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RESUME. — Dans cet article, nous étudions le probleme de la compacité de
Popérateur de Neumann sur des domaines dans une variété hermitienne. En
particulier, nous démontrons la compacité de cet opérateur sur des intersec-
tions g-convexes et sur des domaines strictement g-convexes a bord non-lisse.

ABSTRACT. — In this article, we study the problem of the compactness of
the Neumann operator in subdomains of hermitian manifolds. In particular,
we show the compactness of this operator in g-convex intersections and in
strictly g-convex domains with nonsmooth boundary.

1 Introduction

It is a well-known fact that the 0-Neumann operator N, on a smoothly
bounded, relatively compact domain D CC C" is a compact operator on
L3 (D) (the space of (0,q)-forms on D with square-integrable coefficients)
if D satisfies Hérmander’s condition Z(q), i. e. if the Levi form of a smooth
defining function of D has, at every boundary point of D, at least n — ¢
positive or at least ¢+ 1 negative eigenvalues (cf. the work of G. Folland and
J. J. Kohn [2]). In particular, the operators Ny, s > ¢, are compact on every
smoothly bounded, strictly g-convex domain D CC C". Here, a smooth,
strictly g-convex domain is a domain given by a C*°-smooth function r as

D={zeC":r(z) <0} ccC", dr#0onbD={z:7(z) =0}
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such that the complex Hessian form of 7 at each p € D

has at least n—qg+1 positive eigenvalues. In particular, the operators N;, s >
1, are compact for any bounded, smoothly bounded strictly pseudoconvex
domain. In two independent papers G. M. Henkin and A. Iordan [6] as well
as J. Michel and M.-C. Shaw [15] showed that the compactness property of N
remains true for transversal intersections of strictly pseudoconvex domains,
thus answering a question posed by Kohn. Michel and Shaw derived their
result from a subelliptic %—estimate for Ng; this stronger statement was also
proved (using a different method) by Henkin, Tordan and Kohn in [7].

It seems that the question whether the 0-Neumann operator is compact on
bounded transversal intersections of g-convex domains in C* cannot be ans-
wered using the methods of Henkin-Iordan and Michel-Shaw . There are some
papers on this subject where compactness of the Neumann operator on ¢-
convex intersections and nonsmooth g-convex domains, respectively, is shown
under some (quite strong) additional assumptions, cf. the work of S. K. Vas-
siliadou [21], of M. Nieten [16] and of T. Hefer, L. Ma and S. K. Vassiliadou
[5]. These works are based on the ideas of the papers [6], [15] mentioned
above; the additional assumptions rely on an idea of L.-H. Ho [8]. However,
the seemingly simple question whether N, is compact on the transversal in-
tersection of a strictly pseudoconvex and a strictly g-convex domain in C"
remained open. One of the difficult problems in generalizing the papers of
Henkin-Iordan and Michel-Shaw, respectively, was the fact that on strictly
g-convex intersections (which are not g-convex in the sense of Ho, cp. [8],
[21] and [5]), there is no good control of the C?>-norms of defining functions
for smooth exhaustions of the intersection domains. As opposed to that, on
transversal intersections of strictly pseudoconvex domains, the 1-convexity
condition of Ho is automatic.

In this paper we prove compactness of the Neumann operator by combining
two ideas:

1. If there are compact solution operators for the d-equation on (0, g)- and
(0, g+ 1)-forms, then the Neumann operator is compact on (0, ¢)-forms.

2. The Henkin-Ramirez type integral formulae provide compact solution
operators.

The first idea already turns up in a paper by S. Fu and E. Straube [3].
Our method can in particular be applied to the open problems mentioned



above using a result of Ma and Vassiliadou [13] on estimates for solutions of
the 0-equation on ¢-convex intersections. It also gives a result on the non-
existence of integral solution operators for @ with uniformly integrable kernels
on certain convex domains. Finally, we present an application concerning the
compactness of the Neumann operator in L2-Sobolev spaces of higher order.
Most of the results which we derive from our general compactness theorems
have previously been proved by other methods, but we think that our ap-
proach is simpler as it avoids some delicate density problems.

Acknowledgements: We wish to thank Ma Lan and Martin Nieten for in-
teresting discussions on this subject. Part of this work was done while the
second author was a visiting professor at the Université Paul Sabatier at
Toulouse. He thanks the above university and in particular the members of
the Laboratoire Emile Picard for their interest and their support.

2 Definitions

Let us collect some definitions and notations which will be used throughout
the rest of this paper. Let X be a complex manifold of dimension n > 2,
equipped with a hermitian metric ds? on the tangent bundle T7X. Then X
is an orientable Riemannian manifold with respect to the metric Re ds?. We
denote by dV a volume form on X and by * the associated Hodge-operator.
If D CC X is a domain, we let L2 (D) be the space of (p,q)-forms on D
with square-integrable coefficients; this is a Hilbert space with respect to the
inner product

(.9) = [ Frs.

The §-operator is extended to L2 (D) (in the sense of distributions) as the
closed, densely defined operator

0 =0y :Domd, C L} (D) — L3 .., (D)

with f € Domd and 0 f = g if the equation

D/f/\5w= (—1)””“/9/\90

D

holds for all p € C3° .1 (D) with compact support; 8" denotes the Hilbert

space adjoint of 0. The complex Laplacian operator O is defined as

0:=90 +90



on the domain
Dom0O:= {f € DomdNDomd :8f € Domd ,d f € Doma}.

The 0-Neumann problem consists in proving existence and regularity of so-
lutions of the equation
Ou=feL,/(D).

If the range of the complex Laplacian O is closed on (p, ¢)-forms, the Neu-
mann operator
Npq: L2 (D) = DomO

is well-defined by the conditions
O(Npof) = f — Hpof and Hy (N, f) =0 VfelLl (D)),

where H,, is the orthogonal projection onto ker O in L7 (D). In case the
0-equation du = f (for 3f = 0) is always solvable on (p, q)-forms, we have
H,, = 0. For example, if D is a smoothly bounded strictly g-convex domain
in C", we have ker 0N L2 (D) = {0} and O(N, 4 f) = f.

If £ is a point in C*, we denote by B(e, &) the euclidean ball of radius e
around &.

In this article, we will concentrate on results for (0, ¢)-forms. We use the
abbreviation N, := Ny,, and we denote O by O, if we wish to clarify its
domain of definition.

3 Compactness of the Neumann Operator

In the following theorem we show that compactness of the Neumann operator
N, on a domain D can be checked by results on the solvability of the 0-
equation on D which, in some cases, seem to be more accessible than direct
consideration of the Neumann operator.

(3.1) Theorem. Let D CC X be a relatively compact open set and let
q € {1,...,n}. Suppose there exist closed vector subspaces V, C ker 3, and
Vg+1 C ker 5q+1 of finite codimension and suppose there exist compact linear
operators

Sk: Vi = L _1(D)NDomd, k=q,q+1,

such that Op_1Sif = f for all f € Vi, k = q,q+ 1. Then the Neumann
operator Ny s compact.?

3In the case ¢ = n, we only suppose the existence of S,,, of course.



Proof. For k = q,q+ 1, we have V, Cim0;_; C ker 0y, and V; is closed and
of finite codimension, so the image of the operator d;_; is closed in L(z),,c(D).
By an argument of Hormander [9], the same is true for the image of d,_,,
and it is then easily checked that the image of Oy is closed. This yields the
existence of the operator N;.

Now let U, and U,y be finite dimensional orthogonal complements of V,, and
Va+1inim dy_1 and im 9, with bases (fi,q,. .., fr,.q) 30d (fig415-- -, fropr,a+1)5
respectively. Choose u;; with 5k,1uj,k = f;x and define the linear operators
T, and T;;; on im 5(1,1 and im 5(1 by

Tk Tk
T.f = Tk(z ajfix+9) = Zajuj,k + Spg for g € Vj.

=1 =1

Then Ty, k = g,q + 1, are compact linear solution operators for 0 on the
images of the respective J-operators.
Consider the orthogonal decompositions

Lgyk(D) = ker0® (kerd):, k=¢q,q+1,
L3,(D) = im0®imd @ker, and
L},,1(D) = im0®imd & kerOgy; .

For k € {q,q+ 1}, let Py : L}, (D) — (ker9)* and Qj : L§ (D) — im 9,
respectively, be the orthogonal projections on these closed subspaces. Then
we have

(3:2) E*Nq =F,T;Qq and 5**Nq—kl = Por1Tq41 Qg1 -

For let f € Lg’q(D) be given, and let f = g + h + v be its decomposition
with respect to imd @ im & & ker 0. Then P, T,Q,f obviously equals the
canonical solution to the equation du = g, so P, T, Qqu(g +h +v) =3 Ng
(and similarly for 8 N,41). It remains to show that & N, and & N, vanish,

respectively, on the images of the operators 8" To see this for E*Nq (observe
that V,_; need not exist), we write

NP o = 0 N Ogy1Ngsrcx
= 9 N,0,0 N0
= E*E*N(H_la:o,

since we have Dq+1Nq+1 = id — HO,q—Ha Nqu = Dqu = id — H(),q on
Dom 0, and & Hog1 = 0 = 0 Hoy, by construction. It is easily checked



that 8 Ny41o € Dom0, (use o € Domd’). For & N1, the existence of N,
directly yields B B o

0 Nyg410 =N, 00 3=0.
Since the operators T, and Tj;, are compact, the same is true for 5*Nq and
0" N1 by equation (3.2). We also have

(3-3) Nq = 5*Nq+1 (E*Ntﬁ—l)* + (E*Nq)*g*Nq
on Dom 0 by the simple calculation
9"Nyi1(8"Nyyr)* + (0°N,)*d°N, = N,ON, = N,(id — Hy,) = N, .

But Dom  is dense in Lj (D) and the operator on the right hand side of
equation (3.3) is continuous, so this equality holds in all of L§ (D). Therefore,
N, is compact.* O

In particular, the Neumann operator /V,, is compact on any bounded domain
for which the Bochner-Martinelli integral formula holds (cf. R. M. Range
[18]), and N, is compact on any bounded domain in C* for which the 0-
equation on (0, ¢)-forms and on (0,q + 1)-forms can be solved by integral
operators of the form

Suf(z) = / FQ ASKC.2) s k€ {ga+1),

¢eD
the kernels of which satisfy the hypotheses of one of the two following theo-
rems.

(3.4) Theorem. Let D CC C" be open, and let S be Lebesgue-measurable
on D x D. Suppose there ezxists a positive function C(d) defined for 6 > 0
with lims_,o C'(8) = 0 such that for all § > 0

1. [ |S(z,y)|dV(z) < C(é) for ally € D,
B(d,y)ND

2. [ |S(xz,y)ldV(y) < C(6) for all z € D and

B(d,z)ND

3. |S(z,y)| is bounded on {(z,y) € D x D : |x —y| > §}.

4The idea of representing N, as 8 Nyi1(8 Ngi1)* 4+ (0 N,)*8 N, is due to R. M.
Range [17].




Then the linear integral operator S : LP(D) — LP(D) defined by

Sf(y) = / f(2) S(z,y) dV(2)

18 compact for all p with 1 < p < oo.
Proof. This theorem was proved by Range [18], Appendix C. 0

(3.5) Theorem. Let D CC C" be open, and let S be Lebesgue-measurable
on D x D. Suppose S satisfies the estimates

1. [|8((,2)["dV(¢) < NY < o0 a. e. in z and
D

2. [18(¢,2)]"dV(z) < N7 < o0 a. e in
D

for some v > 1. Then the integral operator defined by S is compact on L*(D).

Proof. The proof is a slight modification of an idea of J. Michel [14]. By
the theorem in Appendix B of [18], S is bounded from L7(D) to LI(D) for
% = }Y+%— 1< %; so, for k € N, S* is bounded from L?(D) to LP*(D), where
o= = > +k(5 —1). Consider the normal operator T':= S*S on L?(D). By the
regularity of S, applied to the kernel function itself, there exists an integer
m € N such that the kernel of 7™ belongs to L?(D x D). Therefore, T™ is a
Hilbert-Schmidt operator, hence compact. This implies that 7™ satisfies the
following two conditions:

1. The spectrum o(7™) has no limit point except possibly 0.

2. If A # 0, then dimker(7™ — \id) < oo.

But then the operator T, too, has these two properties. By Theorem (12.30)
in [19], T is compact. This shows that the operator S is also compact since

1SS = (T £, ) < ITFINI

which implies that for each bounded sequence (f,) for which (7'f,) is a
Cauchy sequence, (Sf,) is also a Cauchy sequence. 0

Theorem (3.1) can of course be applied to convex domains of finite type using
the kernels of Diederich et al. — see [1], [4], but these domains are perhaps
more easily handled by Catlin’s subelliptic estimates which also give the
general case of finite type pseudoconvex domains. Moreover, Fu and Straube
have given a beautiful necessary and sufficient geometric condition for the
compactness of N, in this case. So we only state a negative result of theirs
on — necessarily — infinite type domains.

7



(3.6) Corollary. Let D cC C? be a convex domain with noncompact Neu-
mann operator N1. Then there exists no compact linear solution operator for
the 0-equation on Lg,l(D). In particular, there exists no integral solution ope-

rator for & with a uniformly integrable kernel (in the sense of Theorems (3.4)
or (8.5)).

Proof. There exists a compact (integral) solution operator for the d-equation
on (0,2)-forms on D, given by the Bochner-Martinelli kernel. By Theo-
rem (3.1) there cannot exist any compact linear solution operator for 0 on
(0, 1)-forms. n

Krantz [11] and Fu-Straube [3] have given examples of domains which satisfy
the assumptions of the Corollary.

In order to give our principal applications of Theorem (3.1), we will describe
two methods of how to pass from certain locally defined compact solution
operators for @ to global compact solution operators. The first method —
a variation of the bump method — is inspired by an article of N. Kerzman
[10].

(3.7) Theorem. Let D CC C" be a domain, and let q € {1,...,n}. Suppose
there exists a neighborhood basis V of D such that for every V €V there s
a continuous, linear operator

Ty : Lg,q(V) — Lg,q_l(V)

such that 0Ty f = f for f € L(Q)’q(D) Nker @ and such that for any ¢ € C(V)
the operator f — CTy f is compact. Suppose furthermore that there exrist an
e > 0 and finitely many points &1, ...,y € bD such that the following two
conditions are fulfilled:

1. D cc U;L, B(%,&).

2. Let Dy := D and D;j :== DU Ui:1 B(5,&), j = 1,..., M. Suppose
there exists a linear, compact solution operator Tj,, for the 0-equation
on D;N B(e, &) forj=1,...,M —1.

Then there exists a compact solution operator
T: L?),q(D) — L?),q—l(D)

for the 0-equation on D.

Proof. Let P : Lj (D) — ker @ be the orthogonal projection onto the kernel
of 9. We choose functions x; € C®(B(g,&;)), j = 1,..., M, such that y; = 1

8



on a neighborhood of B(%,¢;). Given f € L (D), we define f; € L§ (D)
as follows. Let f!) be the restriction of Pf to Dy N B(e, &1). Set
fi:= E(Tlf(l) - X1T1f(1)) and 1y := X1T1f(1) .

We extend g trivially outside of D N B(e, &;). The form f; obviously can
be extended to Pf in D outside of B(e, &), and it vanishes on D N B(§,&1).

Therefore, we can extend f; to D; = DU B($,&;), and we have the equation

f—fi=0¢y onD.

It is evident from the construction that 0f; = 0, that the map f — f is
linear and continuous in L? and that the map f + 1)y is linear and compact
(by hypothesis on T}). Now let f(® be the restriction of f; to Dy N B(e, &).
Set

fa = 5(T2f(2) - X2T2f(2)) and ¢ := X2T2f(2)
as above; again, we see that f; € L’g’,q(Dz). Then we have f; — f, = 011 on

D; and 0f, = 0. We continue this procedure until we arrive at a 0-closed
form fu € Lg,q(DM) and at 1) := )y + -+ - + Yy with

f—fu=0¢% onD.

The result of this operation is a continuous linear operator

[ fu=fu(f)

and a compact linear operator

fev=9(f).

Now let V € V be a neighborhood of D as in the hypothesis of the theorem
with
D CCV CC Dy,

and let Ty, be the associated solution operator for 5_ Let ¢ € C°(V) be a
function which is identically 1 in a neighborhood of D. Then, by hypothesis
on Ty, the operator

Tf:=CTv(fu(f)lv) +o(f)
is a compact solution operator for 0 on D. n

The second method has the advantage of being purely local (this time with
respect to the entire domain, not only its boundary).

9



(3.8) Theorem. Let D CC X be a relatively compact domain in the her-
matian manifold X .

1. Suppose there are compact operators Py, Sy and T), on Dom 0 such that
the following homotopy formula holds for k = q, ¢+ 1:

(3.9) f=Pf+0Scf +T,df for f € L§,(D)NDomd.
Then the Neumann operator N, is compact.

2. Suppose there is a finite covering of D by open sets Uy,...,U,, such
that for each j € {1,...,m} there exists a homotopy formula

f=08Pf+T98f, fe L2 (DNU;) N Domd,
for the 0-equation with compact operators S,Ej) and Tk(j). Then there
exist compact operators Py, Sy and Ty, such that (3.9) holds.

Proof. Let xi,...,Xm be smooth, nonnegative functions on X such that

m EE—

suppx; CC U; and Y x; = 1 on D. Define linear operators S, T; and
7j=1

Py by the formulas

Sef =8P,
j=1

m

Tig = Y T (x;9) and
j=1
j=1

By hypothesis on S,(cj) and Tk(j), these operators are compact. This gives
formula (3.9). For k = ¢, ¢ + 1, let F be the restriction of id — Py to the
closed subspace Z; := ker 0 of ngk(D). Then F}, is a Fredholm operator
on Zy, so Vi := im F}, is a closed subspace of finite codimension in 7. If
we denote by Gy the restriction of Fj to the closed, finitely codimensional
subspace (ker )+ C Zj, we see that the operator

Sk=Sko G :Vy = L§,_,(D)NDomd

is, in fact, a compact solution operator for @ on V;, so Theorem (3.1) applies.
]

It is possible to find local integral homotopy operators for the d-equation
(as in the last theorem) in quite general situations. In most of the cases we

10



know, such formulas are proved, initially, only for forms which are C'-smooth
up to the boundary of the domain. This is usually sufficient if the domain in
question is smoothly bounded. For the nonsmooth cases, we add a theorem on
the extension of such homotopy formulas to L%,q(D)ﬁDom 0. The hypotheses
of the next theorem can be easily verified for the local homotopy formulas in
our later applications.

(3.10) Theorem. Let D CC X be a relatively compact domain. Suppose
there exist homotopy operators Sy and Ty for the 0-equation on D such that

(3.11) f=0S,f+T,0f

for all f € Cé,q(ﬁ) and such that S, and T, are linear and continuous on
L3 (D), Ly, (D) and L§ (D), respectively. Let S CC bD be a subset
of the boundary of D such that bD — S is smooth and such that there is
a neighborhood basis (V.)eso of S (relative to X ) satisfying the following
conditions:®

1. V. CC Vj fore <.

2. The volume of V. satisfies the estimate vol(V,) < Ce? for a constant C
independent of €.

3. There are smooth functions ¢ such that supp . CC Ve, . =1 on Vs,
0 <. <1 and sup [0v.| < < for the constant C above.

4. For each ¢ > 0 and for each f € Lj (D) N Domd which vanishes
identically in VL, the homotopy formula (3.11) remains valid.

Then the homotopy formula is valid (in the sense of distributions) on
Lg,q(D) N Dom 0.

Proof. Let x. :== 1—1,,and let f € Lg’q(D)ﬂDomg be given. By hypothesis,
the homotopy formula is valid for x. f, so we have

Xef = gsq(Xsf) + Tq(ngf) + Tq(5X5 A f) .

Now, x.f and T,(x.0f) converge to f and T,0f in Lj (D) as € — 0, respec-

tively, whereas 0.S,(x.f) converges to S, f in the sense of distributions. We
only have to show that the remaining term 7,(0x. A f) converges to zero. To

®In case ¢ = n, we have S, = 0, and the problem of extending the homotopy formula to
L? is trivial. Thus, in our later applications, the hypotheses of this theorem (concerning
the singular subset of the boundary) have to be checked only in case ¢ < n.

11



see this, it suffices to show that Ox. A f converges to zero in Lg 4, (D). But
we have, by the Cauchy-Schwarz inequality,

o=

[ nnav< [Sinav<c | [ipav] —o
D Ve Ve

for e — 0. O

To later verify the fourth condition of this theorem, we prove

(3.12) Lemma. Let D CC C"* be a domain and let S CC bD be a subset of
the boundary such that bD — S consists of smooth points. Let V be an open
neighborhood of S. Suppose there are L?-continuous operators S, and T, such
that

(3.13) f=0S,f+T,0f

for all f € C&yq(ﬁ). Let f € L§ (D) N Dom 0 be given with f =0 in V N D.
Then (3.13) also holds for f.

Proof. Let W CC V be a neighborhood of S. We deform bD inside W to
obtain a smooth domain G C D with the property bG — bD CC V. Let r
be a defining function for G with |Vr| = 1 on bG. For a point z € bG let
v(z) = —Vr(z) be the unit inner normal to bG at z. If zy € bG is given, we
may choose a ball By = B(n, zp) around zo such that for any z € By NG we
have

(3.14) z+0v(z) +717€G

for all sufficiently small § > 0 and all 7 with |7| < §2. Cover bG with a finite
number Bj,..., B,,_; of such balls and denote the corresponding normal
vectors by vq,. .., Vmn_1. Choose &y so small that condition (3.14) is satisfied

in each B; NG for 0 < § < dp. Choose an open set B, CC G such that

G ccC LmJBj,
j=1

set v, := 0, and let x1,..., Xm be smooth functions with supp x; C B; such
that

Jj=1

on G. Now let ¢ be a smooth nonnegative, radially symmetric function on
C", supported in B(1,0), such that

/gp(T)del,

Cn

12



and let 5(7) := 67" (%). We define an approximation f° for the given form
f by

£ =Y [+ v+ 1) pn(r) dr
J=lcn
where these integrals are to be interpreted in the obvious manner. This is
well-defined because of condition (3.14). Clearly the forms f° are smooth on
G and satisfy f° — fin L} (G) for 6 — 0. But for every j € {1,...,m} we
also have

9 / (0 F) (2 + 605 +7) g () dr = / (3 f) (2 + 6; + 7)) o (7) dr

since v; does not depend on z and since f € Dom 0 by hypothesis. Therefore
we get 0f% — 0f in L5 ,:1(G). Now let Y CC V be an open neighborhood
of bG —bD and let 2y be a point in Y N B; for a j < m. We claim that
f2(20) = 0 for all § with 0 < & < & if & is sufficiently small. In fact, if 5, < 1
is so small that z + dv; + 7 € V for all 7 with |7| < 6% < 2, the definition of
f9 and the hypothesis on f immediately prove the claim. Note that §, can
be chosen independently of z, € Y. Thus, we may extend f° trivially to a
smooth form on D, and we obtain

fo— f and 9f° — Of

in L§ (D) and Lj (D), respectively. Since f° € Cj (D), and since the
operators S, and T}, are continuous with respect to L?-norm, the assertion of
the lemma is now obvious. ]

The above proof is essentially due to Kerzman [10]. Theorem (3.10) and
Lemma (3.12) imply that in the following examples of domains D with non-
smooth boundaries the smooth forms on D are dense in Dom 0 with respect
to the graph norm || f|| + (|0 f||. It is well-known that such a density theorem
holds for fairly general boundaries, but we preferred to include a direct proof
for the domains we consider.

As a first application, we now study g-convex intersections as in the following
definition (which is due to Ma and Vassiliadou [13]).

(3.15) Definition. A domain D CC X is called a C* q-convez intersection
if there exist an open neighborhood U of bD and a finite number of real C3-
functions r1,...,ry, n > N + 2, defined on U such that the following three
conditions are fulfilled:

1. DNU={2€U:rj(z) <0forj=1,...,N}.

13



2. Forl <4 < iy <. < t¢ < N the I-forms dr;,, .., dr;, are R-linearly
independent on ﬂ;j{n] < 0}.

3. For1l < i < ... <1y < N, for every z € ﬂ;j{n] < 0}, if we
set I = (iy,..,1p), there exists a complex linear subspace T! of T,X of
complex dimension at least n — q + 1 such that for i € I the complex
Hessian forms L(r;) restricted to T! are positive definite.

We obtain the following theorem on the compactness of the Neumann ope-
rator on such intersections.

(3.16) Theorem. Let D CC X be a q-convex intersection in the hermitian
manifold X. Then the Neumann operator Ny is compact for s > q.

In particular, let D CC C" be the transversal intersection of strictly g;-convex
domains, j=1,.... N<n—2,andletq:=q +---+qy — N + 1. Then the
Neumann operator Ny, on D is compact for s > q.

Proof. As an illustration of Theorem (3.7), we first present a proof in case
X = C". It was shown by Ma and Vassiliadou in [13] that the d-equation
on g-convex intersections in C" can be solved on forms of type (0, s), s > g,
by the method described in Theorem (3.7) with local compact integral ho-
motopy operators that satisfy the hypotheses of Theorem (3.5). The cor-
responding homotopy formulas extend to L? by Theorem (3.10) (the set S
being the singular subset of the boundary). It was also shown in [13] that a
g-convex intersection in C* has a neighborhood basis consisting of smoothly
bounded strictly g-convex domains V' (the domains in [13] are only smooth
of class C3, but it is easily seen that we can obtain C*-neighborhoods by
the same method; compare also [16] where a C*°-smooth so-called regulari-
zed maz-function is constructed which can be used to construct the smooth
neighborhoods we need). On such domains the canonical solution operator
Ty = 8 N, to the d-equation exists by [2], and if we take ¢ € C3°(V), the ope-
rator ¢ Ty is compact by Proposition (3.1.16) in [2] and by Rellich’s lemma.
Therefore, all the hypotheses of Theorem (3.7) are satisfied. An application
of Theorem (3.1) then yields the first assertion for X = C". If D is a g-convex
intersection in a general manifold X, we can still use the local construction
of Ma-Vassiliadou at the boundary of D. Since D is compact and since we
clearly have local compact homotopy operators for @ in the interior of D,
we can apply Theorem (3.8) and Theorem (3.10) to get the result in full
generality.

For the second assertion, it suffices to remark that in [16] it was shown
in detail that an intersection of the form mentioned above is a g-convex
intersection in the sense of Ma and Vassiliadou, where ¢ = ¢;+- - -+gn—N+1.
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In particular, this yields a new proof for the compactness of the Neumann
operator on intersections of strictly pseudoconvex domains. [

As a further application, we show the compactness of the Neumann operator
on nonsmooth, strictly g-convex domains as in the following definition.

(3.17) Definition. A domain D CC X is called strictly q-convez if there
exists an open neighborhood U of bD and a function r € C*(U) such that r

is strictly g-convex on U (compare the introduction) and such that DNU =
{z €U :r(z) <0}. We do not suppose dr # 0 on bD.

In her paper [12], Ma has shown the existence of local integral homotopy
operators for the d-equation on (0, s)-forms, s > ¢, on such domains.® These
integral operators satisfy the hypotheses of Theorem (3.4) and Theorem (3.8).
By the following theorem, we have a good local description of the singular set
of the boundary of a strictly ¢-convex domain which will allow us to verify
the hypotheses of Theorem (3.10) (note that this is trivial in the case ¢ = n).

(3.18) Theorem. Let D CC X be strictly q-conver, ¢ < n. Let r be a
defining function for D as in Definition (3.17), and let

S:={z€bD:dr(z) =0}

be the singular subset of the boundary of D. Then for every z € S there exists
a neighborhood U of z in X and a smooth real submanifold Y of U of real

dimension n — 1 + q such that
SNUCY.

In particular, the real codimension of Y is greater or equal to 2 if ¢ < n.

Proof. See Lemma 1.3 in [20]. 0

Thus, if € > 0 is given and if ¢ < n, we may construct local tubular neigh-
borhoods of the singular set S of bD with a volume dominated by £2. Since
the boundary is compact, the union of a finite number of such neighborhoods
satisfies the hypotheses imposed on the sets V. in Theorem (3.10). This yields
the following result.

(3.19) Theorem. Let D CC X be strictly g-conver. Then the Neumann
operator Ny on D is compact for s > q. [

In the case ¢ = 1, this theorem was proved by Henkin and Iordan who
consider also less regular boundaries.

6Ma only considers the case X = C", but again, the local construction carries over to
any complex manifold X.
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Finally, we will give an application concerning the Neumann operators on
Sobolev spaces other than Lj (D). Let D CcC C" be a smoothly bounded

domain. Consider the Sobolev spaces Lg:’;(D) of (0,¢)-forms on D the coef-
ficients of which have weak derivatives in L? up to order £ € N. This is a
Hilbert space with respect to the interior product

(f.9e:= Y. (D°D’f,D°D"y)
le|+|8I<k

where D® and D denote the differential operators (acting on the coefficients
of f and g) defined by

5lal 5161
027"+ 0z8n oz ... 9zbn

respectively. Let N(f be the Neumann operator on Lﬁ;’; (D) which is defined
with respect to (-,-)x just as N, is defined with respect to (-, -), and let gq*”c
be the Hilbert space adjoint of 9, on ng’(j (D).

(3.20) Theorem. Let D CC C" be a smoothly bounded domain which sa-
tisfies conditions Z(q) and Z(q +1). Then the Neumann operator N} exists
and s compact.

Proof. The existence of N(f follows from the closedness of the image of 0 as
in Theorem (3.1). If D satisfies conditions Z(g) and Z(q + 1), the (usual)
canonical solution operators E*Nj, j = q,q + 1, satisfy Kohn’s subelliptic
%-estimate

10" N5 Fll g <L
and are therefore compact as operators from Lgf (D) to Lg:?fl(D). This im-

. . . =%,k .
plies that the canonical solution operators 0 NJ’-c are a fortiort compact.
Just as in the proof of Theorem (3.1), we derive the compactness of NJ.
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