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L ABSTRACT.

Let V be a simplicial toric variety of codimension r over a field of any characteristic. We
completely characterize the simplicial toric varieties that are set-theoretic complete intersections on
binomials. In particular we prove that:

1. In characteristic zero, V is a set-theoretic complete intersection on binomials if and only
if V' is a complete intersection. Moreover, if Fi,..., F. are binomials such that I(V) =
rad(Fy,..., F), then (V) = (F1,...,F.). We also get a geometric proof of some of the
results in [9] characterizing complete intersections by gluing semigroups.

2. In positive characteristic p, V is a set-theoretic complete intersection on binomials if and only
if V' is completely p-glued.

These results improve and complete all known results on these topics.

Introduction

The determination of the minimum number of equations needed to define an algebraic vari-
ety V set-theoretically or ideal-theoretically is an old and important problem in Algebraic
Geometry. In this paper we consider the case of simplicial toric varieties and it turns out
that these two problems are strongly related in characteristic zero, see Theorem 1.

The ideal of a toric variety is a prime binomial ideal. A binomial ideal is an ideal generated
by binomials. Eisenbud and Sturmfels began the systematic study of binomial ideals in [4],
where also the ubiquity of binomial ideals was presented. There are numerous publications
in recent years on binomial ideals, and several of them treat the problem of the minimal
generation of a binomial ideal or of the radical of it, for example: [1, 2, 5, 6, 7, 9, 10, 12].
The binomial arithmetical rank of a binomial ideal I (written bar(I)) is the smallest integer
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s for which there exist binomials f1,..., fs in I such that rad(Il) = rad(fi,..., fs). Hence
the binomial arithmetical rank is an upper bound for the arithmetical rank of a binomial
ideal. From the definitions we deduce the following inequality for a binomial ideal I:

h(I) < ara(I) < bar(I) < p(I).

Here h(I) denotes the height and u(I) denotes the minimal number of generators of I.
When h(I) = ara(I) the ideal I is called a set-theoretic complete intersection and when
h(I) = p(I) it is called a complete intersection.

Let K be a field of any characteristic and let K be the algebraic closure of K. Let e1,...,€n
be the elements of the canonical basis of Z", and for alli =1,...,7 let a; = (aj1,...,0in) €
IN*. Let dy ...,d, € IN and set T = {d;e1,...,d,€en,a1,...,a,} C IN". Define

¢:K[‘T17"'7$nayla"'ay7“] %K[tlaatn]

as the homomorphism of K-algebras for which
P(z;) = the foralli =1,...,n,
P(y;) = t™ foralli=1,...,7.

Where t2 = t‘l”’1 ...ty"™. Then Ker¢ = Ir is the simplicial toric ideal of T and its affine
variety V = V(Ir) of zeros in K™*" is an affine simplicial toric variety in the sense of [4, 11],
which also includes non normal varieties. The image ¢(K[x1,...,Zpn,Y1,---,Y]) is the affine
semigroup ring of 7.

Let INT = {lid1e1 + -+ + lpiray : l1,...,lh1r € IN} be the affine semigroup generated by
T and ZT = {lidie1 + -+ + lpqray : L, ..., lntr € Z} the lattice spaned by T. We denote
the dimension of the lattice by dim(ZT'), which in this case is equal to n.

We recall the definition of semigroup gluing.

Definition 1 LetT| and Ty be non-empty subsets of T' such that T = T'UTy and T1NTy = (.
Then T is called a gluing of T1 and Ty if there is a nonzero element a € INTy N INTy such
that Za = ZT1 N ZT5.

The concept of semigroup gluing was defined by J.C. Rosales in [8] and used by K.
Fisher, W. Morris and J. Shapiro in [6] to characterize all complete intersections affine
semigroups. They proved that for an affine semigroup INT' which is not a free abelian semi-
group it holds: INT is a complete intersection if and only if there are two subsets 77 and
Ty of T such that T is the gluing of 77 and T> and INTy, INT5 are complete intersection
subsemigroups.

Here we also define the notion of p-gluing and inductively the notion of completely p-glued,
which will be very important for the characterization of set-theoretic complete intersections
on binomials in characteristic p.

Definition 2 Let p be a prime number and T1 and 1o be non-empty subsets of T such that
T=TiUT, and Ty NTy = 0. Then T is called a p-gluing of Ty and Ty if ZZTy N ZTy = Za'
and there is a nonzero element a € INT1 N INT, and there is an integer k such that a = pFa’ .



Definition 3 An affine semigroup INT is called completely p-glued if T' is the p-gluing of T1
and Ty, where each one of the semigroups INTy, INT, is completely p-glued or a free abelian
semigroup.

The purpose of this paper is to prove the following results:

1. In characteristic zero the complete intersection simplicial affine toric varieties are
characterized as those simplicial affine toric varieties which are set-theoretic complete
intersections on binomial hypersurfaces. In this respect one can get a different proof
of the characterization of complete intersection simplicial affine semigroups (see [9])
since the characterization of complete intersection affine semigroups is characteristic
free. It will be interesting to know if the above property still holds for a general toric
variety in characteristic zero.

2. In positive characteristics this result is not true since the class of toric varieties which
are set-theoretic complete intersections on binomials is larger than the one of complete
intersections. We refer to [1], where we have proved that all simplicial toric varieties
with full parametrization are set-theoretic complete intersections on binomials. In
positive characteristic p, simplicial affine toric varieties which are set-theoretic com-
plete intersections on binomial hypersurfaces are those whose underlying semigroups
are completely p-glued.

Throughout the paper we shall refer to the notations introduced in this section.

1 Main Results

Let Q = {z1,%2,..-,Tn,Y1,---,Yr}. A partltlon Sof Qisa set of pairwise d1s301nt non-
empty subsets coverlng Q. A partition 7 refines a partltlon S9, denoted by &1 < B, if
every set of S is the union of some sets of S;. For alli =1,...,r, let II; = (M;, N;) be an
ordered pair of unitary monomials. Let

%14%24"'4%7"—1—1

be a chain of partitions of Q. According to a definition given by Delorme [3], the sequence
IMy,..., I, is called distinguished with respect to this chain if for all 1 = 1,...,r there are
A;, B; € S such that the following two conditions are fulfilled:

-foralli=1,...,r,
supp(M;) C A;, supp(N;) C B;,
- forall j = 2,...,7+1 the partition J; is obtained from $;_; by replacing A; and B;
by their union.

Definition 4 Let FF € I = It be a binomial, F = M — N, where M and N are unitary
monomials. We denote II(F) = (M, N). We also consider the partition 1 of Q formed by

the sets
%1 : {$13-"axn}a {yl}a RN {yr}

We shall say that the sequence Ily,...,I1, of binomial pairs is distinguished if it is distin-
guished with respect to some chain of partitions starting at 9.



Let A C Q. We denote by P4 the point of K™'" such that its coordinates corresponding to
variables belonging to A are equal to 1 and all the others are equal to zero.

Lemma 1 Let & be any non trivial partition of Q0 such that 1 is a refinement of &, and
let Ac 3. Then P4 ¢V =V(Ir).

Proof .First suppose that {z1,...,z,} C A. Since  is non trivial, we have that y; ¢ A
for some 1ndex 1. Hence y; = 0, whereas T = = I, = 1. Since for any 7 there exists a
binomial y* — M(z1,...,Zn) € I, we have that PA ¢V.

Suppose that {z1,.. :cn} NA= (Z) Since G is a reﬁnement of §, we have that y; € A for
some index 7. Hence y; = 1, whereas 1 = --- = 2, = 0. Since for any ¢ there exists a
binomial y* — M (z1,.. a:n) € I, we have that Py gE V. O

Lemma 2 LetV be a simplicial toric variety of codimension r such that bar(I(V)) = r. Let
Fy,...,FE, ber binomials such that I(V) = rad(Fy,...,F,). After a suitable re-arrangement

of the indices one has that the corresponding sequence II(Fy),II(Fs),... ,II(F,) of binomial
pairs is distinguished.

Proof .We are going to give the recursive construction of a chain of + 1 partitions starting
at 1 with respect to which the sequence II(F}),. .., II(F}) is distinguished.

Each of the elements of & contains the support of one of the 2r monomials occurring in
II(F1),...,II(F). If this were not true for some A € 3y, then the point P4 would be a
point of V(F1,..., F,), since it would annihilate every monomial in II(F}),...,II(F;). But
this is a contradiction to Lemma 1.

Since the elements of &7 are pairwise disjoint, in this way we select r + 1 different mono-
mials out of the 2r monomials belonging to II(Fy),...,II(F,). Hence two of the selected
monomials, say M; and Np, must belong to the same pair. Up to re-arrangements of the
indices we may assume that I[I(F}) = (M7, N1). Call A; and B; the elements of S such that
supp(M;) C Ay and supp(N1) C B;. Let S be the partition arising from $q by replacing
the sets A; and By by their union. We claim that each of the elements of &9 contains the
support of one of the monomials occurring in II(F3), ... ,HgFr). We have to prove the claim
only for A1 U B1. Suppose for a contradiction that the claim fails for this set. Then the
point P4,up, is a point of V(F,..., F,), since Mq1(Pa,uB,) = 1 = N1(Pa,uB,) and each
monomial in II(F3),...,II(F,) vanishes in P4,up,. But this is a contradiction to Lemma 1.
We select 7 monomials out of the 2(r — 11) monomials belonging to II(Fy), ... ,II(F,), and by
the same arguments as in the first part of the proof we conclude that, up to re-arrangements,
II(F,) = (M3, N2), where supp(Msy) C As and supp(N2) C Bg for some Ag, By € Sy. The
next steps of the construction are clear: for all h = 2,...,r we can construct a partition
Sp1 of 2 such that:

(a) up to re-arrangements, I1(F},) = (M, Ny,), where supp(My,) C Ap, and supp(Np,) C By,
for some Ay, By, € Sp;

(b) Spy1 is obtained from Sy, by replacing Ay, and By, by their union.

These partitions form a chain of the required type. O



Remark 1 For all : = 1,...,r 4+ 1 the partition &; consists of 7 — 7 4+ 2 sets. In particular
Q- consists of 2 sets, namely A, and B,. Hence 2 = A, U B,. We shall assume that
Ain{zy,...,zy} =0 for all 1,...,r. In particular {z1,...,2,} C B;.

Remark 2 For all kK =1,...,r — 1 we have that Ay C A, if and only if By C A,.

Let us call z;, for ¢ = 1,...,g, the variables in A, and w;, for j = 1,...,¢, the variables
in B,. Note that g+ ¢ = n + r. Let b; be the vector of the exponents appearing in the
parametrization of z; and c; be the corresponding vector for w;. Let T = {b1,...,bg} and

let T5 = {Cl,... ,Cq}. Then T =Ty UTy and T1 N1y = (.
Let {G11,...,G1s} be the binomials among Fi,..., F,_1 such that supp(G1;) C A,, and
{Goa1,...,G2} be the binomials such that supp(G2;) C B,. Note that s+t =1r —1.

Lemma 3 Foralli=2,...,7 let s; be the number of binomials among F,...,F;_1 whose
support is contained in A;. Then
‘Ai| =s;+1.

In particular |A;] = s+ 1.

Proof .We prove the claim by induction on 7 > 2. For As we have two possible cases. If
|As| = 1, then supp(Fy) ¢ As, and sy = 0. If supp(F1) C Az, then Fy = yf* — y5 for some
distinct indices [, and some positive integers «, 3. But then A; = {y;} and By = {y,,}
(or conversely), and A2 = {y;, ym}- Hence |A3] =2 and s9 = 1.

Now assume that 7 > 2 and suppose the claim proven for all A, such that k < 7. Note that
the claim is also true for all By such that k < i and {z1,...,2,} N By = 0. If |4;| = 1, then
s; = 0. Suppose that |A;| > 1. Then A; = Ay U By, for some k < i. Let ¢; be the number

of binomials among F, ..., F;_1 whose support is contained in Bg. Then by induction

|Ag| = sk + 1, and |Bg| = tx, + 1.

Moreover s+t is the number of binomials among F1, ..., Fi_1 whose support is contained
in A;. We also have that supp(Fy) C A U By = A;. Thus it suffices to show that for all
j=k+1,...,4—1 it holds: supp(F;) ¢ A;. But this is certainly true, because for all
j=k+1,...,i—1 the set A; is an element of J;. O

Remark 3 From Lemma 3 we deduce that g =s+ 1 and ¢ =n + .

Remark 4 Note that from the proof of Lemma 3 we deduce that each two vectors in T are
linearly dependent, whence dim(ZT;) = 1. Note also that {d;eq,...d,e,} C T, whence
Remark 5 Note that I, = It N K[A,] and I, = It N K[B,].

Lemma 4 We have that I, = rad(Gi1,...G1s) and I, = rad(Ga, ..., Gat).



Proof .We shall prove the Lemma for I7,. The binomials G1; belong to I, so that
(Gi1,...,G1s) C Ir, whence V(I,) C V(Gii,.-.,G1s). Suppose that the inclusion is
strict, then there is a point (yi,...,y,) of V(Gi1,...,G1s) C KP which is not a point of
V(Ir,) C K9. This means that (y1,...,y,) cannot be expressed in the form (uP1,... ube),
for any u = (u1,...,u,) € K" Recall that F, = M, — N,, where M, is a monomial
in the A,-variables and N, is a monomial in the B,-variables. Let w = M,(y1,...,yq)
and set N,(ul,...,u%) = u. Moreover let (vy,...,v,) € K™ be any root of the poly-
nomial u¢ — w € Kl[uy,...,u,]. Then the point (yi,...,yg;v,...,v) is a point of
V(G11,-..,G1s, Ga1,- .. ,Goy, F,) C K™ which is not a point of V. A contradiction. O

Zero characteristic case

Theorem 1 Let V be a simplicial toric variety of codimension r over a field of character-
istic zero. Then bar(I(V)) = r if and only if V is a complete intersection. Moreover, if
Fy,...,F, are binomials such that I(V) = rad(F1,...,F;), then I(V) = (F1,..., F,).

Proof .Suppose that V' is a complete intersection, then height(I(V)) = r < bar(I(V)) <
u(I(V)) =r, where p(I(V)) denotes the minimal number of generators of I(V'). Therefore
bar(I(V)) =r.

For the converse suppose that bar(I(V)) = r. We proceed by induction on r > 1. The
statement is obvious for r = 1. Suppose that every simplicial toric variety of codimension
smaller than r whose binomial arithmetical rank is equal to the codimension is a complete
intersection.

We perform the costruction contained in the proof of Lemma, 2 for Fi,..., F.. We suppose
that these binomials are arranged in such a way that the corresponding sequence of binomial
pairs is distinguished with respect to the chain §; <S8y -+ <S4 1.

From Lemma 4, Remark 4 and the fact that the Krull dimension of the residue ring of
Iy, is equal to the dim(ZTI4), see [11], we have bar(Ir,) = s = (s + 1) — 1, therefore I
is complete intersection and Iy, = (G11,...,G1s) by the induction hypothesis. Similarly
bar(Ir,) =t = (n +t) — n, therefore Iy, is complete intersection and I, = (Gai,...,G2)
by the induction hypothesis.

We complete the proof by semigroup gluing. First note that F,, = M, — N, € I(V) and M,

only involves variables from T} and N, only variables from T, whence M, (uP?,..., uPs) =
N,(u,...,u%) = u? for some a € INT} N INT,. We claim that Za = ZT1 N ZT5, i.e., T
is a gluing of T} and T5. According to [8] all the preceding assumptions imply that

I(V) = Iy, + I, + (Fy) = (Gi1, ..., G1s,Go1, . .., Gog, Fr) = (Fu, ..., Fy),

which will complete the proof.

Suppose that our claim is not true. Then there is an element a’ € Z" such that Za' =
ZT\ N ZTy, since ZT1 N ZTy has dimension 1. From a € ZT, N ZT, we see that a € Za',
therefore there exists a positive integer m > 1 such that a = ma’. Note that all entries of
a are positive, so that we can assume that the same is true for a’.

The degree of an element of IN" is the sum of its entries, let d = deg(a) and d' = deg(a’).



Thend = md'. Letw € K bea primitive m-th root of unity and let £ € K be such that {“d' =
w. Re-arrange the coordinates of K" in order to form the sequence (z1,...,zg; w1 - .., wy).
For all j = 1,...,q, let v; = >°0_; ¢jx. The point (1,...,1;&™,...,£7%) is a zero of all
G11,...,G1s, because (1,...,1) is a point of V3. It is also a zero of all Goy,...,Gy, be-
cause (&71,...,£%) is a point of V3. Moreover F,(1,...,1;M, ..., &%) =1 — ¢4 = 0. Thus
(1,...,58m,...,&%) € V. But a’ € ZI N ZI, means that a’ = Y7, v;b; = 37 pjcj,
for suitable integer coefficients v;, ;. Let v = (v1,...,v4) and p = (p1, ..., f1q). Then the
second equality shows that the binomial G = z*"wt — z¥ wt'™ € I(V). Moreover d' =
25:1 pjvj- But then from G(1,...,1;&",...,£7%) = 0, we have that 0 = 1—¢4 =1—-w #0,
which is a contradiction. O

Corollary 1 Let V be a simplicial projective toric variety of codimension r over a field of
characteristic zero. Then bar(I(V')) = r if and only if V s a complete intersection. More-
over, if Fy, ..., F, are binomials such that I(V) = rad(F},...,F,), then I(V) = (Fy,..., F;)
and after a suitable re-arrangement of the indices we have that the binomial F; 1s monic
in y; and the other monomial term of F; only involves the x-variables and the variables y;
such that 7 <1 .

Proof .The first part follows from Theorem 1. For the last part, note that in the projective
case any two vectors aj, a;j in the parametrization of V' can not be proportional. That
means that there is no binomial with support {y;,y;}. Therefore each binomial F1, ..., F,
should be monic in g; for some 7. The proof follows from a careful reading of Lemma, 2. O

Remark 6 In fact the above Corollary is true for every simplicial toric variety for which
each two vectors in T are linearly independent.

2 Positive characteristic case

Theorem 2 Let V be a simplicial toric variety of codimension r over a field of character-
istic p. Then bar(I(V)) = r if and only if V is completely p-glued and T is the p-gluing of
Ty and Ty, where dim(Z11) = 1 and dim(ZT,) = n = dim(ZT).

Proof .Suppose that bar(I(V)) = r. We proceed by induction on 7 > 1. The statement is
obvious for » = 1, since in this case V is always a complete intersection and therefore it is
also completely p-glued, see [9]. Suppose that every simplicial toric variety of codimension
smaller than r whose binomial arithmetical rank is equal to the codimension is completely
p-glued.

We perform the costruction contained in the proof of Lemma 2 for Fi,..., F,.. We suppose
that these binomials are arranged in such a way that the corresponding sequence of binomial
pairs is distinguished with respect to the chain &1 <8y <+ <y 1.

From Lemma 4, Remark 4 and the fact that the Krull dimension of the residue ring of
Iz, is equal to dim(ZT1) = 1, see [11], we have bar(I1,) = s = (s + 1) — 1, therefore I,



is completely p-glued by the induction hypothesis. Similarly bar(Ip,) =t = (n +t) —
therefore I, is completely p-glued by the induction hypothesis.

We complete the proof by semigroup p-gluing. First note that F,. = M, —N, € I(V) and M,
only involves variables from T} and N, only variables from Ty, whence M, (uPt,... uPr) =
Ny(u®,...,u%) = u? for some a € INT} N INT,. Also there is an element a’' € Z" such
that Za' = ZT|\ N ZTs, since ZT| N ZT5 has dimension 1. We claim that there is an integer
k such that a = p*a’, i.e. T is the p-gluing of 71 and Tb.

Suppose that our claim is not true, then there exist a positive integer m > 1 and an integer
k such that a = mp*a’ and p does not divide m. Note that all entries of a are positive, so
that we can assume that the same is true for a'.

Comparing the degrees d of a and d' of a' we have that d = mpFd’. The number m is

not divided by p, the characteristic of the field, so let w € K be a primitive m-th root of
unity and let ¢ € K be such that §d' = w. Re-arrange the coordinates of K™*" in order

to form the sequence (z1,...,2g;w1...,wq). Forall j =1,...,q, let v; = >¢_; ¢jx. The
point (1,...,1;&"M,...,&%) is a zero of all Gyi,...,G1;, because (1,...,1) is a point of
Vi. Tt is also a zero of all Goi,...,Go, because (£7,...,€%) is a point of V5. More-
over Fp(1,...,1;6M, ... &%) = 1 —¢4 = 0. Thus (1,...,1;&",...,6%) € V. But
a' € ZT' N ZT, means that a’ = 37, v;b; = Y7 | pjcj, for suitable integer coefficients

Vi, ptj. Let v = (vi,...,14) and p = (u1,-..,Hy) then the second equality shows that
the binomial G = 2* wh — 2" wh" € I(V). Moreover d' = >9_1157;- But then from

G(1,...,1;6, ..., &%) =0, we have that 0 =1 —fd' = 1—w # 0, which is a contradiction.
For the converse, let V' be a simplicial toric variety of codimension r over a field of char-
acteristic p. Let T be the semigroup defining V' and suppose that it is completel lued
and it is the p-gluing of T} and Ty, where dim(ZTy) = 1 and dim(ZT5) = dzm(yZT§
shall prove that bar(I(V)) = r by induction on r .

For 7 = 1 the claim is obvious, since I(V') is a principal ideal. Therefore bar(I(V)) = 1.
Suppose that the claim is true for all toric varieties of codimension smaller than . By hy-
pothesis Z17N ZTQ = Za' and there are a nonzero element a € INT} N INT, and an integer k

such that a = pFa’. Let Ty = {by,...,bg}, and T = {e1, ...,cq}. Wecall y;, fori =1,...,g,
the variables corresponding to the vectors in T7 and z;, for ¢ = 1,...,q, the variables cor-
responding to the vectors in 1. Clearly Ity = It NK[y1, ..., yq] and I, = Ir N K|z1, ..., Z4)-
Since a € INT1 N INT,, we can write

a=3} ebi=) njc
£g 71 Tq

for some natural numbers ¢;,7;. This implies that the binomial F' = yi'...y," — 21" ...2¢
belongs to I7. We claim that

It = rad(Ir, + I, + (F)).

Let (y1,---1Yg, 21, -y 2¢) € K974 a zero of Iy + I, + (F). By hypothesis (y1,...,yg) is a
zero of I, hence there exist uy,...,u, € K such that y; = uPi. For a similar reason there
exist v1,...,v, € K, such that zj = vCJ for any 1, j. It follows that F(yi,.--3Ygr 2150 2¢) =

0= ulo&ibi — vy 7ic,



The ideal I7 is generated by binomials of the form:
B = y¥+z0- — y7-2%+,

We have that B € Ir, therefore 3 vy;bi—> v-;bi =3 04 ,¢;—>"0_,¢; € ZI'NZT5 = Za'.
Thus there exists a natural number 7 such that Zpkfy+ibi — Zpkfy,ibi = Zpk6+jcj —
S pFs_ i€ = pFra’ = ra, in particular we get the relations:

Y pF b = X pfybi + X reibi, L pFay e = Yk e+ X 1nj¢4, so that

Bpk(yl, e Yg ZLy ey Zg) = w2 PFr=ibiy 2o PP e (quazbl _ vaJcJ) -0

Therefore B € rad(Ir, + Ir, + (F')). The claim follows by the inductive hypothesis since
V(Ir,) and V(Iz,) are completely p-glued and whose codimension is smaller than r. O

Examples

In this section we are going to present several examples to clarify the concept of p-gluing.

Example 1 There are examples of toric varieties that are completely p-glued for every
prime number p. In [1] we have proved that over a field of positive characteristic all simpli-
cial toric varieties with full support are set-theoretic complete intersections on binomials.
It follows from Theorem 2 that every simplicial toric variety with full support is completely
p-glued, for every p. In fact the same proof of Theorem 1 in [1] gives a stronger result:
Let V' be a simplicial toric variety of codimension r over a field of characteristic p, such
that after a suitable re-arrangement of the indices it holds that supp(ai) C supp(asz)... C
supp(a,). Then V is completely p-glued for every prime p and therefore it is set-theoretic
complete intersection on binomaals.

Example 2 There are examples of toric varieties that are completely p-glued for only one
value of p. For example, let V be the Veronese surface in P° parametrized by z1 = t2, 2o =
3,23 = 13,41 = tots,y2 = tits3,ys = tite. Then T = {(2,0,0), (0,2,0), (0,0,2), (0,1,1),
(1,0,1), (1,1,0)}. According to Theorem 2, if V were completely p-glued for some p,
then it would be the p-gluing of 77 and T, where dim(ZT1) = 1 and dim(ZT,) = 3 =
dim(ZT). Each two vectors in T are linearly independent. Therefore 7 has just one
element. From the definition of p-gluing we conclude that this element cannot be any
of (2,0,0),(0,2,0),(0,0,2), since otherwise INT} N INT, = 0. By symmetry, we may as-
sume that 79 = {(0,1,1)}. Easy computations show that ZT} N ZT» = Z(0,1,1) and
INT\ N INT, = IN(0, 2,2). Note that INT; is a complete intersection and therefore completely
p-glued for every p. But (0,2,2) = 2(0,1,1) therefore we conclude that V' is completely p-
glued only for p = 2.



Example 3 Finally there are examples of toric varieties that are not completely p-glued
for any p > 0. For example, let V be the toric variety parametrized by z; = 2, 13 = t3,
I3 = tg, y1 = t2t3, Yo = t1ts , Yz = t1ta. Then T = {(2,0,0),(0,3,0),(0,0,5), (0,1,1),
(1,0,1), (1,1,0)}. As in Example 2 one can argue in the following way: if V' were p-
glued for some prime p, then the possible partitions for T' would be 111,751 or Th9,T15
or T13,T23, where T11 = {(0,1,1)}, T12 = {(1 0 1)}, T13 = {(1 1 0)} and T21,T22,T23
are - in the same order - their complements with respect to T. Then we would have that
ZTiW N ZTy, = (0, 1, 1) and INT11 N INT5, = (0 15, 15) ThlS means that 7' is not the
p-gluing of T11,T5;. For a similar reason T is not the p—gluing of T19, Ty and of Ti3,Tss,
since ZTlg N ZTQQ = Z(].,O, 1), Mlg N MQQ == ﬂV(lO,(), 10), ZT13 N ZTQ?, = Z(]., 1,0) and
INT 3 N INT>3 = IN(6,6,0). None of 15,10,6 is a power of a prime number, therefore we
conclude that V is not completely p-glued for any p.
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