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Abstract: 1 This paper defines a subset of {Z/pZ}* (finite words with
letters in the finite field Z/pZ of prime characteristic p) which has some nice
arithmetic and combinatorial properties. The case p = 2 has been treated
in [B2]. The link with SLy (together with more motivation coming from
geometry) originates in [B1].

1 Introduction and main results

Let us consider the oriented affine plane R? together with two ordered tri-
angles (A, A’) which have the same area and share a common oriented edge
starting at a vertex A € ANA’ and ending at B € ANA’. The orbits (under
affine transformations) of such pairs (A, A’) are indexed by R since we have
in affine coordinates

C'=A+B—-C+a(B-A)
C=A+B-C'+aB-A)

(with « a suitable real number) for the remaining vertices C € A and C’ €
Al

A sequence of triangles (Ay,...,Ag) of equal area, having a common
vertex O such that A; and A;;; always intersect along a common edge
(such a sequence of triangles has a starlike looking) yields hence a sequence
(a1,...,a) of real numbers and any finite sequence of real numbers can
arise in this way (of course, some triangles may be overlapping).

Although there is no notion of angle in affine geometry, some of these
starlike sequences may close up modulo a homothetie (which may be of
negative ratio) and in this case there is a well defined integral multiple & of
7 which we may call the angle of such a sequence.
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All this (except for the integer k which is generally no longer defined)
carries over to arbitrary fields (or suitable rings, cf. [B1] for the case of inte-
gers) and this paper deals with the case of finite primary (or more generally
finite) fields.

We will hence study the set of finite sequences aq, . .., ai over finite fields
which give rise by the above geometrical construction to sequences (defined
up to affine transformations) of triangles (Ay, ..., Ax) which close up modulo
a homothetie.

Let p denote a prime number. We consider the free monoid M, =
{0,1,...,p — 1}* of all finite words with letters in the field Z/pZ (which
we identify with the finite set {0,...,p — 1} in the obvious way). Given an
element w = a1 ...qq, o; € Z/pZ of M,, we consider the matrix

M(w):<(1) 1:;)(2 1:2@)...(? 1:1al)€SL2(Z/pZ)

Set

S={weM,| Mw) ( (1) _01 ) is upper triangular}

i.e. S is the set of all words w such that

Mfw) = ( I )

for suitable a € Z/pZ and b € (Z/pZ)*.

Remarks 1.1. (i) It is an exercice to check that
{M(w) | we My} = SLe(Z/pZ)

(use for instance the fact that the matrices

S:M(1)=<(1) _01>,T=M(1110):<(1) 1) :

defined over the integers, generate SLy(Z), see [S], Chapter VII, Theorem
2).
(ii) Most results of this paper remain valid when replacing the finite
primary field Z/pZ by an arbitrary field.
Let C = M, \ S denote the complement of S in M,,. Denote by Mﬁ,
the subset of all words of length exactly [ in M,. We set §' =S n M;, and
ct=Ccn Mé.



Theorem 1.2. (i) w € S' if and only if aw € C and wa € C'*! for
every a € Z/pZ.
(ii) For any w € C' there exist unique values a, 8 € Z/pZ such that
aw, wph € S
(iii) if oy ...y € S' then azas. ..o and aray...qp_; € CH1L.
(iv) cqo ... ap_1oy € St if and only if ayoy_y ... ey € S
(v) ai...oq € St if and only if (2 —a1)...(2 —qp) € S.
Corollary 1.3. We have for alll =0,1,2,...

_ pl _ (—l)l pl+1 4 (—l)l

ch =
p+1 7’ e p+1

#(s")

Consider the equivalence relation ~ on M, with classes S and C. Denote
by € the empty word (of length 0) in M,. Extend the applications z —
z+ 1, z —> z — 1 of the field Z/pZ to applications of the set Z/pZ U {e}
into itself by setting (e £ 1) = e.

Proposition 1.4. One has
zlly ~zy ,

za0fy ~ z(a+1)(B+ 1)y,
za2fBy ~ z(a—1)(8—1)y

where z,y € My, o, € Z/pZU{e} witha=¢c =z =cand f =e¢ =
y = € (i.e. « is the last letter of word za if z« is non-empty and (3 is the
first letter of the word Sy if Sy is non-empty).

Remark 1.5. If p = 2 or 3 then the previous proposition characterizes
the sets S and C completely: it yields substitutions which replace every word
except 1 € § and € € C by an equivalent word which is strictly shorter.

Set
Pl={ag...q; €S |aja...0q, €CF fork=1,...,1 -1}

and P = UPL.

Theorem 1.6. (i) (“Unique factorization”) We have w € § if and only
if w can be written as

w = p101p202 . . . PLOLPE+1

for some k > 0 with p1,...pg+1 € P and 61,...,0; € Z/pZ. Moreover, such
a factorization of w € § is unique.

(ii)) We have for [ > 1
fP) =@p-1)""



Remarks 1.7. (i) Theorem 1.6 shows that the vector space (over an
arbitrary field) with basis the set

{e}U{wa |weS, aeZ/pZ}

can be turned into a graded algebra A (the product is given by extending
linearly the concatenation of words in M, and the grading is induced by the
length of words in M,). It has in fact a simple structure: the algebra A is
a free algebra on p(p — 1)!~2 generators of degree | = 2,3,4,....

(ii) Counting elements in S'*! using Theorem 1.6 and equating with
the result given by Corollary 1.3 one gets a proof of the identities

1/2
[i] -k pk(p _ 1)l—2k _ pl+1 + (_l)l
pr k p+1

which hold for any p € C (equality holds for p any prime and extends over
C since both sides are polynomial in p) and [ € N.

Given two words w,w’ € Mé of the form
!
w=aqya1...0—-1, W =01...1-1(
(with a; € Z/pZ) we call w' an immediate successor of w and w an immediate

predecessor of w'.

Theorem 1.8. Each element w € S' has a unique immediate successor
and a unique immediate predecessor in S*.

Given an element wg € S, the previous theorem yields a sequence
l
wo, Wi, W2, W3,... € S

with w;,1 an immediate successor of w;. Since S' is finite there exists a
smallest integer k such that wy = w; for some ¢ < k. The existence of
unique immediate predecessors in S* implies i = 0.

Otherwise stated: For each w € S' there exists an infinite periodic word

W=...a1aias...€ (Z/pZ)Z

such that a1az...op = w and all factors of length [ (subwords formed by !
consecutive letters) of W are elements of S'.

Theorem 1.9. Let W = ...y 1qa1 ... aq 10901 € {Z/pZ}? be an
infinite g—periodic word. Then there exists a smallest integer k < p? — 1
(in fact, k is either p or a divisor of (p?> — 1)) such that all factors of length
kq—1 in W belong to S.



Remark 1.10. It follows (cf. assertion (i) of Lemma 2.1) that all factors
of length lkq — 1 (I > 1) of W belong also to S. One can moreover show
that if m is an integer with the property that all factors of length m in W
belong to 8™, then m = lkq — 1 for a suitable integer [ > 1 (here ¢ denotes
the minimal period length of the infinite periodic word W).

Definition 1.11. Given an integer N > 2, a mock parity check set
(MPCS for short) of length d is a subset P C {Z/NZ}? (words of length d
with letters in the set {Z/NZ}) such that

(i) each element w € P has a unique immediate successor and a unique
immediate predecessor in P.

(ii) P consists of exactly N9~ elements.

Denote by Permz,nz the group of permutations of the finite set Z /NZ
and let ¢ : {Z/NZ}92 — Permy /Nz be an application which associates
to each element z € {Z/NZ}%2? a permutation ¢, : Z/NZ — Z/NZ.

Proposition 1.12. The set

P = {alaQ - Qg 10y | <Pa2a3...ad,1(051) = Oéd}
is a MPCS and every MPCS is of this form.

Remarks 1.13. (i) This proposition shows that the set of all MPCS can
be endowed with a group structure (the set (Permg, vz) N 4% has an obvious
group structure).

(ii) A MPCS P C {Z/NZ}? yields a permutation of its elements: send
each w € P to its (unique) successor in P. Call a MPCS a (generalized) de
Brujin sequence if the associated permutation consists of a unique cycle. One
can show that (generalized) de Brujin sequences exist for all values N > 2
and d > 1.

Theorem 1.14. The set
2 ZSlU{al...al e | a1...0q—1 €S ! and a...q ESl_l}
is a MPCS in (Z/pZ)".

2 Proofs

Proof of Theorem 1.2. One has
a b 0 -1\ (b —a+bx
c d 1 =z " \d —c+dx

which shows that wa ¢ S if w € S (since then M(w) = < —Zfl (I; )) On

a b

the other hand, if w € C then M(w) = ( e d ) with d # 0 and the above
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computation implies the existence of a unique § such that w8 € S. This
proves half of (i) and (ii). The proof of the remaining half is similar (it is
also implied by assertion (iv)).

In order to prove (iii) one considers

M(a2...al):M(al)_lM(al...al): ( 1:1051 é) ( _Z_l 8)

B ( (1—aq)a—b"! (1—a1)b>
o —a —b

which shows that as ... a; € C*~1. A similar computation yields o ... oq_1 €

(o) (a7 (V) =(5ms)

Since
we get by conjugating M(a;...qp) = ( CCZ Z > with 7 = ( ? (1) >

1—C¥1 1 11—« 1 d c
O'M(Oél...al)0'2< -1 O)( _1l O>:<b (1)

EM(ay...qq) = ( —Z_l (I; ) we get by taking the inverse of cM (a1 ... oq)o

0 —1 0 -1 a b7t
M(al..-al):<1 l_al>.”<1 1—041):<_b 0 )

which shows that ¢y ...a1 € S and proves (iv).

Transposing M (a; . .. o;) and multiplying by (—1)! shows that (2—a) . .. (2—
a1) € 8. Assertion (iv) implies now (v).

Proof of Corollary 1.3. Assertion (ii) of Theorem 1.2 shows that
#(S“1) > #(CY) and assertion (iii) implies §(S**!1) < #(C') hence establishing
#(S1) = §(CY). Induction on I (using the obvious identity §(S*)+4(C) = p')
yields now the result.

Proof of Proposition 1.4. The first line follows from the identity

()00

if @ and 8 are both non-empty. The last two lines of the proposition follow
from the identities

()00 ) =02

0
1

—1
—p



and

0 -1 0 —1 0o -1 Y\ _ 1 2-p

1 1—a 1 -1 1 1-8) \ —24+a —-3+2a+28-af
_ 0 -1 0 -1
T\l 2—a 1 2-7

(in fact, the last line of Proposition 1.4 is easily deduced from the second one
by using assertion (v) of Theorem 1.2). We leave the remaining cases (with
€ € {a, 8}) to the reader (they follow in fact easily from Theorem 1.6).

Lemma 2.1. (i) If w,w’ € S then ww' € C and wow’ € S for any
a € Z/pZ.

(ii) If exactly one of w,w’ is an element of S then waw' € C for any
a € Z/pZ.

Proof of Lemma 2.1. The computation

a b 0 -1 a b\ _ [ bd+abtt—bbl+abb Tl bl
bt o)\t 1-a ) =0 0]~ (b)) 0

shows (i).
Let us now suppose that w € S, w’ € C. This implies Mo = ( 8 aél )

a/l /

and M, = ( y Z, ) with d' # 0. We get hence

a a td

"+bd abl + bd
Mwaw,:<aa C a )

which shows waw' € C. The case w € C, w' € § follows now using assertion
(iv) of Theorem 1.2.

Proof of Theorem 1.6. Assertion (i) follows easily from the previous
lemma and the definition of P.
Assertion (ii) follows from assertion (ii) of Theorem 1.2.

Proof of Theorem 1.8. Follows from assertions (iii) and (ii) in Theorem
1.2.

Proof of Theorem 1.9. The elements

Maoal...aq_1 ’ Ma1...aq_10t()’ b aMaq_1o¢0...ozq_2 E SL?(Z/pZ)

are all conjugate and have hence a common order k£ which obviously works.

The easy proof of Proposition 1.12 is left to the reader.



Proof of Theorem 1.13. This result follows readily from Theorem 1.8,
assertion (i) of Theorem 1.2 and Corollary 1.3.

I thank P. de la Harpe and J. Helmstetter for useful comments.
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