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1 ABSTRACT.In this paper we prove:

1. In characteristic p > 0 every simplicial toric affine or projective variety with full parametriza-
tion is a set-theoretic complete intersection. This extends previous results by R. Hartshorne
[2] and T.T. Moh[4].

2. In any characteristic, every simplicial toric affine or projective variety with full parame-
trization is an almost set-theoretic complete intersection. This extends previous known results
by M. Barile-M. Morales [1] and A. Thoma[8].

3. In any characteristic, every simplicial toric affine or projective variety of codimension two is
an almost set-theoretic complete intersection.

Moreover the proofs are constructive and the equations we find are binomial ones.

Introduction

An important problem in Algebraic Geometry is to determine the minimum number of
equations needed to define an algebraic variety V' set-theoretically: if I = I(V) is the
defining ideal of V, this number is called the arithmetical rank of I and is denoted ara(I).
In this paper we only consider ideals generated by binomials. It is natural to define the
binomial arithmetical rank of a binomial ideal I (written bar(I)) as the smallest integer s
for which there exist binomials fi,..., fs in I such that rad(I) = rad(fi,...,fs). Hence
the binomial arithmetical rank is an upper bound for the arithmetical rank of a binomial
ideal. From the definitions we deduce the following inequality for a binomial ideal I:

h(I) < ara(I) < bar(I) < p(I).

Here h(I) denotes the height and u(I) denotes the minimal number of generators of I.
When h(I) = ara(I) the ideal I (and the variety V as well) is called a set-theoretic complete
intersection (s.t.c.i), when h(I) = p(I) it is called a complete intersection. The ideal T is
called an almost set-theoretic complete intersection if ara(I) < h(I) + 1. The binomial
arithmetical rank was computed for the defining ideals of monomial curves in P’% in a
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series of articles (see [1, 4, 8] ). Here is a summary of the results.
Let C be a monomial curve in P.

(i) If the characteristic of K is positive, then bar(I(C)) =n —1
(i) If the characteristic of K is zero, then bar(I(C)) =n—1if C is a complete intersection
and bar(I(C)) = n, otherwise. In this article we extend these results and we prove that:

1. in characteristic p > 0 any simplicial toric affine or projective variety with full
parametrization is a set-theoretic complete intersection.

2. in any characteristic, any simplicial toric affine or projective variety with full parame-
trization is an almost set-theoretic complete intersection.

3. In any characteristic, every simplicial toric affine or projective variety of codimension
two is an almost set-theoretic complete intersection.

In the sequel we shall use the following notation: Let K be a field. A toric variety V of
codimension r > 2 in K" is a variety having the following parametrization:

T = u‘fl
Ty, = ufll"
_ ai,1 ai,n
Y = U ...Up
a.
yr = up”l...udnn
for some positive integers di,...,d, and some integers a;;, where, for all 7 = 1,...,r, at
least one of a; 1,...,a;, is non zero. Here we refer to the definition of toric variety given

in [7], which also includes non normal varieties. The toric variety V is called simplicial if
all the exponents are nonnegative. Let I = I(V) be the ideal formed by the polynomials

of K[z1,...,%n,Y1,-..,yr] vanishing on V. We shall refer to I as to the defining ideal of
V. The ideal I has a system of generators formed by binomials which are differences of two
monomials with coefficient 1. A proof is given in [7].

1 Simplicial toric varieties with full support are s.t.c.i. in
characteristic p > 0

1.1 General results

We refer to the variety V' and its parametrization introduced above. Let
O:Z" > Z|d Zx ...x Z|d,Z

be the homomorphism of groups defined by

(81,--+,8) = ([s1010 + 52021 + ... — 5pGr1), ..., [S101, + S22 + ... — SrGrp))



The elements of the lattice
{(s1,---,8;) € Kerd}

are in a one-to-one correspondence with the binomials of I. Moreover Ker® admits a basis
of the form

{(S(_l’l),o, ‘e ,0), (8(0,1), 8(0’2), 0, e ,0), ey (8(7_2,1),8”_2,2), ‘e as(r—2,r))}'

These are simple generalizations of [5], Remark 2.1.2. For the sake of simplicity we shall put
to = S(r—2,), T =(s1,---,8-1), ¥ = (y1,.-.,Yr—1)- In particular, if (¥,t) € Ker®, then
t € toZ and, conversely, for all multiples ¢ of ¢y there is & € Z'~! such that (¥,t) € Ker®.

Remark 1 For all @ € Z' ! let 3 denote the positive part and 3 _ the negative part of
. Fiz an element (F,s,) € Ker®, and let

s1a1; + S2a2; + ... — Spay; = v;d;,

foralli=1,...,n. Let ¥ denote the positive part and ¥ _ the negative part of (vy,...,v,).
The binomial corresponding to § is then

g?@?, _ yirg?’zﬁﬂ

if sy > 0, otherwise it is
NES S Y

Let
J=INK[Z1,...,Tn,Y1s---sYr_1]-

Then J is the defining ideal of the simplicial toric variety of codimension r — 1 having the
following parametrization:

Ty = u'lil
_ d
Ty = Uy"
. a1,1 a1,n
yl — ul ... Un
ar—1,1 ar—1,n
Yr-1 = U ... Un .

We introduce one more piece of notation. Let M7, My be monomials, and let h = M; — Ms.
For all positive integers q we set

hD = M7 — MY



Lemma 1 Let § > 0 be an integer for which there is a binomial

tod g?(;xlll .

fr=y Lzl eI

Then
h € (J, f,)

for all binomials h in I.

Proof .-Let h € I be a binomial. Since I is a prime ideal, we may assume that

h =991 — go
for some monomials ¢1,¢92 € K[z1,...,Zn,Y1,---,Yr—1]- Then
WO = yogl — gl
= (0 + T ot el - of
€ (L fr)

1.2  Full parametrization

We say that the above parametrization of V' is full if a; ; # 0 for all (4, 7). In this case the
parametrization of the variety defined by J is full, too.

Lemma 2 For all sufficiently large integers § > 0 there is a binomial
l n
fr= yﬁo‘s —g?wf mib el

Proof .-Let § > 0. There is ? such that (?,to) € Ker®. There are also some integers

r,...,rh for which )
r—
! !
Z s jaji — toar; = r;d;
Jj=1

for all 4. Multiplying this relation by § > 0 we obtain
r—1
Z 5s'jaj,i —today; = drid;
j=1

for all i. Let d = lem{ds,...,dn}, then up to replacing ds'; with its residue modulo d, for
all 7 we get a relation

r—1
Z 8@ — to(sam' = r;d;
J



where 0 < s; < d for all 5. Thus, if ¢ is sufficiently large, we will have r; < 0 for all 7. But
then S
fr=y =y S el

is the binomial required.

As an immediate consequence we have:

Corollary 1 Let p be a prime number. For all sufficiently large integers m there is a
binomial -
fr=ylor™ —y mght glhneT

Theorem 1 Suppose that char K = p > 0. Then every simplicial toric variety having a
full parametrization is a set-theoretic complete intersection.

Proof .-We proceed by induction on 7 > 1. Since the polynomial ring K|z1,...,Zn,y1] is
an UFD the claim is true for » = 1.

Suppose that r > 2 and the claim is true in codimension r — 1. Let h € I be a binomial,
then by Corollary 1 and Lemma 1 we get

m

w" = h") € (f,,J)

for m sufficiently large. By the inductive hypothesis the ideal J is set-theoretically generated
by r — 1 binomials f1,..., fr—_1. Hence some power of h lies in (f1,..., fr).

Remark 2 Note that the proof of the preceding result yields a recursive construction of the
defining equations of the simplicial toric variety for any field K of characteristic p > 0.

2 Almost set-theoretic complete intersections

In this section we show that simplicial toric varieties having a full parametrization are
almost set-theoretic complete intersections.

With respect to the notations introduced above, for all¢ =1,...,7 let
d 0 ... 0 a1 ... a1
A = 0 do ... 0 a2 ... aip
0 0 ... dy ain ... aipn
Moreover, let D[ji,...,j,] be the determinant of the n x n submatrix consisting of the

columns of A, with the indices j1, ..., jn, where {j1,...,j,} is an n-subset of {1,2,...,n+r}.
For all i = 1,...,r let |4;| := ged{D[j1,...,jn] : 1 < j1 < Jo < -+ < jn < n+1i}; for the

sake of simplicity we set g; = |A;|. Moreover, let e; = g;—1/g;, for alli =2,...,r.
Lemma 3 Let V be a simplicial toric variety. Then for every i € {1,...,r} there erist
binomials

M; — Nyt € I(V),



where M;, N; are monomials in K[x1,...,%n,Y1,...,Yi—1]. If the parametrization of V is
full, then for every i = 2,...,r there exists a binomial

Vi1 Vin, i1 MHii—2 e;

Fi=ylty —a" ™y ey y € I(V),
and there also exists a binomial
Fi=yf o a ™ € I(V),
for some positive integers p; j and v; ;.

Proof .-In this proof d; will denote the ith column vector of A, for alli =1,...,n, and a;
will denote the (n + 4)th column vector of A, for alli =1,...,r. Set p = lem(dy,...,d,)

and ¢; = ged(p, a5 1,...,0a;,,) foralli=1,...,r. Foralli=1,...,rand all j =1,...,n let
Pij = ai,j,u/djqj. Then, for all 4 = 1, ...,T, 0ne has that

G; = yf‘/(h — wf“ ceeghin e nw).

It is easy to see that e; = pu/qp, then for ¢« = 1 the preceding formula yields the required
binomial Fj.

By a basic lemma in number theory (see [3]) the diophantine system Az = b has a solution
iff |[A| # 0 and |A| = |Ab|, whereAb is the augmented matrix.

Let 2 <4 < r. The integer g; 1 is a divisor of D[1,...,n| = dyd; ...d, # 0, hence g; 1 # 0.
On the other hand it holds:

gi = gcd{gi—1,D[j1, ..., jn—1,n +1]: 1 < j1 <jo <--- < jn <m+i— 1}, (1)

|Ai—1,eai] = ged{gi1,(9i-1/9:)Dlj1,- -+ Jn-1,m+1i]: 1 < jp <n+i—1}
= (9i—1/9i)g9cd{gi, Dlj1,...,jn—1,n+1]: 1 <jy <n+i—1} =g;_1.

Hence the diophantine system A; 1x = e;a; always has a solution. This means that the
vector e;a; can be expressed as a linear combination of the vectors dy,...,dn,a1,...,8; 1
with integer coefficients, i.e., one has

eaj=t1dy +... +tpdp +thp1a1 + ...+ tpi18i 1 (2),

for some integers t1,...,t,+;—1. This expression give us monomials M;, N;

in K[z1,...,Zn,y1,-..,Yi—1] such that M; — N;y;* € I(V).

Now suppose that the parametrization of V' is full. From the binomial GG; we see that for each
a; there exist positive integers p; = 11/¢;, pj1,- - -, pjn such that pja; = pj1d1+...4 pjpda.
Furthermore, for all 1 < j <47 — 2 there exists a positive integer v; such that, after adding
all the zero vectors vj(p;1d1 + ... + pjndn — p;a;) to the right-hand side of (2), the new
coefficient y;  of ay is negative for all k = 1,...,7 — 2. There also exists a large positive
integer v;_1 such that after adding the zero vector v;_1(p;—18i—1—(pi—1,1d1—- .. —pi—1,ndn))
on the right-hand side of the new equation, for all j = 1,...,n the new coefficient v; ; of d;
is negative and the new coefficient u; of a; is positive. It follows that for all: =2...,r

Vi1 Vin, Hi,1 Mii—2 e;

F’i:yzy_il_xl’ o Tn Y1 Yo Y; EI(V)



Theorem 2 Let V be a simplicial toric variety having a full parametrization. Then r <
bar(I(V)) <r+1.

Proof .-Consider the r binomials F, Fy,..., F, which were defined in Lemma 3 and let
F,+1 be any binomial monic in y,, for example G,. We claim that I(V) = rad(F1, ..., Fri1).
By virtue of Hilbert Nullstellensatz the claim is proved once it has been shown that every
point x = (z1,...,%pn,Y1,-..,Yr) which is a common zero of Fy,...,F,.1 in K" where
K denotes the algebraic closure of K, is also a point of V. First of all note that if = = 0
for some index k, then y; = 0 for all indices j. It is then easy to find ui,...,u, € K which

allow us to write x as a point of V. Now suppose that z; # 0 for all indices k. By induction
on i, 2 <4 <r+41, weshow: if x is a zero of F},..., F;_1, then the coordinates of x fulfil
the parametrization of V. The claim is easy for i = 2. Now fix an index i, 2 < i <7+ 1.

By the induction hypothesis there are nonzero uy, ..., u, € K such that

di a1 ai,n

_ _.,d _ , o Gi-1,1 ai—1n
L1 =Uy 5--->Tpn = Uy, Y1 =Uy " - Un " 5, Yi—1 = Uy .o Up .

i,n

. . . ai1 a .
Since the point x is also a zero of F;, we deduce that y; = wu;" ... up"", where w is a

suitable e;-root of unity. Let ¢ € K be such that (9 = w, so that (%-1 = 1. By (1) and
Bézout’s Identity there exist integers ko and kj, . ., n+i such that

9 = k)()gifl + Z kjl,---,jn—l,n-l-’iD[jl’ .. ajnfla n+ Z]

All the D[j1,...,jn—1,n + 4] are linear combinations of a;1,...,a;,. Therefore there exist
li,...,l, such that g; = kog;—1 + l1a;1 + ... + 1,0, . Setting v; = Cliuj, we have that

_..d1 _.d _ a1 ai,n _ G-1,1 ai—1,n a1 (2R
L1 =V y--.,%p =U,", Y1 =1 U0 Yl = Uy ... Un y Yi=UVy ...Un,

since
w= Cgi — Ckogi—1+llai,1+---+lnai,n — Cllai,1+---+lnai,n

and also 1 = ¢%% since
l]d] = ll X04+...4+ l]d] +...+ ln x 0= ijl,...,jnfl,n+iD[jla s ajnflaj]'

Moreover, 1 = ¢herit-+asn for f < 4. In fact one has that

llaf,l + ...+ lnaf,n — Z kj1,---,jn—1,n+iD[.71’ - ,jnfl, f + n]

and one of the following two cases occurs: either f + n is one of the ji,...,j,—1, and
Dlj1,...,jn-1,f +n] =0, or f+n is different from ji,...,j,—1, and D[j1,...,Jn—1, f + 7]
is a multiple of g;_1, since then D[j1,...,jn—1, f +n| is a subdeterminant of A4;_;. We have

shown that the coordinates of the point x fulfil the parametrization of V.



3 Results in arbitrary characteristic and codimension 2

We show that Theorem 2 can be generalized: it can extended to the varieties which do not
have a full parametrization, at least in codimension 2.
In this section we suppose that r = 2, i.e., V is a simplicial toric variety of codimension 2

in K™*2. The parametrization of V now is:

d
1 = uyt
Tn = uz"
a1,1 ay,
Y1 = U ... up "
_ a2;1 a2,n
Yo = u; ...up ",

were the vectors a;, as may have zero components.
Theorem 3 Let V be a simplicial toric variety of codimension 2. Then 2 < bar(I(V)) < 3.

Proof .-Let J; be the defining ideal of the simplicial toric variety having the following
parametrization:

Ty = u'{ll
Tn = ufl"”

o a1,1 a1,n
yl — ul “ e 'U,n 5

and let Jz be the defining ideal of the simplicial toric variety having the following parametri-
zation:

T, = u‘lil
Tn = u‘fl"

a2,1 a2,
Yo = Uy ..U

Both varieties have codimension one, therefore their defining ideals are principal. If we set
n= lem (dla s adn)a

g1 =ged (u,a1,1,..-,01,0), €1 =p/q and

q2 = ng (H,CLQ’l,---,GQ,n), ell = ,LL/(]Q,
then J; is generated by

ay,1p a1,k

e diq dnq
F1 :yll—xlll "'.Tnnl




and Jo is generated by

, az,1m a2,nk
_ .4 d192 dnqz
F3 — y2 - :L‘l e In .

Note that Fy is the difference of a power of y; and a monomial which only involves the
variables zj, such that k& € Supp(a;); similarly, F3 is the difference of a power of y, and a
monomial which only involves the variables ) such that k € Supp(as).

Ley ECt F, = My — Myys? € I(V) be the binomial given in in Lemma 3. We claim that
I(V) = Tad(F17F27F3)'

Let x = (z1,...,Zpn,¥1,72) be a common zero of Fy, F5, F3 in K"*2 where K denotes the
algebraic closure of K. We show that x lies on V. If 2, # 0 for all indices &, then the claim
can be easily proven.

Now suppose that z; = 0 for at least one index k € Supp(a;) U Supp(az). One of the
following cases occurs.

(i) If k € Supp(a;) N Supp(az), then Fi(x) = 0 implies that y; = 0, and F3(x) = 0 implies
that yo = 0. For all4 = 1,...,r let u; € K be such that u?" = z;. These parameters
allow us to write x as a point of V.

(ii) If £ € Supp(a1), then, again, Fi(x) = 0 implies that y; = 0; moreover, F3(x) = 0
implies that x is a point of V(J3), with respect to some u1,...,u, € K: the same
values of the parameters yield a representation of x as a point of V.

(iii) If k € Supp(as), one can proceed as in (ii).

Remark 3 1. It is easy to see that if « is an integer for which the equation A; 1X = aa;
has an integer solution, then o is a multiple of e;. We know from the results in Sec-

tion 1 that there is a binomial y;°M; — yEOMg € I, where My, My are monomials of

K(z1,...,z,]. Hence ty is a multiple of ey; on the other hand we know that in any
binomial of I the exponent of yo is a multiple of ty. Thus tyg = ea.

2. It follows from [5], Th. 3.5. that the binomials Fy, F5, F3 belong to a Grébner basis
of 1.

Corollary 2 With respect to the notations introduced above, one has that

1. if €} = p™ey for some prime p > 0, then V is a set-theoretic complete intersection in
characteristic p.

2. if €] = eq then V is a complete intersection in any characteristic.
Proof .-

1. Tt is clear that F¥" € (Fy, Fs).

2. This is immediate from [5], Th. 3.5.



Example Let V be the simplicial toric variety of codimension 2 parametrized by
a=50b=12c=u2 d=2v2y =203 2 = 510437

Note that the parametrization is not full. The ideal I is minimally generated by

D12Bd3 — 20 8Pyt — 216 a2y10 — 10ctda?,

a2Wed? — yt2t aldy'? — 19328, aBdPy® — 13212, 01083 dT — 0.
With respect to the notations of Theorem 3 one has that
_ on4 __ 903 _ 2 _ —
go =207,91 =20%,92 =5 x 20" e; =20,e0 =4

5x20% = (7 %20 —10 x 12 — 3 x 5) x 20
I1 = —12x 202,15 = —5 x 202,13 = 0,14, = 20 x 207

and
I — Tad(b1205d3 _ y20,a2b3cd2 _ y4z4,a10b3d7 o 220)

in any characteristic different from 5. In characteristic 5 we have that:
I = Tad(b1205d3 _ yQO,a10b3d7 _ 220)

Remark 4 IfV is arithmetically Cohen-Macaulay, then according to [5], Th. 3.5, and [6],
the variety V is a s.t.c.i. on a binomial and a polynomial.
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