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Abstract

Aperiodic crystals viewed as Delone sets of points on the real line, having an average
lattice, are studied as congruence model λ-sets (physical space is Euclidean and the equiv-
alent of the internal space is toric) in the context of cut-and-congruence λ-schemes, a
new concept. When windows are finite point sets, the fractal rates of occupancy, at infin-
ity, of the affine lattices associated with such Delone sets are shown to be simply related
to the scaling exponents of the Fourier transform of the autocorrelation measure, com-
pleting results of Hof. These fractal rates of occupancy are named rarefaction laws. The
case of the Thue-Morse quasicrystal, as a Meyer set, is explicitly developed. We present
the arithmetics of 3-rarefaction phenomenon, the fractality of the Fourier transform of the
autocorrelation measure. This new approach provides explicit formulae for singular con-
tinuous peaks and allows to discuss their possible extinction. In particular, this gives a
possible sieve among Delone sets to be crystals in the new definition of a crystal by the
IUCr in 1992. Ponctual scaling laws and the Bombieri-Taylor argument are considered.

1. Introduction

Two basic objects are naturally and commonly called by the modelling of quasicrystals:
cut-and-project schemes and model sets, formed from them with suitable choices of windows
and parameters. These objects work fairly well and beautifully for many quasicrystal struc-
tures. Comparison to experimental data in real and Fourier spaces is often good, and a large
part of the positions of the atomic sites in the structure is provided [1]. It is assumed that win-
dow boundaries are of Lebesgue measure zero, for instance when windows are a finite union
of polytopes in the internal space obeying a finite symmetry group G which leaves also the
spectrum invariant. This condition on window boundaries suffices to know that the spectra
of model sets are only pure point [2]. With respect to the definition of what is a crystal nowa-
days [3], we obtain, by using such model sets, crystals, that is coloured Delone sets for which
no singular continuous or absolutely continuous component exist in their Fourier spectrum.
However, there exist various classes of Delone sets which are more general than model sets, so-
called mathematical quasicrystals [4], [5], [6], generically named in an general attempt to cover
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the field of aperiodic crystals. In section 2, we recall briefly these notions. Just above the class
of model sets is the class of Meyer sets [5], [6]. A Meyer set is already not necessarily a crystal.

There is a lack of criteria for saying that a Delone set is deprived of diffuse (continuous)
measures in its spectrum. Of course, it is a formidable task to find such criteria, if any [7],
[8]. This objective seems unreachable at present. In this contribution, which is a summary
of [9], given Λ a Delone set on the real line, we show that scaling exponents of the diffracting
intensity at k = 2π/λ arise from rarefaction laws at infinity on the affine lattices of period
λ which intersect Λ, under some assumptions. The concept of rarefaction law is a new one
[9]. In other words, we provide a geometrical origin to the scaling behaviour of the diffracting
intensity. This is quite surprising and lead to study arithmetically such rarefaction laws. When
rarefactions laws are combined over all these affine lattices of period λ, it is possible to discuss
the existence of only δ-peaks in the spectrum of Λ as it will be shown. Therefore, the present
results shed a new light on the existence of such criteria, giving an answer to the Bombieri-
Taylor argument. In section 3, we recall cut and congruence λ-schemes and congruence model
λ-sets introduced in [9] in the context of toric spaces (which play the role of internal spaces in
the classical cut-and-project schemes). In section 4, we provide some new results concerning
the spectrum of the Thue-Morse quasicrystal from p-rarefaction laws, as an example of a Meyer
set.

2. Mathematical Quasicrystals

We refer to [4], [5], [6], [10] and references herein in this section. Let Λ a Delone set in
Rn, n � 1 (real or physical space). Λ is a model set when there exists a cut-and-project scheme
(Rn × H , L) and a relatively compact set Ω (window) of H with non empty interior such that
Λ = {π1(l)|l ∈ L,π2(l) ∈ Ω}, where H is a locally compact Abelian group (internal space),
π1,π2 the canonical projections, L a lattice in Rn × H , with π1|L injective and π2(L) dense.
Λ is a Meyer set if there exists a finite set F such that Λ − Λ ⊂ Λ + F . The class of model
sets in Rn is strictly included in the class of Meyer sets since a Meyer set is always a subset
of a certain model set (Theorem 9.1 in [6]). The construction of this latter model set is not
effective and arises from the linear approximation property. When G is a finite group acting on
Rk , k � n, and X is a G-cluster of total length n or 2n (total number of points in the finite union
of orbits of points which constitute X , viewed as a shellable discrete object), the construction
of the cut-and-project scheme is effective from itself in Rn [10]. With a selection mode on L

providing model sets or subsets, this allows to introduce naturally G-clustering in Meyer sets.
Such Delone sets inherit local structures in G-clusters by partial repetition and translation.
When ∂Ω is of Lebesgue measure zero, model sets have a pure point spectrum [2]. But, in
general, Meyer sets have no reason to be crystals. As Meyer sets on the real line, cite the Thue-
Morse quasicrystal Λa,b formed from the ±- Thue Morse sequence [9], G-cluster sets [10], Zβ
when β is a Pisot number [11], sets of vertices of aperiodic tilings [7], [13], [14], constructions
from algebraic numbers [12], etc. The Thue-Morse quasicrystal exhibit a singular continuous
component since the spectral measure of the ±- Thue Morse sequence is singular continuous
[8], [15], hence it is not a crystal. It was shown that a cut-and-project scheme is canonically
attached to a G-cluster [10], hence providing naturally model sets or model subsets according
to the choice of windows and selection mode of points on the hyperlattice. This means that
G-clustering is a notion naturally associated with the class of Meyer sets since these objects
are always subsets of model sets [5], [6]. Now, Λ is said to be a finitely generated Delone set if
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[Λ−Λ], the Abelian group generated byΛ−Λ (under +), is finitely generated [4]. And it is said
to be a Delone set of finite type ifΛ−Λ is such that its intersection with any closed ball is finite.
The class of finitely generated Delone sets is strictly larger than the class of Delone set of finite
type. Obviously, the latter one contains the class of Meyer sets.

Hof [2] has developed the mathematics of diffraction for arbitrary Delone sets through the
notion of autocorrelation measure. In particular, the Bombieri-Taylor argument ([16], p. 244 in
[2]) states that the Fourier transform of Λ has a δ-peak at ξ when a certain limit
limL→∞ L−1ν̂L(ξ) exists. In [9], we show that, for all above-mentioned classes of Delone sets,
the lattices which intersectΛ play a prominent role in the diffraction process by the rarefaction
laws at infinity they exhibit. For 1D Delone sets having an average lattice, a δ-peak may exist
without this limit exists. For the Thue-Morse quasicrystal, we reconsider the Bombieri-Taylor
argument from the rarefaction laws viewpoint and the fact that the Thue-Morse sequence has
a limit-periodic Fourier module [13], [17]. Ponctual scaling laws were already investigated in
Kolař [14] to discriminate the atomic component of the spectrum from the singular continuous
one.

3. Cut and Congruence λ-Schemes

D 3.1. — A cut and congruence λ-scheme consists of a direct productR × R/λZ of

a real space and a torus, λ > 0, a real-valued function ǧ(x) defined on R, a lattice D = κZ in

R, κ > 0, and a collection of vectors { gn ∈ R | n ∈ Z} so that

(i) the mapping D → R : κn → κn + gn is injective.

(ii) ǧ is an interpolating function of the set {(κn, gn) | n ∈ Z} : ∀n ∈ Z, ǧ(κn) = gn

(iii) For all affine lattice v ∈ { κn + gn mod (λZ) | n ∈ Z} of period λ, there exists real-

valued functions Ai(v, q) and exponents αi(v), i ∈ I (v) a finite or infinite set, such that, the

Ai(v, q) are uniformly bounded, 1 � α1(v) > α2(v) > αi(v) > · · · � 0 and, if q denotes the

number of adjacent cells of this lattice counted from the origin towards +∞ or −∞, the number

of points of v ∩ Λ within these q cells is given by, when q goes to infinity A1(v, q)qα1(v) +
A2(v, q)qα2(v) + A3(v, q)qα3(v) + · · · .

Assertion (i)means that the restriction of the first projection mapping p1 : R×R/λZ to Ď is
1-1, where D is identified with Ď = {(κn, (κn + gn) ���

�
(λZ)) / n ∈ Z} ⊂ D× (R/Z). Denote

Ω̌λ = {(x + ǧ(x)) mod (λZ) | x ∈ R}. The second projection mapping p2 : R × R/λZ →

R/λZ is such that p2(Ď) ⊂ Ω̌λ is called the maximal window associated with ǧ. Identifying
Λ = {κn + gn | n ∈ Z } with D , D with Ď and using p2, we obtain a ∗-operation ∗ :
Λ → Ω̌λ. Note that p2(Ď) is the space of all affine lattices of period λ which intersect Λ in a
non-empty way. The distribution of points on v at infinity given by assertion (iii) is called a
rarefaction law on v at infinity. When (iii) is valid, we say that assumption (Fλ) is satisfied.
Denote V = {gn | n ∈ Z}.

D 3.2. — A congruence model λ-set inR is a Delone set which can be written

ΛW = {x ∈ (p1 + ǧ ◦ p1)(Ď) / x∗ ∈ W }

for a certain window W ⊂ p2(Ď) ⊂ R/λZ.

Congruence model λ-sets are obtained similarly as model sets that is by a formal unique
∗-operation which detects the points to be selected [6]. Given λ > 0 , the class of congruence
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model λ-sets is not included in the class of model sets and intersects a priori all the classes of
mathematical quasicrystals which are mentioned above. Varying now λ allows to study them.
If V is finite or if [V − V ] is discrete with Q ⊗Z [V − V ] = Q ⊗Z κZ, and Λ = Λp2(Ď)

is

relatively dense, any congruence model set ΛW , W ⊂ p2(Ď), is a Meyer set whose intersec-
tions with each affine lattice {x mod (λZ) | x ∈ ΛW } behave regularly at infinity according
to assumption (Fλ). Set k = 2π/λ and denote dW � 1, the ratio of the point densities of

Λp2(Ď)
and ΛW . Let IN (k) = dW

2N
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∣
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n=−N +1 e ik(κn+gn)
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∣

2
, the sum being taken such that

p2((κn + gn) ���
�
λZ) ∈ W . It gives the Fourier transform of the autocorrelation measure of

ΛW . By the following result, we obtain a limit in the sense of Bombieri-Taylor [16].

T 3.3. — Assume p2(Ď) is finite and the Ai(v, q)’s are independant of q. If MW

denotes {v ∈ W ⊂ p2(Ď) | α1(v) is maximal} and if � v∈MW
e ikv A1(v, q)

(

κ
λ

)maxv{α1(v)}
≠ 0,

the scaling behaviour of the diffracting intensity of the congruence model setΛW is given by
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In particular, under these assumptions, there is a δ-peak at k if and only if max{α1(v) | v ∈

MW } = 1.

This theorem contains implicitly the fact that the type of a peak ( δ or singular continu-
ous) can be determined by a scaling law with N at the point q . This approach was already
discussed in [9], Kolar et al [14] and [16].

4. Thue-Morse Quasicrystal, p-Rarefaction and Diffraction

The ±-Thue-Morse sequence [8] is defined by ηn = (−1)S2(n) where S2(n) is the sum of
the 2-digits in the binary expansion of n ∈ N. From it [9], given two real numbers a, b, a > b >

0, we build the aperiodic discrete point set Λa,b on the real line as in Section 3 by: κ = (a +
b)/2, gn = � 0 � m � n−1

(

1
2(a − b)ηn

)

, g−n = − gn It is called the Thue-Morse quasicrystal

associated with a and b. Since it is Delone and Λa,b − Λa,b ⊂ Λa,b + a−b
2 {±3,±2,±1, 0}, it is a

Meyer set. It is the set of vertices of the aperiodic tiling obtained iteratively by the substitution
rule a → ab, b → ba. The pure point component of the spectrum is described in [13]. In [9],
it is proved that rarefaction laws on ±b + λZ, for λ = a + b, are: q/2, and that of λZ is: q.
A consequence is that we have δ-peaks at 2πm/(a + b), m ∈ Z. We will show in [19] that
rarefaction laws of the affine lattices of period (p/s)(a +b), where p and s are positive integers,
are given by p-rarefaction laws. They are basically of the type A1(v)q + A2(v, q)qα2(v) where
A2(v, q) is a bounded fractal function depending upon log q/ log 4 and the α2(v)

′s are closely
related to log p/(p − 1) log 2. For instance, take s = 1 and p = 3. Denote, for all integer n � 1,
any odd prime p and i = 0, 1, . . . , p − 1

Rp,i(n) =
�

0 � j<n

j≡i( mod p)

(−1)S2( j) (1)

Goldstein et al [18] (previously Coquet for i = 0; see ref. therein) proved a general expres-
sion for the 3-rarefied partial Thue-Morse sums, with α = log 3/(2 log 2), t3(n) = 0 if n is even
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and t3(n) = η3n−3 if n is odd,

R3,i(n) = nαψ3,i

(

log n

log 4

)

−
t3(n)

3
(2)

where for all i = 0, 1, 2, the (fractal) functionsψ3,i are continuous, nowhere derivable, periodic
of period 1. Rarefaction laws on the 9 affine lattices of period 3(a+b) intersectingΛa,b are of the
type: q, q + 1 or q/2 ± R3,i(3q), making a link between the functionsψ3,i and the coefficients
A1(v, q), A2(v, q).

T 4.1 ([9]). — The spectrum of the Thue-Morse quasicrystal Λa,b exhibits a singular

continuous peak at k = 2π/(3(a + b)). The Fourier transform of the autocorrelation measure

IN satisfies

∀ε,∃N0 such that∀N � N0,
IN

N 2α−1 ∈
1

18
|F (k)|2 +] − ε; +ε[

where F (k) is the closed interval obtained as the image of [0; 1] by the continuous mapping

x →
1

2
(ψ3,2(x) −ψ3,0(x)) sin

(

π(a − b)

3(a + b)

)

.

F (k) is a fractal compact curve lying on the real line described fractally as the image of N∗ by

the mapping

q →
1

2
sin

(

π(a − b)

3(a + b)

)(

ψ3,0

(

log(3q)

log 4

)

−ψ3,2

(

log(3q)

log 4

))

F (k) does not contain the origin leading to no extinction of this singular continuous peak.

The asymptotic growth of R3,i is of the order of n
log 3
log 4 in the sense

−∞ < lim inf
n→+∞

R3,i(n)

nα
< lim sup

n→+∞

R3,i(n)

nα
< +∞

with fractal undulations between the bounds. These bounds are reached. This has led us to
reconsider the Thue-Morse quasicrystal as an incommensurate crystal with a fractal decoration
within the average cell. The Thue-Morse quasicrystal is a congruence model λ-set for λ = a +b

and λ = 3(a + b).
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[11] Č. B, C. F, J. P. G and R. K, Beta-integers as natural counting
systems for quasicrystals, J. Phys. A: Math. Gen., 31 (1998), 6449–6472.

[12] E. P, J. P  Z. M, Self-similar Delone sets and quasicrystals, J.
Phys. A: Math. Gen., 21, (1998), 4927-46.

[13] F. G and R. K, The diffraction pattern of self-similar tilings, in The Mathe-
matics of Long-Range Aperiodic Order, Ed. by R. V. Moody, Nato series, Kluwer Academic
Publ. (1997), 141–174.

[14] R. R, M. S and Y. L, The Thue-Morse aperiodic crystal, a link between the
Fibonacci quasicrystal and the periodic crystal, Int. J. Mod. Phys., B 1 (1987), 121-132. Z.
C, R. S and R. M, Structure and electronic properties of Thue-Morse lattices,
Phys. Rev. B, 37 (1988), 4375. M. K, B. I and L. R, Structure factor of 1D
systems (Superlattices) based on two-letter substitution rules I. δ (Bragg) peaks, J. Phys.

A: Math Gen. 26 (1993), 7343–7366.

[15] S. Kakutani, Strictly Ergodic Symbolic Dynamical Systems, in : Proc. of the 6th Berkeley
Symposium on Mathematical Statistics and Probability vol. 2, Berkeley, University of Cal-
ifornia Press, (1972), pp 319-326.

6



[16] E. B and J. T, Quasicrystals, tilings, and algebraic number theory; some pre-
liminary connections, The legacy of Sonya Kovalevskaya, Contemporary Mathematics, 64,
(1987), 241–264.

[17] D. B, Propriétés algébriques et spectrales des structures apériodiques, Doctorat
thesis, Paris 7 Jussieu University, (1995)

[18] S. G, K. A. K and E. R. S, The fractal structure of rarefied sums of the
Thue-Morse sequence, J. of Number Theory, 42 (1992), 1–19. M. D and M. S,
Sign-changes of the Thue-Morse fractal function and Dirichlet L-series, Manuscripta
Math., 86, No 4, (1995), 519–541.

[19] J.-L. V-G p-rarefaction and arithmetics of the Fourier transform of the auto-
correlation measure of the Thue-Morse quasicrystal, Institut Fourier, (2000).

Jean-Louis VERGER-GAUGRY
INSTITUT FOURIER
Laboratoire de Mathématiques
UMR5582 (UJF-CNRS)
BP 74
38402 St MARTIN D’HÈRES Cedex (France)

email: Jean-Louis.Verger-Gaugry@ujf-grenoble.fr

&

Janusz WOLNY
University of Mining and Metallurgy,
Faculty of Physics and Nuclear Technics,
al. Mickiewicza 30, 30-059, Krakow (Poland).

7


