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Abstract. In this work we briefly discuss the substitution process, the most
common tool to study aperiodicity, and some well-known results which derive from
this concept. Using k-coronas, we prove then some theorems about the link between
aperiodicity and periodicity. Finally we propose a new approach to the “aperiodicity
problem”.

Résumé. Dans cet article nous traitons brievement le processus de substitution,
I’outil le plus connu pour étudier ’apériodicité, et nous présentons quelques résultats
bien connus qui découlent de ce concept. Grace aux k-couronnes, nous démontrons
quelques théoremes reliant la périodicité et ’apériodicité. Enfin nous proposons une
nouvelle approche au “probleme de 'apériodicité” .
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1. Introduction

The existence of a polygon tiling the plane only non-periodically is an old and
famous open problem of two dimensional geometry. So far the most interesting and
well-known result is the set of kites and darts and the analogous set of “arrowed
rhombuses” of Penrose [17]. The discovery of quasi-crystals gave great importance
to the study of aperiodic tilings and their properties: the physical and logical impli-
cations of the aspects of tilings brought so much activity of research that, today, the
original question (the existence of an aperiodic polygon) appears as one among sev-
eral questions about tilings, for which mathematical instruments are still “rough”.

Inflation, substitution and composition ([1], [13], [15], [25]) are usual terms in
the study of aperiodicity: they denote the same concept, namely, the existence of a
“substitution process” (see section 3). In this work we start from some well-known
results following from this approach, then, with the use of k-coronas, we show how
the substitution process is a fundamental instrument to understand and analyze
aperiodicity and its links with periodicity.

The paper is outlined as follows: in section 2 we give basic notions, in section 3
and 4 we present the concept of substitution and its connections with periodicity and
aperiodicity; in section 5 we prove the main Theorems, and in section 6 we propose
a new approach (generalized matching rules) to the “aperiodicity problem” Also,
some physical consequences and possible applications are considered paying specific
attention to the problem of partial order in globally disordered real structures.
Finally, in the light of the proved results, new problems and research paths in the
study of tilings are proposed.

2. Basic definitions and notations

Definition 1 A ball with center x and radius R (we say B(x, R)) in o Euclidean
space E2 is the set {p € E¢ | d(p,x) < R}: a closed ball is the set {p € E¢ | d(p,z) <
R}.

Definition 2 A tiling T of the space E? is a representation of B% as countable
union of “tiles” {Fy,Fs,...} where:

1. there is a finite set of polygons, called protoset, P = {Py, Pa,...,P,} of pro-
totiles, not congruent to each other;

2. each tile F; is a congruent copy (obtained by an orientation-preserving isom-
etry) of some prototile;

3. the tiles cover E? without holes or overlappings, i.e. intF; NintF; =0 if i # j
and U;o, F; = E%;

4. the tiles match edge to edge;

we say that P admits T. If P is composed of a single element, then T is called
monohedral.

Definition 3 The symmetry group of a tiling T is the set of the isometries of E?
which preserve T'.



Definition 4 A tiling of E? is called periodic if its symmetry group contains a
subgroup of translations isomorphic to Z2.

Definition 5 A tiling T which admits k independent translations, where 1 < k < d,
is sub-periodic. A tiling T is called non-periodic if its symmetry group does not
contain translations.

Definition 6 A protoset is called aperiodic if it admits only non-periodic tilings:
in turn, tilings admitted by aperiodic protosets are called aperiodic.

In the literature, given a finite protoset P = (P, P,,...,P,;), the “matching
constraints” to arrange together the prototiles P; are often called matching rules
(R). We can also say that the matching rules “reduce” the tilings admitted by
a given protoset. The constraints can be given via deformation of the tiles, via
“admitted atlases” and so on: for example, in figure 1 a), the matching rules (the
arrows) are such that the only admitted tilings are non-periodic. With an abuse
of notation we call protoset the pair (P, R). T(P,R) will denote the family of all
(congruence classes of) tilings admitted by (P, R).

S

Figure 1: Matching rules for Penrose’s tilings, the substitution process for arrowed rhombuses
and a partial tiling where the substitution process is put in evidence

Definition 7 Let (P, R) be a finite protoset and Ty, Ty two tilings in T(P,R):
Ty and Ts are locally isomorphic if every bounded configuration which appears



in one of them appears also in the other. If all the tilings in T(P,R) are locally
isomorphic, we say that T(P,R) has the property of local isomorphism.

Definition 8 A configuration in a tiling T is a finite set of tiles in T'; a configura-
tion C of radius r in T is a configuration C that covers a ball of radius r and such
that every configuration D C C does not cover this ball.

Definition 9 A tiling T € T(P,R) is repetitive if every bounded configuration is
relatively dense in the tiling, i.e., if for every configuration C of radius r in T there
exists a radius R (depending on C) such that for any point x in the plane there
exists C' C B(xz, R) with C' congruent to C.

A tiling T3 is obtained by a composition process from a tiling T5, if each tile of
T is a union of tiles of T5. If every tile of T3 is a union of k-tiles of T5, then 77 is
called k-composition of Ts.

In particular, a tiling T3 is called a similarity tiling if it is “self-composed”, i.e.
if there exists a similitude that moves T} onto 75, where T5 is a k-composition of
T]_.

A monohedral tiling T is a k-similarity tiling if T' is equal to a k-composition
of itself, and no smaller value of £ > 1 has this property. To obtain a k-similarity
tiling, for a fixed k, a useful method is to study k rep-tiles ([11], [12]). A k rep-tile
is a tile F' which it can be dissected into k¥ congruent parts F’, each of which is
similar to F' (there exists an analogous for polyhedral tilings, the croc of tiles [5]).

Definition 10 Given k € N and a tile F' of a tiling T, the k-corona of F is the
set

CHE) = {F' | |F',F|| < k}

where ||F, F'|| indicates the combinatorial length of the shortest chain connecting F
to F'; otherwise stated C*(F) consists in all tiles which have a common verter with
a tile of C*—1(F) (C°(F) = F by convention).

From now on, for simplicity, we will refer particularly to the bidimensional case.
3. The substitution process and aperiodicity

It is useful to recall the basic theorem in the study of aperiodicity: even if it
is proved in [13] and [25], we provide a detailed proof, because it is useful for the
continuation.

Theorem 1 Let T be a monohedral k-similarity tiling with unique k-composition
process. Then T is non-periodic.

Proof: By hypothesis, T determines a unique k—composition tiling, say T'. If 7 is
an element of the symmetry group of T, i.e. 7 € T'(T), then both T and 7(T) are
two k-composed tilings of T. Hence 7(T!) = T, i.e. 7 € T'(T"). Suppose that there
exists a translation @ € T(T) that moves the tile F € T onto F'; it follows that
@ € T(T'). We can iterate the composition process to obtain a sequence T, T2, . ..



where T7 is the unique k-composition tiling determined by T7~1; @ € T'(T?) for
every p € N. This process leads to tilings of arbitrarily large tiles; then there exists
a value [ such that the translation vector @ lies entirely inside a tile “of level I”:
this is absurd, because @ € T'(T"). i

Notice that in the proof of the theorem we use the fact, implicit in the definition
of k-similarity, that the composition process can be iterated arbitrarily. Such a
property does not necessarily hold if the k-composition tiling of the original tiling
T is not similar to 7.
Remark: For details and proofs of the following statements see [13] and [25].
Suppose we have a tiling T built by arrowed rhombuses {r1, 72} (figure 1 a)); we
can mark locally the tiling as in figure 1 b). One can show that

e we obtain a well defined marking on the tiling

o if we delete the original tiles and we look at the marking as edges, vertices
and arrows of a new tiling, we obtain a tiling 7" built by arrowed rhombuses
{Ri1, Ry} (figure 1 ¢)), similar to the original tiles (the ratio is 7 : 1, where

1+v5
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T= is the famous golden number);

e this process can be iterated arbritarely;

e the tiling 7" that we have obtained is the unique tiling built by {R1, Ry} that
has the set of vertices contained in the set of vertices of T'.

As in the proof of Theorem 1, one can show that T is non periodic; since this is
true for all tilings admitted by {r1, 72}, this protoset is aperiodic.

Generally, take a tiling T' admitted by a certain finite protoset (P, R) with
P = {P,...,P,}. Suppose that we can mark the tiles in such a way that the
following properties hold:

1. if we delete the original tiles and we look at the marking as edges and
vertices of a new tiling, we obtain a tiling T’ admitted by (P’', R') where
P'={P|,...,P.}, P/ similar to P; with a fixed similarity ratio and R = R';

2. the above process can be iterated arbritarely.

Then T is a substitution tiling. The tiles of the original tiling are tiles of level
0, the tiles obtained after the first composition are tiles of level 1 and so on. If we
have also the property that:

3. the tiling T’ that we have obtained is the unique tiling admitted by (P’, R')
that has the set of vertices contained in the set of vertices of T,

then T is non periodic. Moreover, if all the tilings allowed by (P, R) can be
marked as T and they are substitution tilings in respect of this marking, then we
say that (P, R) admits a substitution process. If all the tilings have property 3.,
the substitution process is unique and (P, R) is aperiodic.

This technique is frequently used to show that a given protoset is aperiodic:
indeed, to our knowledge, whenever protosets containing a small number of tiles



are adopted, the above procedure was used to show aperiodicity ([1], [13], [25], [2],
[3], [7])-

Remark: All the known aperiodic protosets have the property that the associated
substitution process selects one particular way to build the tiles of level (i 4+ 1) from
tiles of level (i) independently of 7. In the sequel we require that the substitution
process has always this property.

4. The substitution process and periodicity

We introduce substitution matrices [25]. Suppose that T is a substitution tiling.
Let P2, PY,...,PY be the prototiles of T' (in other words, the congruence classes
of the tiles in T') and let P{,P{,...,Pi be the corresponding prototiles at level
i. By the last assumption of section 3, each tile, congruent to some P}, in T
(as composition of tiles of T') can be decomposed into tiles of level i — 1 and the
decomposition is independent of i. Then, a substitution matric U = (u;;) can be
associated to the composition process (with a hopefully comprehensive abuse of
notation), such that:

Pll = u1Pi+us1Po+---+up1bs
P21 = UroPi +usoPo+---+upoP
Pk} = ulkP1+u2kP2—|—-"+UkkPk

where the coeflicients u; ; are nonnegative integers describing the “multiplicity”
of the tile P in P}.

The matrix associated to a substitution tiling 7" is called the substitution matriz
of T. Let (P, R) be a protoset that admits a substitution process: then the matrix
associated to the substitution process of (P, R) is called substitution matriz of
(P, R).

Since now on we require that the matrix U = (u; ;), which represents the sub-
stitution tiling, is primitive, i.e. all entries of U are nonnegative integers and, for
some i € N, all entries of ? are positive: this last property means that, in each tile
of level i, at least one copy of each original prototile must be present.

The requirement of the previous remark that the substitution process selects one
particular way to build the tiles of level (i + 1) from tiles of level (i) independently
of i does not mean that the composition is unique: for example, the usual “chess-
board tiling” T of congruent squares admits four possible tilings (all isomorphic) of
congruent squares that are 4-composition of T" but T is the 4-composition of only
one tiling of congruent squares. Thus, given a protoset (P, R) and the pertinent
substitution process, to each tiling of level i+ 1 (i.e. composed by tiles of level i+ 1)
can be associated only one tiling of level i. If such a relation is biunivocal, i.e. if
we can associate to each tiling of level ¢ only one tiling of level ¢ + 1, then we have
shown that (P, R) is aperiodic.

However, the very existence of a substitution process (and then of a substitution
matrix) leads to the following lemmas (for a proof, see [25]):



Lemma 1 Given a protoset (P, R) and its substitution matriz U, all tilings ad-
mitted by (P, R) and U are locally isomorphic.

Lemma 2 Any tiling admitted by (P, R) and U is repetitive.

Notice that also periodic tilings can belong to a substitution process. In figure 2
we show a rhombus; if its sides are marked as in figure it belongs to a substitution
process. Thus only one tiling is obtained, which is periodic.

Figure 2: Substitution process for a rhombus with acute angle of 7/3, corresponding marking of
rhombus sides and a portion of the obtained periodic tiling

Given a substitution matrix associated to a substitution process, it can be diffi-
cult [20] or even impossible (Fibonacci strings, [13], [25]) to find a protoset and a set
of matching rules such that all admitted tilings belong to the substitution process.

5. The main Theorems

We have shown some properties of a substitution process and that periodic as
well as non-periodic tilings can belong to a substitution process. The following
material allows to establish a clear link between periodicity and aperiodicity. We
will use some techniques and notations introduced by Dolbilin [8].

Given a finite protoset (P, R), let T be a tiling in 7(P,R). Let us consider
pairs (F,C*(F)), where C*(F) is the k-corona surrounding a tile F € T. Two
pairs (F,C*(F)) and (F',C*(F')) are equivalent if a suitable isometry of the plane
moves F onto F' and C*(F) onto C¥(F'). Two different tiles F and F' may have
the same k-corona without being equivalent. However, from now on, we say that
“Ck(F) and C*(F') are equivalent” (C*(F) ~ C*(F')) when the corresponding
pairs, (F,C*(F)) and (F',C*(F")) are equivalent.

Given a tiling T € T(P,R) and k € N, let

CHT) = {CHF)|F €T}/ ~



denote the set of all equivalence classes of k-coronas C* in T. This set is clearly
finite for all k; with a little abuse of notation we denote C* an element of C¥(T').

Similarly, consider the set of equivalence classes of k-coronas belonging to any
of the tilings in the family 7 (P,R). Denote this (finite) set by

k= |J ck.

TeT(P,R)

Definition 11 Given a tiling T € T(P,R), an equivalence class C* is stable (with
respect to T ) if C*(F) ~ C*(F") € C* implies C™(F) ~ C™(F") (namely, they belong
to the same class of r-coronas) for all r > k.

For the proof of the following Lemmas see [§].

Lemma 3 Let F, F' € T, be tiles of a tiling T € T(P,R) such that C*(F) ~
Ck(F') € C*, where C* is a stable class with respect to T. Then there exists an
isometry T of the plane such that 7(F) = F' and 7(T) = T, i.e. 7 € Tt (the
symmetry group of T) .

Remark: Note that the equivalence class of a given k-corona may be stable in
some tilings and unstable in others. One can hence only speak of stability with
respect to a given tiling.

For a fixed T € T(P,R) and two natural numbers k,l with k¥ < | we write
Ck < Clif F € T exists such that C*(F) € C* and C!'(F) € C!. The relation
< introduces a partial order on the set of all classes |J;—,C*(T). Then we can
introduce an infinite graph Gr. The vertices are | Jr-, C*(T). Two vertices C¥, C!
define an edge iff I = k+ 1 and C* < C' . For every C', there exists exactly one
predecessor C'~! such that C!~! < C!. In particular Gy is a finite forest consisting
in a finite number of infinite trees, each tree having its root in the protoset P
(0-coronas).

Remark: The tree below any stable class is an infinite chain without branchings.

Lemma 4 Suppose that T(P,R) is at most countable (namely, there is only a
countable number of congruence classes of tilings). For every T € T(P,R) and for
every class C* € C¥(T) there exists a stable class C* € C*(T) such that CF < C*.

Remark: By Bieberbach’s theorem (for a proof, see [26]), the periodicity of a tiling
T means that the group 't of isomorphisms of T' partitions T into finitely many
I'r-equivalence classes (we say that I'r possesses a compact fundamental domain).

Lemma 5 Let T € T(P,R) be a periodic tiling such that the action of Tt has m
orbits. Then there exists k < m — 1 such that the k-corona C*(F) C T, of any tile
F inT, contains o fundamental domain of T'r.

Lemma 6 Given a stable class C* of a non-periodic tiling T € T(P,R) there exists
a tiling T' € T(P,R), such that:

1. €5 ¢ C5(T")



2. if Ck € C(T"), then C* € C*(T).

Remark: These results show that k-coronas are useful for studying tilings: we
remark that the property of local isomorphism for 7(P,R) is equivalent to the
requirement that all the tilings in 7 (P,R) are associated to the same graph, i.e.
Gr = G, for every couple T,T' € T(P,R). We can also rewrite Definition 8
with respect to k-coronas; a tiling T' € T(P,R) is repetitive if for any couple of
tiles F, F' € T and for any integer | € N there exists a number m € N such that
CH™(F") > CY(F"), where C'(F") is a l-corona equivalent to C'(F).

Now we can state and prove the Main Theorems of this section.

Theorem 2 (“Periodicity” Theorem) Let T(P,R) have the property of local
isomorphism. If T(P,R) contains a periodic tiling T then all tilings of T (P, R) are
periodic and isomorphic to T.

Proof: Since T is periodic, there exists only a finite number m of I'r-equivalence
classes. The graph Gr, at the vertices of level-0 (i.e., the 0-coronas) consists of
ng elements: if ng = m then all the 0-coronas (the tiles) are stable. Otherwise,
we examine the 1l-coronas: if n; = m all the 1-coronas are stable (some tiles,
corresponding to vertices of level-0, are perhaps already stable, but this does not
matter). The process can be iterated: by Lemma 5, for any tile F, in C™~1(F)
there are all the m equivalence classes, thereby a finite level, say h, of Gr exists,
such that np = m, i.e., all the h-coronas of T are stable. The finite number of
possible chains W implies that every W represents T: since G is the same for all
tilings in 7 (P, R) (see the precedent remark), it follows that T is the only element
in T(P,R), modulo congruence. O

Theorem 3 (“Aperiodicity” Theorem) Let T (P,R) have the property of local
isomorphism. If all tilings in T (P, R) are non periodic then T (P, R) is uncountable.

Proof: If T(P,R) is only countable, we can apply Lemma 4 to a tiling T €
T(P,R) and conclude that there is some stable class C* € C*(T). By Lemma 6, a
tiling T' € T (P, R) exists, such that C* ¢ C*(T"), but this result contradicts the
assumption that Gy = Gp. O

In the bidimensional case we have an interesting result [13].

Theorem 4 Let be T € T(P,R) sub-periodic; then there is at least one periodic
tiling T' € T(P,R).

Thus, in the bidimensional case, we can give a “stronger form” of Theorem 3:

!Tndeed the statement in [13] is quite different, namely: Let T be a tiling sub-periodic with
protoset P = (P1,Pa,... ,Py), where the P; are polygons; then there is also a periodic tiling with
protoset P = (P1,Ps,...,Pp). This is no problem, because we can suppose that the matching
rules are always given via “deformation” [25]; then we have a bigger protoset F, that we can
suppose to be composed of polygons, without matching rules, equivalent to the original protoset
‘P with matching rules R. Namely, T(P,R) = T(F).



Theorem 5 If T(P,R) has the property of local isomorphism and there is a non
periodic tiling T € T(P,R) then T(P,R) is aperiodic and uncountable.

Proof: Suppose that T € T(P,R) is a sub-periodic tiling. By Theorem 4 the
existence of a sub-periodic tiling in 7 (P,R) implies the existence of a periodic
tiling T" € T(P,R). By Theorem 2, the tiling T is periodic, which is absurd.
T(P,R) is hence aperiodic and we can apply Theorem 3. O

Remark: The Theorems 2, 3, 5 and the interpretations of local isomorphism and
repetitivity in terms of k-coronas are original. Indeed the previous Lemmas are
used in [8] to show that:

Theorem 6 If T(P,R) is at most countable (and non empty), then there exists at
least one periodic tiling T € T (P, R).

6. Generalized matching rules
Given the above results, a new definition of matching rules can be formulated.
Definition 12 Given a finite protoset
P=(P,PB,...,PR,),

we define generalized matching rules (RG) o set of matching rules for the P;
such that (P, RG) admits a substitution process (and then a substitution matriz with
the properties enumerated in section 4).

Now, in the bidimensional case, given a protoset (P, RG), Lemma 1 and Theo-
rems 2 and 5 show that only two cases are possible:

e T(P,RG) contains a unique periodic tiling;

e T(P,RG) is uncountable, aperiodic and all the admitted tilings are locally
isomorphic.

Thus periodicity is a “special” case of aperiodicity: in the periodic case local
equivalences (local isomorphism) imply global equivalence (Theorem 2).
The substitution process appears to have interesting physical implications.

e The error is intrinsic to aperiodic [9]: otherwise, given a protoset which can
tile the plane (or the space), we can always build configurations, complying
with the matching rules, that cannot be extended. Penrose [18] used the
substitution process to show that, for kites and darts, the inability to tile the
plane increases (exponentially) with the size of the region covered by tiles.

e It has been shown ([10] and [19]) that the way to generate medium range
order (M RO) and long range order (LRQO) starting from the same set of
structural elements which are used to define the short range order (SRO) of a
condensed system, is determined by the constraints imposed when combining
together such elements (e.g., in the matching scheme). If such constraints,



which correspond to the matching rules defined above, are rigid, a single pe-
riodic structure with intrinsic LRO, i.e. a crystal, is generated. If the same
constraints admit variability up to a certain extent, a non-periodic structure
with a degree of M RO strongly reminiscent of some features of crystalline
LRO is obtained. Such a hierarchy has many analogies with the behavior of
tilings like those in figure 3 a), where there is a portion of a monohedral tiling,
formed by trapeziums generated by the usual tiling with hexagons, cut along
a principal diagonal. Such a tiling can be 4-composed in a unique way to
give another tiling, in turn monohedral, with trapeziums similar to the initial
one. However this last tiling cannot be 4-composed to obtain a monohedral
tiling of trapeziums. In general any tiling of this kind admits infinite succes-
sors (trapeziums can be decomposed into similar trapeziums, and so on, ad
infinitum), but it is not possible a priori to assess the existence of a substitu-
tion process. Matching constraints in figure 3 are a I-coronas atlas (i.e., the
1-coronas and their reflections are the only 1-coronas admitted): while they
do not allow for obtaining exclusively a substitution tiling, corresponding to
LRO, yet they are compatible with a composition process, blocked at a given
stage (in the example, the first), corresponding to M RO; a local order remi-
niscent of the global order is generated. Such problems are connected to the
concept of locality of the matching constraints ([4], |

- o= A

Figure 3: An example of finite substitution process: the dark region is the fundamental domain

7. Concluding remarks

In conclusion, periodicity can be interpreted as a special case of aperiodicity.
This formulation upsets the classical statement: indeed, so far, aperiodic sets were
considered “pathologic”, or so peculiar that they do not allow any periodic tiling.
The present formulation opens new questions:
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e are there protosets which admit more “disordered” tilings than those we
presently known?

e How is it possible to classify tilings and protosets with respect to their degree
of order ([21], [22], [23])? In this respect we mention also the concept of
mutual local derivability introduced by Baake [2] for a possible classification
of quasi-crystals.

It appears interesting to study if the uniqueness of the substitution process is a

necessary condition for the non periodicity of all admitted tilings: in other words,
is a substitution process leading to non-periodic tilings necessarily unique?

We could also like to mention the Wang tilings and their connections with

decidability problems and dynamical systems ([13], [6], [16], [24], [27]): a systematic
approach to them could give new insights in the analysis of aperiodicity.
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