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ABsTRACT. — We show how the toy Fock space can be embedded into the usual
Fock space of quantum stochastic calculus. This embedding gives rise to a rigorous discrete
approximation of the Fock space and its natural noise operators. We recover the quantum Ito
table from the discrete one. We finally show that the quantum Brownian motion and Poisson
process can be simultaneously approached by quantum Bernoulli random walks.

I. The toy Fock space.

Let us realise a Bernoulli random walk on its canonical space. Let Q = {0, 1} and
F be the o-field generated by finite cylinders. One denotes by v, the coordinate mapping :
vp(w) = wy, forall neN.

Let p €]0,1[and g = 1—p. Let u, be the probability measure on (Q, F) which
makes the sequence (v,)nen to be a sequence of independent, identically distributed
Bernoulli random variables with law p&; + g&o. Let E, [ - | denote the expectation with
respect to pp,. We have E, [v,,] = E,[v%] = p. Thus the random variables

X, = Vnp— P )

Vra

satisfy the following:
i) the X, are independent,
ii) X, takes the value 1/g/p with probability p and —+/p/q with probability g,
iii) Ey[X,] = 0and E,[X?] = 1.
Let 6,7 be the space L*(Q, F, y1,). We define particular elements of CTDP by

Xp = 1, inthe sense Xp(w) = 1forall weQ
Xy =X; ---X;, ifA={i1,..., i} is any finite subset of N.
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Let Pr(N) denote the set of finite subsets of N. From i) and iii) above it is clear
{Xa; A€P;(N)} is an orthonormal set of vectors of .

PROPOSITION 1. — The family { X, ; A€P;(N)} is an orthonormal basis of 3,

Proof. — We just have to prove that {X,, A€P;(N)} forms a total set in CTDI,. In
the same way as for the X, define

V@Z]l
va=vi v, forA={i,..., i}

It is sufficient to prove that the set {v4; A€P;(N)} is total.
The space (Q, F, up) can be identified to ([0, 1], B([0, 1]), 4,,) for some probability

measure /i, via the base 2 decomposition of real numbers. Note that
_ 1 if wy,=1
@) =wn={g it
thus v, (w) = 14,=1. Consequently v, (w) = ]lwl.lzl “+- Ly, =1. Nowlet f€ CTDP be such

that (f,va) = 0 for all A€P;(N). LetI = [k2", (k + 1)2~"] be a dyadic interval with
k < 2". The base 2 decomposition of k2~ " is of the form (1, ..., ®,,0,0,...). Thus

/I £ (@)di,(w) = /[ Oz T, iy (@)

The function 14,—4, - - - 1w,—«, can be clearly written as a linear combination of the v 4.
Thus f [ dp, = 0. Theintegral of f vanishes on every dyadic interval, thus on all intervals.
It is now easy to conclude that f = 0. [ |

We have proved that every element f € 5p admits a unique decomposition

f=>, f(Ax (1)
A€EP;(N)
with
1P =Y If)f <oo. (2)

AE'Pf (N)

We can now define the toy Fock space. The toy Fock space is the separable Hilbert space
& whose orthonormal basis is chosen to be indexed by P¢(N). Let {X4; AEPH(N)} be
this basis. As a consequence there is a natural isomorphism between ¢ and ®,,. For each
p€]o, 1], the space 6,7 is called the p-probabilistic interpretation of .

The only property that allows to make a difference between & and 5,7, or between
different ®,’s, is the product. Indeed, as ¢, is a L2 space it admits a natural product. The
way we have chosen the basis of ¢, makes the product being determined by the value of
X2, neN.



ProposiTiON 2. — In $, we have

X2 =1+ cpXn
)
where ¢, = ook
Proof.
X2 = (4 i —2pva) = — (p* + (1=2p)v2)
- n) — n
" opg " pq
1 2 -
= —(F+(gpva) =1+ L,
pq qp qp
_ P +lvn:1+cpﬂ, -

vPq - V/Pq VPq

The product that the p-probabilistic interpretation $p determines in @ is called
p-product.

On <I~>, one defines the creation, annihilation and conservation operators by
a; X = Xaugn} Lnga
a, Xa = Xa<(n} Lnea
ayXa = Xplpea.

Note that a;}, aS, a;; are completely determined by
i) their value on 1 and X,
ii) the fact they act trivialy on X,,, m # n.

What we mean exactly is the following. If H,, denotes the closed subspace generated by 1

and X, then there exists a natural isomorphism between ® and Q@ H, (where the count-
neN

able tensor product is understood to be associated to the stabilizing sequence (uy)nen
such that u, = 1 for all n) given by

X4—1®---910X,01Q--- 01X, ® - if A={ir,...,in}.
The definitions of a}f’, a;;, a5 show that these operators act only on H, and act as the
identity everywhere else. In particular a‘, commutes with a), for all n # m and all
&, n€{+, —,0}. The compositions a’a; are given by the following discrete quantum Iro
table.

PROPOSITION 3. —  The products at aj, are given by
an
-+ — o
-+ o
a, 0 a, 0
_ o _
a, I—a; 0 a,
o —+ o
a, a, 0 a, .




Proof. — Straightforward. n

ProposITION 4. — The operator M)’?n of p-multiplication by X, is given by

P _ + - o
My =a, +a, +cpa,.

Proof.
XnXa = Xau{ny Lnga + XA\{n}(l + cpXn) Lnea
=atX,+a, X + cpanXy . ]

II. The Fock space.

We here give a short presentation of the Fock space and its quantum stochastic cal-
culus; one can find all details in [Att].

Let P be the set of finite subsets of R*. Then P = |J P, where P, is the set of
n

n-elements subsets of R™. The set P, can be identified to the increasing simplex %, =
{0<n <--- <t} of R". Thus P, inherits a measured space structure from the Lebesgue
measure on R”. This also gives a measure structure on P if we specify that on Py = {0}
we put the measure dy. Elements of P are often denoted o, the measure on P is denoted
do. The o-field obtained this way on P is denoted F.

The Fock space s the space L? (P, F, do). An element f of & is thus a measurable
function f : P — C such that

FIIP = /P |f(0))Pdo <.

One can define, in the same way, Py, ;] and ®[, ;) by replacing R with [a, b] C R*. There
is a natural isomorphism between ®jy ;] ® P, ;o[ given by 1 ® g > f where f (o) =
h(o N[0, t])g(o N (t, +o0[). Define x ;€% by
0 if |o] # 1
o) = .
xi(0) { Lo (s) if o= {s}.

Then x, belongs to ¢}y . We evenhave x; — xs€®j,  forall s < . This last property allows
to define an Ito integral on ®. Indeed, let (g;) >0 be afamily in & such that

i)t ||g is measurable,
ii) g€Pjforally,
iii) [, [lg||* dt < oo,

then one defines fooo g dx; to be the limit in ¢ of

1 Lit1
Yo [ hsds (- xi) 3)
14

ol — by



where P; is the orthogonal projection onto @}y, and {f;, i€N} is a partition of R*
which is understood to be refining and to have its diameter tending to 0. Note that
1

- f :H Py, g; ds belongs to ®jy ,,), which explains the tensor product symbol in (3).

We get that fooo g: dx, is an element of ¢ with

oS} 2 [}
| [ x| = [ e ar.
0 0

Let f€L?(P,), one can easily define the iterated Ito integral on ®.

I(f) =

(4)

/ f(tl,...,tn)dxtl“‘dxtn
0<ty<---<Ip

by iterating the definition of the Ito integral. We put

I(f) = f(o) dxo .
P
We have the following important representation.

THEOREM 5 ([Att]). — Any element f of ¢ admits an abstract chaotic representa-
tion

f=/7)f(<7)dxa

wwzﬁvwﬁw

and an abstract predictable representation

f= 1 t] d t

WW=V®Fﬁ/Hamws
0
where [D:f)(0) = (o U {s}) Locoq.

Let us now recall the definitions of the creation, annihilation and conservation pro-
cesses in . They are respectively defined by

[af f1(0) =Y flo~{s}),

(5)
Wﬂ@ZAfwwmﬁ,
[ £1(0) = o N[0, ]| £(0) -
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There is a good common domain to all these operators, namely

D= {fecb; /P|a| |f(0)|2d0<oo}.

We also recall an equivalent definition taken from [A-M], which can be easily recovered
from (5), (6) and (7). Let f = f(#)1 + [;° D,f dx; be an element of D. Then P;f =
f1 + fot Dsf dx; also belongs to D and

t t
a?—Ptf :/ a:_Dsf dXs+/ Psf dxs, (8)
0 0
t t
a; Pif =/ ag Dsf dxs—}—/ Dsf ds, (9)
0 0
t t
afp,fz/ @Dy f dxs+/ DLf dxs. (10)
0 0

Finally, let us recall Hudson-Parthasarathy’s quantum Ito table. We give it under a
formal way only, we refer to [H-P] or [A-M] for a rigorous statement.

~ | daf da; da;
daf 0 0 0
da; | dtl 0 da;
da® | da} 0 da; .

III. Embedding the toy Fock space into the Fock space.

Let $ ={0=1<n <--- <1t <--}bea partition of R and 6(S) =
sup; |ti+1 — t;| be the diameter of S. For S being fixed, define &; = Pry,115,) 1EN. We
then have ® ~ (¥) ®; (with respect to the stabilizing sequence (1) ,¢cn).

ieN
For all i€N, define

Xtiyn — Xt

Xi — Ahirl AN I cI)l. R
Vi1l — L
_ Gy, —ay
a = i+1 i

1 - ’
Vi1 — 1
o __ o o
p = Ayyy = Ay

+ _ +
Lipy — Yy

Vi1 — L '
where Py is the orthogonal projection onto L%(P;) and where the above definition of a?' is

understood to be valid on &; only, with a;“ being the identity operator I on the others ®;’s
(the same is automatically true for a;, a?).

(l?— = Pl]



ProprosITION 6. — We have

al-_X,- =1
a;, 1=0
alf’X,- —X,
a;l =0

CZ?—X,' =0
a?L]l =X

Proof. — Asa; 1 = a;1 = Oitisclearthata; 1 = g7l = 0. Furthermore,

al 1 = x, thus
Xtip1 — Xy

]\/ liv1 — &

a'l=p =X .

Furthermore, by (8), (9) and (10) we have

1 lit1
a;, Xj = —— (a*. — af) / 1d
P liv1 — & i1 K L X

i

1 tiv1 i1
[ —a) e [ aal
liy1 — & ti ! ti

i

1
=0+t — 1) = 1
liy1 —

1 ti+l
oy, o _ o
a; Xi = —l‘i+1 _r (a[iﬂ arl-) /t 1 dx,

1 iyl Lip1
:7[/ (af—ag)]ldxt+/ ]ldxt]
lit1 — L t; t
= # (X[ 1 _Xl’) :Xl)
tig1 — 8 '

+ 1 + . li1
a’'X; = —P (a, —61‘)/ 1d
1 i ti+1 _ ti 1] i1 tj . Xt

Thus the action of the operators a; on the X; is similar to the action of the corre-
sponding operators on the toy Fock spaces. We are now going to construct the toy Fock
space inside ®.



We are still given a fixed partition S. Define T®(S) to be the space of f € which
are of the form

f= Z f(A)Xa

AEPf (N)

with [P =" 3 [f(A)F <o

Ae’Pf (N)

The space T®(S) is thus clearly identifiable to the toy Fock space ®; the operators
a;, ee{+, —, 0}, act on TP(S) exactly in the same way as the corresponding operators on
&. We have completely embedded the toy Fock space into the Fock space.

IV. Projections on the toy Fock space.

Let S={0=1f < <--- <1, <--}beafixed partition of R*. The space
T®(S) is a closed subspace of ®. We denote by E[- /F(S)] the operator of orthogonal
projection from & onto T®(S).

PROPOSITION7. — IfS={0=f <t <--- <1, <---}andif f€D is of the form

f = f(slr~"lsm)dx51 tee dXsm

0<s§1<---<8m

then

E[f/F&]= 3 :

i1<-<imEN \/l‘il"'1 - til T \/tim+1 - tim

lij+1 i1
/ / F(styeeersm) dst - dsm Xy -+ X, - (11)
[il tim

Proof. — The quantity f;, on the right handside of (11) is clearly an element of
To(S). We have, for A = {i,..., ix}

6k,m
ViEi+1 = T - T — iy,

(f, Xa) =

</ F(s1,eeessm) dXs, -+ d Xspr
0<s$1<---<Smp

lij+1 Lip+1
/ / ldXsl"'dXsm>
til L

Skm Lij+1 lim+1
= f(si,...,sm)dsy---dsp .
\/ti1+l - til e \/tim+1 - tim ti 7

But on the other hand we have




1
(bt = )77 (et = 13,7

Lij+1 lim+1 _ 2
X / f(slr---rsm) dsl"'dsmH(XtilJrl_Xtil) - (Xtierl_Xtim)”
til t;

<fnr XA) = 5k,m

im
1 lij+1 Lipy+1
=4 / / fs Sm) dsy -+~ dsp,
k,m yeoes .
\/ti1+l - til e \/tim+1 - tim tiy tip,
This proves our proposition. [ |

Note that the following identities could have been used as natural definitions of the
operators a; on T®(S).

PROPOSITION 8. — For any partition S and any f €D we have
a; E[f/F(S)] = E[(a;,, - a7) f/F(S)]
Vi — 4 aF B[ f/F(S)] = B[ (af,, — aif) f/F(S)] .

Proof. — Letus take f of the form

f= F(s1, s m) dXs, -+ AXspy -
0<81<+-<S,
Then
(afi+1 —a))f = / |{sl,...,sm} N [, t,-+1]| F(st,ee8m) dxs, « - - AX sy
0<s1<++ <8

E[(ap,, — a;)f/F(S)]

Z 1 /%‘IH /[jm+l
- jr<+--<jm€EN \/tjl‘H — Ly \/tjm'H = T t tim
X |{51,...,sm} N [t t,-+1]| f(st,oo,sm) dsy---dsm X, -+ X,

1

jr<e--<jm€N \/tjl‘H — Ly \/tjm'H — Ljp
Ljj+1 Lim+1
/ / f(Sl,...,Sm)dsl"'dSijl"'ij
tjy Lim

1

Lic{jr,mim}

=

j1<"'<jm€N \/tj1+1 - tjl o \/tjm+1 - tjm

Lj)+1 lim+1
/ / f(Sl,...,Sm)dsl"'dSijl"'ij
h tim

=a} E[f/F(S)].



In the same way

i1
(a;ﬂ—a;)f:/ / f({sl,...,sm_l}Us) ds dxs, - - dxs,_,
0<81<++<S;p—1 ¥ 1

E[(a;,, — a; ) f/F(S)]

/f11+1 /fjm 1+1/fx+1
, Z " en Vit \/'f]m 1= Ly Sy

ji<ee<j

X f({sl,...,sm_l} U s) dsdsy ---dsp— Xj, -+ Xj,,_,

m
= E E Loy <on<jisisiioss < <in - -
Vi — \/]m 11—

J1<*<jm—1€N k=0

[;1+1 G+ plivr plp, o+ ljpn_1+1
F(s1, oSk 8, Skl Sm—1)
ti ti

Tk+1 Jm—1

X d51 s dSk ds dSk+1 dSm_l le s ij—l

it

=Vi5+1 — I E !

jeimen VIt = G Lt = Ly,

[]1+1 Lim+1 ~
/ / F(suen sm) dsye - dsy Digygj i3 Xi - Xi o X,

=i — tia; E[f/F(S)].

Finally,

n

+ _ .t — E
(ati+1 ati )f - /
k=0 ¥ 0<S1< <8 <S<Spp 1 <o+ <Sm

]]'[tirtiJrl](s)

X (81,00 8m) dXsy -+ - dXg, AXs AX sy, AXs,y -

E[(ag,, — a;)f/F(S)]

- ¥

J1<-<jm4+1EN
X ]]'[[irtiJrl](tijrl)f(sl’ ey Skl Sm+1) dsy--- dSm_H le .- 'ij_H

1 /t]1+1 /t]m+1+1
Vit = G- \/tjm+1+1 t]m+1 k=0 L

Tm+1

= § : o o 3 L le{h ,,,, Jm41}
'1<"'<jm+1€NV i+l 71T A mr 1l T Ym

t]1+1 Lim+1
f Sl,...,Sl,...,Sm+1) d51 dSmJ,_l X]l . X]m+1
t;

Tm+1

10



= Z Vi1 — !

ji<r<jm€N Vi = G Lt = Ly,

Ljj+1 lim+1
/ / f(Sl,...,Sm)dsl"'dSm]].ie{jl _____ Jm}XJIX]le
tjy Lim

= Vi — 4 at E[f/F(S)] .

V. Approximations.

We are now going to prove that the Fock space ® and its basic operators a;", a;, a;
can be approached by the toy Fock spaces T®(S) and their basic operators a?L, a; , a;.

We are given a sequence (Sy,)qen of partitions which are getting finer and finer
and whose diameter §(S,) tends to 0 when n tends to +0c. Let T®(n) = T®(S,) and
P, = E[-/F(Sp)], forall neN.

THEOREM 9.

i) Forevery f €® there exists a sequence ( f,,) nen such that f,€ T®(n), for all neN,
and (fy,) nen convergesto f in ®.

i) IfS, ={0=1 <t <--- <t <---}, then for all tcR", the operators
> oay, Y \/th,—tla; and > |/t — tlaf converge strongly onD to a, a;

i<t i<t i<t
and a; respectively.
iii)  With the same notations as in ii), for all t€R", the operators Y. ai P,
Lt <t
i<

> /i —t'a; Pyand Y. /i, — il'a;" P, converge strongly onD to a}, a, and
st<t it <t

af respectively.

Proof.

i) As the S, are refining then the (P,), forms an increasing family of orthogonal
projection in ®. Let Po = \/ P,. Clearly, for all s < r, we have that x; — x; belongs to

n
RanP,. But by the construction of the Ito integral and by Theorem 5, we have that the
Xt — Xs generate ®. Thus P, = I. Consequently if f €, the sequence f;,, = P, f satisfies
the statements.

ii) The convergenceof )  afand > ./t — t'a; toa; and a; respectively
L' <t i<t

11



is clear from the definitions. Let us check the case of a*. We have, for f€D

DR VICED SETFE R SR}

it it n ¢n
s <t st <t seon[tf el ]

Put 1" = inf{t-”ES,, st > t} We have

|5 e -]
:/P‘Z]lm[t"r”llll Y se~ih- X o] @

G <t seon[efe] ] s€on|[o,t]
/ ‘ Z f [OARN {S} d0'+2/ ‘ Z ]]'\O'O[t” 1”22
seon[t,1] i<t
2
x S flo~ {s})‘ do
seon(tfe] ]

For any fixed o, the terms inside each of the integrals above converge to 0 when 7 tends to
+00. Furthermore we have, for n large enough,

/\ S flo~dsh d0</|0|2|fg\{s}|2d0

n Nea
s€on|t, 1" S

=/0 /P(|<T|+1)|f(a)|2 do ds

<(t+1) /p (lo] + )If (o) do

which is finite for f€D;
2
LIS terngee 3 sostspf ao
<t seon(tftf )]
2
S/ ( Z 11|m[t"t;l+l]\>z‘ Z f(‘T\{S})D do
P st <t seon(if, e ]

<[(X X o) a

s <t seon([e e ]

= [ (Sire~shi) ao

seo
s<th

= [lel S lr@~ gsf do

SeT
s<th

s(t+1)/lol+ )|f (@) do

12



in the same way as above. So we can apply Legesgue’s theorem. This proves ii).

iii) By Proposition 8, we have for all f€D

+ —p
Sty = thaf Puf = Pualif .

;i <t
Consequently
2
+ +
HZ L — 4 e Pnf_“tfH
i<t

<2llat s - puat 1|+ 2| Putat £ - at D)

<2|aff — Puaf f| +2]laf 1 — afis |
which tends to 0 as n tends to +o00.

The cases of a° and a~ are obtained in the same way. [ |

VI. Probabilistic interpretations.

It is not the aim of this article to give a complete course about probabilistic inter-
pretations of the Fock space ¢ (see [Att] for details) ; but we recall that in the same way
as &, the space ¢ is naturally isomorphic to the L? space of the canonical space (Q, F, P)
of some basic processes. Namely, the Brownian motion, the Poisson process, the Azéma
martingales, and some other ones.

Again the multiplication of random variables will make a difference between the
different interpretations. What we need to know here is that the operator of Brownian mul-
tiplication by the Brownian motion is the operator

W, =al +a;
and the operator of Poisson multiplication by the Poisson process is
N, =a +a +ad+1tI.

Let us consider an approximation of the Fock space @ by toy Fock spaces T®(n), neN.

THEOREM 10. — On T®(n), let X; = aj + a; , i€N. Then, for all t€R*; we have

that
z Vi1 — 6 X
i<t
converges strongly to W;.
Proof. — The proof is immediate from Theorem 9. [ |

Let S, = {i/n; iGN}.

13



THEOREM 11. — On T®(n), let X; = ai + a; + cyaf, i€EN be associated to the

coefficient p,, = 1/n. Then, for all t€R™, we have that
1
ER
ﬁ i;[iSt

converges strongly to X; = N; — tI, the operator of multiplication by the compensated

Poisson process.

= A=n =2 Thys
V1/n—1/n? vn—1

Proof. — If p, = 1/n,thenqg, = 1 — 1/nand ¢,
cn/+/1 converges to 1. Now,
1 1 1 C
— X; = —a +—a +—=af
\/ﬁiét’ iét\/ﬁ’ NV
_ c
= Z Vi — t(af + a; )+\/—nﬁ Z a;
i<t

l';[ist
which clearly converges to a,” + a, + a® by Theorem 9.

The two results above are stronger than the usual approximations of the Brownian
motion (resp. Poisson process) by Bernoulli random walks. Not only it gives an approxima-
tion of the trajectories but of the multiplication operators. And this is obtained all together,

in a single approximation theorem, the Theorem 9.

VII. The Ito tables.

This section is heuristic, but it gives a good idea of why the discrete quantum Ito
table is a discrete approximation of the usual one, though they seem different. Let S,, =
{i/n; ieN}. Leta = 1/\/naf,a; = 1/y/na; and @ = af. The Theorem 9 shows

that & is a good approximation of da;, where t = t;. Now the discrete Ito table becomes

o~ a; a; a;
—+ 1 ~

a; 0 = a; 0
~— 1 1 =0 ~—

a; =5 a; 0 a;
=0 ~+ =0
a; a; 0 a;

But
1) +af is notan infinitesimal for ) <+ a; is almost +ay which converges to 0. Thus

it St
%d;’ can be considered to be 0 in this table;

14



2) %I is simply dt I, that is (#;+1 — #;)I. Thus at the limit this table becomes

~ | daf da; da;
daf 0 0 0
da; datl 0 da;
+

da; | da; 0 da; .

That is the usual Ito table.
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