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Introduction

In the recent preprint [1] the authors define a certain invariant associ-
ated to Hamiltonian group actions on (non-necessarily closed) symplectic
manifolds. They also state (conjecture 3.6) that their invariant should coin-
cide (at least in some “good” cases) with the Gromov-Witten invariants of
the Marsden-Weinstein quotient of the symplectic manifold. Their idea for
proving the conjecture is based on an “adiabatic limit” argument.

The purpose of my note is to put the construction given in [1] into an
algebro-geometric perspective and to relate it to the problem studied in [2].
In particular I shall answer in positive the conjecture in the case studied in
my thesis (see corollary 4.6). More precisely, the invariant ® introduced in
[1] and whose definition is recalled in section 4 turns out to be related to the
Gromov-Witten invariant as follows:

Theorem Let X be a compler projective variety on which a complex torus
G° := (C*)" acts. Assume that this action is linearized on a very ample
line bundle on X and denote X the invariant quotient of X. Consider a €
H,. (X)®* and a class B € Ho(X; Z) which is defined by a map C — X with
C a smooth, irreducible algebraic curve. Denote P — C the €°° principal
bundle obtained pulling back X°° — X to C and fix a connection Ay in
P. Denote PS(Ag) — (Pic’C)" x C a universal (C*)"-bundle and let X :=
PE(Ag) Xge X. Denote B € Ho(X;7) the class induced by B.
Assume that:

(A1) the action is free on the semi-stable locus of X and

(Ag) the spaces Mo (X; B)//G¢ and Hc,k(X;B) have both expected di-
mMension. A

Then invariant ® coincides with the Gromou- Witten invariant of X .

The structure of the present note is as follows: in the first section I describe
the context of the problem in more detail. I introduce the relevant definitions
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and I study the action of the gauge group of a fixed principal bundle on
the space of connections. It turns out that the (pointed) complex gauge
equivalence classes of principal torus bundles over an algebraic curve are
parameterized by (a power of) the Picard variety of the curve. The purpose of
section 2 is to describe explicitly the universal (C*)"-bundle over (Pic®C)" x
C, denoted PS(Ap) in the theorem above. In section 3, I introduce the
relevant spaces of maps for the definition of the invariants and I concentrate
on the description of the link between the analytic and the algebraic point
of view. Finally, in section 4, I am in position to prove the main result.

1. Preliminaries

I shall describe briefly the construction given in [1] in the following par-
ticular context: X is a projective manifold and G° is a connected, linearly
reductive complex group which acts holomorphically on X. Assume further
that this action linearizes a (very) ample line bundle Ox (1) — X. Then
the maximal compact subgroup G of G¢ preserves a Kahler form w on X
which represents the first Chern class of Ox(1). In symplectic terms, we get
a Hamiltonian action on the symplectic manifold (X, w).

The G-equivariant homology of X is defined as HE(X) := H,(EG x¢g X),
where EG — BG is the universal G-bundle. The space EG is uniquely
determined (up to homotopy) by the condition that G acts freely on it.
Notice that one may take EG® = EG =: F since G, being a subgroup of G¢,
acts freely on EG°.

Elements in HY (X) can be constructed as follows: you start with a closed
%> manifold M of real dimension k together with a G-equivariant map
U : P — X. The k-dimensional equivariant homology class defined by this
data is the image of the fundamental class of M under

HE (M) <— HE(P) — HE(X).

It is proved in [1], proposition 2.1, that for every G-equivariant 2-homology
class B € HS(X;Z) there is a closed (not-necessarily connected) Riemann
surface ¥ and a G-principal bundle P — ¥ together with a G-equivariant
map U : P — X which represents the class B. Moreover, if 3 is connected
and P,P’ — X represent the same class, then P and P’ are isomorphic
as G-bundles. In other words, the choice of an equivariant homology class
determines uniquely the topological type of the principal bundles, over a
fized Riemann surface, which can represent this homology class.

Remark 1.1. (i) Notice that if P — X is a principal G-bundle coming with
a G-equivariant map U : P — X, there is an induced commutative diagram

p 49U pyx

l l

X ——» PxgX.

IS
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(ii) Suppose that U, U’ : P — X are two maps representing the same class
in B € HY(X). Then the induced maps %, % : ¥ — P xg X represent the
same homology class in Hy(P X X). This homology class can be visualized
as follows: the topological fibration E xg X — BG with fiber X gives an
isomorphism HS (X;Z) = Hy(X;Z) @ He(BG;Z). If Bx is the Ha(X;Z)-
component of B, the 2-homology class represented in P x¢ X is Bx + [C].
o

We now turn to another ingredient used in [1] for defining the invariant.
Given a principal G-bundle P — 3, denote &/ (P) the (affine) space of
connections in P. The underlying vector space is 2!(2, adP), where adP :=
P xggand G acts on its Lie algebra by the adjoint action. The gauge group
of the principal bundle P — ¥ is defined as

G(P):={f:P—= G| f(Ryp) = Ad(9)f(p)},

where R, denotes the right action of G' on P. It can be identified with the
group of automorphisms of P (as a G-bundle) via the map

G(P) > f — F € Autg(P), p+> Rypyp.

Using a fixed monomorphism 5 : G — G¢, consider the complexification
P¢:= P xg G of P which is a principal bundle over ¥ with structure group
G¢. Tts gauge group ¥ (P°) is defined similarly as ¢(P) and can be thought
off as the complexification ¥¢(P).

Let us consider the normal subgroup ¥5(P) of pointed gauge transforma-
tions of P¢ which are defined by the property that they are the identity on
the fiber P, of P over a fixed point (p € 3. This group fits into the exact
sequence

19 (P)—>9(P)—-G —1
which is split when G = St x --- x S is a torus. In this case, the real (resp.

r times
complex) gauges are

GP)={f:Z = (SY)"} resp. Y(P)={f:%— (C)'}.

Let now fix a metric and an orientation on 3. This data induces naturally
a complex structure on ¥, turning it into a smooth, irreducible, projective
curve C.

Definition 1.2 (cf. [1] section 2.4). (i) For a connection A € &/(P) and a
G-equivariant map U : P — X, define the operator d4U acting as
TpP 5> wr— dUp(w) + £(A(w)) y )

where £(a), is the tangent vector at £ € X determined by a € Lie(G).
_ (ii) A G-equivariant map U : (P,A) — X is called A-holomorphic if
04U = 0, where

= 1
04U = i(dAU + Jx odaU o Jg).
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The notation J¢ stands for the complex structure induced on the A-horizon-
tal spaces of P by the complex structure of C. o

In more down to earth terms, a G-equivariant map U : (P,A) — X is
A-holomorphic if and only if

dU,(Jv) = JAU,(®),

where ¥ and Jv denote respectively the A-horizontal liftings in p € P of the
vectors v, Jv € TC.

Definition 1.3 (cf. [1] section 3.2). Denote
Xp:={(U,A) € C¥(P,X;B) x #(P) | 94U =0}

the space of G-equivariant, A-holomorphic smooth maps which represent the
class B € HS (X). o

Remark 1.4. It was already mentioned in remark 1.1 that U induces a map
4 :C — P xg X. It should be noticed is that U is A-holomorphic if and
only if @ is holomorphic. One has to be careful with the (integrable) complex
structure on P x g X: this one is induced by the connection A. So, for vectors
tangent to the fibers of P xg X — C, the complex structure agrees with
that of X, while for v € TC (in a local trivialization P = C x G),

Tpxax(v) = Jo+E(A(Jv)) = JE(A(v)). °

Obviously the gauges of P act on Xp but it turns out that the complex
gauges act also. One obtains a particularly nice formula when G is a torus.

Assumption From now on, I shall assume that G° is a complex, 7-
dimensional torus.

Lemma 1.5. When the structure group of P is a torus, the compler gauges
G°(P) act on Xp as follows: f x (U, A)— (f-U, f-A), where

(1.1) (f-U)p) = " (0)U(p)

and
(12) A=A+ (Faf), ++(Fdf)y

Some explanation is in order: any a € Lie(G¢) = Lie(G) ®iLie(G) can be
uniquely written a = ag + ta;q, With ag,a;3 € Lie(G). The * in the formula
represents the Hodge star operator on C.

Proof. Tt is clear that formula (1.1) just extends the action of the real gauges
by composition on the right. We shall prove the formula for the action of
f on A searching a connection A’ on P which makes the map U’ := f - U
A’-holomorphic. For doing computations I use a local trivialization of P, so
I may assume that P itself is trivial (as long as the objects found in the end
are globally defined).

In what follows, ¢ will denote a point on C. By assumption P = C x G
and U(¢,g71) = gu(¢), for some u : C — X. I want to find a connection A’
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on P such that 04U’ = 0. Since U’ is G-equivariant, it is enough to check
this condition at points (¢,1) € P. Because U is A-holomorphic,

dU(le)(J’U - A(J’U)) = JdU(C’l)(’U - A(’U))
for v € T;C, or equivalently
(1.3) du¢(Jv) + E(A(JV)) () = Jduc(v) + TE(A())u(e)-
Using formula (1.1), an immediate computation shows that

AU (Jo — A'(Jv)) = F1(C)duc(Tv) — FHQE ) (T0))ugqy

+FTHOEA (JV)) (o)
and
JAUY (v = A'() = FH(Q)Tdug(v) — £ HOTEF 1) 0)
+HOTE(A (0)) o)
For U’ to be A’-holomorphic it is necessary and sufficient that the difference
of the two quantities above is zero. Imposing this condition we obtain

0 = Jdug(v) — duc(Jv) — JE((F1AF) (0)) ) + E(FTHAF)(T0) o)
FJE(A () ) — E(A () ()

@eu T0) gy = TEAWugg) = EA Ty + TEA @)y
+E((f~ df)(Jv)) © — JE(FI AR )y

= ¢(A(Jv) — A'(Jv)) ()—Jf( (v) —A'(v ))u(g)
+e((f 1df)(Jv))u(O JE((F71F) () yo)-

It remains to separate the Lie(G) and ¢Lie(G) components of the last line.

E((f1df)(Tv)) — JE((f1df)(v))

=&((f71df)g(Tv) +i(f 7 df)ig(Tv)) — E((f 7 dS)g(v) — (f7df)ig(v))

= &((f71df)g(Jv) + (f1df)ig(v)) — JE((f 7 df)g(v) — (FdS)ig(Jv)).
Inserting this into the previous relation, we obtain

0 =¢(A(Jv) = A'(Jv) + (F71df)g(Jv) + (f1df)ig(v))
—JE(A(v) — A'(v) + (f71df)g(v) — (f71df)ig(Tv)).
For A’ defined by
A=A+ (f_ldf)g - (f_ldf)ig o J,

the last equality is satisfied. Notice that in general this is the only possible
choice for A’ since the vectors & and J¢ are in most cases linearly indepen-
dent.

Using local normal coordinates on C, it follows immediately that for any
I-form a € Q}, ao J = —(xa). O
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Remark 1.6. (i) It follows from formula (1.2) that the ¢§(P)-action on Xp
is free.

(ii) Any f: C — (C*)" is of the form f(¢) = R({)¢(¢), with R: C - R"
and ¢ : C — (S')". Formula (1.2) becomes

(1.4) f-A=A+ o dp —ixd(logR).

The form ¢~ 'dy is closed, but not necessarily exact; it is exact if and only
if o, : 1 (C) — (m1(S'))" is the zero homomorphism, or equivalently ¢ =
exp(i0) for some 6 : C — R". However it always defines an integral 1-
cohomology class and conversely, any integral 1-cohomology class can be
represented in this form.

Using the Hodge decomposition of Q};, this discussion implies that the
pointed complex gauge equivalence classes of connections in P are parame-
terized by

H' (C,R")/H' (C,Z"),

where H! (C,R") denotes the space of harmonic \"-valued 1-forms on C.
Let us notice that this quotient is just the 7*® power of the familiar Picard
variety of C, when H! (C,R") is given the complex structure defined by the
Hodge-star of C.

(iii) In the genus zero case, i.e. C = P!, all gauges admit a globally defined
logarithm. Therefore all connections are gauge equivalent, which is the same
saying that in a given topological principal bundle P — P! there is only one
equivalence class of holomorphic structures. o

2. Short digression on the Picard variety

In this section I want to recall some basic facts about the Picard variety.
The construction in proposition 2.4 is certainly well known, but I recall it
because I do not know any appropriate reference for it. As mentioned already
in remark 1.6, the quotient

H! (C,R")/H (C,Z") = (H} (C,R)/H! (C, Z))" =: (PicC)"

is the ! power of the Picard variety of C, when H! (C,R") is regarded as a
complex vector space with complex structure given by the Hodge-star of C.
It is a projective torus which parameterizes topologically trivial, holomorphic
principal (C*)"-bundles over C.

It is classical that there is a universal (C*)"-bundle

PS¢ — (Pic’C)" x C

such that for any point 7 € (Pic®C)", the restriction (P¢), — C; represents
the point 7. Denoting P¢ — (Pic’C) x C the (usual) universal C*-bundle,
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the (C*)"-bundle P¢ is obtained from the following diagram
(id(picocyr X Ac)™(P€)" =: P¢ (Pe)”

l J

i ) r XA
(Pic®C)" x C dpiooyxo (Pic®C)" x C".
The shortcoming of this description is that it does not give any information
on the connection in Py defining its holomorphic structure. For this reason
I shall indicate an alternative down-to-earth construction of Pf. More pre-
cisely, I shall construct a universal principal (C*)"-bundle for holomorphic
(C*)"-bundles over C having a fixed topological type (recall that P¢ gives
the topologically trivial ones).
I start with the following

Lemma 2.1. For any o € H' (C;Z"), there is a unique @q : C — (SV)" such
that 0o (Co) = 1 and o, 'dp, = a. (Recall that a point (o € C was fived from
the begining).

Proof. Clearly, we may assume that » = 1. The uniqueness part is imme-
diate. For the existence part, notice that if « is exact, i.e. a = dé for
0:C — R, then ¢ := exp (i(6 — 6((o))) does the job. Homotopy classes of
maps C' — R are parametrized by Homz(H'(C;Z);Z) = H*(C;Z), so for
a € H(C;Z) there exists ¢ : C — ST such ¢/(¢o) = 1 and [(¢/)"'dy'] =
[a] € HY(C;Z). By the discussion above, there exists ¢y : C — S! such
that ¢p(¢p) = 1 and ¢y dpy = a — (¢") "y, Now ¢ := @’ will be
convenient. O
Remark 2.2. The map
H' (C;Z7) 3 a— pa € €%(C, (S")")

is a morphism of groups, i.e. Ya3 = Yatg- o

I fix a real connection Ay in the smooth (C*)"-bundle P¢ — C, i.e. one
coming from a connection in the real (S')"-bundle.
Lemma 2.3. (i) On H'(C;R") x C, there is a natural, closed R" -valued
1-form x which is defined by

X(a,0)(a,v) := A(v) for (a,v) € T(A,C)Hl (C;R") x C.

(ii) The (real) connection A := Ay + x defines a holomorphic structure on
the bundle prg, P¢ — H' (C;R") x C.

Proof. The curvature of A is F,4 = prg,F4,. This one, being a (1, 1)-form on
H! (C;R") x C, defines a holomorphic structure. O

Proposition 2.4. (i) The group H'(C;Z") acts holomorphically, by real
gauges, on preP¢ by

H'(C;Z") x (H' (C;R") x P°) — H'(C;R") x P°,
ax (A,p):=(A+a,R,.p).
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(#i) The holomorphic principal bundle
PE(Ag) := proP¢/H (C; Z7) — (PicC)" x C

is a universal principal (C*)"-bundle which parameterizes holomorphic bun-
dles over C having fized topological type defined by Ag. It also comes with
the connection induced by A.

Proof. (i)Remark 2.2 implies that the formula above is indeed an action. It
is also holomorphic because H! (C;Z") preserves the connection .A; indeed,
A+ a=pA.

(ii) The statement is a direct consequence of 1.6. O

Remark 2.5. (i) I should explain that I have worked with complez prin-
cipal bundles throughout this section because I wanted to put emphasis on
their holomorphic structure. But PE(Ap) is the complexification of a real
(S1)"-bundle P,(Ag) — (Pic®C)" x C and the connection A comes from a
connection in P,(Ap), because (as I stressed several times) the connection
Ay (fixed from the beginning) is real and the action on prg, P is done by real
gauges.

(ii) One may ask what happens if a different connection Aj is considered
in 2.3 instead of Ag, so that proposition 2.4 provides the principal bundle
PE(A]) having a different connection A’. T claim that in this case there is
a G%equivariant isomorphism E : Pf(Ag) — PE(Af) covering a translation
on the base and sending A into A’. Indeed, there exists a (unique) gauge
f € ¥4§(P) such that fA) = Ap + of, with of € H!(C;Z") the harmonic
part of Aj — Ao in the Hodge decomposition of Qlc Therefore I may assume
as well that ag := A — A is a R -valued harmonic form. The map

prP¢ = H' (C;R") x P¢ — H' (C;R") x P°

(Aap) — (A + Oé(),p)
commutes with the H! (C; Z")-action and sends A to .Aj. o

3. Moduli spaces

In this section I shall show how the spaces introduced in [1] for defining
invariants of Hamiltonian group actions have nice algebraic interpretation.

I should remind the context I place myself: X is a projective, irreducible,
complex variety on which the complex torus G¢ := (C*)" acts and this ac-
tion is linearized in the ample line bundle Ox(1) — X. There exists a
positive (1,1)-form w on X representing ¢;(Ox (1)) for which the action of
the compact torus (S*)" on (X,w) becomes Hamiltonian.

For defining the invariants, the authors in [1] introduce (a perturbation
of) the spaces

(3.1)  Seu(X;B) = {(U,A) € Xp | xFs+ polU =0} x (Pk)o/%(P)
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and
(3.2) Sck(X; B) :== Sc(X; B)/G*

In the definition above, y : X — R’ is the moment map corresponding
to the (S)"-action and (P¥), is the complementary in P* of the diagonals.
The group actions are as follows:

.f X ((UaA) X (pl,"'apk)) = (f Uaf A) X (Rf(pl)pl""’Rf(pk)pk)

and
(gl, s agk) X [(U7 A) X (pla .- apk)] = [(U’ A) X (Rglpla RN ngpk)]a

for f € 4(P) and g1,...,9r € G = (SY)". The expected dimension of this
space is

3.3) 2D :=exp.dimgSc(X;B) = 2(1 — g)(n — ) + 2¢5(X) - B + 2k,
R s 1

where c¢{ (X) denote the G-equivariant first Chern class of X.
It is stated in [1], section 3.2, that the case when X is Kéhler was studied
in [3] where it is proved that

(3.4) Sox(X,B) = (X5 x (P)5/9°(P)) / (G)".

The notation X3 C Xp stands for the set of so-called stable pairs, while
@¢(P) acts on Xp as described in lemma 1.5.

For my purposes I find more convenient to use this second description
of Scx(X;B). I mentioned that when G° is a torus ¥¢(P) = ¥5(P) x G¢
is a product. Because the actions of 4¢(P) and (G°)* on Xp commute,
I may construct the space Sc(X;B) differently: first I take the quotient
Xp X (Pc)f/goc(P) x (G°)* (which is finite dimensional) and after take the
invariant quotient for the remaining G-action. Ishall use interchangeably G-
equivariant maps U : P — X and G‘-equivariant maps U¢: P — X. That
there is no harm in doing so follows from the fact that any G-equivariant U
defines (in the obvious way) a G®equivariant U¢; conversely, any such U®
defines a corresponding U composing with the inclusion j : P — P°.

Lemma 3.1. (i) Using the notations of 2.5, the variety X defined by
X = Pf(Ao) X @qe X = Pr(Ao) Xaq X,

carries a natural compler projective structure. Its compler dimension is
dim X = gr 4+ dim X, where g is the genus of C and r = dim G¢.

(i) Any G-equivariant, A-holomorphic map U : P — X, A € & (P),
which represents an equivariant 2-homology class B € HQC;(X;Z) defines
a holomorphic map 4 : C — X which represents a class B € Hy(X;7Z)
depending only on B. For m : X — (Pic°C)" x C the natural projection,
§f(X) B = cl(T;—(‘ﬂ) - B, where T}(el denotes the m-relative tangent bundle.

(15i) Consider an A-holomorphic, G-equivariant map U : P — X and
g € Y5(P). Then U and gU define the same map C — X.
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Proof. (i) X has a holomorphic structure because P¢(Ag) — (Pic’C)" x C
is a holomorphic bundle, according to lemma 2.3. That it is also a projective
variety, follows from the fact that the Picard torus is projective.

(ii) Remark 1.6 implies that given U : (P,A) — X there is a unique
fa € 95(P) (depending on A) such that

fa - A= harmonic part of A— Ag =: h(A — Ay) € H' (C;R").
The composed map

({h(A*Ao)}Xidp)XfAU_} Hl

(35) P (C;R") x PxX — Pp(Ag) x X
—_———

=pr P
is G-equivariant and therefore it defines
u:C — Pr(Ap) XG_X:X.

Since f4aU : P — X is faA-holomorphic, it follows that this map is holo-
morphic. If p, € P (or in P°) denotes a point lying over ¢ € C, the explicit
formula for u is

(3.6) ¢ 5 [[A(A = Ao),pe), (faU)(pe)],

where the square brackets denote obvious equivalence classes.

The reason why u defines a class depending only on B was already ex-
plained in remark 1.1. The difference is that this time there is a fibration
X = (Pic°C)" x C and not just X — C. If Bx € Hy(X;Z) is the Hy(X; Z)-
component of B, then B =0 [C] & Bx.

If p: P — E is the G-equivariant map which defines P topologically, the
last statement follows from the diagram

T x = (p,idx)"(E % Tx) » ExgTx
u (P,idx)_) Exg X,

c ", PxgX
(ili) Consider now U : P — X and g € ¥§(P). Then g is of the form
g=R-p, with p : C = (S1)" and R : C — R'. According to (1.4),
gA = A+ ¢ tdp —ixd(logR), so

h(gA — Ag) = h(A — Ap) + h(p~"dy).

Notice that a, := h(p 'dy) is actually an integral R"-valued harmonic
form and according to lemma 2.1 it exists a unique %, € %(P) such that
w;ldz/)cp = ay,. I claim that fou4 = ,fag™", ie. that (,fag")(gA) =
Ao+ h(gA — Ap). Indeed,

(Pofag™1)(94) = 1y(fad) =1hy(Ao + h(A — Ay))
=Ap+h(A— Ap) + ’lﬁ;ld’(,b(p
= A0+h(A—A0) +a, = A()-I-h(gA—A())
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I am going to check now that U and gU induce the same (holomorphic) map
C — X. Using formula (3.6), I deduce that gU induces the map

(
¢ = [[MA = Ao) + g, pl, 5 (pe) - (£aU) (p)]
= [[M(A — Ao) + ay, Ry, pc], (£faU)(pc)]
= [[h(A — 4o),pc], (£aU)(pc)]-
This finishes the proof. O

Proposition 3.2. There is a one-to-one map
Xp x (PR /9(P) x (GO s M (X;B),

where Mc (X B) denotes the space of stable maps (C,z) — X with k
marked points x € (Ck)o and representing the 2-homology class B. As usual,
(C*), denotes the complement in C* of the diagonals.

Proof. Consider an A-holomorphic, G-equivariant map U : P — X together
with & marked points p € (Pc)f. Denote z := mc(p) € (CF),. Lemma 3.1

says that this data induces a morphism C — X and moreover, it does not
depend on the ¥ (P)-orbit of (U, A). So we get a map

F:Xp x (P°)f/48(P) — Mg 4 (X; B)
(U, A),p] — (4, z).
This map is clearly (Gc)k—invariant and therefore descends to the quotient
F:%Xp x (P)¥/45(P) x (G)F —— Mcx(X;B).
Since the composition 7o @ = {7} X id¢, U L5 @ defines a stable map
instead of just a morphism i.e. @ is actually a representative for a whole
equivalence class of morphisms.

The map F is clearly surjective: for a point (%,z) € Mc(X; B), consider
the diagram

@ (PA) x X) =P — Y P4 x X —X,
C L X.

The composed map U := pry o U will be a G-equivariant, A-holomorphic
map, for A := a*A (see 2.3 for the definition of A). As marked points in P,
one may take any p lying over z.

I have to prove that F is injective. Assume that U : (P,A,p) - X and
U': (P,A',p') - X induce the same morphism @ : C — X. It follows
that necessarily h(faA — Ag) = h(farA' — Ag) mod H' (C;Z") and therefore
h(faA — farA") = 0 mod H! (C;Z7). T deduce from 1.6 that f4A and fu A’
are in the same ¥§(P)-orbit, so A and A’ are in the same ¥§(P)-orbit also
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and, since % is gauge invariant, I may assume that A = A’ and even that
A — Ay is a harmonic form.

The problem is reduced to the following: two maps U : (P, A,p) — X and
U : (P,A"p') - X which define the same (%, Z) must be equal. Formula
(3.6) says that

[[A— Ao, pc), Ulpe), [p]] = [[A" — Ao.pc], U'(pe): [p']] Ve € P.
One sees immediately that this imply U = U’ and [p] = [p']. O

The advantage of working with the space M (X ; B) is that it is a quasi-
projective scheme and has nice compactification in terms of stable maps,
which I shall denote M ¢ (X; B).

Recall that for obtaining the space S¢ (X B) it remains to take a G¢ =
(C*)"-quotient. There is a natural G¢-action on X:

g X [[A,p],m] = [[A,p],gm] for [[A,p],x] € X = Pi(Ap) xge X.

I have to stress at this point that this action is well-defined precisely because
G° is a torus, namely because it is commutative.
The action on X induces one on M ¢, (X; B),

G®x Mcx(X;B) — Mcx(X;B),

gr:=z and (g9a)(() := gu(C)
and is immediate to check that this is exactly the G°-action induced, via
proposition 3.2, on M ¢ (X; B).
Remark 3.3. (i) It follows from (3.4) and 3.2 that

Sck(X;B) = Mg (X; B)//G*.

I must emphasize that the linearization of the G®-action on M ¢ (X; B) used
in my thesis may not coincide with that used to obtain the space X% C Xp
of stable pairs. However, two invariant quotients of an irreducible variety
are birational if both non-empty. Consequently the evaluation of a form of
maximal degree on their fundamental cycle is the same. Of course, it is open
the question when M¢ x(X; B) is irreducible.

(i) One more major problem is that in algebraic context the moduli spaces
are rarely of expected dimension. It should be possible to remediate this
introducing virtual cycles which are obtained from obstruction theory rela-
tive to 7 : X — (Pic’C)" x C. From symplectic point of view, one looks at
pseudo-holomorphic curves in X for generic almost complex structure in the
“vertical” X-direction. o

First I shall linearize the G%action on X. By hypothesis, the G¢-action on
X is linearized on a very ample line bundle Ox (1) — X. This one determines

L:= ’Pf(A()) X @Ge Ox(].) — X,
which is m-ample, for the projection 7 : X — (Pic’C)" x C. It is immediate

to see that G¢ still acts on L and covers the action on X. Again, for obtaining
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this linearization I use in essential way that G¢is a torus. For £ — (Pic®C)" x
C sufficiently ample line bundle,

L=7%L—X

is ample and the Gaction can be linearized on it.
I claim that the G°-semi-stable points of X are

X35(L) = P¢(Ag) xge X*5(Ox(1)).

The inclusion “C” follows from the fact that the restriction of L to the fibers
is precisely Ox(1). For the other inclusion, take x € X*(Ox(1)) and a
point * € P¢(Ag). There is a section s € T'(X, Ox(m)) with s(x) # 0, for
some m > 0. This one defines a section 5 € T'(X, L)% which still does not
vanish at [*,z] € X. For an arbitrary section o € T'((Pic’C)" x C,£™) not
vanishing at 7([*, z]), § := 7*c ® § is G°invariant and non-zero at [*, z].

Notice that if G¢ acts freely on X**(Ox(1)) then it does the same on
X3$(L). Moreover

X/)G¢ = (Pic°C)" x C x X where X := X//G".

I have mentioned already that for 4 € Mcy(X;B), the composition
mow = {7} x idg, for a certain point 7 € (Pic°C)". This means that
in fact Image(u) C PF(Ao), Xge X, where PE(Ag), — C denotes the ob-
vious restriction. The next lemma is useful to “visualize” better the space
Mc,,(X; B).

Lemma 3.4. Assume that G¢ acts freely on X*° and let q : X°° — X be the
quotient map. Consider & € Mc (X ; B) with Image(@) C PE(Ag), X ge X*5.
Then (q o @)*X** — C represents the point T € (Pic®C)".

Proof. Notice that in the diagram
PE(Ag), x Xo° Xss

o |

u q A

C L PA). xge X L X,

PE(Ag), x X% = ¢*X*5. Indeed, for ([p,z],2') € ¢*X*° there is a unique
p' such that [p',z'] = [p,z], so we may identify ([p,z],2') = (p/,z'). Con-
sequently, (gou)*X* = u*(PE(Ap), x X**) and I obtain a G°-equivariant
map (g o @)* X5 — PE(Ap), which covers the identity of C. This one must
necessarily be an isomorphism. O

4. Definition of the invariants
First I introduce the evaluation maps
Bk : Xp x (PO /45 (P) — XF,

(4.1)
[(U’ A)’ (p1, s ;pk)] — (U(pl)a AR U(pk:))
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and
(4 2) EVg : st X (PC)’;/{%C(p) — ch’
‘ [(U,A),(pl,...,pk)] — (U(pl),...,U(pk))
and
(4.3) BV : X5 X (P9); /45 (P) — (PE(4o) x X)F,

All of the are (G¢)*-equivariant and the last map induces on M (X; B) the

usual evaluation map
(44)  evp: Moy(X;B) = Xp x (PO)/9¢(P) x (G°)F — X*.

The key for understanding the relationship between the analytic point of
view and the algebraic one developed in the present paper is the following
diagram

% (P9):/45(P) C Xpx (POL/H(P)

quot out the
free (for k > 1)
G°-action

quot out the
free
(G®)*-action

(45) x5 x (P%)*/9¢(P) Xp x (P)%/9¢(P) x (G)*
t out the .
((1111131: Icl):cessa- propgs;tlon
rily free) ’
(G®)*-action
Scx(X;B) = Mo y(X;B) |G «-- Mci(X; B).

Recall that 2D was defined as the expected dimension of S¢ ;(X; B), the
exact formula being given by (3.3). Since G¢/G (= RL) is contractible, the
G and G°%-equivariant cohomology of X coincides; I shall prefer working with
G“-equivariant classes.

Definition 4.1. The invariant for Hamiltonian group actions introduced in
[1] is defined in the following way: consider an equivariant cohomology class
a € HE. (X)®* with degr = 2D. Under the assumption that (G¢)* acts

freely on X% x (’PC)]OC /9¢(P), the pull-back defines a cohomology class on
Sck(X; B) denoted the same. The invariant is

(4.6) 5 (@) == / (EVi)*a.
Sc,k(X;B)

I have to say that @ is defined this way only when S¢ x(X; B) has the correct
dimension. This is the reason why the authors in [1] work with perturbations
of Scx(X;B). In algebraic context, one has to integrate on a w-relative
virtual cycle, as mentioned in remark 3.3. o
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The question of compactifying Scx(X; B), needed to make well-defined
the integral above is left open in [1]. The conjecture in [1] is

Conjecture Consider a € Hx.(X)®" and B € Hy(X;7Z), with X := X J/G€.
Denote @ € H* (X'k) and B € HQGC (X;Z) respectively the classes defined by

X < E xge X — E xge X.
Then 353 (o) = GWG; (&),

Assumption In what follows I shall always assume that M ¢ (X; B) has
the expected dimension.

As Sk (X;B) = Mcx(X; B)//G, it is natural to define the invariant &
using the evaluation map evy on Mc(X;B). Roughly, it means passing
from the left hand side of diagram (4.5) to the right hand side.

Remark 4.2. For making this passage, one needs to understand the relation-
ship between the various group actions and evaluation maps which appear
in the context.

On X% x (PC)]Oc /%5 (P) there are two commuting actions. First, G¢ C
4°(P) acts by constant complex gauges

g9 x [(U,A),p] = [(gU, A), Ryp].

The map EVy, is G¢-invariant for this action, while BV}, is G¢-equivariant, for
the diagonal right action of G¢ on (P¢(Ay) x X)* on the P¢(A)-factor.

Secondly, we have the (G¢)*-action on X3 x (P¢)¥/4¢(P) (with quotient
Mk (X; B)*),

(gl,...,gk) X [(U,A),(pl,...,pk)] = [(U,A),(Rglpl,...,ngpk)].

The evaluation map BV, is (G¢)"-equivariant for the G¢-action on P(Ag) x X
on both terms. o

Convention In what follows, the symbol “~” will denote homotopy equiv-
alence and the letter “7” obvious inclusions.

Mo(Xs B)JIGE ~ BF x oy (X3 x (PO)/9°(P))
~ BF X oyt (E X e (3653 x (PC)’j/%C(P)))
— E xge (Ek X eyt (3553 x (PC)’g/%C(p))) .
The map
BV; 1 Xy x (PO)5/95(P) — (Pf(Ao) x X)F
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being (G¢)F-equivariant and G-invariant, induces
(4.7)
E xge (BY % ey (X5 % (PVE/45(P))) —"— Exae Mox(X; B)

J Wk J EVE

E X @Ge (Ek X(Gc)k ('Pf(Ao) X X)k) e E X @qe Xk
On the other hand,

E xge (Ek X eyt (PE(Ap) % X)k)

eV /N \‘e
E xge Xk E xge (E* X (ot Xk) =BG x (EF X (oyk XF).

The reason for the last equality is that, as mentioned in remark 4.2, G¢ acts
only on P¢(Ap) and therefore the G¢-action on E* X(Geye X k is trivial.

The class o we start with lives in in H. (X )®% . Pulling it back using e, I
get a class & € H}.(XF).

Following carefully the map EVy within (4.7), we see that it becomes
eV, so the invariant ® can be defined as & = evia, where the

] ) Mc,k(X;B) ) Ge
relevant maps fit in the diagram

EXGC MC’,]@(X,B) o > EXGC Xk
(48) E Xge MC’,k(X;B)SS E xge (X'k)ss
Mcy(X;B)//Ge e, XRjGe,

Let’s go on. In [2] I have proved that if the image of a map @ : C — X is con-
tained in the stable locus of X, then it defines a stable point in M ¢ x(X; B);
conversely (as we are dealing with torus actions), if u € M ¢ (X; B) is a semi-
stable point, then 4(C) is allowed to intersect the unstable locus of X in only
finitely many points. Notice that the semi-stable locus of M ¢ (X; B)** #
for the following reason: let 4 : C — X be a morphism representing the
class B. The pull-back 4*X** — C is a holomorphic principal G¢-bundle
and therefore isomorphic to P¢(4g), for some 7 € (Pic®C)". Then the in-
duced morphism @ : C' — 4* X** xge X*° C X represents the class B, by the
very definition of B.

An immediate consequence is that Mc,k()‘( :B)Ss C Mc,k(X : B)** defined
by the property that the image under the evaluation map of the marked
points are all contained in X** is (Zariski) open and dense. Therefore the
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. evpgi o for g, 1 B Xge (X'ss)k — E xge Xk

Mc 1 (X;B)ss /Ge

the inclusion. The reason for doing this artifice is that I am still working

with equivariant cohomology classes and I want to pass to “usual” ones.
>From the commutative diagram

invariant ® = /

k k
E X(Gc)k X

.]Xss
E xge (Ek X ey (PE(Ao) X X“)k) s B x g (X5
l v ss\k ~ v ss\k /e 4 LIc
E xge (X%%)" ——— (X*%)"/G — X"
I deduce that j7,, & is actually the pull-back from X* of the cohomol-
ogy class a € H*C(X)®k ie. ]j,(sse*a = ¢*&, with & the cohomology

class on X* determined by the equivariant cohomology class «. Therefore

o= [ @ra
Mg,k (X;B)s®/Ge

Let me remind that the goal in [2] was to compare the invariant quo-
tient of the moduli space of stable maps into a projective variety with the
moduli space of stable maps into the invariant quotient of the variety. This
eventually leaded to some relations between the two sets of Gromov-Witten
invariants.

The quotient M x(X; B)//G¢ appeared already. I must compare it with
Mc (X [/G%[C) + B); indeed, the 2-homology class B € Hy(X;7) deter-
mines the class [C] + B € Ho(X /|G Z) = Hy((Pic®C)" x C x X;Z). Since
any map into X //G¢ = (Pic®C)" x C x X is constant on the first component,
I obtain a morphism

Mc (X //GS,[C] + B) — Mcy(C x X;(C] + B).
Proposition 4.3. The composed map
T: Mcy(X;B) /|G- Mci(C x X;[C] + B)
is birational.

Proof. 1 show first that 7" is dominant. Consider

ﬁ*XSS > C X XSS > XSS

l J J

c Mt o Xx ., X

As 4,[C] = B e HQ(X;Z), the G%equivariant map 4*X% — X% C X
defines the class B € HS" (X;Z). Moreover, 4*X* = P¢(Ay)., for a certain
7 € (Pic®C)", so I obtain a map C — PE(A), Xge X*° C PE(Ag) Xge X =
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X representing B € EQ(X; Z). Since Image(u) C X5 it follows that @ is a
semi-stable point in M ¢ x(X; B). It is obvious that @ is mapped to @ by T
I shall prove now that 7' is generically injective. Suppose that

C 5 PAg), xge X5

C Z PAy), xge X5
are such that go 4 = gou'. Then (go ﬂ)*(Xss — X) =(go ﬁ')*(XSS — X)
and lemma 3.4 implies that 7 = 7. Since
C 2% PE(Ap). xge X

induce the same map to )2', for each ¢ € C there is a unique g(¢) € G°¢
such that @'(¢) = g(¢)u(¢), because G¢ was assumed to act freely on X*°.
This defines a morphism C — G¢ which has to be constant as G° is affine.
Therefore @' = gii and they define the same point in M, (X;B)//G¢. O

Remark 4.4. For curves of genus g > 2,

Vi > ~ A 1 — PN
Mck(C x X;[C] + B) - > Mop(X;B),
while for elliptic curves and for P!, we have respectively

M, 1(Cr x X;[C1] + B) e+ Mc, p41(X; B)
and 5
Mp1 (Pt x X;[P!] + B) ¢ s Mp1,3(X; B). o
I am finally in position to state the main result.

Theorem 4.5. Under the assumption that the spaces M x(X; B)//G¢ and
Hc,k(f( ; B) have both expected dimension D, the invariant ® coincides with

the Gromov-Witten invariant of X.
More precisely, for o € Hpe (X)®’c of degree 2D, |
(i) @g,’,f(a) = #Aut(C) - GWéf,’gB(d) for a curve C of genus g(C) > 2;
0, @gﬁ(a) = GWéi’fH(&) for an elliptic curve C1;
. = X,B X,B 4
(1i3) @Pl’k(a) = GWPl,k+3(a)'

Proof. The result follows from the commutative diagram

Mey(X;B)y —% (X%)*/Ge
\q
1 X*k
+ /‘prf(
b'e
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Indeed, it allows me to deduce that

X,B Sk koA X\ x s

ef@ = o aiga=[ (@) e
Mg, (X;B)5/Ge Mc,,x (CXX;[C]+B)

The fact that the right hand side of the expression above is precisely a

Gromov-Witten invariant of X follows from remark 4.4. O

A (very) particular case when all the assumptions are satisfied
Corollary 4.6. Consider an action of the complex torus G¢ on the homo-
geneous variety X which is linearized on an ample line bundle over it. As-
sume that the action is free on the semi-stable locus (or more generally, the
stabilizer of the semi-stable points is a certain finite (normal) subgroup of
G€) and that the invariant quotient X is still homogeneous. Assume fur-
ther that B € HQ(X';Z) is a homology class induced by the composed map
Pt 2% X5 45 X and denote B € HS(X) the induced equivariant ho-
mology class. Consider now an equivariant cohomology class o € H*C(X)@]C
which induces on X* the class & € H*(X*;Z). Then

X,B X,B .
(I)]P’l,k:(a) = GW]P’I,k:—I—?)(a)'

Proof. The situation is rather trivial under these assumptions: the mor-
phism u : P! — X*% can be thought off as a section in the principal bundle
4* X% — P, so we are dealing with the trivial (C*)"-bundle over P! (any
topologically trivial torus bundle over P! is holomorphically trivial). There-
fore X = P! x X in this case, which is homogeneous again. The conclusion
follows from the fact that the spaces of rational maps into homogeneous
varieties are irreducible (see [4]) and have expected dimension (as they are
convex varieties). O

5. Concluding remarks

Of course, the most unpleasant assumption in theorem 4.5 is that on
the dimension of the spaces of curves. For proving this result in general
using only algebraic methods, one has to clarify the construction of a =-
relative virtual cycle on Hc,k(X : B), as explained in remark 3.3. Then, one
should compare the two virtual cycles: that on M¢(X;B) with that on
Hc,k()“( ; B) This approach seems rather difficult.

Another possibility is to consider a generic G-invariant almost complex
structure J on X and to work with X = P.(4g) xg X endowed with the
almost complex structure determined by J and the holomorphic structure on
the universal bundle P£(Ay) (this is the meaning of the term w-relative). The
shortcoming of this approach might be that one looses the powerful tools of
the geometric invariant theory.

Finally, in [1] the authors work with arbitrary compact groups G whose
algebraic counterpart is to consider arbitrary complex, linearly reductive
groups G°. The situation can be much more involved than for torus actions.
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A good reason is that there does not exist anymore a universal principal
bundle which gives all the principal G¢-bundles over a fixed curve and having
a given topological type. A guess is that the object which enters into the
game is the moduli space of stable principal bundles of fixed topological type,
which was constructed by Ramanathan.
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