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Abstract

We explain the emergence and robustness of intense jets in highly turbulent plan-
etary atmospheres, like on Jupiter, by a general approach of statistical mechanics of
potential vorticity patches. The idea is that potential vorticity mixing leads to the
formation of a steady organized coarse grained flow, corresponding to the statistical
equilibrium state. Qur starting point is the quasi-geostrophic 1-1/2 layer model, and
we consider the relevant limit of a small Rossby radius of deformation. Then narrow
jets are obtained, scaling like the Rossby radius of deformation. These jets can be
either zonal, or closed into a ring bounding a vortex. Taking into account the effect of
the beta effect and a sublayer deep shear flow, we predict an organization of the turbu-
lent atmospheric layer into an oval-shaped vortex amidst a background shear. Such an
isolated vortex is centered over an extremum of the equivalent topography (determined
by the deep shear flow and beta-effect). This prediction is in agreement with analysis
of wind data in major Jovian vortices (Great Red Spot and Oval BC).!

1 Introduction

Atmospheric and oceanic flows are often organized into narrow jets. They can zonally flow
around the planet like the jet streams in the earth stratosphere, or the eastward jet at 24
in the northern hemisphere of Jupiter ( Maxworthy 1984). Jets can alternatively organize
into rings, forming vortices, like the rings shed by the meandering of the Gulf-Stream in
the western Atlantic Ocean. The flow field in Jupiter most famous feature, the Great
Red Spot, is an oval-shaped jet, rotating in the anticyclonic direction and surrounding an
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interior area with a weak mean flow ( Dowling and Ingersoll 1989), see figure 1(a). Robust
cyclonic vortices have a similar jet structure ( Hatzes et al 1981 ), see figure 1(b).

Such jets and vortices are in a turbulent surrounding, and the persistence of their
strength and concentration in the presence of eddy mixing is intriguing. The explanation
proposed in this paper is based on a statistical mechanical approach: the narrow jet or
vortex appears as the most probable state of the flow after a turbulent mixing of potential
vorticity, taking into account constraints due to the quantities conserved by the dynamics,
especially energy. Such a statistical theory has been first proposed for the two-dimensional
Euler equations by Kuz’'min (1982), Robert (1990) , Robert and Sommeria (1991), Miller
(1990). See Brandt et al (1999) for a recent review and discussion. This theory predicts an
organization of two-dimensional turbulence into a steady flow (with fine scale, 'microscopic’
vorticity fluctuations). Complete vorticity mixing is prevented by the conservation of the
energy, which can be expressed as a constraint in the accessible vorticity fields. A similar,
but quantitatively different, organization had been previously obtained with statistical me-
chanics of singular point vortices with the mean field approximation, instead of continuous
vorticity fields (Onsager 1949, Joyce and Montgomery 1973).

Extension to the quasi-geostrophic (QG) model has been discussed by Sommeria et
al (1991), Michel & Robert (1994), Kazantsev Sommeria and Verron (1998). This model
describes a shallow water system with a weak vorticity in comparison with the planetary
vorticity (small Rossby number), such that the pressure is in geostrophic balance, and the
corresponding free surface deformation is supposed small in comparison with the layer thick-
ness. For Jupiter the free surface would be rather at the bottom of the active atmospheric
layer, floating on a denser fluid, as discussed by Dowling and Ingersoll (1989), see Dowling
(1995) for a review. The gradient of planetary vorticity is accounted by a beta-effect. An
additional beta-effect, depending on the latitude coordinate y, is introduced to represent
the influence on the active atmospheric layer of a steady zonal flow in the deep interior, as
discussed by Dowling and Ingersoll (1989).

The free surface deformability, representing the strength of the density stratification, is
controlled by the Rossby radius of deformation R*. The two-dimensional Euler equation is
recovered in the limit of very strong stratification for which R* — co. We shall consider
in this paper the opposite limit of weak stratification for which R* is much smaller than
the scale of the system L. This limit is appropriate for large scale oceanic currents, as the
radius of deformation is typically 10-100 km. For Jupiter, R* is estimated to be in the
range 500-2500 km, while the Great Red Spot extends over 20,000 km in longitude, and
10,000 km in latitude, so the limit R*/L — 0 seems relevant. We show that in this limit
the statistical equilibrium is made of quiescent zones with well mixed uniform potential
vorticity, bounded by jets with thickness of order R*. This provides therefore a general
justification of jet persistence. Some of the ideas used have been already sketched in
Sommeria et al (1991), but we here provide a systematic derivation and thorough analysis.

In principle, the Quasi Geostrophic approximation breaks down for scales much larger
than the radius of deformation, so that the limit R*/L — 0 seems inconsistent with the QG
approximation. However the relevant scale is the jet width, which remains of order R*, so
that the Quasi Geostrophic approximation remains valid in this limit. This point has been
discussed by Marcus (1993) for the Great Red Spot, which he supposes to be a uniform
Potential Vorticity ( PV ) spot surrounded by a uniform Potential Vorticity background (



we here justify this structure as the result of Potential Vorticity mixing with constraints on
the conserved quantities ). Analyzing wind data in the Great Red Spot, Dowling & Ingersoll
(1989) concluded that the QG approximation is good up within typically 30% error, which is
reasonable to a first approximation. Statistical mechanics of the more general shallow water
system (to be published), predicts a similar jet structure. The present Quasi Geostrophic
results therefore provide a good description as a first approximation.

We first consider the case without beta-effect in section 2. We furthermore assume
periodic boundary conditions (along both coordinates) in this section to avoid consideration
of boundary effects. Starting from some initial condition with patches of uniform PV, we
find that these patches mix with uniform density (probability) in two sub-domains, with
strong density gradient at the interface, corresponding to a free jet. The coexistence of the
two sub-domains can be interpreted as an equilibrium between two thermodynamic phases.
We find that the interface has a free energy per unit of length, and its minimization leads to
a minimum length at equilibrium. This results in a constant radius of curvature, in analogy
with surface tension effects in thermodynamics, leading to spherical bubbles or droplets.
The range of the vortex interaction is of the order R*, therefore becoming very small in
the limit of small radius of deformation, so the statistical equilibrium indeed behaves like
in usual thermodynamics with short range molecular interactions. This contrasts with
the case of Euler equation, with long range vortex interactions, analogous to gravitational
effects (Chavanis Sommeria and Robert 1996, Chavanis 1998).

Figure 7 summarizes the calculated equilibrium states, depending on the total energy
and a parameter B representing an asymmetry between the initial Potential Vorticity patch
areas, before the mixing process. We obtain straight jets for a weak asymmetry and circular
jets for higher asymmetry. Such circular a jet reduces to an axisymmetric vortex, with
radius of order R*, in the limit of low energy.

We discuss the influence of the beta-effect or the deep zonal flow in section 3. The
channel geometry, representing a zonal band periodic in the longitude z is appropriate for
that study. With the usual beta-effect By, linear in the transverse coordinate y, statistical
equilibrium is, depending on the initial parameters, a zonal flow, or a meandering eastward
jet, or a uniform velocity v,, = R%S whose induced free surface slope cancels the beta-effect
( uniformization of Potential Vorticity ) on which circular vortices can coexist.

For more general beta-effects, due to the deep zonal flow, we find that the jet curvature
depends on latitude y. In particular a quadratic beta effect ay? leads to oval-shape jets,
similar to the Great Red Spot. Using the determination of the sublayer flow from Voyager
data by Dowling and Ingersoll (1989), we show in section 4, that such a quadratic effective
beta-effect is indeed a realistic model for Jupiter atmosphere in the latitude range of the
Great Red Spot and the White Ovals, the other major coherent vortices on Jupiter. Using
these data on beta-effect, as well as the shear in the zonal flow at the latitude of the Great
Red Spot, the jet width and its maximum velocity, we deduce all the parameters of our
model.



2 The case with periodic boundary conditions

2.1 The dynamical system

We start from the barotropic Quasi Geostrophic (QG) equation :

dq B
E—}—V-Vq—o (1)
a=—Ap+ 2 h(y) @
R2
v=-zAVy (3)

where ¢ is the potential vorticity ( PV ), advected by the non-divergent velocity v, 1 is
the stream function, R is the internal Rossby deformation radius between the layer of fluid
under consideration and a deep layer unaffected by the dynamics. z and y are respectively
the zonal and meridional coordinates ( z is directed eastward and y poleward ). The
term h(y) represents the combined effect of the planetary vorticity gradient and of a given
stationary zonal flow in the deep layer, with stream function v4(y): h(y) = —By + 14/ R>.
This deep flow induces a constant deformation of the free surface, acting like a topography
on the active layer. We shall therefore call h(y) the ’topography’, and study its influence
in section 3. Let us assume h(y) = 0 in this section. We define the QG equations (1,2)
in the non-dimensional square D = [—%, 112, R is then the ratio of the internal Rossby
deformation radius R* to the physical scale of the domain L.

Let (f) = [, fd?r be the average of f on D for any function f. Physically, as the
stream function 1 is related to the geostrophic pressure, (1) is proportional to the mean
height at the interface between the fluid layer and the bottom layer, and due to the mass
conservation it must be constant (Pedlosky 1987). We make the choice

() =0 (4)

without loss of generality.
The total circulation is {q) = (—A +4/R?) = (1/R?) due to the periodic boundary
conditions. Therefore

{g) =0 (5)

We note that the Dirichlet problem (2) on D with periodic boundary conditions has a
unique solution % for a given PV field.
Due to the periodic conditions for 1, the linear momentum is also equal to 0,

(v)=0 (6)
The energy
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is conserved ( we note that the first term in the right hand side of (7) is the kinetic energy
whereas the second one is the gravitational available potential energy ).
The integrals

Cyl) = /D flg)dr (8)

for any continuous function f are also conserved, in particular the different moments of the
PV. In the case of an initial condition made of a finite number of PV levels, the areas initially
occupied by each of these levels is conserved, and this is equivalent to the conservation of
all the constants of motion (8).

2.2 The statistical mechanics on a two PV levels configuration.
2.2.1 The macroscopic description.

The QG equations (1) (2) are known to develop very complex vorticity filaments. Because
of the rapidly increasing amount of information it would require, as time goes on, a de-
terministic description of the flow for long time is both unrealistic and meaningless. The
statistical theory adopts a probabilistic description for the vorticity field. The statistical
equilibrium depends on the energy and of the global probability distribution of PV levels.
Various previous studies (Sommeria & al 1991), (Kazantsev & al 1998) indicate that a
model with only two PV levels provides a good approximation in many cases. The determi-
nation of the statistical equilibrium is then simplified as it depends only on the energy, on
the two PV levels, denoted ¢ = a1 and ¢ = a_; and on their respective areas A and (1 — A)
in D. The number of free parameters can be further reduced by appropriate scaling. Indeed
a change in the time unit permits to define the PV levels up to a multiplicative constant,
and we choose for the sake of simplicity :

a; — a1
- =1 9
. )
and define the non-dimensional parameter B as :
p=4tan (10)

2

The condition (5) of zero mean PV imposes that a;A+a_1(1— A) = 0. This means that a;
and a_; must be of opposite sign and, using (9) and (10), A = (1 — B)/2. The distribution
of PV levels is therefore fully characterized by the single asymmetry parameter B, which
takes values between -1 and +1. The symmetric case of two PV patches with equal area
A = 1/2 corresponds to B = 0, while the case of a patch with small area (but high PV,
such that ( ¢ ) = 0) corresponds to B — 1. Note that we can restrict the discussion to
B > 1 as the QG system is symmetric by a change of sign of the PV.

The two PV levels mix due to turbulent effects, and the resulting state is locally de-
scribed by the local probability (local area proportion) p(r) to find the first level at the
location r. The probability to find the complementary PV level a_1 is 1 —p, and the locally
averaged PV at each point is then

ale) = ap(e) + a1 =) =2 (p- 1) + 5 (1)



where the second relation is obtained by using (9) and (10).

As we consider the evolution of two PV patches, the conservation of all invariants (8)
is equivalent to the conservation of the area A of the patch with PV value a1 ( the area of
the other PV level a_; being 1 — A ). The integral of p over the domain must be therefore
equal to the initial area A ( the patch with PV level a; is mixed but globally conserved ),

- % _ /D p(r)dr (12)

As the effect of local PV fluctuations is filtered out by integration, the stream function
and the velocity field are fully determined by the locally averaged PV ¢ as the solution of

qg=—-AvY+ % ;1 periodic (13)
and v=-2zAVy

Therefore the energy is also expressed in terms of the field g :

1 P 1l
E_E/D[(qu)2+ﬁ]d2r_§/[)q¢d2r (14)

Here the energy of the 'microscopic’ PV fluctuations has been neglected (replacing g by
q), as justified in the case of Euler equation by Robert and Sommeria (1991). Indeed,
considering a ’cutoff’ for the microscopic fluctuations much smaller than R, the small scale
dynamics coincides with the Euler case.

The central result of the statistical mechanics of the QG equations (1,2) is that, under
an ergodic hypothesis, we expect the long time dynamics to converge towards the Gibbs
states defined by maximizing the mixing entropy

S = —/ [p(r) Inp(r) + (1 = p(r)) In(1 - p(r)) |d*r (15)
D

under the constraints of the global PV distribution (12) and energy (14). It can be shown
that the microscopic states satisfying the constraints given by the conservation laws are
overwhelmly concentrated near the Gibbs state, which is therefore likely to be reached
after a complex flow evolution. A good justification of this statement is obtained by the
construction of converging sequences of approximations of the QG equation (1,2), in finite
dimensional vector spaces, for which a Liouville theorem holds. This is a straightforward
translation of the work of Robert (1999) for 2D Euler equations. The sequence of such
Liouville measures has then the desired concentration properties as (1,2) enters in the
context considered in Michel & Robert (1994).

2.2.2 The Gibbs states

Following Robert & Sommeria (1991), we seek maxima of the entropy (15) under the
constraints (12) and (14). To account for these constraints, we introduce two corresponding
Lagrange multipliers, which we denote 2cc and —C/ R? for convenience in future calculations.
Then the first variation of the functionals satisfies :

C
0S — 2a0A + ﬁ(SEzo
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for all variations dp of the probability field p. After straightforward differentiation we
obtain:

6S = —/[lnp—ln(l—p) |6pd*r 5A:/ Spdr
D D

_ dr — 2,
OF = /D ogd /D 2hopd (16)

where the expression of §F has been obtained by integrating by part and expressing g by
(11). Then we can write the first variation under the form [,[ —Inp + In(1 — p) — 2o +
2Cvy/R? | §p d?r which must vanish for any small variation dp. This implies that the
integrand must vanish, and yields the equation for the optimum state:

1 — tanh(a — —w)

= 1
p 5 : (17)
and using (11) and (13), the partial differential equation
(4 Cy
q:—A¢+ﬁ:B—tanh a—ﬁ (18)

determining the Gibbs states (statistical equilibrium). From now on we forget the ¢ over-
line for the locally averaged PV and refer to it as the PV.

Therefore, we have shown that for any solution of the variational problem, two constants
a and C exist such that 1 satisfies (18). Conversely it can be proved that for any such
two constants, a solution to equation (18), in general not unique, always exists. Then p
associated with one of these solutions by (17) is a critical point of the ’free energy’ —S(p) +
20A(p) — %E(p) (i.e. its first variation vanishes). Then the Lagrange multipliers are not
given but have to be calculated by prescribing the constraints (12) and (14) corresponding
to the two parameters B and FE respectively, given by the initial condition. Furthermore,
among the states of given energy E and asymmetry parameter B, we shall select the actual
maxima.

Finally, let us find a lower bound for the parameter C of the Gibbs states with non-zero
energy (i.e. 9 is not constant on D). Multiplying (18) by —Au1), integrating by part and
defining f(C%) = B — tanh(a — %) we obtain :

fD(AW w(VY)’)d
Jo —F(C)(Vi)2dPr

From which, using 0 < —f'(C) < ﬁ it follows that when %) is not constant :

C =

C>1 (19)

2.3 The limit of small Rossby deformation radius

As suggested by oceanographic or Jovian parameters, we seek solutions for the Gibbs states
equation in the limit of a small ratio between the Rossby deformation radius and the length
scale of the domain : R << 1 with our non-dimensional coordinates 2

2Modica (1987) considered the minimization of the functional E(u) = [[e (Vu)® 4+ Wo(u)]dx with the
constraint [, u(x)dx = m in the limit ¢ — 0% where Wo is a real function with two relative minima. He



2.3.1 The uniform subdomains

Then we expect that the Laplacian in the Gibbs states equation (18) can be neglected with
respect to 1/ R?, except possibly in transition regions of small area. This transforms (18)
into the algebraic equation :

q:%:B—‘n&nh(a—%) (20)

Depending on the parameters, this equation has either one, two or three solutions,
denoted 9_1,10 and v, in increasing order (see figure 2 ). The case with a single solution
would correspond to a uniform 1, which should be equal to 0 due to the condition () = 0.
This is only possible for £ = 0. Otherwise, we have therefore two or three solutions, with
different solutions occurring in subdomains. This condition of multiple solutions requires
that the maximum slope for the right hand side of (20) must be greater than 1/R? ; this is
always realized due to the inequality (19). Furthermore o must be in an interval centered
in CB ( a@ = CB in the symmetric case of figure 2 ).

At the interface between two constant stream function subdomains, a strong gradient of
1) necessarily occurs, corresponding to a jet along the interface. These jets give first order
contributions to the entropy and energy, but let us first describe the zero order problem.
Suppose that 1 takes the value v, ( resp %_; ) in subdomains of total area A; ( resp
A 1 ). The reason why we do not select the value 1y will soon become clear. Using
(11) we conclude that the probability p takes two constants values py; in their respective
subdomains. The two areas Ay, ( measured from the middle of the jet ) are complementary
such that :

Ai+A =1 (21)
Furthermore the constraint (4) of zero domain average for % implies at zero order,
1A+ 141 =0, (22)

or equivalently, using g+1 = 941 /R2, (11) and (21) :

24, <p1 - %) +2(1— 4y) <p1 _ %) __B (23)

This can be obtained as well from the constraint on the (microscopic) PV patch area (12).
The energy inside the subdomains reduces to the potential term 2/2R?, since velocity

proved, in a mathematical framework, working with bounded variations functions, that if (u.) are solutions
of this variational problem, for any subsequence of (u.) converging in L'(Q) as e — 0, this subsequence
converge to a function uo which takes only the values where Wy reaches its minima ; with the interface
between the corresponding subdomains having minimal area ( See Modica (1987) for a precise statement ).

We note that the Euler equation of this variational problem may be the same as the Gibbs States equation
(18) for a convenient choice of Wo. However as the variational problem itself is different this beautiful result
cannot be used in our context.



vanishes. This area energy E4 can be computed in terms of p1; using g+1 = ¥+1/R? and
(11) :

P2 A + P2 A
ma= RIVIR  hsepr) + (1 - A)e(p)

with e(p) = R’ (2( _%>2+2B( ‘%) +B;> (24)

There is also an energy in the jet at the interface of subdomains, but it is small with respect
to E4. Indeed the velocity in the jet, of width R, is of order (¢, —%_1)/R ~ /R, and the
corresponding integrated kinetic energy is of order 2 /R. This is small in comparison with
the area energy E4 (mostly potential) of order 1?/R2. A precise calculation will confirm
this estimate in next sub-section.

We need to determine three unknown, the area A; and the probabilities p+; of the PV
level a; in each subdomain, while the constraints (23) and (24) provide two relations. An
additional relation will be given by entropy maximization. As we neglect the jet area, the
entropy reduces at order zero to the area entropy :

Sa=Ais(pr) + (1 — Ar)s(p-1)
with s(p) = —plogp — (1 — p) log(1 — p)

(25)

Thus the zero order problem corresponds to the maximization of the area entropy (25)
with respect to the 3 parameters p1; and A;, under the 2 constraints (23) and (24). A
necessary condition for a solution of this variational problem is the existence of two Lagrange
parameters ag and Cp, associated respectively with the circulation constraint (23) and with
the energy constraint (24), such that the first variations of the total free energy,

C
Fp=-54— R—ZEA + ao%),

vanish. Let us calculate F4 using (23) and (24):

Fa=A1f(p1) + (1= A1) f(p-1),

with f(p) = —s(p) - 2Cy (p_%)Q_Q(COB_ao)( _%)_COQBQ_QOB' (27)

(26)

The vanishing of the variations with respect to p; and p_; gives that f(py1) are local
minima of the free energy f(p). It is easily proven that the function f has two local minima
and one local maximum ( for Cy > 1 and (CyB—y) small enough ) ( see figure 3). The local
maximum is achieved for py corresponding to the value 1)y. It is the reason why it has not
been taken into account in this analysis. In addition, the vanishing of the first variations
with respect to the area A; imposes the free energies f(pi1) in the two subdomains to
be equal. This is like the condition of thermodynamic equilibrium for a chemical species
shared by two coexisting phases.

In the expression (27) of f(p), the entropy term s(p) is symmetric with respect to

p = 5, as well as the quadratic term. Therefore if the linear term in (p — 3) vanishes the



two maxima are equal, with p1; symmetric with respect to % The addition of a linear
term obviously breaks this condition of two equal maxima, so the coefficient of the linear
term must vanish, thus :

ap = C()B. (28)

Since p41 are symmetric with respect to %, we introduce the parameter u by :

pi1 = %(1 +u). (29)
Using (11),(23) we deduce:
P11 = R*(B £ u) (30)

From (22) we state that the two constant stream function (30) have to be of opposite sign,
so that u > |B|. Introducing (29) in the circulation constraint (23), and using (21), we get

Ay = % <1 - g) . (31)

Using these results, the energy (24) becomes

R 2
EZEA:7(U — B?) (32)
This relates the parameter u to the given energy F and asymmetry parameter B. Finally
the condition that f(p+1) are maxima of f leads to :

u = tanh(Cyu), (33)

which determines the 'temperature’ parameter Cy, as represented in figure 4. Therefore all
the quantities are determined from the asymmetry parameter B and from the parameter
u, related to the energy by (32).

In the limit of low energy, u — |B|, when for instance B > 0, then A; goes to zero,
so that ¥_; tends to occupy the whole domain. This state is the most mixed one com-
patible with the constraint of a given value of B (or equivalently a given initial patch area
A = (1—B)/2). In the opposite limit u — 1, we see from (30) that in the two subdomains
q = v/ R? tends to the two initial PV levels a; = 1+ B and a_; = —1+ B. Thus, this state
is an unmixed state. It achieves the maximum possible energy E = %2(1 — B?) under the
constraint of a given patch area. We conclude that the parameter u, or the related 'tem-
perature’ Cy, linked with the difference between the energy and the maximum accessible
energy for the two given initial PV levels, characterizes the mixing of these two PV levels.
We shall call u the segregation parameter, as it quantifies the segregation of the PV level
aq ( or its complementary a_; ) between the two phases.

Let us now study the interface between the subdomains.
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2.3.2 Interior Jets

At the interface between two constant stream function subdomains, a strong gradient of
necessarily occurs, corresponding to a jet along the interface. To study these jets, we come
back to the Gibbs state equation (18). We expect the Lagrange parameters « and C to be
close to the zero order parameters oy and Cj, computed in the previous sub-section, so we
use a = ap and C = Cj to calculate the jet structure. In such a jet, we cannot neglect the
Laplacian term in (18), but a boundary layer type approximation can be used: we neglect
the tangential derivative with respect to the derivative along the coordinate normal to the
interface, (. Accordingly, we neglect the inverse of the curvature radius of the jet with
respect to 1/R.
Thus, from the Gibbs states equation (18), using (28), we deduce the jet equation :

2
—M—I—i:B — tanh (CO (B—%)) (34)

As the stream function depends only on the normal coordinate (, the velocity is tangent to
the interface, forming a jet with a typical width scaling like R. We thus make the change
of variables defined by :

_ Y
leading to the rescaled jet equation:
d2
d_TQQS = —tanh(Co¢) + ¢ (36)

The jet equation (36) is similar to a one dimensional equation of motion for a particle
( with the position ¢ depending on a time 7) under the action of a force —dU/d¢ deriving
from the potential,

vy = et 2 (37)

represented in figure 2(b). In its trajectory the particle energy is conserved :

= (%)2 +U(¢) = Cst (38)

Let ¢; = 9;/R?>— B, i = —1,0, 1, corresponding to the solutions 1; of the algebraic equation
(20). From (30), we have ¢11 = fu. Note that the stationary limit of (36), which must
be reached for lim;_, 1, yields again (33). Moreover, the particle energy conservation (38)
imposes the integrability condition,

U(¢p-1) =U(¢1), (39)

which is indeed satisfied due to the symmetry of the potential U. We note that the Lagrange
parameter determination (28) and the symmetry of the probabilities (29) with respect to
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% could have been deduced from this integrability condition (39) instead of minimizing
the free energy (27) (we shall proceed in this way in section 3 to take into account the
beta-effect).

The jet equation (36) has been numerically integrated. Figure 5 shows a typical stream
function and velocity profile in the jets. Figure 6(a) shows how the jet width depends on
the segregation parameter u. We note that the width of the jet is an increasing function
of the mixing and therefore a decreasing function of the energy Figure 6(b) shows the
dependence in u of the total non-dimensional energy e(u f +°° (d¢/ dT) dt and of the
maximum non dimensional jet velocity (d¢/dT),, .-

As the jet structure (36) does not depend on the coordinate tangent to the jet, we can
define the jet entropy ( respectively energy, free energy ) per unit length S, ( respectively
Ejet, Fyer ). Multiplied by the jet length, these quantities are the first order corrections
to the entropy ( respectively energy, free energy ). Using the change of variables (35), we
calculate the jet entropy per unit length :

—|—oo
Sret = R/ — s(p41)]dr

where s is defined in (25), and p1; are defined in (29). Using the probability equation (17)
and (35) we obtain :

Syer = R / " 15(8)) — 3(dwr)dr (40)

involving the function §(¢) = In(cosh(Cy¢p)) — Co¢p tanh(Cy¢p). Similarly we straightfor-
wardly calculate the potential and kinetic energy per unit length for the jet :

R3 R? d
EJet 2/ (¢ ¢1) EJet 2/ (df)

We use the integral (38) to calculate d¢/dr and conclude :
+00
Bie =R [ "[5(¢) - d(¢u)ldr, (a1)
—00

with §(¢) = _% + ¢?. Due to the symmetry of the jets, the jets provide no
perturbation to the zero-order circulation, so there is no circulation term in the jet free

energy expression : Fje = —Sjet — Co/R?Eje;. Then
+oo ~
Fra =GR [ [h(¢) - ilgur)ldr (42)

with i(9) = —¢(¢ — tanh(Cod)).

Let us study the sign of Fiye;. As ¢ verifies ¢1 = tanh(Cy¢;1) and as ¢(7) is an increasing
function of 7 with lim,_, ;o ¢(7) = ¢1 we conclude that h(¢) — h(¢1) > 0 for any 7 > 0.
Thus Fje > 0. Using the analogy with usual thermodynamics, the ‘surface tension’ is
positive. This favors large ‘bubbles’ which minimize the interfacial length and therefore
the corresponding free energy (27). Our initial hypothesis of well separated domains with
uniform ) is thus supported, as discussed more precisely in next subsection.
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2.3.3 Selection of the sub-domain shape

The above analysis has permitted us to determine the areas of subdomains on which the
stream function 1 takes the constant values 111, but the subdomains shape is still to be
selected. There is an analogy with two phases coexisting in thermodynamic equilibrium, for
instance a gas bubble in a liquid medium, for which a classical thermodynamic argument
explains the spherical shape of the bubble by minimizing its free energy, proportional to
the bubble area. Our system is isolated rather than in a thermal bath, but the jet energy
is small (of order R) with respect to the total energy. Therefore the subdomain interior
behaves like a thermal bath with respect to the jet, so the usual argument on free energy
minimization applies. We shall now show this more precisely by directly maximizing the
total entropy with constraints, taking into account the jet contribution.

The jet with length L has an entropy Sje;:L and energy Ej.;L. Since the total energy
E = E4(C) + LEj¢ is given, the jet has also an indirect influence in the area energy
E 4. This small energy change dE4 results in a corresponding change in the area entropy
684 = —(Co/R?)SE 4, from the condition (2.2.2) of zero first variations. Note that there is
no area change J A since the jet is symmetric and has therefore no influence in the condition
(12) of a given integral of p (the difference in p with the case of two uniform patches with
boundary at the jet center has zero integral). Therefore, adding the direct and indirect
contribution of the jet entropy leads to the total entropy

Co
S = SA(Co) + (ﬁEJet + SJet) L= SA(C()) — FjetL (43)
where S4(C)) is the zero order, area entropy, obtained in the limit of vanishing jet width 3

We deduce from (43) that the maximization of the entropy is achieved by minimizing
the total free energy Fje;L, which we have proved to be positive at the end of previous
sub-section. Thus we conclude that the maximum entropy state minimizes the jet length,
with a given area of the subdomains (31). The subdomains shape will therefore be a circle
or a stripe. More precisely if A; < 1/ the jet forms a circle enclosing the positive constant
stream function domain ( the jet bounds a cyclonic vortex ), if 1/7 < A1 <1 —1/7 two
straight lines jets form a stripe and if A; > 1 — 1/7 the jet form a circle enclosing the
negative constant stream function domain ( the jet bounds anti-cyclonic vortex ).

The different types of solutions can be summarized in a (E,B) diagram : figure 7. The
outer parabola is the maximum energy achievable for a fixed B : E = R?(1 — B%)/2. The
frontier lines between the straight jets and the circular jets corresponds to A; = 1/7 or
A_; = 1/7. Tt has been calculated using (31) and (32) : E = R2B?(2r — 2)/(7 — 2)%. Note
that the maximum accessible energy is in R?, but it has been scaled by the normalization
condition (9) on PV levels, so the real energy is not bounded.

All this analysis assumes that the vortex size is much larger than the jet width A, given
by figure 6. In other words, the area A; or A ; (31) must be larger than (2))2. This is

3This reasoning to obtain the first order entropy can be precised by evaluating explicitly the first order
modification of the Lagrange parameter C ( let say C1 = C — Cp ) due to the jet energy, and the first order
modification of the Lagrange parameter o ( let say a1 = @ — ao ) due to the jet curvature and computing
the first order entropy from its definition (15). We have calculated the first order entropy in this way to
actually obtain (43).
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satisfied on the right side of the dashed line represented in figure 7. The dashed line itself
corresponds to the equality, and the condition of large vortex is clearly not satisfied on its
left side, for low energy. The position of the dashed line depends on the numerical value of
R (it has been here numerically computed for R = 0.03), and it gets closer to the origin as
R — 0. We shall now determine the statistical equilibrium in this case of low energy.

2.3.4 Axisymmetric vortices

We have noted in subsection (2.3.1) that, when for instance B > 0, in the limit of small
energy (E — 0 or equivalently u — |B|, for fixed B and R), the area A ; occupied by 9 1
tends to 1, the whole domain. Therefore, in this limit, the complementary area A; tends to
0 and the vortex becomes smaller than the deformation radius, so we can no more neglect
the curvature radius of the jet.

In this limit u — |B|, as the vortex has a small area with respect to the total domain,
it is not affected by the boundary conditions, so it can be supposed axisymmetric. From
the general Gibbs states equation (18), we deduce the axisymmetric vortex equation :

¢y ldy ¢ C
_d—@_zd_C—i_ﬁ_B_tanh(a_ﬁ) (44)

As R will be a typical scale of the vortex, we make the change of variable,

a Y
C:RT;¢:_6+ﬁa (45)
leading to the rescaled axisymmetric vortex equation :
d’¢ 1d¢ @
—_— = —— — = B + tanh 4
2 rdr +o+ c + tanh(C¢)) (46)

From now on, we shall consider the case B > 0 (the case B < 0 is just the symmetric case
of a negative vortex).

For this equation to describe a localized vortex, we impose lim,_,oodp(r) = ¢_1 =
—a/C +1_1/R?, where 1)_1 is the positive solution of the algebraic equation (20). Since
nearly the whole fluid domain is covered by the asymptotic stream function 1_; outside
the vortex, the condition of zero total circulation (g) = (1)) /R? = 0 imposes that 1) 1 ~ 0
(it is of order R), so that ¢_; = —a/C, and the algebraic equation (20) then leads to:

a = arg tanh(B) (47)

We can thus eliminate « in (46), leading to an equation depending on two parameters,
B and C,

2
dr? rdr C (48)
dp, . _argtanh B
%(r =0)=0and Tli)rgoqﬁ(r) =G
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where the regularity condition at » = 0 has been included. Let us consider, as in section
(2.3.2), the analogy of equation (48) with a one particle motion with ’position’ ¢ and ’time’
T.

The last four terms on the right-hand side of (46) can be written as the derivative
—dU/d¢ of the potential,

0 2
U(ng):] (cosg(C¢))_%+(B_ 2

(represented in figure 8), while the first term can be interpreted as a friction effect. Indeed,
an integration of (48) leads to:

¢, (49)

U6-1) =Vt =) == [ 1 (fl—‘b)Q dr <0 (50)

T T

Thus, in figure 8(a), the hatched area on the right side must be greater than the one on
the left (since (U(¢1) —U(¢—_1)) > U(¢(r =0) = U(¢_1) > 0). It is clear from figure 8 that
this is possible only if ¢y < 0 and «/C < B, or, using (47), C > «a/B = argtanh B/B.
The value C = /B corresponds to the integrability condition (39) when the effect of jet
curvature is neglected. This effect is now taken into account by the departure of C from
this value, which we shall denote AC = C — arg tanh B/B. Then AC > 0 and we expect to
recover the results of section 2.3.2 in the limit AC' — 0. Moreover, we must reach a uniform
stream function at large distance, solution of the algebraic equation(20), so it must have
three solutions. We see in figure 8 that the corresponding AC must not exceed a maximal
value, denoted ACnqz -

We can prove that for any B > 0 and argtanh B/B < C < argtanh B/B + ACaz,
equation (48) has a unique solution. Such solutions have been numerically obtained for
B = 0.75 and 0 < AC < ACj4z- Corresponding stream function profiles are shown in
figure 9.

As AC is decreased from AC),,; to zero, two stages can be seen in figure 9. First the
maximum value for the stream function is increased while the mean width of the vortex
remains of the order of R. In a second stage, when AC goes to zero, as we are closer to
the integrability condition for big vortices (39), ¢ remains longer in the vicinity of ¢; so
the vortex size increases. Note that the energy monotically increases as AC is decreased,
first by an increase in the vortex maximum stream function and then by an increase in size.
Finally the case of a jet with negligible curvature studied in subsection 2.3.2 is reached
when AC — 0.

In conclusion, we have shown that in the limit of small energy, with fixed B and R, the
Gibbs states are approximated by axisymmetric vortices, whose radial structure depends on
the parameter AC, which monotonically decreases from AC),,; to 0 as energy is increased.

2.3.5 The linear approximation for the Gibbs states

The previous discussion of axisymmetric vortices was concerned with the limit of small
energy with fixed B and (small) fixed R. We consider now the limit of small F and B,
i.e. the neighborhood of the origin in the phase diagram of figure 7. Then from (32),
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u — |B| << 1. Figure 6 shows that for |u| << 1, the jet width diverges and therefore the
jet tends to develop on the scale of the whole domain, so the approximation of a localized
jet, or an isolated axisymmetric vortex, falls down.

In this limit of small E' and B, we can however linearize the Gibbs states equation (18),
following the work of Chavanis and Sommeria (1996) for Euler equation. After linearization,
solutions are expressed in terms of the eigenmodes of the Laplacian, and only the first
eigenmodes can be entropy maxima.

These results are unchanged by the linear deformation term 1)/ R2, so the work of Cha-
vanis and Sommeria (1996) directly applies here. With the periodic boundary conditions,
the first eigenmode of the Laplacian, a sine function of one of the coordinates, for instance
1y, is thus selected. This corresponds to the low energy limit of the two jet configuration
shown in figure 7. The next eigenmode, in sin(7z) sin(7y), has the topology of the vortex
states. A competition between these two modes is expected in the neighborhood of the
origin for small £ and B. Note that the range of validity of the linear approximation is
limited to a smaller range of parameters than in the Euler case, and this range of validity
gets smaller and smaller as R — 0. The dominant solution with uniform subdomains and
interfacial jets relies by contrast on the tanh like relation between PV and stream function,
and it is genuinely non-linear.

3 The channel case

We now consider the channel geometry, which represents a zonal band around a given
latitude. It is then natural to introduce a beta-effect, or a mean sublayer zonal flow (
topography ), with the term h(y) in (1). We shall study the two cases of a linear h(y)
( beta effect and/or uniform velocity for the sublayer flow ) or a quadratic h(y). We
shall follow the presentation for the periodic boundary conditions, stressing only the new
features.

3.1 The dynamical system

Let us consider the barotropic QG equations (1, 2 and 3) in a channel D = —%, %]2 with
the velocity v tangent to the boundary for y = :i:% and 1-periodicity in the zonal direction.
Thus we choose for the boundary conditions a constant v, denoted 1), the same on the two
boundaries y = j:%. We note that, due to these conditions, the physical momentum (6) is
equal to zero. It is always possible to satisfy this condition by a change of reference frame
with a zonal velocity V such that it moves with the center of mass of the fluid layer, and a
corresponding change of the deep flow, resulting in an additional beta effect h — h + %.
As in section (2), we need to specify the gage constant in the stream function v, and

we generalize the integral condition (4) as,

W)t =0 G51)

The total mass (1) is then constant in time (but not the boundary value 1 in general).

With these conditions, the Dirichlet problem (2) has a unique solution ¢ for a given PV
field ¢. We note that the scale unit is chosen such that the area of D is equal to 1.
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The integral of any functions of the potential vorticity (8) is still conserved. Let in
particular ' be the global PV, or circulation :

I'={q) = /D — Ay d’r = /aD v.dl (52)

By contrast with the doubly periodic boundary conditions, the circulation I' is not neces-
sarily equal to zero. The expression of the energy in terms of the PV (see equation (7)) is
therefore modified (due to the boundary term in the integration by parts) :

1 2 1 1
B [ |70+ | =3 [ @+ bw)ws - jTvs (53)
2Jp R 2 J/p 2
Due to the invariance under zonal translation of the system, another conserved quantity

exists :

M = / yqd*r (54)
D
This constant moment fixes the ‘center of mass’ latitude for the PV field.

3.2 General form of the Gibbs states

et us consider the statistical mechanics on a two PV level configuration : the initial states
is made of patches with two levels of potential vorticity, ¢ = a; and ¢ = a_1, occupying
respectively the areas A and (1 — A) in D. We keep the normalization (9) and definition
(10) for B. Now, since the circulation I' is non-zero, the area A is related to B by A =
(1 = B)/2+T/2. The boundary term in the expression of the energy (53) leads to an
obvious change in the energy variation (16). Let v be the Lagrange multiplier associated
with the conservation (54) of the momentum M.

Adapting the periodic case computations, we then calculate the probability equation
and the Gibbs state equation :

1 — tanh (oz' — % +7y>

pe : (59
q:—Aiﬁ—F%—h(y):B — tanh (a'—%—i—’yy) (56)

with o = a + C1y/R?. These results generalize (17) and (18) of section 2.

In the case of a Gibbs state depending on z, the Lagrange parameter «y is related to a
zonal propagation of the equilibrium structure. The statistical theory only predicts a set
of equilibria shifted in z, but introducing the result back in the dynamical equation yields
the propagation. Indeed the Gibbs state equation (56) is of the form ¢ = f(1,y), which
can be inverted (as it is monotonous in 3, see Robert and Sommeria (1991)) to yield:

¥ =glo) + B (57)
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where ¢ is a function of the potential vorticity. From this relation we calculate the velocity
using (3) : v=R?Zx —g¢'(¢)2 A Vq. As PV is advected ( equation (1) ) we obtain :
09  pay 07 _

— +R

o Voo ! (58)

Thus the PV field is invariant in a frame propagating with the zonal speed Vg, = RQ%.

3.3 The limit of small Rossby deformation radius.

In this sub-section we propose to analyze the Gibbs state equation (56) in the limit of small
deformation radius ( R << 1 ). The main difference with the periodic case resides in the
latudinally depending topography h(y), resulting in two effects. Firstly the subdomains of
uniform PV are no more strictly uniform, and contain a weak zonal flow. Secondly the
jet curvature is no longer constant in general, but depends on the local topography. Using
the same boundary layer approximation as in the periodic case, the Laplacian term in the
Gibbs state equation (56) will be neglected, except possibly in an interior jet and in the
vicinity of the boundaries y = +1 ( boundary jets ).
Outside such jets, (56) reduces to an algebraic equation, like previously :

% — h(y) = B — tanh (a' — C% + ')/y) . (59)
This is like (20), replacing the constants B by B + h(y) and a by o + vy. The three
solutions can be still visualized by figure 8, but the position of the straight line with respect
to the tanh curve now depends on y, due to the terms h(y) and yy. We assume that this
dependence is linear in y or varies on scales much larger than R so that the Laplacian term
remains indeed negligible. The zero order Lagrange parameters o/, C, v, involved in this
expression, can be obtained by directly maximizing the entropy by the same method as in
section (2.3.1). A relation between the jet curvature and topography is then obtained at
first order. This approach is developed in appendix (A).

However it is more simple to proceed differently : we start from the jet equation and
show that its integrability condition provides the relation between the jet curvature and
topography. To catch this effect, we take into account the radius of curvature of the jet,
denoted r, like in section 2.3.4, but state that r is constant across the jet, assumed thin.
From the Gibbs state equation (56), using the boundary layer approximation, we thus
obtain the jet equation in term of the transverse coordinate ( :

d%y 1dy @

_dCQ e;dc +ﬁ_ (y) =B — tanh(o/—C%-i-’)’y)- (60)

We have introduced e = £1 to account for the direction of curvature (keeping r > 0). We
define € = 1 (respectively -1) if the curvature of the jet is such that ¢; ( respectively ¢_1 )
is in the inner part of the jet. Note that, in the case of a vortex, as in our notations v is
proportional to the opposite of the pressure the case e =1 ( resp ¢ = —1 ) corresponds to
a cyclone ( resp an anticyclone ).

The algebraic equation (59) depends on three Lagrange parameters, instead of two for
the periodic case of previous section, but we have three additional constraints, the condition
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that 7 has the same value at the two boundaries, the circulation constraint (52) and the
momentum constraint (54). This will be achieved in general by boundary jets. Let us first
study the interior jets.
To study the interior jet, we make the change of variables :
oty

¢
> . + = 61
R C R? (61)
We assume the variations of y in the jet width are negligible ( R << scale of variation of
h(y) ), so that y is treated as a constant. Then we obtain the jet equation :

T

b= -

d’¢  Rd¢ o +yy
@ e T o
with ¢ — ¢11 for 7 — F00, where again ¢ corresponds to the solutions of the algebraic

equation (59), rescaled as

= B + h(y) + tanh(C¢) (62)

!

b+ % B+ % — h(y) = tanh(C¢). (63)

Let us consider, as in section (2.3.4), the analogy of the equation (62) with the motion
equation of a particle in the potential :

n cos 2 o
o) = 2RO (Banw) - 5 ), (64

Like in section 2.3.4., integration of (62) from —oo to 400 imposes the integrability condition

R [T /d é 2
U -Uis) = [ () ar (65)
The second term of the Lh.s. of equation (62) can be interpreted as a friction term: if e = 1,
the ’particle’ starting from rest at ¢; can reach a state of rest at ¢_; only if the difference
of ’potential’ corresponds to the energy loss (65) by friction (if e = —1 the same is true in
the reversed direction).

As in the periodic case we have made the thin jet assumption R << r, so that the
friction term ( rhs of (65)) is a correction of order R/r : U(¢1) — U(¢p—-1) = O(R/r). We
first neglect it to get the zero order results, so we write U(¢) = U(¢—1). Therefore the
two hatched areas in figure 8 must be equal, like in figure 2. Due to the symmetry of
the tanh function, this clearly implies that the central solution of the rescaled algebraic
equation (63) must be ¢¢ = 0, so that of/Cy — B + yy/Co — h(y) = 0 (denoting the zero
order Lagrange parameters by the index 0). This is possible at different latitudes y only if
vy/Co — h(y) = 0, or is of order R (so that it can be neglected at zero order). Then the
integrability condition becomes

ay = CoB. (66)

Furthermore ¢ are symmetric with respect to 0, of the form ¢+; = +u, determined by
equation (33), like in section 2.3. This parameter u is again related to the energy by (32).
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Finally, the terms yy/Cy — h(y) = 0 and the curvature term disappears in the jet equation
(62), which therefore reduces to (36), discussed in section 2.3.2.

The first order solution outside the jet is obtained as a small correction d¢4; to the
zero order solutions +u, with also a small correction «; and C; to the parameters «jf/Cy
and C(),

! !

¢:t1::i:u+(5¢j;1(y),%:%4—&1,6':00-1—6'1 (67)
0

From (65), we deduce that U(¢1) — U(¢—1) has the sign of e. As may be seen in figure

2, when «; is positive, the line ¢ + %’ moves upward, so that U(¢1) < U(¢—_1). Thus oy

has the sign opposite to the sign of U(¢1) — U(¢—1) ; and we conclude that —eq; is always

positive. Introducing this expansion (67) in the algebraic equation (63), using the zero

order results (33) and (66), we obtain :

—a1Cy + C1[B £ Cou(l — u?)] — vy + Coh(y)
1—Co(1 —u2)

Codp+1(y) = (68)

Coming back to the stream function 1, using (61), we deduce the corresponding velocity

v by differentiation with respect to y. This velocity outside the jet is zonal, along the unit
vector X, and verifies:

v R ) — (1 - u?)
B 1—00(1—’!1,2)

(69)

It is therefore a constant plus a term proportional to the local beta-effect %. Notice that

the corresponding shear Z—;’ is stronger than the deep shear dg /dy? = R2?d?h/dy? by the
factor [1 — Co(1 — u2)]~! > 1. The integrability condition (65) now provides the curvature

of the jet. We can approximate the r.h.s. of this relation, of order R, by the zero order jet

profile (36), denoting :
_ L[t dgy’

( see figure 6(b) ). The Lh.s. can be expanded, using (67). We first expand the ex-
pression (64) of the potential, U(¢) = Uy(¢) + C1/Co [¢ tanh(Cy¢) — log cosh(Cy¢)/Co] +
[h(y) —vy/Co — a1] ¢. We can approximate ¢ ~ +u in the correction terms, and ex-
pand Uy(¢) = Up(Fu) + dUy/dé(£u). The zero order equilibrium condition imposes that
dUy/d¢(£u) = 0, so that (65) becomes

cu (h(y) -3 a1> - e(u)% (71)

This equation (71), expresses the dependence in latitude y of the curvature radius r of the
curve on which the jet is centered, thus defining the shape of the sub-domain interface as
a function of the topography.
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Without topography and for v = 0, we get a constant jet curvature. The same result
was obtained in sub-section 2.3.3 by a different argument of free energy minimization. The
parameter u, related to the energy by (32) and to Cy by (33), quantifies the strength of
the jet. By contrast, the vortex area is determined by the constraint on PV patch area
(parameter B), but it is also related to the jet curvature, proportional by (71) to the small
shift a; in chemical potential and temperature. Likewise the equilibrium temperature at a
liquid-gas interface slightly depends on the bubble curvature, due to capillary effects.

As explained in the end of section (3.2) the parameter + is linked to the zonal propaga-
tion speed of the structure. The term 7y in (71), combined with a usual beta effect (linear
topography term h(y)), leads to an oscillation with latitude y of the jet curvature 1/r, i.e.
a meandering jet. Another possibility is an exact compensation of the beta-effect by the vy
term, leading to a propagating circular vortex, and the selection between these two alter-
natives is discussed in next sub-section. An oval shaped, zonally elongated vortex, such as
on Jupiter, is obtained when this compensation occurs, but with an additional quadratic
topography h(y). Indeed, to get a zonally elongated vortex, supposed latitudinally centered
in zero, the radius of curvature of the jet must decrease for y > 0 and increase for y < 0. As
a consequence, we deduce from (71) that the topography must be extremal at the latitude
on which the vortex is centered (it actually admits a maximum in the cyclonic case and a
minimum in the anticyclonic case ). Moreover, we deduce from (72) that the surrounding
flow must have a zero velocity at the latitude on which the vortex is centered and that
the shear is cyclonic when the vortex is a cyclone and anticyclonic when the vortex is an
anticyclone. More generally, the curvature can be related to the zonal velocity outside the
jet, eliminating the topography between (72) and (71),

of v ee(u) d (R\) .

=R (& s ()* "

Let us recall our approximations. Writing down the jet equation (60), when making

the boundary layer approximation, we have assumed R << r. We also assumed that in

the jet width the topography can be considered as a constant. If 1/4/a is a typical length

scale for the topography variation this gives aR? << 1. Moreover we have assumed that

the effective topography effect h(y) —yy/Cy remains small along the jet. If Ly denotes the

jet extension ( for example a vortex latitudinal size ) this approximation is valid as long as
al} << 1.

3.3.1 Beta effect or linear topography.

Let h(y) = —By in the following of this section. 8 may mimic the beta-effect or a uniform
velocity in the sublayer ( but we will refer it as the beta-effect ).

A first class of equilibrium states corresponds to a single solution v(y) of the algebraic
equation (59). This determines a smooth zonal flow, with possibly intense jets at the
boundaries y = :i:%. The solution depends on the unknown parameters C, o/ and v, which
are indirectly determined by the energy E, momentum M, and the condition (1) = 0. The
limit of small energy corresponds to C' — oo, for which we can neglect the term 1/R? on
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the left hand side of (59), which then reduces to 1 = R?/C[argtanh(By — B) + vy + o/].
This corresponds indeed to arbitrarily small values of 9 (small energy) as C — oc.

When the particular energy value E = R2(3%/24 is reached, a uniform PV is possible,
with /R? = —By. Then PV mixing is complete, which clearly maximizes the mixing
entropy. In this case, v = —CJ, so that yy cancels the term C%/R? in (59). Physically,
the uniform westward zonal velocity,

vy = —R?B (73)

tilts the free surface with uniform slope by the geostrophic balance, and the corresponding
topographic beta-effect exactly balances the imposed beta-effect.
For a still higher energy, a first possibility is that again

y=-Cp (74)

so that the beta effect exactly balanced by the vy term in the jet equation of previous
subsection. This cancellation is directly obtained in the general Gibbs state equations (55)
and (56). Indeed the modified stream function 1’ = 1) + R?By satisfies the same equations
as in the doubly-periodic case. Therefore in the limit of small R, the Gibbs states are made
of subdomains with uniform 7’ (uniform PV), separated by straight zonal jets or circular
vortices.

However jets or a vortex persist in this sea of uniform PV due to the constraint of energy
conservation. The vortex moves westward at the same velocity v,,, according to (58) , so
they are just entrained by the background flow, without relative propagation (this can be
physically understood by the cancellation of the beta-effect).

The selection of the subdomain areas and PV values is given like in the periodic case
of section 2, just replacing 9 by 1’ = 1 — BR?y. Therefore we get again probabilities
p+1 = (1 £ u) in the two subdomains with respective areas Ay given by (31), and stream
function,

Y11 = R*(B +u) — R?By (75)

From this relation, we can calculate the energy F = %(wglA_l +4?A1)/R2, so the energy
condition (32) then becomes

R2 ,82

E="—"(?-B?
(u ) + 24

2

(76)

Therefore these solutions with canceled beta effect can be obtained only beyond a minimum
energy R?/?/24, corresponding to the potential energy of the surface tilting associated with
the drift velocity v,,. Then the excess energy will control the organization in two uniform
PV areas.

The shape of these subdomains can be obtained again by minimization of the jet free
energy. However, unlike in the periodic case, jets occur at the boundaries y = j:% as well
as at subdomain interfaces. Indeed, such boundary jets are in general necessary to satisfy
(v) = 0, or equivalently that the stream function v, must be equal at the two boundaries
Yy = j:%. In particular, the solutions (75) necessarily involve a stream function difference
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(or mass flux) —R?3 associated with the drift velocity vy,. This stream function difference
must be compensated by boundary eastward jets with opposite total mass flux. We show in
Appendix B that for two PV levels with similar initial areas a single eastward jet, separating
two regions of uniform PV and weak westward drift, is the selected state (instead of two
opposite jets in the periodic case). In the case of a strong PV level with a small initial area,
the system organizes in a circular vortex like in the periodic case. In the limit u — |B],
as one of the areas A1y goes to zero, the jet approximation falls down. The corresponding
analysis of axisymmetric vortices and of the linear approximation for the Gibbs states, as
performed in section 2, is still valid here.

Up to now we have ignored the constraint of the momentum M (54). This constraint
imposes the latitude yy of the equilibrium structure ( a circular patch or a zonal band with
uniform PV ). For instance in the case B > 0, for which A; > A_; (as seen from (31)), we
define yo = [, yd?r/A;. Then

M = / yqd’r = / y(B + u)d’r —l—/ y(B — u)d’r = 2uyoA; (77)
D Aq A_q

We thus deduce the latitudinal position of the equilibrium structure :

M
N 2UA1

Yo (78)

In the case of a single eastward jet, the subdomain position has been already fixed by
the area (yo = A1/2). Then the only possibility to satisfy a moment M different from uA?
is that the jet oscillates in latitude with some amplitude A (then M — uA? ~ uA? ). This
is possible if v # —BC according to (71), which becomes

L (79)

r
where b = —(u(y + 8C))/(2Ce(u)R) < 0 and yo = «1/b. This equation clearly leads to a
jet oscillating around the mean latitude yy ( as the curvature r is positive for y < yo and
negative for y > yg ; recall that the curvature is by definition positive when positive PV
is in the inner part of the jet ). Note that this oscillation propagates eastward at speed
R?Z ( given by (58) ). Since b < 0, & > —p3, this speed is eastward with respect to the
background drift vy, (73).

3.3.2 Quadratic sublayer topography

As explained in section (3.3), in the limit of small Rossby deformation radius R, the Gibbs
state equation has solutions consisting of a vortex bounded by a strong jet on the scale of
R. This corresponds to the case of an initial patch with strong PV and small area ( the
asymmetry parameter B is sufficiently large ) with an energy sufficiently strong to get a
structure of closed jet ( see figure 7). In the presence of a moderate topography h(y), this
internal jet is no more circular but its radius of curvature r << R depends on y according
to (71). We have seen in previous subsection that a linear topography h(y) = —pSy leads to
jets oscillating ( or to circular jets when v = —Cf ). We shall discuss here how a quadratic
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term in h(y) modifies the shape of closed jets. We therefore assume a topography h(y) of
the form :

h(y) = ay® + by (80)

This corresponds to a uniform deep zonal shear, with velocity vq = R%d(h — By)/dy =
2aR%*y+b— 3. We focus our attention on vortex solutions, seeking close curves solutions of
equation (71). The vortices will be typically oval shaped as the ones seen on Jupiter. We
then study how this shape ( for instance the ratio of the great axis of the oval to the small
one ) depends on the topography ( sublayer flow ) and on the jet parameters. Application
of these results to Great Red Spot observations will be discussed in next section.

To make equation (71) more explicit, let s be a curvilinear parameterization of our
curve, T(s) the tangent unit vector to the curve and 0(s) the angular function of the curve
defined by T(s) = (cos6(s),sinf(s)) for any s. Then the radius of curvature r of the curve
is linked to 8(s) by 1/r = df/ds and (71) yields the differential equations :

9 2
4B~ _qy?41 (1)
% = sin§(S)
dX
— 2
and 73 cos 6(S) (82)

with ¢/ X =z, Y =y — yy, ¢S = s ; where d = (e?(u)R?a)/(ec}u?), yo = e(u)R(Cob —
7v)/(ea1Cou). The space coordinates X, Y and S are here non dimensional and have been
obtained by dividing the real coordinates by the scale ¢ = e(u)R/(eaiu). Note that as
explained in section (3.3) ea; > 0, so that ¢/ > 0. We further assume that a > 0, so that
d>0.

We first note that the two variables 8 and Y are independent of X. We will therefore
consider the system formed by the two first differential equations (81). It is easily verified
that this system is Hamiltonian, with # and Y the two conjugate variables and

Y3
HEcose—d?+Y (83)

the Hamiltonian. Thus H is constant on the solution curves. We look for vortex solutions
of our problem (81 and 82). Thus we require € to be a monotonic function of S. Moreover
the curves must close, that is X and Y must be periodic. For symmetry reasons, it is easily
verified that the solutions of (82,81) with initial conditions #(0) = 5, Y(0) =0 ( H =0)
and some X (0) are periodic. We prove in appendix (C) that these initial conditions are the
only ones leading to closed curves. We also prove that the solutions of (81 and 82) when
d> dpes = % does not define # as a monotonic function of S. They contain double points
and thus are not possible solution for our problem. Once given these initial conditions, we
can easily prove that the structure has both a zonal symmetry axis and a latitudinal one
passing through yo.

To study the shape of the jets, we numerically solve equations (81,82) with initial
conditions : 6(0) = 7, y(0) = 0. We obtain closed curves with oval shapes, as shown in
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figure 10. In figure 11 we have represented the width, the length and the aspect ratio of
these vortices versus the parameter d. When d tends to %, the vortex width tends to a
maximum value : Wy = % whereas the length diverges. In this limit, the vortices are
thus very elongated.

4 Application to the Jupiter’s Great Red Spot and Oval BC

In previous sections, we have found maximum entropy states with the following properties

e The fluid domain is partitioned in two subdomains with weak velocity, separated by
jets whose width scales as the Rossby deformation radius. A strong initial PV level
occupying a small area mixes in a subdomain with the form of a vortex bounded by
an annular jet.

e In the presence of a parabolic topography h(y) (due to a sublayer zonal flow with
uniform shear), outside the jet, exists a zonal flow (69) with uniform shear. The
velocity at the latitude of the vortex center vanishes in the reference frame of the
vortex.

e The curvature of the jet is linked to the topography by (71). For the parabolic
topography, solutions are oval shaped vortices, symmetric in latitude and longitude.

These properties of our solutions are the main qualitative properties of the Jovian
vortices. Moreover, would this description be correct, it would predict that the topography
has an extremum at the center of the vortex.

Dowling and Ingersoll (1989) derive the bottom topography, using the GRS and Oval
BC velocity fields obtained from cloud motion. They analyze the results in the frame of a
1-1/2 shallow water model (SW), with an active shallow layer floating on a much deeper
layer. This deep layer is in steady zonal motion which acts like a topography hs. The
SW topography hg is defined by fvg = —1/R;(A\)0(ghz2)/0\ where vy is the deep layer flow
and R;()\) is the latitudinal radius of curvature of Jupiter. Dowling and Ingersoll (1989)
have deduced this SW topography hs by assuming the conservation of the shallow water
potential vorticity (w+ f)/h1 ( h1 is the upper layer thickness ) along the streamlines of the
observed steady vortex flow. The vorticity w is deduced from the measured velocity field,
and the planetary vorticity f is known, so that the variation of i along each streamline is
deduced. The pressure field is then obtained from the Bernoulli relation and the hydrostatic
balance, leading to the field hy. The result depends on the radius of deformation of Rossby (
R* = ghy/ fo, where hy is the mean upper layer height and f the mean Coriolis parameter ),
a free parameter in this analysis. Three test values have been chosen, R} = 1700, R; = 2200
and R3 = 2600 km for the GRS and R} = 1100, R; = 1600 and R3 = 2000 km for the Oval
BC ( we denote by a star superscript the physical parameters, to distinguish them from the
non-dimensional quantities used earlier ). The height ho under each vortex has been found
to depend only on latitude, and has been fitted as a quartic the planetographic latitude A:

ghy = Ag + A1\ + A2 + A3)3 + A% (84)
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The values obtained for the coefficients A; in the vortex reference frame, for each of the
vortices and for each of the values R}, R, R are reported in table 1 of Dowling and Ingersoll
(1989).

Our model is the QG limit of this shallow water system. Starting from (SW) equations,
we can derive the QG equations (1) by assuming the geostrophic balance and weak free
surface deformation in comparison with the mean layer thickness hy. The validity of this
QG approximation has been discussed by Dowling and Ingersoll (1989) and was found
reasonably good as a first approach, although not accurate. We furthermore use the beta-
plane approximation, linearizing the planetary vorticity around a reference latitude Ay (
Ao is taken to be —23° for the GRS and —33.5° for the Oval BC). Therefore we write
f = fo+ By, with fo = 2Qsin)g and 8 = 2Qcos \g/r,(Xo) ( 2 is the planetary angular
speed of rotation : 27/2 =9 h 55 mn 29.7 s and r,()\g) is the zonal planetary radius, which
slightly depends on the latitude Ao, due to the ellipsoidal planetary shape, see formula (4)
of Dowling and Ingersoll (1989) ) . We then obtain the QG potential vorticity (2) with the
QG topography h*(y*) linked to the SW topography (84) by:

W) = s + O (55)

We have computed the QG topography (85) using results of Dowling and Ingersoll
(1989) for the SW topography (84) for the three values of the Rossby deformation radius
1, R5 and R3, for the GRS and for the Oval BC. The result in figure 12 shows that, for
both the GRS and the Oval BC, the QG topography has an extremum at a latitude which
is nearly the center of the vortex. As far as we know, this fact has not been noticed in the
literature. This result is in agreement with the predictions of our model. We note moreover
that the two extrema of the topography are minima, thus our model predicts anticyclonic
shears around the GRS and the Oval BC, as observed. Figure 85 shows a comparison of
the QG topography derived from Dowling results with a quadratic approximation, in the
case R* = R3 = 2200 km. This shows that the quadratic approximation h*(y*) = a*y*? is
a good approximation on the latitudinal extension of the GRS. This also provides values
of the parameter a* (80) : a* =9.210 13, a* =72 10 '3 and ¢* = 6.4 10 ¥ km 2 s~ ! for
R* = R}, R} and R respectively.

Let us deduce the corresponding non-dimensional parameters. First, the PV levels
were normalized by (9), so our time unit 7* will depend on the real PV level difference
: (af — a*;)/2 = 5. The other parameters are the Rossby deformation radius R*, the
segregation parameter u and the topography coefficient a* (80).

We will consider R* as a free parameter and use the following data from GRS observation

e The jet width [*. Let us define the width of the jet [* as the width on which the
jet velocity is greater than one half of the maximum velocity. We use velocity mea-
surement within the GRS of Mitchell et al (1981). They have used small clouds as
tracers to measure velocities, and have observed that the velocity is nearly tangential
to ellipses. Using a grid of concentric ellipses of constant eccentricity, the velocities
have been plotted with respect to the semi-major axe A of the ellipse on which the
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measurement point lies. Results have been fitted by a quartic in A and may be seen
in figure 13. Using these results, assuming that the velocity profile in the jet is sym-
metric with respect to its maximum, we choose as jet width I* = 5.6 102 km. In our
model, the normalized jet width [ = I*/R* can be computed from the jet equation
(34) as shown in figure 6(a). This determines the parameter u from the parameter
R*. The corresponding theoretical jet velocity can be compared to observations in
figure 13, for R* = 2500 km (the shape is not very sensitive to this parameter). The
computed results for u versus R* is shown in figure 15.

e The maximum jet velocity v%,,,. We will use the value v%,,, = 110 ms~! ( Mitchell
et al 1981). Using (35) and giving real dimension gives :

. _ Rde

maz = T gr

v — |maz (1) (86)

d¢/dT|maez (u) has been obtained by solving the non-dimensional jet equation (34),
and is shown in figure 6(b). This now determine 7 from R*.

e The velocity shear surrounding the vortex. The ambient zonal shear measured at the
latitude of the GRS from Limaye et al. (1986) is o* = 1.5¢ — 5 s~ !. Using (69) in its
dimensional form, for a quadratic topography gives :

* o* O()
= 1— 87
2R* ( coshQ(C’ou)) (87)

This permits to compute a* as a function of R* (since u has been determined, as well
as C, related to u by (33) ).

s}

The computed results for a* and T* versus R* are shown in figure 14. This shows that
our determination of the topography is in agreement with the QG topography deduced
from the shallow water model of Dowling and Ingersoll (1989) within a factor of two. The
corresponding PV level difference aT — a*; is comparable to the planetary vorticity fo at
the latitude of the center of the GRS when R ~ 2400 km. For this value of R*, figure 15
shows that u is very close to 1. Furthermore, as the GRS area is very small compared to
the global area of a latitudinal band centered around the GRS, the non dimensional area
occupied by the positive PV is very close to 1. Using this area expression (31) we conclude
that B is very close to 1. Using the definition of B (10), we conclude that af ~ 0 and
a*, ~ —fo. As discussed below a forcing mechanism by convective plumes incoming from
the sublayer is expected to yield this result.

e2(u) a*R
eaju? aj—

The shape of the jet depends on the parameter d =

c* = % We can determine these two parameters from the prev1ous1y determined values

of a*, T* and u, and from the observed half width of the Great Red Spot : y3,,, = 4900km.
This permits to calculate ¢’*, a1 and d versus R*. Figure 16 show d versus R*. The dot line
represents the critical value d = % beside which a vortex solution exists. The ratio of the
length to the width of the GRS is approximatively 2, which would correspond to d = 0.441
( figure 11 ) ; this is very close to the critical value . From figure 16, our model predicts

and on the length scale
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that the Rossby deformation radius is R* = 1800 km. Figure 10 shows the actual shape of
the vortex for d = 0.441.

However, in the jet shape analyze, to obtain (81,82) we have supposed a*L’{,z << (af —
a* 1)/2 where Lj, is the maximal latitudinal extension of the vortex ( the topography part
of the PV remains negligible with respect to the PV ). For the value of R* calculated above,
we find a*y}5,,,> = 3.9107 55~ whereas a — a* | = 1.3107%s~1. We are thus at the limit of
validity of our assumption.

Now we can reverse the procedure and propose a predictive model of the Great Red
Spot. Assume a steady deep zonal flow with uniform shear, vy = 2a* R*?(y* — y}), vanishing
at an origin y; depending on our reference frame (which we shall choose in order to cancel
the vortex drift). This flow is presumably generated by deep thermal convection but we
are concerned here only with the dynamics of the upper layer, assumed stably stratified
(due to cooling by radiative effects). We model this stratified upper layer as a shallow layer
with radius of deformation R* ~ 2400 km. This layer is submitted to a total beta effect or
‘topography’ h(y) = ay® — (8 + 2ayr)y.

Assume that PV spots with value — f, occupying small area proportion are randomly
generated in this layer. This would be the result of intense incoming thermal plumes, as
recently discussed by Ingersoll et al (2000), : conservation of the absolute angular momen-
tum during the radial expansion leads to strong decrease of the local absolute vorticity,
which comes close to zero. This means that in the planetary reference frame, a local vor-
ticity patch with value —fjy is created. The opposite vorticity is globally created by the
subducting flow, but it is close to 0 due the much larger area. This gives our time unit
(2fo)"! and B=1 - 2A.

The outcome of random PV mixing with the constraint of the conservation laws is then
a zonal velocity (69) in the observed upper layer and a vortex with area (31) with velocity
profile shown by the dot curve in fig 14. The vortex moves with the upper velocity at y = 0,
it drifts with respect to the deep layer at velocity (73) so that the beta effect is suppressed.
The shape is an oval symmetric in x and y, with aspect ratio computed from the shape
parameter d ( figure 11 ).

Note that a slightly larger area , or stronger energy could lead to very elongated vortices.
Then argument of free energy minimization show that this would lead to a single eastward
zonal jet. This may explain the jet observed in the Northern hemisphere of Jupiter at the
same latitude as the GRS.

For smaller Jovian vortices such as the Oval BC, the size of the vortices is comparable
with the Rossby deformation radius. Thus such vortices may be described as done for
axisymmetric vortices ( section 2.3.4 ). This explain why such vortices do not have a
quiescent core as the GRS.

Let us describe dark brown cyclonic spots ( 'Barges’ ) at 14 N on Jupiter. Their first
interest is to stress that cyclonic vortices embedded in cyclonic shear exist on Jupiter. Let
us go further. The greater of these barges is studied from Voyager observations by Hatzes
at al (1981). The meridional velocities measured at the latitude of the center of the barge
( Hatzes et al (1981), figure 7 ) show a boundary jet organization around the perimeter of
the barge ( vyar = 25 ms™ ! ), see figure 1(b). The surrounding shear is such that the shear
velocity at the maximum latitude of the barge is the same as the maximum jet velocity.
Thus our approximation aL%, << 1 is not good. We can however explain the elongated
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shape, similar to figure 10(b) obtained for d very close to dpqz-

We conclude that the Gibbs state equation (56) derived from maximization of entropy of
the QG model (1) is in the limit of small Rossby deformation radius a model that explains
the main qualitative features of Jovian vortices. The statistical mechanics itself explains
the organization of a turbulent flow in coherent structures.

5 Conclusion

Our first result is to provide a general explanation for the emergence and robustness of
intense jets in atmospheric or oceanic turbulent flows. In the absence of topography or
beta-effect turbulence mixes potential vorticity in subdomains, and such jets occur at the
interface of these subdomains, with a width of the order of the deformation radius. From
a thermodynamic point of view, this is like coexistence of two phases. Indeed the vortex
interaction becomes short ranged in the limit of small deformation radius, and statistical
mechanics leads to a thermodynamic equilibrium between two ’phases’, with different con-
centrations of the 2 Potential Vorticity levels. Another approach leading to the same result
is to consider the general partial differential equation (18) characterizing the equilibrium
states. This equation reduces to the algebraic equation (20) in the limit of small deforma-
tion radius. The two uniform subdomains correspond to two solutions 1_; and 1 of this
equation. At the interface of these subdomains, the general pde reduces to the equation
(36), whose solution determines the jet profile. In addition, a solvability condition of this
equation confirms the relation of equilibrium between the two ’phases’, which was obtained
in the thermodynamic approach.

All our results have been obtained for a 2 potential vorticity level case, but cases with
more levels would lead to qualitatively similar results, although the quantitative analysis
would be more involved due to the additional parameters.

In the presence of beta effect or topography, for low energy, purely zonal flows with
gentle variation in latitude are obtained. A critical energy is the energy of the state where
the zonal flow just compensates the beta-effect. For this state the PV is strictly uniform in
the whole domain. For greater energy, two well mixed domain separated by jets appears,
as in the without topography case. However the PV is no more strictly uniform in the well
mixed subdomain : a zonal flow exists. Also the jet curvature depends on latitude. With
ordinary beta effect this yields an intense eastward jet, purely zonal or wavy depending on
the constraint on the momentum M. With the quadratic beta-effect generated by a deep
shear, this can produce an oval shaped vortex. This vortex then drift so as to compensate
the beta-effect. In other words, in the vortex reference frame the equivalent topography
h(y) admits an extremum, and this is in agreement with the data of Dowling and Ingersoll
(1989).

Our quasi analytical approach therefore explains most of the basic features of the Great
Red Spot and other Jovian vortices. It can be developed into a more accurate predictive
model along the following lines. First the approximation R << r of thin jet is convenient
for a qualitative understanding but is only marginally satisfied. However this limitation
can be overcomed by numerical determination of the equilibrium state equation (18) by
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methods like used by Turkington and Whitaker (1995) or using relaxation equations toward
the maximum entropy state as described by Robert et Sommeria (1992). Furthermore,
extension to the more general shallow water model is desirable, as the Rossby number (
~ (.36 where it a maximal ) is not very small. This can be formally achieved ( in preparation
)

Finally the results rely on an assumption of ergodicity, or complete potential vorticity
mixing consistent with the constraints on the conservation laws. Various numerical and
laboratory experiments in the case of Euler equations ( see e.g. Brands et al. 1989 )
indicate that mixing may not be global but be restricted to active regions. Organization
into local vortices, rather that at the scale of the whole domain, is more likely with a
small radius of deformation, as vortex interactions leading to coalescence are then screened.
This is observed for instance in the numerical computations of Kukharkin Orszag and
Yakhot (1995). By contrast, the zonal shear here promote vortex encounters ( as observed
in Voyager data ) and we expect a much better relaxation toward the global statistical
equilibrium, which involves always a single vortex in a given shear zone ( as it minimizes
the interfacial free energy ).
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A Determination of the Gibbs state by direct entropy max-
imization, in the presence of a topography ( beta-effect )

In section (3.3), we studied the limit of small Rossby deformation radius in the Gibbs state
equation (56) by considering the jet equation (60) and its integrability condition (65). We
deduced that the Gibbs states are composed of subdomains in which 1 verifies the algebraic
equation (59) separated by an interfacial jet whose curvature verifies (71). The aim of this
annex is to prove that these results can be obtained by directly maximizing the entropy,
adapting the method used in section (2.3.1).

Let us make the following assumptions :

1. In the limit of small Rossby deformation radius, the probability p of finding the PV
level a1 takes two values p1i1(y), depending only on y. We are looking for vortex
solutions. The vortex shape is described by the length [(y) on which the probability
p takes the value p_1(y) ( See figure 17 ).

2. The two subdomains where p take the two values p11(y) are separated by a jet. The
probabilities p11(y) are supposed to be close to the their values without topography
p+1 = *u, such that the free energy per unit length of the jet is well approximated
by the one calculated without topography (42). If Ly denotes the vortex size, 1/+1/a
a typical length on which topography varies, we will show this approximation to be
valid as soon as aL? << 1.
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3. The boundary conditions can be relaxed ; that is no boundary term appears in the
variation of the free energy at the order considered here. ( See discussion concerning
boundary jets in section (3.3).

Given these hypothesis, the Gibbs states is described by the 3 functions pi(y) and
l(y). We will determine them by maximizing the entropy S (15) under the 3 constraints
: energy (53), mass conservation (51) and momentum (54). A necessary condition for a
solution to this variational problem is the existence of 3 Lagrange parameters C,a and vy
such that the first variations of the free energy :

_ Co (1)

=-5- ﬁE + Ot()ﬁ
vanish. Using (15),(53),(51) and (54) ; (2) and (11) and the above hypothesis ( see figure
17 ), a direct calculation shows that the free energy (88) is up to a constant :

+yM (88)

Ymin

F= / T @) 9) (1 — 1) + F(pa(v),9)i)] dy + / (). )dy +
Y

min -

o=

f(1(y),y)dy + LFet(u)

Ymazx

2
with f(p,3) = (plogp + (1~ p)log(1 ~p)) 200 (p— 3 ) ~2(CaB - aw) (- 3 ) -

2(Coh(y) —y) ( - 1)

2
(89)

and where L is the jet length, Fye.(u) is the jet free energy per unit length (42), calculated
without topography.

Considering first variations of the free energy (89) under variations of pi(y) ( resp p—i(y) )
proves that 0f/0p(p1(y),y) = 0 and that 9f/9p(p-1(y),y) = 0. A direct calculation shows
that :

1 1
2 (Pil - 5) = tanh (26‘0 (pﬂ - 5) + Coh(y) — vy + CoB — a) (90)

Using (11) and (2) ; recalling that we neglect the Laplacian term, a straight calculation
shows that (90) is equivalent to the algebraic equation (59).

Let us consider now first variations of the free energy (89) under small variations 6(y)
of I(y). Using that the length of the jet is given by L = ZIyﬁ”i:‘ 1+ 3 (dl/dy)*dy, a

straightforward calculation shows that 6L = — fyﬁ? dl(y)/rdy where r is the radius of
curvature of the jet. We thus deduce from first variations of the free energy (89) :

Fiei(u

Fol®) _ o1 t),) ~ 10-10).9) o)
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Hypothesis (2) : aL? << 1 permitted us to consider Fje(u) as independent of y. In
accordance with this hypothesis we evaluate f(p1(y),y) — f(p—1(y),y) at order zero, with
p+1 = 3(1=+u) at this order. We obtain : f(p1(y),vy) — f(p-1(¥),y) = 2u(al+Coh(y) —y).
Moreover using the free energy per unit length expression (42), (37) and (38), one can show
that Fye(u) = 2e(u)Co R where e(u) is defined by (70). These two last results show that (91)
is equivalent to (71) the expression for the radius of curvature r found by the integrability
condition for the jet.

B Boundary jets in the channel case. Beta-effect or linear
sublayer topography.

Let us derive the boundary jet properties in the case of a beta-effect (or linear sublayer
topography). For the sake of simplicity, we will treat the case of zero circulation I' = 0.
Let ¢EL and ¢, be the values of ¢ on the y = % and y = —% boundary respectively. The
boundary jet satisfies the jet equation (36), but with boundary conditions ¢(7 = 0) = ¢;f

and ¢(7 — +00) = ¢1 or ¢_1. Thus, using (38), we deduce that :
1 (dp\? 1 N
3 (%) (v=23) + v = vt = UG- (92)

(where the last equality comes from the integrability condition for the interfacial jet).
We can relate d¢/dr to the derivative di/d( normal to the boundary ( denoting the
normal coordinate { = £ Fy ), using (61),

dp ( 1\ l1dyp ( |1 Y
7 (1=*2) ~wat (v=*3) 7 RZ o

Furthermore the condition I' = 0 imposes

__ a . (LN A 1)
b= /y: dy +/y__1 ay ™= (y‘2>+dc (y‘ 2)‘0’

- 2

D[ =

so that %(y =1)= — Wy = —2). Then (92) becomes :
1(1d 1 2
o) =v) -5 (5o (1=3) - R3) (94)

U(d) =Ul(¢y) (95)

Note that the two values ¢,:)t cannot be equal. They must indeed satisfy, from (61) and the
condition of zero mass flux (¢ = 9¥—),

¢y — b, =—/C (96)

To solve these two equations (95) and (96), let us have a look at the potential U in
figure 19. We have to compare ¢Z — ¢, and ¢1 — ¢_1. We thus distinguish two cases.
Using (96) and ¢41 = +u, we calculate : (¢ — ¢, )/(¢1 — ¢—_1) = —v/(2Cu). We recall
that w is of order unity.

so that
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e Low beta-effect case : —y/C < 2u.

For an x-independent statistical equilibrium, one possibility is a zonal band with ¢_1
inside the band and ¢; near both boundaries, with ¢;’1 and ¢;; at the boundaries.
The symmetric solution, with qﬁ,;"_l and ¢," ; at the boundaries and ¢_; near the
boundaries, has the same free energy ( due to the symmetry of the potential U ).
However the solution which maximizes the total free energy of the jets corresponds
to ¢_1 in the lower part of the domain, and ¢; in the upper part, with ¢26 at the
upper boundary ( y = 3 ) and ¢;, at the lower boundary ( y = —1 ), and a single
eastward interior jet.

e High beta-effect case : 8 > 2u
In this case, we note that ¢, — ¢, > ¢1 — ¢_1. Then the two equations (96) and (95)
determine a unique solution for (c,zS;', #, ) ( see figure 19 ). We are then necessarily in
the case with ¢ = ¢1 near the boundaries y = % and ¢ = ¢_1 near the other one. It
again involves a single eastward internal jet. This jet can oscillate in latitude due to
the momentum constraint ( according to (79) ).

Once qﬁ,:)t are fixed, we use equation (61) on the two boundaries y = :t% to conclude
that & = —%(¢; + ¢, ). Then using the integrability condition (66) we calculate :

_|_ —
Uy = R? (B + W) (97)

This closes the determination of our parameters.

C Boundary condition for the equation (81,82) of the oval-
shaped vortices boundary

We want to see whether equations (81,82) with d > 0, defining the curve formed by the
jet, admit periodic solutions both in £ and y corresponding to vortices, or not. As stressed
in section (3.3.2), equations (81) derive from the Hamiltonian (83) ; y and 6 are the two
conjugated variables. Let us study the phase portrait of H. For 6 in [0,27[, there are
4 critical points : P, = (0,1/d), P, = (0,—1/d), P3 = (m,1/d), Py = (w,—1/d). By
linearization around these fixed points, one easily prove that P, and P3 are stable fixed
points whereas P, and P, are hyperbolic fixed points. This permits to draw the phase
portrait : figure 18. Using H (83), we obtain that the unstable manifolds are given by
1—-2/(3v/d) = H and —1+42/(3v/d) = H respectively. The parameter d governs a transition
of the phase space structure. This transition occurs when the two unstable manifolds merge
; this permits to compute the transition value for d : d = %. We are looking for vortices
solutions of (81,82). We recall that 6 is the angle with the z axe. We thus impose 8 to be a
monotonic function of s on a trajectory. Thus areas ¢ of the phase portrait (figure 18 ) are
forbidden ; they would correspond to 6 varying in a finite interval. We won’t address their
analyze there, but oscillating jet solutions can be found in these areas. Area b2 : it can
be shown that, as on such trajectories, as 6 is not strictly increasing, double points exists,
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thus forbidding area b2. Conversely areas a and bl are admissible trajectories, giving y as
periodic functions of #.We have to had the condition that z (82) must also be a periodic
function of 6 for the curve to close. Let us denote Az the z variation when 6 runs in [0, 27].
We thus impose the condition Az = 0. Using (82) and (81) we calculate :

_(F [P cosfdd  [3 dly*(0) — y*(0 — )] B
ao = | oomtds = [ g = [ ot e T

N

us
2

(98)

( The last expression is obtained rewriting the integral as a sum on [—%, %] plus a sum on

[z, 37”] ; and performing a variable change ). Let us study the sign of y%(8) — y2(8 — ).

Usi _ m _ _ _ y3(9_7r) _ _

sing (83) we deduce that —d?5~ +y(0) = H —cos 0 and —d?—5— +y(6 — ) = H +cos 6.
From these two relations we conclude that y(6 — 7) = y(6) implies cos(f) = 0 and that
y(0 — ) = —y(0) implies H = 0. Thus if H # 0 ; y?(0) — y?(# — «) does not change sign
on [—Z,Z]. Moreover, on the areas a) and bl) (—dy?(6) + 1) does not change sign. Thus
if H # 0, the argument of the last integral of (98) does not change sign and Az can not
be zero. We thus conclude that the only solution where z is a periodic function of 0 is
the solution corresponding to H = 0. This solution is the one obtained from (81,82) with
initial conditions 3(0) = 0 and 6(0) = §. As we have previously excluded the area b2 ( when
d> % ) we conclude that no vortex solution exists when d > %. We conclude that equations
(81,82) with d > 0, defining the curve formed by the jet, admit one periodic solution both
in z and y corresponding to vortices, only when d < d,q; = %. This solution corresponds

to H = 0 (83). The vortex then admits a latitudinal and a zonal axes of symmetry.
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Figure Captions.

Figure 1 : Annular jets observed in the atmosphere of Jupiter. a) Velocity field in the
Great Red Spot of Jupiter (20 South), from Dowling and Ingersoll (1989). b) Velocity
field in the cyclonic Barge of Jupiter (14° North) from Hatzes et al (1981)

Figure 2 : (a) Graphical representation of the algebraic equation (20), with the rescaled
variable ¢ = —a/C + 4/R2. The three solutions are at the intersection of the curve (left-
hand side) and straight line (right-hand side). Here the integrability condition a = CyB
for the differential equation (36)

Figure 3 : The free energy density f(p) (27) versus the probability p. For Cy > 1 and
(CoB — ap) small enough f(p) has two local minima and one local maximum, allowing to
obtain two values p1; in the maximization of entropy under constraints.

Figure 4 : The parameter u versus the Lagrange parameter Cy, as the solution of (33).

Figure 5 : Typical stream function profile in a jet (u = 0.75 ) versus the transverse
coordinate 7 = (/R ( Top ) and corresponding velocity profile ( Bottom ).

Figure 6 : Jet properties versus the segregation parameter u. a) Jet width, defined
as the width of the region with velocity greater than half the maximum jet velocity. b)
Maximum velocity (d¢/dr),,,, and jet kinetic energy e(u) ( dotted line).

Figure 7 : Phase diagram of the Gibbs states versus the energy E and the asymmetry pa-
rameter B. The outer line is the maximum energy achievable for a fixed B: E = %2(1 - B?).
The frontiers line between the straight jets and the circular jets corresponds to A; = 1/7
or A 1 = 1/x. it as been calculated using (31) and (32) : E = R?B?(2r —2)/(n —2)%. The
dot line represents the frontiers between axisymmetric vortices and the circular jets. We
define it as the energy value for which the circular vortex area A; or A_; (31) is equal to
(21)2, where [ is the typical jets width ( figure 6 ). Such a line depends on the numerical
value of R the ratio of the Rossby deformation radius to the domain scale. It has been here
numerically calculated for R = 0.03.

Figure 8 : (a) Graphical representation of the algebraic equation (20), with the rescaled
variable ¢ = —a/C + v/R?, like in figure 2, but in the case of a Gibbs state with an
axisymmetric vortex (AC > 0). Then the rhs hatched area is greater than the lhs one.

(b) The corresponding potential U(¢), given by (49), is asymmetric to compensate for the
friction term in equation (50).

Figure 9 : Various axisymmetric stream-function profiles for decreasing AC ( AC =
[0.90.60.30.10.050.030.01] and B = 0.75.

Figure 10 : a ) Typical sub-domain shape with a topography h(y) = ay?. The parame-
ter d has been chosen such that the ratio of the length on the width be 2 ; as on Jupiter’s
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GRS. b ) Typical sub-domain shape with a topography h(y) = ay? when the parameter d id
very close to its maximum value d = %. The shape is then very elongated, with latitudinal
boundaries quasi parallel, as for instance the Jovian cyclonic vortices ( 'Barges’ ) described
by ( Hatzes et al 1981 ).

Figure 11 : a ) Sub-domain non dimensional length and width versus the parameter d
( topography h(y) = ay? ). b ) Sub-domain aspect ratio versus the parameter d.

Figure 12 : QG topography (units s ! ) versus latitude computed from data of Dowling
and Ingersoll (1989) : a) under the GRS ; b) under the Oval BC.

Figure 13 : Velocity profile within the GRS from ( Mitchell et al 1981 ). They have
observed that the velocity is nearly tangential to ellipses. Using a grid of concentric ellipses
of constant eccentricity, the velocities have been plotted with respect to the semi-major
axis A of the ellipse on which the measurement point lies. Results have been fitted by a
quartic in A. [* is the jet width, defined as the width on which the jet velocity is greater
than half the maximum velocity.

Figure 14 : A) Coefficient a for a quadratic topography h(y) = ay? versus R* com-
puted from our QG model (87). The three cross show the coefficient a computed from
QG topography deduced from Dowling SW observed results. B) Difference of PV lev-
els a1 — a_y versus R* computed from our QG model (86). The dot line represents the
planetary vorticity fo at the latitude of the center of the GRS. This show that one of the
PV levels may be interpreted as vorticity generated by convection-plumes from the sublayer.

Figure 15 : The segregation parameter u versus the Rossby deformation Radius R* for
the GRS. u has been computed using the actual jet maximum velocity and width ( see
section (4) ).

Figure 16 : The non dimensional parameter giving the shape of the curve : d ( see (81)
) with respect to R* in our model of the GRS. The dot line represents the critical value
d= % below which a vortex solution exists. The ratio of the length to the width of the
GRS is approximately 2. From figure 11 we conclude that this correspond to d very close
to the critical value %. From this figure, our model predicts that the Rossby deformation
radius is R* = 1800 km ( see section (4) for comments ).

Figure 17 : Definition of I(y).

Figure 18 : Phase portraits of the Hamiltonian H (83) for yo = 0, governing the jet
shape via differential equations (81) ( two periods in 8 ). For vortices, we are looking
for periodic solutions in y. Thus only trajectories of areas a) and b) are under interest.
Conversely trajectories of area c) could correspond to oscillating jets. The parameters d
governs a transition between two type of phase portraits. A) For d < % ( here d = 0.075
), trajectories of area a) can define y as a function of 8 corresponding to convex vortices.
B ) For d > % ( here d = 0.075 ), for trajectories of area a), the curve y(#) admits double
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points. Thus they can not define vortex boundaries.

Figure 19 : Resolution of the equations (94 and 96). The long-doted and the doted lines
represent the two cases discussed in appendix (B).
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Figure 1: Annular jets observed in the atmosphere of Jupiter. a) Velocity field in the Great
Red Spot of Jupiter (20° South), from Dowling and Ingersoll (1989). b) Velocity field in
the cyclonic Barge of Jupiter (14° North) from Hatzes et al (1981)
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Figure 2: (a) Graphical representation of the algebraic equation (20), with the rescaled
variable ¢ = —a/C + 9/R?. The three solutions are at the intersection of the curve (left-
hand side) and straight line (right-hand side). Here the integrability condition @ = CyB
for the differential equation (36) is verified, so the two hatched areas are equal.

b) The corresponding potential U(¢), given by (37), integral from 0 to ¢ of the difference
between the two curves (hatched area in (a)).
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Figure 3: The free energy density f(p) (27) versus the probability p. For Cy > 1 and
(CoB — ag) small enough f(p) has two local minima and one local maximum, allowing to
obtain two values p1; in the maximization of entropy under constraints.
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Figure 4: The parameter u versus the Lagrange parameter Cj, as the solution of (33).
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Figure 5: Typical stream function profile in a jet (u = 0.75 ) versus the transverse coordinate
7= (/R ( Top ) and corresponding velocity profile ( Bottom )
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Figure 6: Jet properties versus the segregation parameter u. a) Jet width, defined as the
width of the region with velocity greater than half the maximum jet velocity. b) Maximum
velocity (d¢/dr) and jet kinetic energy e(u) ( dotted line).
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Figure 7: Phase diagram of the Gibbs states versus the energy E and the asymmetry
parameter B. The outer line is the maximum energy achievable for a fixed B : F = %2(1 —
B?). The frontiers line between the straight jets and the circular jets corresponds to A; =
1/mor A_y = 1/m. it as been calculated using (31) and (32) : E = R2B%(2r —2)/(7 — 2)2.
The dot line represents the frontiers between axisymmetric vortices and the circular jets.
We define it as the energy value for which the circular vortex area A; or A_; (31) is equal
to (21)2, where [ is the typical jets width ( figure 6 ). Such a line depends on the numerical
value of R the ratio of the Rossby deformation radius to the domain scale. It has been here
numerically calculated for R = 0.03.
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Figure 8: (a) Graphical representation of the algebraic equation (20), with the rescaled
variable ¢ = —a/C + 1/R?, like in figure 2, but in the case of a Gibbs state with an
axisymmetric vortex (AC > 0). Then the rhs hatched area is greater than the lhs one.

(b) The corresponding potential U(¢), given by (49), is asymmetric to compensate for the
friction term in equation (50).
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Figure 9: Various axisymmetric stream-function profiles for decreasing AC ( AC =
[0.90.60.30.10.050.030.01] and B = 0.75.
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Figure 10: a ) Typical sub-domain shape with a topography h(y) = ay?. The parameter d
has been chosen such that the ratio of the length on the width be 2 ; as on Jupiter’s GRS.
b ) Typical sub-domain shape with a topography h(y) = ay? when the parameter d id
very close to its maximum value d = %. The shape is then very elongated, with latitudinal
boundaries quasi parallel, as for instance the Jovian cyclonic vortices ( 'Barges’ ) described
by ( Hatzes et al 1981 ).
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Figure 11: a ) Sub-domain non dimensional length and width versus the parameter d (
topography h(y) = ay? ). b ) Sub-domain aspect ratio versus the parameter d.
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Figure 12: QG topography ( units s~! ) versus latitude computed from data of Dowling
and Ingersoll (1989) : a) under the GRS ; b) under the Oval BC.
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Figure 13: Velocity profile within the GRS from ( Mitchell et al 1981 ). They have observed
that the velocity is nearly tangential to ellipses. Using a grid of concentric ellipses of
constant eccentricity, the velocities have been plotted with respect to the semi-major axis
A of the ellipse on which the measurement point lies. Results have been fitted by a quartic
in A. [* is the jet width, defined as the width on which the jet velocity is greater than half
the maximum velocity.
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Figure 14: A) Coefficient a for a quadratic topography h(y) = ay? versus R* computed from
our QG model (87). The three cross show the coefficient a computed from QG topography
deduced from Dowling SW observed results. B) Difference of PV levels a; — a_; versus
R* computed from our QG model (86). The dot line represents the planetary vorticity
fo at the latitude of the center of the GRS. This show that one of the PV levels may be
interpreted as vorticity generated by convection-plumes from the sublayer.
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Figure 15: The segregation parameter u versus the Rossby deformation Radius R* for the
GRS. u has been computed using the actual jet maximum velocity and width ( see section

(4) )
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Figure 16: The non dimensional parameter giving the shape of the curve : d ( see (81) )
with respect to R* in our model of the GRS. The dot line represents the critical value d = %
below which a vortex solution exists. The ratio of the length to the width of the GRS is
approximately 2. From figure 11 we conclude that this correspond to d very close to the
critical value %. From this figure, our model predicts that the Rossby deformation radius

is R* = 1800 km ( see section (4) for comments ).
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Figure 17: Definition of I(y).
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Figure 18: Phase portraits of the Hamiltonian H (83) for yo = 0, governing the jet shape
via differential equations (81) ( two periods in @ ). For vortices, we are looking for periodic
solutions in y. Thus only trajectories of areas a) and b) are under interest. Conversely
trajectories of area c¢) could correspond to oscillating jets. The parameters d governs a
transition between two type of phase portraits. A) For d < % ( here d = 0.075 ), trajectories
of area a) can define y as a function of # corresponding to convex vortices. B ) For d > %
( here d = 0.075 ), for trajectories of area a), the curve y(#) admits double points. Thus
they can not define vortex boundaries.
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