card � � � 0,1 � ,R �
�
β � � H m � .

Proof. — This is a reformulation of lemma 2.1 in Burdik et al [2] and a consequence of lemma

5.8. We recall the proof for the sake of completeness. Let z 	 � k
j 
 0 ajβ

j with ai
� H , 
 ai 
 � R .

We have also z 	 � k
j 
 ��� xj β

j as β - expansion of z . Therefore z � int � z ��	 � k
i 
 0 ajβ

k �
� k

j 
 0 xj β
j . Since 0 � xj � � β � and 
 ai 
 � R , frac � z � � I 0, 1 � is a polynomial in β , the

coefficients of which are bounded by R � � β � . We deduce the result from proposition 4.10 (i) and

the computations of the upper bounds cF in the proof of theorem 4.14; indeed, these bounds

are calculated under the assumption that the digits are less than � β � . Here, we have to consider

that the absolute values of the coefficients are not bounded by � β � but by R � � β � inducing

the scaling factor � R � � β � � / � β � of Ω . From proposition 4.10 (i), FR is finite and is in one-to-

one correspondence with a subset of the finite point set
���

0,1 � ,R �
�
β � establishing the last upper

bound of the claim.

L 5.8. — The set FR is a finite subset of H I β J � I 0, 1 � .

Proof. — See Solomyak ([21], Lemma 6.6).

Assume R > 0 and I any relatively compact interval of the line, then the set
�

I ,R is relatively

compact. We denote by

ψI ,R : 	 max � �
y

� 
 y � � I ,R �
A. Bertrand [7] and K. Schmidt [8] have proved that β - expansions of elements of  � β � are

periodic (theorem 3.3). We will use the formulation of K. Schmidt to control the maximal length

of the preperiod of the β -expansions of the elements of FR , to provide an upper bound for the

value of L in eq. (3) of � 1.

The important rôle played by the set Per(β) of periodic points under T given by (see � 1 and

Schmidt [8]) T x 	 � βx � , x
� I 0, 1 � , in the study of subshifts of finite type of the β-shift was

already outlined by Parry [5] and considered by many authors. Recall that x
� I 0, 1 � is said to be

periodic under T if the set � T l � x � 
 l � 0 � is finite. For any x
�

Per(β) = �� β � � I 0, 1 � , we put

r � � x � 	
�

min � l � 1 
 T l x 	 x � if this set is not empty
� otherwise

(9)

r � x � 	 minm � 0 r � � T m � x � � (10)

r � x � is the length of the period in the β-expansion of x . Recall that x is said to be strictly

periodic under T if r � � x � < � , in which case r � x � 	 r � � x � .

A priori we do not know if FR (in lemma 5.8) contains few strictly periodic elements, or, on

the contrary, is only composed of such elements. For every z
�

FR , the β - expansion of z :
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� � �j 
 1 z � j β
� j can be written, for some minimal integers j0 � z � , r � z � � 1

j0
�
z � � 1

�
j 
 1

z � j β
� j �

� ��
k 
 0

j0
�
z � �
�
k � 1 � r � z � � 1

�
j 
 j0

�
z � � kr

�
z �

z � j β
� j (11)

We denote by JR 	 max � j0 � z � 
 z � FR � and call it the maximal preperiod of the β - expansions

of the elements of FR .. An upper bound for JR will be computed below.

T 5.9. — Let R > 0 and I a relatively compact interval of the line. Denote by

LI ,R 	 � min

�
log � �

Xi
�

ψI ,R �
�
β � �

log � β � i � 1 � � 1 � � � (12)

where the minimum is taken over the real positive embeddings of �� β � , i.e. i 	 2, ����� , s such

that β
�
i � 1 � is a real and positive conjugate of β .

For any x, y
� H �β , such that x � y has a finite β-expansion, we have

x � y
� 1

βL
H �β

with L 	 min � L
�

0,1 � ,2 � β � , J2
�
β � � .

Proof. — Let x 	 xkβk � ����� � x0 and y 	 yl β
l � ����� � y0 denote two elements of H �β .

Then z 	 x � y is of the form z 	 a jβ
j � ����� � a0 with 0 � aj � 2 � β � . Write now the β -

expansion of z as

z 	 �
�

�
j 
 1

z � j β
� j �

e

�
j 
 0

zj β
j

and assume it is finite. Then

J2 � β �
�
j 
 1

z � j β
� j 	 � ajβ

j � ����� � a0 � � �
e

�
i 
 0

ziβ
i � (13)

This means that the fractional part � J2 � β �
j 
 1 z � j β

� j is a polynomial of the type � f
i 
 0 biβ

i with
� � β � � bi � 2 � β � hence with 
 bi 
 � 2 � β � . By lemma 5.7, F2

�
β � is finite and the set of all

possible fractional parts of elements of H �β is exactly in one-to-one correspondence with a subset

of the finite point set
� �

0,1 � ,3 � β � � H m of H m . Therefore, there exists a unique gz 	 � f
i 
 0 bi Zi

�
� �

0,1 � ,3 � β � � H m such that
�
B

�
πB � gz � � uB 	 � f

i 
 0 biβ
i 	 � J2 � β �

j 
 1 z � j β
� j 	 frac � z � . Applying

the real and complex embeddings of the number field �� β � to eq. (13) gives

J2 � β �
�
j 
 1

z � j β
�
i � 1 � � j 	

f

�
j 
 0

bjβ
�
i � 1 � j for all i 	 2, ����� , m

Therefore from proposition 4.10 we have for all i 	 1, 2, ����� , s

πB,i � gz � 	 πB,i �
f

�
j 
 0

bj Zj � 	
� f

j 
 0 bjβ
�
i � 1 � j

�
Xi

� uB,i 	
� J2 � β �

j 
 1 z � j β
�
i � 1 � � j

�
Xi

� uB,i
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with all z � j � 0 ; similarly for all i 	 s � 1, ����� , m with i � � s � 1 � even on the invariant

planes. Hence, an eigenspace of Q is indexed by an unique conjugate β
�
i � 1 � of β . There are

three categories of eigenspaces of the matrix Q : those for which the conjugate β
�
i � 1 � (i) is real

and positive, (ii) is real and negative, (iii) is complex with non trivial imaginary part. Some cases

may not exist. Each case is associated with a collection of eigenspaces of Q , possibly empty. We

separate out the first case.

Case (i): In this case, i
� � 2, 3, ����� , s � with s assumed to be greater than 2 . Since all these

conjugates β
�
i � 1 � , if any, are positive and strictly smaller than 1 and the digits z � j are positive,

we have necessarily

� β � i � 1 � � 1 � j

�
Xi

� � ψ
�

0;1 � ,3 � β �
as soon as j is large enough. With the definition of L

�

0;1 � ,2 � β � , we see that the sum of positive

terms � J2 � β �
j 
 1 z � j β

�
i � 1 � � j

does not contain any term indexed by � j with j > L
�

0;1 � ,2 � β � .

The other possible cases (ii) and (iii) will be treated by the computation of J2
�
β � which will

follow below.

T 5.10. — If β is a Pisot number of degree m � 2 , then

(i) H��
β � H��

β
K H �

β � T

(ii) H��
β
� H��

β
K H β � T �

with

T 	 � �
B

�
πB � g � � uB 
 g � � � 0, � 1 � ,3 � β � � H m � ,

T � 	 � �
B

�
πB � g � � uB 
 g � � � � 1, � 1 � ,2 � β � � H m �

Proof. — This is a reformulation of theorem 2.4 in [2]: at first, we have F � β � K F2
�
β � , second

H��β � H��β KNH��β � F2
�
β � , H �β � H��β K H β � F � β � . From lemma 5.7, we deduce the result since

Ω
�

is invariant by inversion and F � β � � � F � β � K � �
B

�
πB � g � � uB 
 g � � � 0, � 1 � ,2 � β � � H m � �

� �
B

�
πB � g � � uB 
 g � � � � 1,0 � ,2

�
β � � H m � 	 � �

B
�
πB � g � � uB 
 g � � � � 1, � 1 � ,2 � β � � H m � .

C 5.11. — Let β be a Pisot number of degree m � 2 . Denote by

� 	 min � L � � 1, � 1 � ,2 � β � , J2
�
β � �

Let x, y
� H β . If x � y and x � y have finite β-expansions, then

x � y � resp. x � y � � 1

β � H β

Proof. — Indeed, T � K � T . Hence H β � H β K H β � T . Since � T 	 � �
B

�
πB � g � �

uB 
 g � � � � 1, � 1 � ,3 � β � � H m � , the relevant quantity in the definition of L of theorem 5.9 becomes

ψ � � 1,1 � ,3 � β � instead of ψ
�

0,1 � ,3 � β � .
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We now compute an upper bound of JR following an idea of Schmidt [8]. This will allow to

determine explicitely the maximal possible value of L in theorem 5.9 and � in corollary 5.11.

First, we need a lemma.

Let � Z � j � j � 0 the sequence of vectors defined by Z0 	 � t Q � j Z � j . We denote as usual the

algebraic norm of β by N � β ��	 N � � β � / � � β � 	 � m � 1
i 
 0 β

�
i � . Recall that a0 	 � � 1 � m � 1N � β � .

L 5.12. — We have: (i) limj � � � �
Z � j

� 	 � � ; (ii) For all j
� �

, Z � j
�

1
N
�
β � j H m with πB � Z � j � � uB 	 �

B
� � 1β

� j . In particular, if β is a unit of the number field

�� β � , then all the elements Z � j will belong to H m .

Proof. — (i) Since all the conjugates of β are within the open unit disc in the complex plane,

their inverse are outside it and the inverse operator � t Q � � 1 has the diagonal form (see corollary

4.7)

Diag � β � 1, β
�
1 � � 1

, ����� , β
�
s � 1 � � 1

, D
� 1
1 , D

� 1
2 , ����� , D

� 1
t �

in the basis � Vi � i 
 1,2, ��� � ,m with the inverse of the corresponding real 2 � 2 Jordan blocks. Hence,

all the non zero components of a vector Z � j in this basis diverge when j tends to infinity.

(ii) Solving the equation Z0 	 � t Q � 1Z � 1 shows that Z � 1 can be written

Z � 1 	 � a
� 1
0 � a1Z0 � a2Z1 � ����� � am � 1Zm � 2

� Zm � 1 � � 1

N � β � H m (14)

Since by construction we have Z j 	 � t Q � � 1 � Zj � 1 � for all j
� H , applying � t Q � � 1 to equation

(14) clearly gives Z � 2
� 1

N
�
β � 2 H m and, by induction Z � h

� 1
N
�
β � h H m for all h � 0 . Now it is

classical that β is a unit of  � β � is and only if N � β ��	 � 1 establishing the result.

T 5.13. — Denote by

�
R 	 � x

� M m 
 �
πB,i � x � � � ψ

�

0;1 � ,R �
�
β � � 1 � 
 β

�
i � 1 � 
m � � � β ��

B
�
i � 1 � � � 1 � 
 β � i � 1 � 
 � , i 	 2, 3, ����� , m �

the cylinder about the dominant eigenspace M u and

�
R 	 � x

� �
R 
 �

B
�
πB � x � � uB

� I 0, 1 � �

the slice of the band
�

R . This slice is relatively compact and

JR � Card � �
R �

1

N � β � m H m �

Proof. — Each element α
�

FR can be written

α 	
m � 1

�
i 
 0

piβ
i pi

� H

with
m � 1

�
i 
 0

pi Zi
� � �

0,1 � ,R �
�
β � � H m
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from lemma 5.7. Thus, for all i 	 0, 1, ����� , m � 1, 
 pi 
 � ψ
�

0,1 � ,R �
�
β � . Now, Schmidt [8] has

proved that the n-th iterated shift of α is given by

T n � α ��	 βn �
�

α �
n

�
k 
 0

εk � α � β � k � 	
m

�
k 
 1

r
�
n �

k β
� k

where � εk � α � � k � 0 is the β-expansion of α and � r
�
n �

1 , r
�
n �

2 , ����� , r
�
n �

m � � H m . Recall that ε0 � α ��	
� α ��	 0 . Moreover, he has shown that the real and complex embeddings of the number field

�� β � can be applied to T n � α � to provide m equalities

X n �
�

m � 1

�
i 
 0

pi X i � n

�
k 
 1

εk � α � X � k � 	
m

�
k 
 1

r
�
n �

k X
� k

where X is put for any conjugate β
�
q � 1 � , q 	 2, ����� , m of β . From this setting, we deduce�����

m

�
k 
 1

r
�
n �

k β
�
q � 1 � � k

����� �
m � 1

�
i 
 0


 pi 
 
 β
�
q � 1 � 
 n � i � � β �

n

�
k 
 0


 β
�
q � 1 � 
 k

� 1

1 � 
 β � q � 1 � 

�
ψ
�

0,1 � ,R �
�
β � � 1 � 
 β

�
q � 1 � 
m � � � β ���

for every n � 0, q 	 2, 3, ����� , m and

0 �
m

�
k 
 1

r
�
n �

k β
� k < 1

From proposition 4.10 and lemma 5.12 the element � m
k 
 1 r

�
n �

k β
� k can be uniquely lifted up to

the element
m

�
k 
 1

r
�
n �

k Z � k
� 1

N � β � m H m

Its orthogonal projections by πB,i , i 	 2, 3, ����� , m to the t Q-invariant subspaces of M m are

bounded by a constant which is independant of n . Therefore the number of points

Card � �
R �

1

N � β � m H m �

is necessarily an upper bound of JR .
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