SETS OF SEMISIMPLICITY

MURAZ Gilbert & VU QUOC Phong

ABsTRACT. We introduce the notion of a set of semisimplicity, or S3-set, as a set A
such that if T is a representation of a LCA group G with Sp(T) C A, then T generates
a semisimple Banach algebra. We prove that the union of S3-sets is a S3-set, provided
their intersection is countable. In particular, the union of a countable set and a Helson
S-set is a S3-set. Using the construction of the limit isometric representations, we
obtain conditions for semisimplicity of Banach algebras generated by representations
of semigroups, and results on stability of such representations. We apply the approach
to polynomially bounded and power-bounded operators and show, in particular, that
if T is a polynomially bounded (power-bounded) operator whose spectrum on the
unit circle has measure zero (resp., is a Helson S-set), then T"z — 0 for all z € X
if and only if T* does not have an invariant subspace on which it is similar to an
invertible isometry.
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1. Introduction.

According to the classical Gelfand-Naimark theorem, the Banach algebra gen-
erated by a normal (in particular, self-adjoint or unitary) operator on a Hilbert
space is isometric to a Banach algebra of continuous functions on a compact and,
in particular, is semisimple. Sinclair [S] proved that the Banach algebra gener-
ated by a Hermitian operator 7" on a Banach space is semisimple, if the spectrum
of T is countable. The analogous result for isometric operators was obtained by
Feldman [F]. In [M-V], the authors proved that the Banach algebra A(T) gen-
erated by a strongly continuous isometric representation 7' of an arbitrary locally
compact abelian group is semisimple, if the spectrum Sp(T') of the representation
T is scattered (in particular, if Sp(T') is countable). It follows from Malliavin’s
theorem on the existence of sets which are not of spectral synthesis (non-S-sets)
on any non-discrete groups (i.e. the failure of spectral synthesis on L'(G) for every

Math. classification: 43A45, 43A46, 43A65, 46MO05, 46M25, 47A15.
Keywords: representation, semi-simplicity, scattered set, invariant subspace.

This work was carried out during a visit of the second author to Institut Fourier, Grenoble,
December 1999, to which he is grateful for financial support and hospitality.

Typeset by ApMS-TEX



4 DELS OF SENMISIMEPLIULLY

noncompact locally compact abelian group G), that without the spectral condition
the algebra A(T') is not, in general, semisimple.

In this paper, we introduce the notion of sets of semisimplicity, or S3-sets, and
investigate their properties. A closed subset A of the dual group I' := G is called
S3-set, if for every representation T' of G by bounded linear operators on a Banach
space such that Sp(T) C A, the Banach algebra A(T), generated by “functions”
of T, is semisimple. Following an argument in [F],[S], it is not difficult to see
that any Ss-set is a set of spectral synthesis (or S-set), and that any Helson set
of spectral synthesis is a S3-set. The above result [F],[S],[M-V] implies that any
scattered set is a S3-set. Moreover, every Ss-set is a set of spectral resolution in the
sense of Malliavin (see [B]1, p.174) and, therefore, not every S-set is a S3-set. We
introduce the notion of archipelago of closed sets, and show that any archipelago
of S3-sets is a Ssz-set; in particular, this implies that the union of a Ss-set and a
scattered set is a S3-set. Moreover, we prove that the union of two Ss-sets is a
S3-set provided that their intersection is scattered (answering a question of G.M.
Feldman). Using a standard construction of the limit isometric representation of
bounded representations of locally compact abelian semigroups, we obtain similar
results on semisimplicity of the Banach algebra generated by a representation 7' of
a locally compact semigroup S, and we establish some relationship between (non-)
semisimplicity and the stability of the corresponding semigroup representations,
resp. the existence of hyperinvariant subspaces. In particular, we show, that if T’
is a polynomially bounded (power-bounded) operator whose spectrum on the unit
circle has measure zero (resp., is a Helson S-set), then T"x — 0 for all z € X if and
only if T* does not have an invariant subspace on which it is similar to an invertible
isometry. Analogously, if T' is a polynomially bounded (power-bounded) operator
of class C;. whose spectrum on the unit circle has measure zero (is a Helson S-set),
then T has a nontrivial hyperinvariant subspace.

Throughout the paper, we denote by D the open unit disk, by D the unit circle.
If A is a commutative Banach algebra, then by R(A) we denote its radical, i.e. the
set of all topological nilpotent elements of A. If X is a Banach space, then by L(X)
we denote the set of all bounded linear operators on X. As usual, Z is the set of
integers, Zy :={n € Z :n > 0}.

2. S3-sets.

Let G be a Hausdorff locally compact abelian group, written additively, with
Haar measure m and dual group I'. By L'(G) we denote the usual group alge-
bra, and by A(T') the corresponding algebra of Fourier transforms of elements of
LY(G). The results in this paper can be presented in several ways, e.g., using the
language of Banach modules as given in [D-M]. Here we will use the framework of
representation theory for simplicity of notations.

Let T be a bounded strongly continuous representation of G by bounded linear
operators on a Banach space X (X # {0}), i.e. {T(¢t) : t € G} is a family of
bounded linear operators on X satisfying the following conditions:
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i) T(e) = I, where e is the unit in G;
ll) T(tl + tz) = T(tl)T(tg) for all tl,tz n G,

iii) The mapping t — T'(t)z is continuous for every z € X;
iv) supie||T ()| < oo.

P~~~

By introducing an equivalent norm on X

]l := sup [[T(#)z], Yz € X,
teG

one can assume that 7' is an isometric representation. For each function f € L'(G),
let

fm:Lﬂmm@

and

fa) = [ sora.
G
The spectrum of the representation 7T is defined by
Sp(T) = {x €T : f(x) = 0 whenever f(T) = 0}.

Let A(T) be the Banach algebra generated by f(T), f € L*(G). The spectrum of
T, Sp(T), can be identified with the Gelfand space of Ay (7T') via the formula

6x(F(T)) = F(x) (see [A], [L-M-F], [B-V]).

Definition. A closed subset A C I' is called a set of semisimplicity or Ss-set, if for
every isometric representation T' : G — L(X) such that Sp(T) C A, the algebra
A(T) is semisimple.

As mentioned above, every scattered set as well as every Helson S-set is a S3-
set. Recall that for every closed subset E of I', there associate two closed ideals,
I(E), consisting of functions ¢ € A(T") such that ¢|E = 0, and J(F), consisting of
functions which can be approximated by functions vanishing on a neighborhood of
E. Clearly, J(F) C I(E). A set E is called a set of spectral synthesis, or S3-set, if
I(E) = J(E). A compact subset E C I is called a Helson set, if every continuous
function on E is the restriction of a function from A(I'). It is well known that
there are Helson sets which are not S-sets (conditions for Helson sets to be S-sets
are given in [Be]s). There are countable sets (scattered sets) which are not Helson
sets, as well as Helson S-sets which are not scattered (see [Be];, [H-R]).

Proposition 1. FEvery Ss-set is a S-set.

Proof. Assume that E is a closed subset of I' which is not a S-set. Consider the
quotient algebra A(T')/J(E). If ¢ € A(T"), then the image of ¢ under this homo-
morphism is denoted by ¢. Since E is not a S-set, the quotient algebra A(T")/J(E)
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is not semisimple: indeed, any element ¢ € I(E) \ J(E) under the natural homo-
morphism A(I') — A(T")/J(E) will be mapped into a non-zero topological nilpotent
element. Consider the representation V : G — L(A(I")) defined by

(V(t)e)(x) = x(®)e(x),

and let T : G — L(A(T')/J(E)) be defined by T(g)@ = (V(9)@). Then the algebra
A(T) is isometrically isomorphic to A(T")/J(E), hence is not semisimple. [

Definition. A family of closed subsets of ', {E }acr is called an archipelago if:
(i) for every ai,as € F,ay #, g, we have E,, N E,, = 0, and
(ii) for every Fy C F there exists an open set V C I' and there exists ag € Fp
such that E,, C V and V N E,; = 0 for all o € Fy, o # a.

Proposition 2. If Sp(T) = Ay U Ay, where Ay, Ay are nonempty closed subsets
such that one of them is compact and Ay N Ay = 0, then there is a projection
P € Ay(T) such that Sp(T|PX) = Ay, Sp(T|(I — P)X) = As.

Proof. Assume, for definiteness, that A is compact. Let A, C Ay be a compact set,
Qo := A1 UA,, and consider the spectral subspace X, := X(Qn). Let Ty(g) :=
T(9)|Xo. Then Sp(T,) is compact, hence T, is uniformly continuous and the
algebra A (Ty,) has unit. By Silov’s Idempotent Theorem, there is an idempotent
element P, € Ag(Ty) such that Sp(Ty|PaXa) = A1, Sp(Ta|(I—Py)Xa) = Ay- Tt is
easy to see that the family of projections P, is uniformly bounded is can be extended
to a projection P on X such that Sp(T|PX) = A1, Sp(T|(I — P)X) =Ay. O

It follows from Proposition 1 that if F; and Fs are two compact S3-sets such
that Ay N Ay = 0, then E; U E5 is a S3-set. A more general fact is proved in the
next theorem.

Theorem 1. Let {E,}ocr be an archipelago of compact Sz-sets of T', then E :=
UaerFEq is a S3-set.

Proof. Let T be a representation of G on L(X) such that Sp(T) C E. Let a €
R(A(T)). Define
F,:={a € F:E,NSp(a) # 0}.

There exists an open set V in I' and an «; such that E,, C V and V N E,; = 0
for all a; € F,,a; # a;. Take an element f € L'(G) such that f(y) = 1 for all
v € Ay, and f(y)=0forall y ¢ V.

Let X1 := {f(T)az :z € X} and T(t) := T(t)|X1. Since Sp(f(T)a) C E,, N
Sp(a), and since f(T)a is in the radical of A((T)), it follows f(T)a = 0, Hence,
Sp(a) N E,, = (), which is a contradiction. [
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Proposition 3. If F ={FE; :i=1,2,...} is a sequence of compact sets such that
E,NE; =0 fori# j, and assume that E = U2, E; is compact, then F is an
archipelago.

Proof. Let Fy C F. If Fy is finite, say Fy = {Ek,, ..., Fx,, }, then one can take
V =T'\[Ek,UE,U...UE, |. Hence E, C V and E;NV = ( for all j = ko, k3, ..., k.
777

Proposition 4. If E is a closed set and B is scattered, then F := {FE,xz € B\ E}
18 an archipelago.

Proof. Let Fy C F. There are three possibilities:

(i) Fo = {E}. Then we can take as V any open set containing F.

(ii) Fo C {z : ® € B\ E}. Since B is scattered, Fj contains an isolated point
zo € B\ E, i.e. there is an open set V, g € V, [V \ {zo}]N B\ E = 0, so that the
definition is fulfilled.

(iii) Fy contains E and elements in B \ E. Since Fy \ {E} contains an isolated
point, say xg, there exists an open set V, such that o € V and V N [Fy \ E] = 0.
Choose W =V N E€ (where E¢ =T\ E), then o € W and Wy N E = (), hence the
definition is fulfilled. [

Proposition 4 and Theorem 1 imply the following corollary.

Corollary 1. If E is a S3-set and B is scattered, then EUB is S3-set. In particular,
the union of a Helson S-set and a scattered set is a S3-set.

Now we consider the general question of when is the union of S3-sets a Ss3-set.
Let a be an element in A(T"). We define

I, :={f € LYG) : f(T)a = 0},

and let A
Sp(a) :=={xe€l': f(x) =0Vf € L,}.

It is not difficult to see that Sp(a) = Sp(T|aX).

Lemma 1. Assume that A1, Ay are S3-sets, T : G — L(X) is an isomelric repre-
sentation such that Sp(T) C Ay UAy. If a € R(A(T)), then Sp(a) C Ay N As.

Proof. We show that Sp(a) C As. Let Uy be an open set, Ao C Us. We show
that Sp(a) C Us. Assume, on the contrary, that there exists x € Sp(a), such that
X ¢ Us. Take an element f € L'(G) such that f|Uy =0, f(x) = 1.

Since Sp(f(T)a) C supp(f) N Sp(a) C [['\ U] N Sp(a) C A, and since A; is a
Ss-set and f (T)a is a topological nilpotent element, it follows that f (T)a =0, i.e.

f € I,. Therefore, f(x) =0, a contradiction. [

We also need the following lemma (see [M-V], Proposition 6).

Lemma 2. Ifa € R(A(T)) and a # 0, then Sp(a) has no isolated point.
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Theorem 2. If Ay and Ay are S3-sets and A1 N As is scattered, then Ay U Ay is a
S3-set.

Proof. Let T be an isometric representation of G on L(X) such that Sp(T) C
Ay U Ay, Assume that there exists an element a € R(A(T)) such that a # 0.
By Lemma 1, Sp(a) C A1 N Ag, hence Sp(a) contains an isolated point, which is
impossible by Lemma 2. [

Theorems 1, 2 and Corollary 1 are, of course, analogous to the corresponding
results concerning S-sets (see [B]y, p. 172, 187). It is not known whether finite
unions of S3-sets are always Ssz-sets. If A; and Ay are Sz-sets, Sp(T) C Ay U A,
and a € R(A(T)), then Lemma 1 implies only that a? = 0.

3. Semisimplicity of representations of semigroups.

Now we consider the question of semisimplicity for Banach algebras generated
by representations of semigroups. Let S be a measurable subsemigroup of a locally
compact abelian group G such that S — S = G. Let S denote the semigroup of
continuous semi-unitary characters on S, i.e. the set of all complex homomorphisms
from S into the unit disk D.

A representation T of the semigroup S on a Banach space X is by definition a
homomorphism from S to L(X) such that the mapping s — T'(s)z is continuous
for every z € X.

If T is a representation of S such that sup,cg ||T(s)|| < oo, then T is called
a bounded representation. If T is a bounded representation of S, then there is
an equivalent norm on X in which T(s) are contractions. As examples of the
semigroup S we can take S = ZT := {n = (ny,...,nm) : n; € Z}. Then ev-
ery representation T' of Z7 has form: T'(n)x = T{"Ty*..Tpmx, Vo € X, where
Ty, ..., T,, are commuting operators. Similarly, every representation of the semi-
group R := {t = (t1,...,tm) : t; € R4} has form T'(t) = T1(t1)... T (tm), where
T;(t) are commuting Cp-semigroups. Such multi-parameter semigroups were con-
sidered by Hille-Phillips [H-P)].

Let f € L'(S). Define
A(T) = /S F(5)T(s)ds,

where ds is the restriction of the Haar measure from G to S. The spectrum of T is
defined by the following formula

SH(T) = {x € 8+ 1f (0l < IF(T)| for all fe L} ()} (see [B-V]).
We denote by Sp, (T') the unitary part of the spectrum of T', i.e. Sp,(T) = Sp(T)N

[. If T is a single power-boubded operator (i.e., sup,> ||7"|| < o0), then Sp(T)
coincides with the union of o(T") and all bounded components of the resolvent set.
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We will also need the following construction of the limit isometric representation
for bounded representations 7. For this, we regard S as a directed set with the
quasi-order on S defined by:

s <t (s,t €8)if there exists u € S such that t = u + s.
Define a seminorm on X by

I(z) == lién T (s)z||, = € X.

Let L = ker(l) = {z € X : I(z) = 0}, and consider the quotient space X = X/L,
equipped with the norm i(:%) := Il(z), x € X. The operators T(s) generate the
corresponding operators T\(s) on X in the natural way, namely f(s)i‘ = T/(s)\x
Clearly, T(s) is a (strongly continuous) representation (since [(2) < ||z||, V2 € X)
of S by isometric operators on X. We denote by Z the completion of X in the
norm I, and by V (s) the continuous extention of T'(s) from widehatX to Z.

It is known that Sp(V) C Sp(T). If T(s) has a dense range for each s € S,
then V(s) also has a dense range, hence V(s) are invertible isometrices, which
implies that V' can be extended to an isometric representation of the group G on
Z. In general, there is an isometric representation of the group G on a Banach
space E D Z such that U(s)|Z = V(s) and Sp(U) C Spu(V) (see [B-V], [D]).
Moreover, the construction in [B-V], [D] has the property that if the algebra
A(U) is semisimple, then the algebra A(V') also is semisimple.

If A is an operator on X which commutes with T'(s), then L is invariant with
respect to A and one can define A on X by A% := Az. Since

[AZ]| g = lim [[T(s) Az[| < [|A| lm [T (s)z(| = [|A][[[#] £,

it follows that ¢ : A — A is a continuous homomorphism from the algebra A(T') to
the algebra A(V'). In particular,

(*) ¢(R(A(T))) C R(A(V))-

Theorem 3. Assume that T : S — L(X) is a bounded representation such that:
(i) for every x € X,z # 0, T(s)x does not converge to 0;
(ii) Spu(T) is a S3-set.
Then the algebra A(T) is semisimple.

Proof. Since Sp(U) C Sp,(T), which is a Ss-set, we conclude that the algebra
A(U), and hence A(V), is semisimple. Assume, on the contrary, that A(T) is not
semisimple. Then there exists a € R(A(T)),a # 0. By (%), the operator a is in the
radical of the algebra A(V'), hence @ = 0, which implies that limg ||T'(s)az|| = 0 for
all z € X, a contradiction to (i). O
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Corollary 2. Assume that T : S — L(X) is a bounded representation such that
Spu(T) is the union of a scattered set and a Helson S-set. If T'(s)x does not converge
strongly to 0, for all z # 0, then A(T) is semisimple.

Corollary 3. Assume that T is a power-bounded operator, i.e. sup, ¢ ||T"| < oo,
and o(T) N OD is a union of a countable set and a Helson S-set. If T™x does not
converge strongly to 0, for all x # 0, then A(T) is semisimple.

Corollary 4. Assume that T(t),t > 0, is a bounded Cy-semigroup, i.e.

sup;sg [|T(t)|| < oo, with the generator A, and assume that o(A) NiR is a union of
a countable set and a Helson S-set. If T(t)x does not converge strongly to 0, for all
x # 0, then A(T), the Banach algebra generated by T(t) and (A — A)~1, X € p(A),

15 semisimple.

For semigroups of operators on Hilbert space Theorem 3 and its corollaries
hold without the spectral assumption, since isometric representations on Hilbert
space always generate semisimple algebras. It should be noted that the norm
||z||| = supses ||T(s)x|| is not, in general, a Hilbert space norm. Therefore, when
considering bounded representations 7" on a Hilbert space, we can not assume that
the operators T'(s) are contractions.

In order to formulate and prove the corresponding resg\lt, we show that if the
space X = H is a Hilbert space, then the construction of H can be modified to be
also a Hilbert space (such construction was contained in [K] for single operators).
For this purpose, let glimg be a fixed Banach limit on [°°(S), and consider the
following bilinear form on H:

l(z,y) == glimg(T(s)x, T(s)y), =,y € H.

It is easy to see that [(z,y) is a bilinear form, i.e., it is linear in x, anti-linear in ¥,
and I(x,z) > 0. We put

L={z:l(z,2)=0}={z:l(z,y) =0 Yy € H}.

Clearly, L is a closed subspace of H which is invariant for T'(s) as well as for every
operator commuting with T'(s), s € S. Note that, since T'(s) are uniformly bounded,
infg ||T(s)x|| = 0 if and only if limg ||T'(s)z|| = 0. Hence, glimgs||T(s)z|| = 0 if and
only if limg ||T'(s)z|| = 0.

Let H := H/L, and [ be a bilinear form on H defined by
I(#,9) = (z,y), z,y € H.

Then [ is a scalar product, so that Hisa pre-Hilbert space. Let K be the completion
of H. Let T(s) : H — H be defined as before, namely by T'(s)Z := T/(s)\x, z € H,
and let V(s) be the continuous extension of T(s) from H to K. As before, V is a
strongly continuous representation of S by isometric operators on the Hilbert space
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K. If T(s) have dense range, then V(s) also have dense range, so that V(s) are
invertible isometries, i.e. unitary operators, on K. In general, the construction in
[D] shows that there exists a unitary representation U of G on a Hilbert space K D
K such that V(s) = U(s)|K,s € S. Moreover, each operator a in the commutant
of V(s) has an unique extension to an operator b in the commutant of U(s) such
that ||a|| = ||b||. This implies that, since the algebra A(U) is semisimple (by the
Gelfand-Naimark Theorem), A(V') also is semisimple.

Every operator A on H, which commutes with 7(s), generates a corresponding
operator Aon H by A# := Az. Since

|A2]|% = I(Az, Az) = glimg||T(s) Az||> < ||Allglims||T (s)z|| = ||Allll&]| 5,
it follows that
(*¥*) if a € R(A(T)) then a € R(A(V)).

Theorem 4. Assume that T : S — L(H) is a bounded representation such that
T(s)x does not converge strongly to 0, for all x # 0. Then the algebra A(T) is
semisimple.

Proof. Assuming the contrary, there exists an element a € R(A(T)),a # 0. By (**),
a € R(A(V)), hence a = 0, i.e. glimg||/T(s)az| = 0. This implies limg ||T(s)az| =
0, which is a contradiction. [

Theorems 3 and 4 imply the following corollaries.

Corollary 5. Assume that T : S — L(X) is a bounded representation on a Banach
space X such that Sp,(T') is a Ss-set and assume that there erists ¢ € X such that
T(s)x does not converge to 0. If the Banach algebra A(T) is not semisimple, then
T has a nontrivial hyperinvariant subspace.

A power-bounded operator T is called an operator of class Cy., if there exists
x € X such that T"x does not converge to 0

Corollary 8. IfT is a power-bounded operator of class Ci. on a Banach space X,
such that o(T) N D is a S3-set and assume that the Banach algebra generated by
T is not semisimple, then T has a nontrivial hyperinvariant subspace.

Corollary 7. Assume that T : S — L(X) is a bounded representation on Hilbert
space H and there exists x € X such that T(s)z does not converge to 0. If the
Banach algebra A(T) is not semisimple, then T has a nontrivial hyperinvariant
subspace.

Corollary 8. If T is a power-bounded operator on H of class Cy. such that the
Banach algebra generated by T is not semisimple, then T has a nontrivial hyperin-
variant subspace.

We remark that the question of whether every contraction of class Cy. on Hilbert
space has a nontrivial invariant subspace is still open (see [B] for partial results
concerning this problem). Corollary 8 indicates that in the study of this problem
we can assume that the Banach algebra generated by the operator is semisimple.
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4. Semisimplicity, stability.

A representation T : S — L(X) of the abelian semigroup S is called stable, if
limg | T(s)z|| = 0,Vz € S. Such representations were studied in [L-V];, [B-V].
For a bounded representation T : S — L(X), we let

Mo = J{ran(f(T)) : f € LX(S), f(x) =0 Vx € Sp.(T)},

My = J{ran(A) : A € R(A(T))}
and M = span(My, M1) (here ran(A) denotes the range of A).

Theorem 5. Assume that Sp,(T) is a Ss-set. Then limg |T(s)z|| = 0 for every
x € M. In particular, if M = X then the representation T (s) is stable.

Proof. Assume that = = f(T)y where f € L'(S), f(x) = 0 ¥x € Spu(T). Let
V' be the corresponding limit isometric representation, and U the corresponding
representation of the group G on E, as constructed in Section 3. Then Sp(U) C
Sp.(T). Hence A(U) is semisimple. By the Spectral Mapping Theorem (see [L-M-
F)), o(f(U)) = {f(x) : x € Sp(U)}, which implies that f(U) = 0. Hence f(V) =0,
which implies that limg ||T'(s)f(T)y|| = 0,Vy € X. Thus, limg | T(s)z| = 0 Vz €
M.

Next, assume that z = Ay, where A € R(A(T)). Since A € R(A(V)) and
A(V) is semisimple, we have A = 0, which implies limg ||T(s)Ay|| = 0. Hence,
limg |T'(s)z|| =0,Vz e M. O

For bounded representations on a Hilbert space the spectral assumption in The-
orem 5 is not needed.

Theorem 6. Let T'(s) be a bounded representation of the semigroup S on a Hilbert
space H. Then limg ||T'(s)z|| = 0 for all z € M. In particular, if M = X then T is
stable.

Proof. Let V be the limit isometric representation of S on the Hilbert space K. As
noted before, the algebra A(V) is semisimple. The same argument as in the proof
of Theorem 5 shows that glimg||T(s)z|| = 0, hence limg ||T(s)z|| = 0,Vz € M. O

5. Polynomially bounded operators.

A bounded linear operator 7' on a Banach space X is called polynomially bounded,
if there exists a constant M > 0 such that

Ip(T)|| < M sup |p(2)],
|#1<1

for all polynomials p. It is well known that contractions on Hilbert space are poly-
nomially bounded (von Neumann’s Inequality), contractions on Banach spaces are,
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in general, not polynomially bounded, and that there exist polynomially bounded
operators on Hilbert space which are not similar to contractions (Pisier [P]).

A power-bounded operator T' on a Banach space X is said to be an operator of
class Cy , if ||T™x|| does not converge to 0, for all z € X,z # 0. It is known [N-F]
that if T is contraction of class C7, such that o(T") N dD has measure zero, then
T is unitary. A closely related result of Nagy and Foias is the stability theorem
for contractions on Hilbert space, which states that if 7" is a completely nonunitary
contraction such that o(7") N 0D has measure zero, then ||[T"z| — 0 as n — oo, for
all z € H (see [N-F],[B]).

Recently, Kerchy and van Neerven [K-vIN] have shown that if T' is a polynomi-
ally bounded operator of class C1, on a Banach space X, then T is similar to an
invertible isometry. However, the stability question was left open in [K-vIN]. Here,
we extend the above mentioned stability theorem of Nagy-Foias to polynomially
bounded operators whose spectrum on the unit circle has measure zero, as well as
to power-bounded operators whose spectrum on the unit circle is a Helson S-set.

Lemma 3. IfV is a polynomially bounded invertible isometry on a Banach space
E, then the algebra A(V) is isomorphic to C(a(V)).

Proof. It was shown in [K-vIN] that there is a homomorphism ¢ : C(0D) — L(E)
such that ||¢|| < M, i.e. there is a functional calculus on C'(0D) which satisfies:
If (D) < M||f|lco- Moreover, f(T) is completely determined by its values on
o(V), and the spectral mapping theorem holds: o(f(V)) = f(o(V)). Therefore,
the functional calulus can be defined for C(o(V)), and we have

sup [f) <[ <M sup |f(A)];
A€o (V) Aea(V)

i.e. the homomorphism is in fact an isomorphism. [

Now let T' be a polynomially bounded operator on a Banach space X. Assume
that there exists z € X such that ||T™z|| does not converge to 0. Let V be the limit
isometric operator, acting on F, and assume that V is invertible (which holds, e.g.,
if T has a dense range or ¢(T') does not contain the whole unit circle). Since V also
is polynomially bounded, Lemma 3 implies that A(V) is isomorphic to C'(a(V)).
Then, for each z € E, z* € E*, the mapping f — (f(V)z, z*) is a continuous linear
functional on C(o(V)). Hence, by Riesz’s Theorem, for every z € E, z € E*, there
exists a measure p, o« on o(V') such that

(***) (f(V)z,2%) = ) fN)dpz 2+ (N), Vf € Cla(V)).

Note that, in general, V' does not have a spectral measure, i.e., it is not a spectral
operator of scalar type in the sense of Dunford [D-S]. But formula (***), which
resembles the functional calculus for spectral operators of scalar type and holds in
our case only for continuous functions f on the spectrum of V', will be one of the
main ingredients in the proof of Lemma 4.



DELS OF SENMISIMEPLIULLY

Lemma 4. Assume that T is polynomially bounded, the operator T* does not have
an invariant subspace K such that T*|K is invertible and sup,,c5 ||(T*K)"|| < oc.
Then the measures . - are absolutely continuous with respect to the Lebesgue
measure.

The proof of Lemma 4 uses the main ideas in the proof of Proposition 2.1 in [B],
Chapter XII, (in which it was attributed to A. Atzmon). However, there are some
essential modifications, and, therefore, we give the proof below.

Proof. Assume that there exist z € E,z* € E* such that p, .- is not absolutely
continuous with respect to the Lebesgue measure m, i.e. there exists a compact set
K with m(K) = 0 and p, ,-(K) # 0. For convenience, we denote the duality in
(X, X*) by (z,z*), and the duality in (F, E*) by (z, z*).

By Fatou’s Theorem, there exists h € A(D) such that h|K = 1 and |h||D\K < 1.
Let h(z) := h(2). Then h € A(D),||h|| = 1. Since V* also is polynomially bounded,
h™(V*) is defined and

sup ||A" (V]| < M < .

n>0
From weak* compactness of the unit ball in E*, there exists a subsequence ny such
that A" (V*)z* — z& in the (E*, E)-topology. Let z*,z% € X* be defined by:
(x,z*) := (&, z*), and (x,z}) := (&, z5), © € X. Then, for every x € X,

o ——

(@, A" (T*)z*) = (h™ (T)x, z*) = (b (T)x), 2*) =
(B (V)&, 2*) = (&, h™ (V*)z*).
Therefore,

lim (z, k™ (T*)z*) = lim (&, hF™ (V*)2*)

k— o0 k— o0

= <"1A7a ZS) = ('777"173)’

i.e. h™ (T*)z* converges to z% in the (X, X*)-topology. Now we have, by adopting
(***) and the Dominated Convergence Theorem,,

(y,z5) = lim (y, R (T*)z*) =
k—o0

(W™ (T)y,5) = lim (A" (V) 2% = Tim [ B () dpag - ()
—0Q

lim
k—oo k— oo _r

= pig,2~ (K).

Since p, .« (K) # 0, and X is dense in E, there exists § such that pg,o+ (K) # 0, so
that =g # 0.
By Rudin-Carleson Theorem, there exists a fucntion ¢ € A(D) such that

p(e™) = e ™ for A € K and ||¢]|o0 = 1.
We show that

() T*¢(T*)xh = .
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Indeed, we have,
(v, [T = T*¢(T™)]ag) = (I = TH(T)]y, x) =
(= VWG, 25) = lim (I = V(V)]g, ™ (V*)2") =
Jim (R (V)L = V§(V)]g, 2%)

e

= lim [ ™ (e™)(1 — e p(e))dpg .- (N)
— 00 —

- / (1 —ep(e™))dpg,+(A) =0, Vy € X,
K

which implies that (****) holds. Let W := ¢(T™*). Then sup,,s ||[W"| < M, and
(WTH"(T*)kzy = (T*)*x, k= 0,1,2,.... Let K :=span{(T*)*z} : k > 0}. Then
K is invariant subspace for T, T™|K is invertible and sup,z |[(T*|K)"|| < M,
which is a contradiction. [

(From Lemma 4 we obtain the following result which is a generalization of the
Nagy-Foias Theorem.

Theorem 7. Let T be a polynomially bounded operator on a Banach space X such
that o(T') N 0D has measure 0. Then the following are equivalent:

(i) T"z — 0 for every z € X;

(ii) T* does not have an invariant subspace K on which T*|K is invertible and
Suppez ||(TK)"|| < oo

Proof. The condition implies that, if (i) holds, then the limit isometry V is invert-
ible. The implication (i7) = (i) follows from Lemma 4. To show the converse,
assume that K C X* is a nonzero subspace which is invariant under 7™ and such
that T*|K is invertible and sup,,cg ||(T*|K)"|| < oo, and assume that (i) holds.
Let V :=T*|K. Then, for every z* € K, {V™"z* : n > 0} are uniformly bounded,
hence (z,z*) = (z, V" (V~")z*) = (z,(T*)"V "z*) == (T"z,V "z*) — 0, Vx €
X, which is a contradiction. [

In the next result, we only require the operator T' to be power-bounded, but
we need a stronger condition on the peripheral spectrum of 7. We will need the
following lemma.

Lemma 5. Assume that V is an invertible isometry on a Banach space such that
o(V) is a Helson S-set. Then the algebra A(V') is isomorphic to C(o(V)).

Proof. Let W be the Wiener algebra

o0

W ={f(z) = Z cn2" Z len| < oo}

Define ¢ : W — A(V) by

o(f) = f(T).
Then ¢ is continuous. Since o (V) is a Helson S-set, the algebra A(V) is semisimple,
so that elements of A(V') can be regarded as functions on o(V). It follow that the

functional calculus is defined for all functions in C'(¢(V')), and the spectral mapping
theorem holds, so that A(V) is isomorphic to C(o(V)). O

The following lemma has the same proof as Lemma 4.



DELS OF SENMISIMEPLIULLY

Lemma 4. Assume that T is power-bounded, o(T)NOD is a Helson S-set and the
operator T* does not have an invariant subspace K such that T*|K is invertible
and sup,cyz ||(T*|K)"|| < co. Then the measures p, .- are absolutely continuous
with respect to the Lebesque measure.

Theorem 8. Assume that T is a power-bounded operator on a Banach space X
such that o(T) N 0D is a Helson S-set. Then T"x — 0 for all x € X if and
only if T* does not have an invariant subspace K such that T*|K is invertible and
sup,ez || (T K)™|| < occ.

Proof. The proof follows from Lemmas 4, 5, the fact that any Helson set has mea-
sure 0, and that any continuous function f on a Helson set, which is analytic inside
D, is the restriction of a function in W, for which f(T') is defined. O

Note that Theorems 7 and 8 are in the same spirit as the stability theorems
n [At], [A-B], [L-V]s, where the condition that o(7T) N 0D is a Helson S-set
is replaced by its countability, and condition (ii) is replaced by the absence of
eigenvalues of 7" on the unit circle. Theorems 7 and 8 also give a partial solution
to problems 1 and 2 in [V]s. As an immediate corollary of Theorems 7 and 8 we
obtain the following results on invariant subspaces for operators of class Cj..

Corollary 9. Assume that T is a polynomially bounded operator of class Cy., on a
Banach space X, such that the spectrum of T' on the unit circle has measure zero.
Then T has a nontrivial hyperinvariant subspace.

Corollary 10. Assume that T is a power-bounded operator of class C1., on a
Banach space X, such that the spectrum of T on the unit circle is a Helson S-set.
Then T has a nontrivial hyperinvariant subspace.
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