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Abstract. In this paper, we give estimates for the index growth of complete non-
compact nonminimal constant mean curvature (cmc) hypersurfaces. In particular, we
show that complete, properly embedded finite topology surfaces with constant mean
curvature in Euclidean 3-space have linear index growth, and we find an explicit asymp-
totic growth rate in terms of geometric properties of the ends. We give similar results
for cmc hypersurfaces in IR**! and H"*! as well.

Résumé. Dans cet article, nous donnons des estimées de la croissance de 'indice des
hypersurfaces complétes, non compactes, & courbure moyenne constante (cmc), non
minimales. Nous montrons en particulier que 'indice des surfaces complétes, propre-
ment plongées, de topologie finie, de I’espace euclidien, croit linéairement. Le com-
portement asymptotique de l'indice dépend de certaines caractéristiques des bouts.
Nous donnons des résultats analogues pour les hypersurfaces cmc dans IR™*' et dans
]I‘In+1.
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1 Introduction

In this paper, we investigate the index of complete constant mean curvature (cmc) nonmin-
imal hypersurfaces, i.e. the number of negative eigenvalues of the stability operator, with
respect to Dirichlet boundary conditions (see (2.2), Section 2). When the hypersurface is
noncompact, the index is defined as the supremum of the indexes of all bounded regions in
the hypersurface.

A complete constant mean curvature nonminimal surface without boundary in IR® has finite
index if and only if it is compact [LR], [S]. If the surface is noncompact, the index is infinite,
S0 it is natural to ask at what rate the index grows to infinity on an exhaustion of the surface
by bounded regions. In this paper, we prove, under some natural geometric conditions, that
complete non-compact cmc embedded hypersurfaces have linear index growth. With B(R)
defined to be the ball of radius R in IR® centered at the origin, a typical statement is

Theorem 1.1 Let M C IR? be a complete properly embedded finite-topology cmc-1 surface.
Let Ej,j = 1...N, be the ends of M. They are asymptotic to Delaunay surfaces D(u;),
with weight parameter p; > 0. If T(u;) denotes the period of the Delaunay surface D(u;),
then

(1.1)

Using the fact that 2 < T'(u;) < 7 (see Section 3.1), we can conclude from the preceding
theorem that the index growth provides upper and lower bounds on the number of ends of
the surface.

There are many known surfaces to which this theorem can by applied. Complete noncompact
properly embedded finite-topology cmc-1 surfaces have been constructed by N. Kapouleas
[K], R. Mazzeo et al. [MP] [MPP], and K. Grosse-Brauckmann et al. [GKS]. And there are
presently other works in progress for constructing such surfaces (e.g. that of J. Dorfmeister,
N. Schmitt and M. Kilian). Furthermore, the structure of such surfaces is well understood
[KK], [KKS].

The rough idea of the proofs of our results is to decompose the hypersurfaces into compo-
nents, one which is the central part and the others which are compact pieces of ends and
are close to Delaunay surfaces, and then to apply Dirichlet-Neumann bracketing. The fact
that the ends are asymptotic to Delaunay hypersurfaces follows from [KKS], [KKMS], and
we will see that the indexes of these end pieces are close to the indexes of the actual Delau-
nay pieces. To complete the proof, we must understand the indexes of the Delaunay pieces
(with both Dirichlet and Neumann boundary conditions), and we do this by the following
procedure: we find bounds for the potential function of the stability operator on Delaunay
hypersurfaces; we then show that the spectrum of the stability operator is the disjoint union
of the spectra of a sequence of operators defined on functions of only one real variable (since
the domains of the functions are 1-dimensional, these operators are easier to handle); and
then finally we study the possible range of those spectra, using the fact that cmc graphs are
stable. This leads us to a knowledge of the indexes of the Delaunay pieces.

An interesting byproduct of these proofs in an exact knowledge of the index of any Delaunay
piece with boundary in two hyperplanes perpendicular to the axis of the Delaunay piece.
We will see in Section 4.3 that the index of such a Delaunay piece is essentially equal to the
number of bulges and necks it contains.

Remark. One may ask whether the assumptions in the above theorem are necessary in
order to insure that the index grows linearly. As a matter of fact, we also prove quadratic
growth for the index of some embedded Kapouleas examples with infinite topology.



The paper is organized as follows. In Section 2, we recall the definition of the (Morse) index
of a cmc hypersurface. In Section 3 we recall the basic facts on Delaunay hypersurfaces
(in Euclidean or in hyperbolic spaces) and we introduce some special domains on Delaunay
hypersurfaces. Section 4 is devoted to estimating the index of these special domains. Section
5 is the core of this paper. The main results are stated in Subsection 5.4. The other
subsections contain technical results needed in the proofs.

2 Definition of Index

Here we consider nonminimal cmc-H hypersurfaces M™ of an (n + 1)-dimensional space
——=ntl . . .
form """ with constant sectional curvature ¢ € {—1,0}. We consider both cases with
. = n+l . .

boundary and without boundary. Let z : M™ — M "*! be a cme-H immersion of a compact
manifold M™. Since the immersion is of nonzero cmc, the mean curvature vector provides
an orientation, so we let N denote an associated unit normal vector on M. Consider a
smooth variation M; of M (= My) such that the boundary is fixed and call W the variation
vector field, W = %Mt| +o- The first variation formula for the area is given by

A(0) = —nH / (W, NYydoar

where H is the mean curvature in the direction N (it is normalized in such a way that the
mean curvature of a standard sphere is 1) and where dvys is the measure for the induced
metric on M. Changing the variation M; if necessary, we may assume that W is of the form
W = uN for some u € C®(M) with u|spr = 0. Indeed, for every such u, there exists a
smooth variation M; with variation vector field u N ([BdCE], Lemma 2.2).

For volume-preserving variations (as defined in [BACE]), i.e. when the function u satisfies
the additional condition f u wdvy = 0, the second variation formula is

A”(O):/ u Ludvyy,
M

where

(2.2) L:=A—nc—||B|]?

is the stability operator of the immersion (here, ||B|| is the norm of the second fundamental
form and A is the Laplace-Beltrami operator determined by the metric). Note that for any
u such that [ u Wwdvpar = 0, there exists a volume preserving variation with variation vector
field u N [BACE].

In the case that M = IR?, the stability operator can also be written

(2.3) L=A+2K —4H?,
where K is the Gauss curvature.

Remark. The sign of A is chosen so that its eigenvalues are nonnegative. (For example,
A = —2 on Euclidean R'.)

oz2
Definition 2.1 For M compact, the index Ind(M) is the number of negative eigenvalues
of L, with respect to Dirichlet boundary conditions, i.e. the mazimum possible dimension of

a subspace V' of C§°(M) on which [,,uLudvy < 0. For M non-compact, Ind(M) is the
supremum of Ind(Q) over all compact regions Q@ C M.



This index is usually called the strong indez in the literature. There is also a notion of weak
index, which is more geometrically natural. Loosely speaking, the weak index measures the
maximum possible dimension of a “vector space” of variations that are volume-preserving
and area-decreasing. Thus it measures the degree to which the hypersurface is unstable in
the cme sense [BACE].

Definition 2.2 For M compact, the weak index Ind,, (M) is the mazimum possible dimen-
sion of a subspace V of Cg°(M)N{u | [, udvy = 0} on which [,,uLudvy < 0 (the
variations under consideration have variation vector field uw N , they are volume-preserving
and strictly area decreasing). For M non-compact, Ind,(M) is the supremum of Ind, ()
over all compact regions 2 C M.

As discussed in [BB] and [LiRo], it is known that either Ind(M) = Ind, (M) or Ind(M) =
Ind,, (M) + 1. (Examples in [BB] show that both cases are possible.) As the more geo-
metrically natural index, Ind,, (M) is the index we wish to estimate. However, Ind(M) is
easier to compute, and since the two indices differ by at most 1, estimating the asymptotic
behavior of one is the same as estimating the other.

In order to estimate the index growth, we will have to consider the number of negative
eigenvalues of the stability operator L on compact domains with Dirichlet, Neumann, or
with mixed boundary conditions.

Definition 2.3 For M compact, the Dirichlet index (resp. Neumann index) of M is the
number of negative eigenvalues of the stability operator L on M, with Dirichlet (resp. with
Neumann) boundary conditions on OM. Mixed index will refer to the number of negative
eigenvalues of L with Dirichlet condition on part of OM and Neumann condition on the
complementary part of OM .

3 Delaunay hypersurfaces

In this section, we give some description of Delaunay hypersurfaces with constant nonzero
mean curvature in Fuclidean and hyperbolic spaces.

3.1 Delaunay hypersurfaces in Euclidean space,
with constant mean curvature H > 0

Let us consider a rotation hypersurface M in IR"*! parametrized by

(3.4) R x $" 3 (5,0) = F(z,0) = (=, /(x) w)

where f is assumed to be positive and defined over (—oo, 00). Notice that f(x) measures
the Euclidean distance from the point F'(z,w) on M to the axis of revolution. We choose
the unit normal vector to be

—1/2
(3.5) N@,w) = (1+£2@) (@), -w).
The Riemannian metric is given in the above parametrization by the matrix
1+ f?(x) 0 )
3.6 G(z,w) =
3. @)= (O Ll
where gg is the canonical metric on the unit sphere S™~1.

Provided that f’ # 0, the profile curves of Delaunay hypersurfaces are given by the following
differential equation
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where H is the normalized mean curvature (nonzero, constant), w,_; is the volume of ™!
and m is a real parameter. The constant m can be interpreted as the flux of the unit
vector field parallel to the axis of revolution, as in dimension 2 [KKS]. (We remark that the
definition of H in [KKS] is n times our definition for H, hence the term to the right in our
formula differs by a factor of n from the right-most term in the formula of [KKS].)

Let us, for notational convenience, fix H = 1 and introduce the weight parameter y :=
m/wn—1. Equation (3.7) becomes

")

3.8 =~ — f*(x).

It can be shown that the curves corresponding to equation (3.8) are embedded if and only
if > 0. In that case, we must have p € (0, =(2=1)"~!] and the extreme values correspond

to a chain of spherical beads of radii 1 (when p = 0), and to a cylinder with radius 2%

(when p = L(2=1yn-1),

Given p € (0,1(21)"71], let a(u) be the two positive roots of the equation X™ — X"~ ! +
p=0with a_(p) < ay ().

Let D(u) be the Delaunay hypersurface with constant mean curvature 1 and weight para-
meter p € (0, = (";1)"_1], whose profile curve f satisfies Equation (3.8). One can show that
the function f is defined over IR, pinched between the two positive values ai(u),

(3.9) a—(p) < f(z) < ay(p),

and T'(u)-periodic, where T'(u) is the distance between two consecutive values of = at which
[ achieves its least value a_(u). (For a true cylinder, p = L (2=1)"=! and f(z) = a_(p) =
ay(p) = ”T’l is constant. In that case, T'(u) has some finite positive limiting value as u

increases up to L(2-1)n~1)

In dimension 2, it is a well known fact [E] that the profile curves of embedded Delaunay
surfaces are traces of one of the focuses of an ellipse as it is rolled along a line in IR?. These
ellipses are congruent to

1
(5 cos(s), v/Asin(s)) , s € [0, 2n)
and they have eccentricity e(u) = 4/1 — 4u. The length of this ellipse is equal to T'(u), hence

we have the formula
27 1
= / \/Z sin?(s) 4+ pcos2(s) ds € [2,n]
0

in the 2-dimensional case.

The stability operator of the n-dimensional Euclidean Delaunay hypersurface D(u) is given
by

L=A-Y,
(3.10)
V= B2 =n 1+ @ -1 f2) .

where || B|| is the norm of the second fundamental form. The following lemma will be needed
to estimate the index of certain Delaunay pieces.



Lemma 3.1 For n > 2 and for any x € IR the function V in equation (3.10) satisfies
V(z) f?(z) < n?.

Proof. We have already seen that the weight parameter p of D(u) satisfies 0 < p <
L(2=L)n=1. Consider the polynomial P(t) = " — "~ + pu, whose positive roots are the

numbers a4 (p). The function P(t), considered on the domain IR, achieves its non-positive
minimum p — 1(2=1)"1 at ¢ = 21 Since P(u'/("~V)) and P(1) are both positive, it
follows that

n—1

p/ =l <a (p) < <ay(p) <1.

n

Consider the function Q(t) = nt?(1 + (n — 1)u?t=2"), for t > 0. When ¢ varies from 0 to
00, @ decreases from oo to its minimum Q((n — 1)511%) > 0 and then increases to oo. It
follows immediately that, for all z € IR,

(V) (z) < max{Q(a),Q(ar)} < max{Q(u"/""),Q(1)}.
Using the fact that p < £ (2=1)"~1 it follows that V f? < n? on R as claimed. 1

3.2 Special parts of Euclidean Delaunay hypersurfaces

Take a Delaunay surface D(u). Without loss of generality, we may assume that the func-
tion f defining the profile curve satisfies f(0) = a—(u). It follows easily that f(T(u)) =
a_(u), f(T(n)/2) = ay(p) and that f is symmetric with respect to the values kT (u)/2, k €
77.

Let the basic Dirichlet block for the Euclidean Delaunay hypersurface D(u) be the compact
domain

(3.11) B(w = P[0, ") w571 or P 1] x 5771),

where F' is the parametrization (3.4), see Figure 1.
We also introduce the pieces By(u) obtained by glueing £ basic Dirichlet blocks,

(3.12)  B(p) := F([O,@@] x S*1) or F([T(Q“), T;") +eT(2")] x S,

Let a be the function

(3.13) a(z) = (1+ f%(2)) " f'(2)

where f is as above.

Lemma 3.2 The function a vanishes precisely at the half-integer multiples of T'(u). Fur-
thermore, a' has exactly two zeroes (1(u), (2 (u) in the interval [0, T (u)], with

0< ) < T < () < T(w).

(In the case of a true cylinder, a(z) is constant, so then the values (1(%(2%=2)"') and
G(E(Z1"=1) must be determined by the limits of (1(p) and (o(u) as p increases to

1/m—1yn-1
()
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Figure 1: A portion of D(p) C IR?, > 0.



The proof of this Lemma will be given in Section 4.3.

Let the basic Neumann block for the Euclidean Delaunay hypersurface D(u) be the compact
domain

(3.14) C(p) = F([¢1(), T (k) + 1 ()] x S"71).

We also introduce the pieces C;(u) obtained by glueing £ basic Neumann blocks, see Figure 1,

(3.15) Ce(p) = F([GL(1), LT (1) + ()] x S™71).

3.3 Delaunay hypersurfaces in hyperbolic space,
with constant mean curvature H > 1

We choose the half-space model {(:1:1, ceey Ty Y) € R™! | y > 0} for hyperbolic space H
(with the hyperbolic space metric), and we fix the geodesic () = (0,...,0,¢€?).

The profile curve of a hyperbolic Delaunay hypersurface is described, say in the vertical
2-dimensional plane {a:l, y}, as a geodesic graph. The point m(t) on the profile curve is at
geodesic distance p(t) from the point y(t). Let ¢(t) be the angle Z(v(t) 0m(t)), see Figure 2.
Then, sinh p(t) = tan ¢(t).

With these notations, the profile curve is given by (! sinp(t), e’ cos¢(t)), where ¢ satisfies
the differential equation ([KKMS], Equation (6.3) page 34)

)nfl

1
= (tangp — H(tan)™.

3.16 = —_—
(8.16) . Wn—1 cos /1 + ¢

Here, p > 0 (is the weight parameter, m is the flux) and the (normalized) mean curvature
H satisfies H > 1. Note that the mean curvature is not normalized in [KKMS].

The hyperbolic Delaunay hypersurfaces D(u) are given by

(3.17) R xS" '3 (tw) 3 (et sin p(t) w, et cos p(t)) =: (f(t)w,g(t)) € H",
where ¢ satisfies the differential equation (3.16).

As in the case of the Euclidean Delaunay hypersurfaces, it can be shown that the function
¢ (or equivalently p) is pinched between two values 0 < a_(u) < ¢(t) < as(p) and
periodic with period 7(u). The Delaunay hypersurfaces obtained in this way with u > 0 are
embedded.

A unit normal vector to the hypersurface D(u) is given (with the above notations) by

Cos ¢

(3.18) N(t,w) = ———=(d'w, - f).
1 +<,0'2
The metric on D(u) is given by
@+ ¢?)(1 +tan? p) 0
(3.19) G(t,w) = ( 0 tan? o gg

where gg is the canonical metric on the unit (n — 1)-sphere as above.
Finally, the stability operator L is of the form
L=A-Y,

(3.20)
V =-n+|B|?
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Figure 2: A portion of Dy (p) C H?, >0, H > 1.



where ||B|| is the norm of the second fundamental form of the immersion. The important
point here is that V' is periodic and hence bounded on IR, as in the Euclidean case. It turns
out that one can find a nice expression for the function V', as in the Euclidean case.

Lemma 3.3 With the notations as in Equations (3.17) and (3.20), we have

V(®(t,w)) = n(H? = 1) +n(n — 1)p?(tan ) 2"

for the n-dimensional hyperbolic Delaunay hypersurface.

Note. In dimension 2, this formula already appears in [C].

Proof. In order to prove this formula, we need to explain how one establishes Delaunay’s
differential equation following [Hs]. In the upper half-plane model of IH? we fix the vertical
geodesic v(t) = (0, e?) parametrized by arc-length. A point p = (£,7) € H?, with £&,7 > 0
is uniquely characterized by (¢, p) € IRy x IRy, where p = d(p, ) is the hyperbolic distance
from the point p to the geodesic vy, which is achieved at some q = (0,e?) € . Let ¢ denote
the angle Zpﬁq, where § = (0,0) in the upper half-plane model, and so sinh p = tan ¢.

The hyperbolic metric is given, in the coordinates (£,7), respectively (¢, p), by

02 (d€? + dn?) = cosh® pdt® + dp?.

In the {t,p} coordinates, we have the orthonormal frame {e; = (coshp) 2, e, = 8%}
and the covariant derivative of the hyperbolic metric is given by the relations D 2 % =
)

m.
Let ¢(s) = (¢(s), p(s)) be a curved parametrized by (hyperbolic) arc-length. Write

—sinhp coshpa%, Da%a% ZO’D%% :D%% = sinh p (cosh p)~1

7(s) = ¢é(s) =sinae; +cosae,
(3.21)
v(s) = cosae; —sinae,

On the other-hand, we can write

dt d
7(s8) = coshp 75 + d_Z ep
and hence
cosh p % = sina
(3.22)
% = cosa

Computing D¢ using the above formulas, it follows that the geodesic curvature of the curve
¢ in the direction v is given by

(3.23) K= Z—j + sinh p (cosh p) ™! sina = Z—(: + sinh p % .

We now consider the cme hypersurface M C IH™™ generated by the rotation about the
geodesic v (this is an O(n)-action). The orbit of the point p = (¢, p) € ¢ is an (n — 1)-sphere
of Euclidean radius e’sin¢ (where tany = sinh p) which is contained in the horosphere
{n =etcosp} of H™ = {(&,...,&n,n) | 7 > 0}. The volume of this sphere, for the metric
induced by the hyperbolic metric, is v(p) = w,_1(sinh p)” 1, where w, 1 is the volume
of the unit Euclidean sphere S™ ! C IR". One can then show ([Hs], page 487, notice his
notations differs from ours) that the normalized mean curvature H of M™ C TH™*" satisfies

0
nHzn—alnv,

10



where v is given in (3.21) and where v is the volume of the orbit. It follows that

(3.24) nH=n+Sina1;l((£)) =K+ (n-1)k,

1 is the common value of the principal curvatures of the

where k = sina cosh p (sinh p)~
O(n)-orbit.
Let us set, for the sake of simplicity, f(p) = coshp and u(p) = “2=1(sinhp)”. Then
u'(p) = v(p)f(p) and it follows from (3.23) and (3.24) that

! !
(3.25) nsz—j—kf?sina—l—%sina.
One can now view p as a function of ¢ and check that f(p)(f2(p) + (%)) 2 _sina. It
follows that

d dp. o\ —1/2
L s (7 + (2222 nHuy

= i{vfsina —nHu}

Cclitd {vfsma—nHu}
I do
il L = _pH)=
dt{ 51na+f51na+d nH}=0,
i.e.
(3.26) of*(f2+ (%))~ nHu=m

vfsina—nHu=m

where m is a constant. Writing sinh p = tan ¢, a straightforward computation gives that
equation (3.26) is equivalent to equation (3.16), so that m is the flux of M.

The second fundamental form B of M can be written as B = B% — Hg, where BY is traceless
and where g is the induced metric on M. It follows that

. —1 .
(3.27) |B||? = nH? + ||B°||? = nH? + (k — k)2

We now turn to the computation of k¥ — k. According to (3.23) and (3.24) and (3.25), we
have

_ sin a _da
" sinhpcoshp ds’
Using (3.25) and (3.26) with u = ™, we find that

ny
(sinh p)™

k —

k—k=
Finally, we find that

I|B||? = nH? 4+ n(n — 1)p*(sinh p) 2"
and the formula for V follows immediately (recall that sinh p = tan ). n

In order to estimate the index of certain pieces of Delaunay hypersurfaces, we will need the
following lemma.

11



Lemma 3.4 With the notations as in Equations (3.20) and (3.16), there exists a constant
c(n, H) which only depends on n and H such that

Vtan® ¢ < c¢(n, H)

on the n-dimensional hyperbolic Delaunay hypersurface D(u, H) with weight parameter p
and mean curvature H > 1.

Proof. We give two arguments. One in dimension 2 (which shows that the constant does
not depend on H) and one in arbitrary dimension.

Case 1, dimension 2. Recall that 4 > 0 and that H > 1. We have the differential
equation

_ m _ tanpy/1+tan®@
M_Zﬂ”_ /1_}_(’0/2

H-+VH?2-1
< sup{rv1+7r2 — Hr?} = T He

>0

— Htan? ¢

We must also have

Htan® o —tangpy/1 +tan?p+p <0,

(H? - 1D)X*+ 2Hp—1)X2+ 42 <0,

thus

where X = tang. This second order polynomial in X? has positive discriminant when
u € (0, uy), which shows that its two positive roots are numbers a_ < ay such that

a_ StanchSaJr.

By Lemma 3.3, we have

Vtan® p = 2{(H? — 1) tan® ¢ + b,

and looking at the function r — P(r) = (H? — 1)r? 4+ p?r~2, we see that

tan? ¢

Vtan® p < 2max{P(a_), P(ay)} = 2(1 —2Hpu) <2,

where the middle equality follows from the above second order polynomial in X?2. N
Case 2, dimension n. Looking at the differential equation which describes the profile
curve of the hyperbolic Delaunay hypersurfaces, with g > 0 and H > 1, we see that there
exists some number p (n, H) such that

0 < p < max{r"™'V1+r2 — Hr"} = py(n, H).
T
For the Delaunay hypersurface D(u, H) C H"™"!, the function ¢ satisfies

Cl_(,U,,H) S tan g S a+(IU/7H)

where a4 (u, H) are the two positive roots of the equation

Hr" — " '\1+47r24p4=0

i.e. of the equation

12



Y(r) == Hr" — " I/1 472 = —p.

Looking at the graph of v, it follows immediately that a_(u, H) is an increasing function
of p and a4 (u, H) is a decreasing function of y, for fixed H > 1. It follows that

ay(u,H) <1//H2-1.

Using Lemma 3.3, we can write

VitanZp = n(H? — 1)tan? ¢ + n(n — 1) tan® 2" .

Define A(r) = n(H? — 1)r?2 + n(n — 1)u?r?>~2" and observe that A(r) decreases and then
increases when r varies from 0 to oo. It follows that

Vtan? ¢ < max{A(a_),A(as)}.
Let s = ax. Then, p = s" 1v/1 + s2 — Hs™ which implies that

As) =n(H? —1)s* +n(n—1)(/1+ 52 — Hs)?

and hence

As) <n(H? —1)s® + n(n —1)(V1 + 52+ Hs)?.
Call ¢(n, H) the number obtained by evaluating the right hand side of the preceding equation
at s =1/vH? — 1 and get the estimate stated in the lemma. "

3.4 Special parts of hyperbolic Delaunay hypersurfaces

Take a hyperbolic Delaunay surface D(u). Without loss of generality, we may assume that
the function ¢ defining the profile curve satisfies p(0) = a_(p). It follows easily that
p(t(p) = a—(w), o(r(p)/2) = as(p) and that ¢ is symmetric with respect to the values
kr(u)/2, k € ZL.

Let the basic Dirichlet block for the hyperbolic Delaunay hypersurface D(u) be the compact
domain

(3.28) B(w) = 2(10. " 57 o o(("L r) x 577,

where ® is the parametrization (3.17).
We also introduce the pieces B¢(u) obtained by glueing £ basic Dirichlet blocks,

(3.29)  B(p) := ¢([o,e¥] x S*1) or <1>([T(2"),T(2") +eT(2")] x §"1Y.

Let a be the function

e
(330 1) @) V15

where ¢ is as above.

Lemma 3.5 The function a vanishes precisely at the half-integer multiples of 7(u). Fur-
thermore, a' has ezactly two zeroes (1(u), (2(u) in the interval [0, 7(u)], with

0< ) < < () < r(u).

(Again, the values (;(p) and T(u) for the true hyperbolic cylinder are determined as limiting
values of the (;(p) and T(p) for noncylindrical hyperbolic Delaunay hypersurfaces.)

13



The proof of this Lemma will be given in Section 4.3.
Let the basic Neumann block for the Delaunay hypersurface D(u) be the compact domain

(3.31) Cu) = @([Ca(w), T(1) + Q)] x S™71).
We also introduce the pieces C¢(u) obtained by glueing £ basic Neumann blocks,

(3.32) Ce(p) = B([Gu (W), £7(1) + Cu(w)] x S™71).

4 Index estimates for certain pieces of Delaunay
hypersurfaces

4.1 Preparatory lemmas
In this section, we gather classical results which we will need later on.

Lemma 4.1 Let P,Q, R, be smooth functions on IR, with P,R > 0. Consider the eigenvalue
problem

(4.33) L (P) L y(@) + Q@) y(x) = AR() o)

in the interval Ja, b, with any one of the following boundary conditions

[DD] y(a) = y(b) =0,

(4.34) [ND] y'(a) =y(b) =0 or y(a) =y'(b) =0,
[NN] y'(a) =y'(b) =0.
Write the eigenvalues Ay < A2 < ... in increasing order, starting with the index 1. (Note

that these eigenvalues are always simple.)

Then any eigenfunction of (4.33), with one of the boundary conditions in (4.34), associated
with the n-th eigenvalue A\, has exactly n nodal domains.

In particular, if u is an eigenfunction of (4.33) for one of the boundary conditions (4.34),
associated with the eigenvalue A, and if u has n nodal domains, then A = \,.

Proof. This is an easy consequence of Sturm’s comparison argument. N

Remark. The preceding lemma means that Courant’s nodal domain theorem actually gives
a way of determining the rank of an eigenvalue in the case of one-dimensional eigenvalue
problems.

Lemma 4.2 Let M be a cme hypersurface in M = IR™ or IH™ ™, with unit normal field
N. Let X be a Killing vector field in M. Then the function ax := g(X,N) is a Jacobi
function on M, i.e.it satisfies Lax = 0. Here, § is the metric of the ambient space, and
L := Apy —V is the stability operator of the immersion M, i.e. Aps is the Laplacian for the
induced metric and V = nc + ||B||?, where B is the second fundamental form of M and c
is the sectional curvature of the ambient space.

Remark. Thislemma is stated in [Ch], Lemma 1 page 196; it also follows from Theorem 2.7
and its proof in [BGS]. In the case of Delaunay hypersurfaces, the lemma also follows from
simpler computations. In the Euclidean case, taking as Killing field the translations parallel
to the axis of revolution of the Delaunay hypersurface, we get as ax the function given by
(3.13). In the hyperbolic case, taking as Killing field the field corresponding to the group
of isometries which translates the vertical geodesic axis, we get as ax the function given by
(3.30). In both cases the fact that the function satisfies the Jacobi equation (Apr—V)ax =0
follows by making use of the Delaunay differential equations.
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Lemma 4.3 Let M be a Riemannian manifold and let q be a function on M. Assume that
there is a positive solution u of the equation (A + q)u = 0 in the interior of M. Then the
operator A + q has positive Dirichlet spectrum in any proper subset Q@ C M such that Q is
compact in M.

Proof. Indeed, let D C M be any relatively compact domain and let f be a smooth function
with compact support in D. We can write

2 2 _ 2_&2
[ 1 vart= [ e -2

The right hand side can be written as

dul? . .
/ |df|* — A(lnw) f* + % 2= / ldf — fdIn(u)®> — [ f28, In(u)
D u D oD
where v is the unit inward normal to 0D. The lemma, follows immediately. N

Lemma 4.4 Let A, B,V be smooth functions on IR. Assume that A, B are bounded from
below by a positive constant and that V is bounded on IR. Let P be the manifold [a,b] x S™~!
equipped with the metric g := A?(x)dz?+ B%(x)gs, where gs is the canonical metric on S"~ .
We are interested in the eigenvalue problem (A, — V) y(z,w) = Ay(z,w), with Dirichlet or
Neumann conditions on {a} x S*! and on {b} x S*'. Let Ay, = k(k+n—2),k > 0,
denote the eigenvalues of the Laplacian on S™~! and let m(Ay) denote the multiplicity of
Ay (this is a polynomial in k, of degree (n —2)). Let L := Ay —V and define the operators
Lk; k >0, by

d du .
Lyu=——(A7'B"1 — AB"3 (A}, — B? .
kU e ( dx) + (A V) u

Let us denote by o(L) the set of eigenvalues of L, counted with multiplicities and by o(Ly,)
the eigenvalues of the problem Lj u(z) = A AB" Y u(z). Then

o(L) = | | m(Ax) (L)
k=0

where the expression in the right-hand side means that each eigenvalue of Ly, appears with
multiplicity m(Ay) in o(L) (summing up multiplicities if the same number \ appears in
several o(Ly)). In particular, the index (number of negative eigenvalues) of L is given by

Index(L) = ) _ Index(Lx)
k=0

and the sum in the right-hand side only involves finitely many terms.

Proof. If y(x,w) satisfies Ly = Ay, then

0
Ox
In order to prove the lemma, it suffices to decompose the function y(z,w) into a series of

spherical harmonics. The generic term in this series will be of the form u(x)Y (w) where Y
is a k-spherical harmonic and the preceding equation becomes

_ 1 0y
A an 1~
(a3

w) + AB"3 (AS y— B? Vy) =AAB"1y.

d

—— (A tprt d—u + AB"3 (A,c - B? V) u=AAB" 4.
dx dx
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The first assertion of the lemma follows easily. For the second assertion we only have to
remark that Ay tends to infinity with k£ and hence that the operators Ly are positive for k
large enough (this is because A, B are bounded from below by positive constants and V is
bounded). .

4.2 A stability result for half-Delaunay hypersurfaces

Let D be a Delaunay hypersurface in IR™*" (with H > 0, > 0) or in H™" (with H >
1,41 > 0), where H is the mean curvature and p the weight parameter. Let R and TH ]+

denote one of the closed half-spaces defined by a geodesic hyperplane containing the axis of
D.

With these notations, we have

Proposition 4.1 The stability operator A —V of the Delaunay hypersurface D is positive
in any Q contained in Dy = D(‘|1R_,T_""1 or Dy = ’DﬂlHj_“H, with respect to Dirichlet
boundary conditions. In particular, the half-Delaunay hypersurfaces Dy are (strongly) stable.

Proof. By Lemma 4.3, in order to prove the proposition, it suffices to find a positive solution
of the equation (A—V)y = 0 on D4. Such a solution will be given by the normal component
of some well chosen Killing field, using Lemma 4.2.

In the Euclidean case, given any § € S™~1 we consider the Killing vector-field Yy(z,w) =
(0,0). It follows from Lemma, 4.2 that the function

ag(z,w) == —g(N,Yp)(z,w) = (1 + (@) (w, ) g~
is a positive Jacobi function on Dy = DN {{w,f)r~ > 0} and hence the proposition follows,
by Lemma 4.3.

In the hyperbolic case, given any § € S™~!, we consider the Killing field Yp(w,t) = (6,0) in
H "', With the notations of Section 3.3, the function

ap(t,w) :==G(N,Yy)(w,t)

is equal to g'(t) (#,w) up to a positive factor (recall that g(t) = e’ cos¢(t)). In order to prove
that ag > 0, it suffices to look at the sign of g'(t) = ef(cosp(t) — ¢'(t) sinp(t)). Assume
there is a point tg at which ¢’ vanishes, then

=tany(t) >0
70 o(t)
at t = tg, and the differential equation (3.16) implies
1 1+ (¢'(to))~2 H 1
O<p= - = 1-H)<O0,
IO ( T+ ()2 P~ iy T
a contradiction. B

4.3 Proofs of Lemmas 3.2, 3.5

The function a given by equation (3.13) (resp. by equation (3.30)) is up to sign the scalar
product of the unit normal to the Delaunay hypersurface with the Killing field corresponding
to translations along the axis of revolution. According to Lemma 4.2, this function satisfies
(A —V)a =0, where V is the positive potential given by equation (3.10) (resp. by equation
(3.20) and Lemma 3.3). The metric on the surface of revolution is of the form
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A? 0
G_( 0 B2gs>

where A, B are positive functions of one variable z (the variable along the axis of revolution)
and gg the metric of the sphere. Since the function a only depends on z, it follows that it
satisfies the equation

d 1pnda n—1

dx(A B dx) +AB" 'Va=0.

It follows that the function A~' B" !4’ is monotonic between two consecutive zeroes of
a (because the functions A, B,V are positive) and hence that a' can at most vanish once
between two consecutive zeroes of a. On the other-hand, it has to vanish at least once by
the mean value theorem so finally we conclude that a’ has exactly one zero between two
consecutive zeroes of a. n

4.4 Index estimates for certain Delaunay pieces

With the notations as in Definition 2.3 and in Sections 3.2 and 3.4, we have the following
estimates for the indexes of the Delaunay pieces By and Cy.

Proposition 4.2 The Dirichlet index of the Delaunay piece By(u) is exactly £ — 1.

Proposition 4.3 There is a constant c1(n, H), which only depends on the dimension n and
the mean curvature H such that the Neumann index of the Delaunay piece Cy¢(p) satisfies

20 < Neumann Index(Co(u)) < 20+ c1(n, H).

Proofs. The proofs of these two propositions are quite similar.

Step 1. The induced metric on the (Euclidean or hyperbolic) pieces Bg(u) or Co(u) is of
the type described in Lemma 4.4. Tt follows that in order to estimate the index we only need
to look at the index of the corresponding operators A~!B!="L;, where A = /1 + (f')?
and B = f in the Euclidean case, and A = /(1 + (¢")2)(1 + tan? ) and B = tan ¢ in the
hyperbolic case, and we already know that for k large enough the operator A~!B'="[, is
positive, implying that its index is zero. Looking at the precise form of the potential V', one
can actually show that that there exists a constant c¢(n, H) such that A=!B1="L, is positive
whenever k > ¢(n, H), see Lemma 3.1 for the Euclidean case (and the constant does not
depend on H) and Lemma 3.4 for the hyperbolic case (where the constant does not depend
on H at least when n = 2).

Proof of 4.2, Step 2. Consider the function a = g(Y, N) where Y is the Killing field
generated by the one-parameter group of isometries which translates the geodesic axis of
the Delaunay hypersurface along itself. According to Lemma 4.2, this function satisfies
(A=V)a =0and a|0B, = 0. This function has precisely £ nodal domains in B,. According
to Lemma 4.1, 0 is the /-th eigenvalue of the operator A"*B' "L, (see Step 1). It follows
that the Dirichlet index of By is at least (£ — 1) and that it is bigger than (¢ — 1) if and only
if some of the operators A~1B'""L;, k > 1, have negative eigenvalues. Assume this is the
case and that (u, \) satisfies A='B'~"L; u = Au, for some A < 0. This implies that

(A=V)uY =AuY

for any spherical harmonic Y of degree k. Choosing, for example, a radial spherical harmonic
Y, we can always find a domain Dy C D, such that the function 4 Y is positive in Dy and
satisfies
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(A=V)uY =AuY in Dy,
uY =0 on 0Dy, .

This contradicts Proposition 4.1.

Proof of 4.3, Step 2. We use the same function a as before, (A — V)a = 0. The domain
C; was designed so that @’ = 22 = 0 on OC; and so that a has exactly (2¢ + 1) nodal
domains in C,. It follows, as in the preceding argument, that 0 is the (2£ + 1)-st eigenvalue
of Ly and hence that the Neumann index of C; is at least 2¢. In order to obtain the upper
bound, we remark that the Neumann index of A~!B'~"L;,k > 1, is at most 2. Indeed,
assume it is at least 3. This means, using Lemma 4.1, that there is an eigenfunction u of
A7IB'""L;,k > 1, with at least three nodal domains and hence with an interior nodal
domain. We can then repeat the argument in Step 2, proof of Proposition 4.2, and arrive
at a contradiction with Proposition 4.1. An eigenvalue of A~'B'~"L, gives an eigenvalue
of L with multiplicity a polynomial of degree (n —2) in k. Since A= B1="L; is positive for
k > c¢(n, H), the result follows. x

5 Index growth results

5.1 Preparatory lemma

Lemma 5.1 Let M be a compact manifold with boundary. Assume that it can be decomposed
as M = | |2y M; into m pieces with smooth boundaries. Let L be an operator of the form
L =Ap —V. We consider the counting function N'(M,)\) of the L-eigenvalues less than \
on M, with either Dirichlet or Neumann boundary condition on OM. We let N(M;, D, ),
resp. N(M;, N, )\), denote the counting functions of the L-eigenvalues less than \ on M;
with the given boundary condition on the parts of OM contained in OM; and with Dirichlet,
resp. Neumann, condition on the remaining parts of OM;. Then (Dirichlet — Neumann
bracketing),

m m
(5.35) S N(M;, DN S N(M,X) <D N(M;, N, ).
i=0 =0
Proof. The proof uses the min-max principle, see [RS]. n

5.2 Eigenvalue estimates for almost Delaunay pieces

Fix a Delaunay hypersurface D(u) and a piece £ C D which is bounded by two “parallel
spheres” in geodesic hyperplanes orthogonal to the axis of revolution. We call £ an almost
Delaunay piece if it is a cylindrical graph over £.

Lemma 5.2 There exists a constant ca(n, H), depending only on the dimension n and mean
curvature H, such that if £ is close enough to £ in the C?-sense, then

Ind(€) < Ind(€) < Ind(€) + ca(n, H),

where Ind denotes the index for either Dirichlet or Neumann conditions on the corresponding
boundary components of 9E,0E.

Proof. Indeed, once the piece £ is fized, we can write the eigenvalues of the operator L on
& (with respect to some Dirichlet or Neumann conditions on the boundary components) as

A(E) < A2(8) <. S M(E) <O Aa(E) < -
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where k = Ind(£). If & is close enough to & in the C%-sense, the negative eigenvalues of the

operator L corresponding to L are close to the corresponding eigenvalues of L. It follows that
Ind(€) < Ind(€) because A(€) < 0, with Ind(£) = Ind(€) unless Ag11(E) = 0, in which

case we may have A\p11(€) < 0 and the constant co(n, H) takes the possible multiplicity
of Agt+1(€) into account. This multiplicity can be bounded as indicated in the proof of
Proposition 4.3. |

Note. The operator L, introduced earlier cannot have eigenvalue 0 when p > 2 in case of
Dirichlet boundary condition (use Proposition 4.1, p = 2 and the monotonicity of Dirichlet
eigenvalues).

5.3 Asymptotically Delaunay hypersurfaces
Let M C IR™! be an embedded hypersurface such that

1. The hypersurface M can be decomposed as

k
M:M0|_| |_|Ej
7j=1

where My is compact with boundary and where each E; is an end of M.

2. Each end Ej is a cylindrical graph over half an embedded Delaunay hypersurface
D; with positive flux m;, with semi-axis a; + R d; for some aj,d; € R""'. The
boundary of E; is the intersection of E; with the hyperplane through a; orthogonal
to dj and OM, = | | OE;.

3. The graph E; above D; is given by a parametrization of the form

(5.36) R x S"7! 3 (z,w) = Fj(t,w) = (2, (f(z) + wj(z,w))w)

with some function w;(z,w), for (z,w) € Ry x S™ 1, where f(z) satisfies equation
(3.7). We assume that w; tends to zero in C%-norm on [r, co[xS™~! when r tends to
infinity.

Definition 5.1 We will say that a hypersurface which satisfies the preceding conditions (1)
to (3) is an asymptotically Delaunay hypersurface.

This preceding definition extends mutatis mutandis to the case of hypersurfaces in IH"*
(in this case, the axis is a geodesic ray parametrized by arc-length).

If M is an asymptotically Delaunay hypersurface, we can introduce the operator L :=
A —nc—||B||?, where B is the second fundamental form and ¢ the curvature of the ambient
space R™"! or H™H.

With the above notations, we also introduce the following subsets of M.

e For R > 0, we let

k
v = ] [
=1

where Ef is the part of E; which lies above a; + [0, R] d;.
e For R > S > 0, we let
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Figure 3: An asymptotically Delaunay surface M C IR3.
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k
MS,R — MR \ MS — |_| E]’.S’R
j=1

where Ef’R is the part of E; which lies above a; + [S, R] d;.
e For R > 0, we let ©# denote the part of the boundary of Ef* which lies above {a; + Rd;}.

We can use similar notations for hypersurfaces M in TH"

5.4 Statements of the main results

With the notations of Section 5.3, we have the following results.

Theorem 5.1 Let M C IR® be a complete properly embedded finite-topology cme surface.
Then, M is an asymptotically Delaunay surface in the sense of Definition 5.1. Let E;,j =
1...N, be the ends of M. They are asymptotic to Delaunay surfaces D(u;), with weight
parameter p; > 0. Denote by T (u;) the period of the Delaunay surface D(u;), as in Section
3.1. Then

(5.37) lim

R—o00 R

Ind(M N B(R)) _, AR
Jz:‘: T (p5)

where B(R) is the Euclidean ball in IR®.

Note. In dimension 2, T'(u;) € [2, 7] and we deduce from the preceding theorem that

Ny MO BR)
™ R—o0 R

where NV is the number of ends.

Theorem 5.2 Let M C IR™" be a complete embedded cme hypersurface. Assume it is an
asymptotically Delaunay hypersurface in the sense of Definition 5.1. Let Ej,j =1...N, be
the ends of M. They are asymptotic to Delaunay surfaces D(u;), with weight parameter
w; > 0. Denote by T'(u;) half the period of the Delaunay surface D(p;), as in Section 3.1.
Then

(5.38) lim

Ind(M 0 B(R)) _, i 1
R—oo R - =

T(uj)’

where B(R) is the Euclidean ball in R™'.

Theorem 5.3 Let M C IH" ' (—1) be a complete properly embedded hypersurface, with
constant mean curvature H > 1 and finite topology. Then M is an asymptotically Delaunay
hypersurface in the sense of Definition 5.1. Let E;,j =1...N, be the ends of M. They are
asymptotic to Delaunay surfaces D(;), with weight parameter u; > 0. Denote by 7(u;) the
period of the Delaunay surface D(u;). Then

(5.39) lim

where B(R) is the hyperbolic ball in IH™.
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Remark. The general philosophy of the proofs of these theorems is to apply the Dirichlet—
Neumann bracketing to the decomposition of M as ME = M5 U MS® (see Section 5.3)
and to use the fact that each component of M5 is asymptotic to a Delaunay piece for
which we can estimate the index. The assumptions in Theorems 5.1 and 5.3 imply, using
[KKS, KKMS], that M is actually an asymptotically Delaunay hypersurface. No such result
is known for M™ C IR™, n > 3 and we therefore have to make this additional assumption
in Theorem 5.2.

Proofs, main argument. Assume M is an asymptotically Delaunay hypersurface in the
sense of Definition 5.1. We want to estimate the limits

lim inf Ind(M N B(R)) . limsup Ind(M N B(R))
R R
when R — o0o. It is easy to see that this is equivalent to estimating
Ind(ME Ind(MFE
lim inf % , limsup %

for some decomposition of M.
Fix some € > 0 and fix some ¢ € IN such that £ > 1.
Step 1, Estimating the index from below.

Recall that M = M0|_||_|§V:1 Eft, where My is compact and where the N ends E; of
M, j = 1...N, are cylindrical graphs over Delaunay hypersurfaces D(p;), with weight
parameter p;, as in Definition 5.1.

For R > S, we again decompose MF into pieces ME = M9 | |_|j\[:1 EJ.S’R, having in mind
to decompose EJS H into Be-pieces.

We choose S so that the components of M lie above boundaries of B-type blocks of
the corresponding Delaunay hypersurfaces. Taking R > S we can decompose EJR as

Ef = EJSL]EJS’R, where Ef = Ef' N MS. Each piece Ef’R can again be decomposed

into pieces that are graphs above B;(u;)-type pieces of the Delaunay hypersurface D(pu;),
plus a remainder part. We write such a decomposition as

EFf = | | Bep(wi) | |R;
p=1

where ﬁj C gg,mj+1(/,tj).

Using Lemma 5.1, we can write

N m;
Ind(M*®) > D-Tnd(M%) + > {Z D—Ind(ge,p(uj))} ,

j:]_ p=1

where D-Ind means Dirichlet-index (see Section 2).

The number ¢ being fixed, we can choose S (and R > S) so large that each piece gg,p(,uj)
is close enough to a B,(u;)-piece so that D-Ind(B,,(u;)) > ¢ — 1, by Lemma 5.2 and
Proposition 4.2.

We can now look at the extrinsic length R and write, for each end Ej,

T ()
o

T ()
2

S+m;t <RL<S+(m;+1)¢
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It follows that

Ind(M%) > D-Ind(M?) +i (% E) :

Dividing the preceding inequality by R and letting R tend to infinity, we find that

R
lim inf Ld(M )
R—o0 R

NI»—A

Since £ is an arbitrary positive integer, we conclude

N
liminf ——= Ind 2 Z

R—o0

Step 2, Estimating the index from above.

Again recall ME = M| | [_]J 1 Ef, where M is compact and where the ends E;,j = 1...N,
are cylindrical graphs over Delaunay hypersurfaces D(p;), with weight parameter p;, as in
Definition 5.1.

For R > S, we again decompose ME into pieces ME = MS || | ¥ i1 ES E having in mind

to decompose Ej’ into Cg—pleces instead of Bg—pleces.

We choose S so that the components of M lie above boundaries of C-type blocks of
the corresponding Delaunay hypersurfaces. Taking R > S we can decompose EJR as
ER = Ef [_|EJ.S’R, where Ef = EF n M®. Each piece Ef’R can again be decomposed
into almost Delaunay pieces above C;(u;)-type pieces of the Delaunay hypersurfaces D ()
plus a remainder part. We write such a decomposition

B3 = [ untn) LI,

where R; C @,m5+1(ﬂj)-

Using Lemma 5.1, we can write

N mj
Ind(M*) < N-Ind(M%) + 3 {Z N-Ind(Cr,p () + ND-Ind(ﬁj)} ;

j=1
where N-Ind stands for Neumann-index and where ND-Ind stands for a mixed Neumann—
Dirichlet index.

The number £ being fixed, we can choose S (and R > S) so large that each piece C~g,,,(uj)
is close enough to a C¢(;)-piece so that N-Ind(C; p(115)) < 2¢ + ¢(n,pj, H), by Lemma 5.2
and Proposition 4.3.

We can now look at the extrinsic length R and write, for each end Ej,

S+miT(u;) <R < S+ (my+1) €T (1y) .

It follows that
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C(?’L,/Lj,H)) 2(R — S)
2t T (us)

N
Ind(M%) < N-Ind(M°) + Y (1 +
j=1

c(n, pj, H)
2/

+ ND-Ind (G (7)) -

2(R - 5)
T(p;)

N
<N-Ind(M%)+> 1+ ) + ND-Ind(Ce(p5)) + c(n, pj, H) .

Dividing the preceding inequality by R and letting R tend to infinity, we find that

lim sup
R—o00

Ind(ME N c(n,p;, H 1
(R )SZE(H ( 5 ))T(M)‘

Since £ is an arbitrary positive integer, we have that

Ind(MR) AR |
limsup ———= <2 .
R—o0 R J; T(:u’])

Proof of Theorem 5.1.

Under the assumptions of Theorem 5.1, it follows from a result of Meeks ([KKS], Corollary
1.12) that M has cylindrically-bounded ends. Tt follows from [KKS], Theorem 5.18, that
each end F; of M is a cylindrical graph over half a Delaunay surface D(u;) and that E;
tends to D(u;) uniformly in the C*-topology at infinity ([KKS], page 510). By Theorem
4.6 of [KKS], the curvature of M remains bounded and hence, using the C? convergence of
the ends, it follows that the Delaunay surfaces D(u;) have strictly positive flux and hence
strictly positive weight parameter p;. This proves the first assertion of Theorem 5.1.

In order to prove the second assertion, we apply the preceding argument.

Proof of Theorem 5.2.
This is the main argument given above.

Proof of Theorem 5.3.

In order to prove the first assertion in Theorem 5.3, we apply the results of [KKMS]. The
second assertion follows from the main argument given above in the hyperbolic framework,
in particular, change T'(u) to 7(u).

5.5 Other growth results

Kapouleas [K] has constructed examples of complete constant mean curvature surfaces in R?
which are periodic with respect to some 2-dimensional (resp. to some 3-dimensional) lattice.
Using Lemma 5.1 of this paper, it is not difficult to establish that, for each of the doubly
periodic (resp. triply periodic) surfaces M in [K], there exist finite positive constants ¢; and
¢z such that ¢; R? < Index(M N B(R)) < c2R? (resp. ci R? < Index(M N B(R)) < coR?) for
large R.

In fact, in some cases, one can estimate c¢; explicitly. For example, consider the surface
shown in Figure 1.1 of [K]. This surface is contained between two parallel planes P; and
P;, and is symmetric with respect to reflection through some plane P parallel to P; and
P,. There exists a line ¢ perpendicular to P which does not intersect the surface and is
a symmetry line of the surface, in the sense that the surface in invariant with respect to
rotation by 7 about £. (Actually there are infinitely many choices for the line £.) With
respect to the Killing vector field determined by rotation about £, one can determine the
nodal domains, and then use the methods of step 1 of the proof of Theorems 5.1, 5.2, and
5.3 to determine an explicit value for c;.
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