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Introduction

The p-adic interpolation properties of Fourier coefficients of elliptic Eisenstein series are
by now classical. These properties can be considered as the starting point and as an important
tool in the theory of p-adic L-functions and p-adic families of modular forms.

In the case of Siegel modular forms there are two types of Eisenstein series. A Siegel-
Eisenstein measure which comes from the Siegel-Eisenstein series was recently constructed
by A.A. Panchishkin [10].

Another Eisenstein series on the symplectic group are those of Klingen type. The Fourier
expansion of these series is of definite interest. One can associate a Klingen-Eisenstein series
to an elliptic cusp form f . Then the Fourier coefficients of this series involve special values
of certain Dirichlet series connected with f . Namely, the Rankin convolutions of f with theta
series associated with positive definite quadratic forms. Though the explicit formulas for these
Fourier coefficients [1], [2] are in general considerably complicated, we prove (without mak-
ing use of these explicit formulas) that, after suitable normalization and regularization, they
become p-adically smooth functions.

It becomes natural to consider vector valued Siegel modular forms in this context as well.

The purpose of this paper is to construct a p-adic measure coming from the Klingen-
Eisenstein series.

Our main tools are the A.A. Panchishkin’s construction of Siegel-Eisenstein measure [10];
the Böcherer-Garrett pull-back formula [1], [3]; H. Hida’s theory of p-ordinary Λ-adic forms
[4], [5].
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The contents of the paper and the main ideas of our construction are as follows.

We introduce necessary notations on vector valued Siegel modular forms and state an ap-
propriate version of the pull-back formula in the first section (Proposition 1 in the text).

The second section is devoted to our main result. In [10], certain subseries of the Siegel-
Eisenstein series G+

k,χ is used for the p-adic construction. Moreover, since one knows the ex-
plicit formulae for the Fourier coefficients of Siegel-Eisenstein series (the construction pre-
sented in [10] is based on these formulae), it is evident that a statement of such type is not
true for G+

k,χ itself. We show that the subseries in question can be produced from the Siegel-
Eisenstein series with the help of a p-adic limit procedure (Proposition 2). Namely, we con-
sider the coefficient-wise p-adically converging sequence G+

ki ,χ of Siegel-Eisenstein series of

increasing weights ki = k + (p − 1)pi . Thus limi→∞ G+
ki ,χ can be considered as a p-adic

Siegel modular form defined à la Serre [11]. We show that the subseries used in the A.A. Pan-
chishkin’s construction coincide with this limit. Note that this is known to be a Siegel modu-
lar form (on a congruence subgroup). The similarity with the p-adic elliptic Eisenstein series
1
2 h(−p) +

�
n � 1

�
d |n

(

d
p

)

qn, where h(−p) is the class number ofQ(
√−p), (see [11], p. 207,

Example), is evident and is not casual. We formulate our main result in the same framework.
Consider a Λ-adic modular form f which is a p-ordinary cusp Hecke eigenform. One asso-
ciates the Klingen-Eisenstein series F

k,l ,χ
m to a specialization of f at an arithmetic point (k, χ).

One once more considers the sequence of these series F
ki ,l ,χ

m with ki = k + (p − 1)pi . The
coefficient-wise p-adic limit when i → ∞ once more exists, and, moreover, inherits the p-adic
analytic properties of the Siegel-Eisenstein series (Theorem 1 in the text).

Note that the introducing into the play the limits described above, is the main difference
between our approach and that of [7]. Another difference is the consideration of the vector
valued Siegel modular forms in the same framework.

In the third section we consider the Fourier expansion coefficients of the Siegel-Eisenstein
series. The point is that in order to establish the existence of the limit limi→∞ G+

ki ,χ, one should

keep control upon all the Fourier expansion coefficients of G+
k,χ. More precisely, one needs

certain representation of these numbers as p-adic integrals. These coefficients are numerated
by half-integral symmetric positive definite matrices h. The case when det(h) is divisible by p

is not explicitly considered in [10]. However, if the maximal power of p which divides det(h)
is even (as well as if the degree of Eisenstein series is odd), one can almost literary repeat the
argument from [10]. We consider the remaining case in section 3 of the paper. We prove the
desired property (Proposition 5). As a corollary we get another (it involves other Fourier expan-
sion coefficients then that in [10]) measure associated with Siegel-Eisenstein series Theorem 2
in the text).

1. Siegel modular forms and the pull-back formula

1.1 Siegel-Eisenstein series

Let N be a positive integer. Consider the congruence subgroup of the symplectic group
S p(n, Z) of degree n > 1:

Γ
(n)
0 (N ) =











AB

C D



 ∈ S p(n, Z)|C ≡ 0 mod N







.
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It contains the subgroup

Γ
(n)
∞ =











AB

C D



 ∈ S p(n, Z)|C = 0







.

Let χ be a primitive Dirichlet character modulo N > 1 Put for Z ∈ Hn and M =
(

AB
C D

)

∈
Γ
(n)
0 (N )

jχ,k(M , Z) = χ(det D) det(C Z + D)−k

For a positive integer weight k and degree n we consider the Siegel-Eisenstein series

E k,χ
n (Z) = �

M∈Γ(n)∞ \Γ(n)0 (N )

jχ,k(M , Z).

The series converges absolutely and uniformly for k > n + 2. We also use the involuted series
([10], 1.5):

G∗n (Z ; k, χ) = N nk/2
Γ̃(k)LN (k, χ) �

1 � i � [n/2]

LN (2k − 2i, χ2
)E (−(N Z)−1

) det(N Z)−k .

Here

Γ̃(k) = ink2−n(k+1)π−nk
Γn(k) ×







Γ([(k − n/2 + 1)/2]) if n is even,

1 if n is odd,

Γn(s) = πn(n−1)/4 �
0 � j � n−1

Γ(s − j/2)),

and the subscript N in Dirichlet L-functions means that the Euler factors over primes dividing
N are omitted.

1.2 Vector valued modular forms and differential operators ([1]).

Let ρ be a representation of GL(n,C)with a representation space W . The formula

(F |ρM )(Z) = ρ((C Z + D)−1
) f (M〈Z〉)

defines the action of M =
(

AB
C D

)

∈ S p(n,R) on the space of C∞ W -valued functions on the
Siegel’s upper half plane Hn . Such a function F is called a modular form (of degree n, Dirichlet
character χ mod N and level N ) if it is holomorphic on Hn and its cusps and satisfies

F |ρM = χ(det D)F

for all M =
(

AB
C D

)

∈ Γ
(n)
0 (N ). When ρ is a representation detk ⊗Syml of GL(n,C) we write |ρ

as |k,l ,n. We denote the space of modular forms by Mχ,k,l ,n,N (W ), and the subspace of cusp
forms by Sχ,k,l ,n,N (W ). Let W (l) denote the l -th symmetric power of a vector space W . We
identify W (0) with C. For a row vector x = (x1, . . . , xn) consisting of n indeterminants, we put
V = Cx1⊕ . . .⊕Cxn . We identify V (l) withC[x1, . . . , xn](l), where (l) stands for homogeneous
polynomials of degree l . The group GL(n,C) acts on V (l) by (gv)(x) = det gk v(xg) for g ∈
GL(n,C), and v ∈ V (l). We always use this realization and identify C∞ functions on Hn with
values in V (l) with C∞(Hn)[x1, . . . , xn](l).
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Put
Bn =

{

ξ ∈ Mn(R)|ξ =t ξ, ξii , 2ξi j ∈ Z, ξ � 0
}

.

We write the Fourier expansion for F ∈ Mχ,k,l ,n,N (W ) as

F = �
Bn3ξ

a(ξ; F ; x1, . . . , xn)q
ξ.

Here qξ = exp(2πi(t r(ξZ))). Let Z = (zi j) ∈ Hn. For an integer l � 0 and a function
f ∈ C∞(Hn)[x1, . . . , xn](l), put

D f =
(

1

2πi

∂

∂Z
f

)

[x].

Here ∂
∂Z =

(

1+δi j

2
∂
∂zi j

)

1 � i, j � n
and A[x] = xAt x. For an integer l � 0 put

k[l] =







k(k + 1) . . . (k + l − 1) for l > 0

1 for l = 0

Put V1 = Cx1 ⊕ . . . ⊕ Cxm, V2 = Cxm+1, n = m + 1. Note that V (l)
1 and V (l)

2 are subspaces of
V (l)(= C[x1, . . . , xn](l))which are stable under the action of GL(m,C)×C∗. For a map X : A →
C∞(Hn)[x1, . . . , xn](l) (A is an arbitrary set) we denote by X↑ : A → C∞(Hn)[x1, . . . , xm](l) and
X↓ : A → C∞(Hn)[xm+1](l) the maps

(X↑(a))(x1, . . . , xm) = (X (a))(x1, . . . , xm, 0)

(X↓(a))(xm+1) = (X (a))(0, . . . , 0, xm+1)

Let d∗ be the pull-back of the diagonal embedding d : Hm ×H → Hm+1. Following Lemma 2.2
of [1] define the operator L(l) by

L(l) =
1

k[l]
d∗ �

0 � 2ν � l

1

ν!(l − 2ν)!(2 − k − l)[ν]
(D↑D↓)

ν
(D − D↑ − D↓)

l−2ν

Let F ∈ Mχ,k,0,n,N (C). Proposition 2.3 of [1] yields L(l)F ∈ Mχ,k,l ,m,N (V
(l)

1 )⊗Mχ,k,l ,1,N (V
(l)

2 ).
One identifies the second factor in this tensor product with the space of elliptic modular forms
of weight k + l , level N and character χ.

1.3 Klingen type Eisenstein series and a version of the pull-back formula

Let f be an elliptic cusp form of weight k+l , level N and character χ. Consider the Klingen-
Eisenstein series associated with f :

E k,l ,χ
m ( f , V (l)

1 )(Z) = �
(

AB
C D)∈Pm,1(N )\Γ(m)(N )

χ(D)



 f ◦ pr m
1 |k,l ,m





AB

C D







 (Z).

Here Pm,1 denotes the parabolic subgroup of Γ(m)(N ) consisting of all elements whose entries
in the last m + 1 rows and first m − 1 columns vanish. The projection pr m

1 : Hm → H1 is
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defined by pr m
1

(∗∗
∗w

)

= w. One has E
k,l ,χ
m ( f , V (l)

1 ) ∈ Mχ,k,l ,m,N (V
(l)

1 ). We will also consider
the normalized involuted series

F k,l ,χ
m ( f , V (l)

1 ) =

N nk/2
Γ̃(k)LN (k, χ) �

1 � i � [(m+1)/2]

LN (2k − 2i, χ2
)E k,l ,χ

m ( f , V (l)
1 )|k,l

(

0 −1
N 0

)

.

Put

αk,l =











(

− 1
2πi

)l 2(2k−1)[l−1]

l !k[l−1] for l > 0

1 for l = 0,

Ck,l ,1 = 23−k−l ik+l π

k + l − 1
,

Λ( f ) = L(k, χ)D f (2k − 2),

with D f (s) =
�

n � 1 a(n2)n−s denotes the symmetric square of the elliptic cusp form f =�
n � 1 a(n)qn .

The brackets 〈 , 〉 will denote the usual Petersson inner product in the space of elliptic
modular forms.

The following proposition is a version of the pull-back formulae.

P 1. — Let f be an (elliptic) cusp Hecke eigenform of weight k + l , level N , with

Dirichlet character χ. We assume χ to be primitive modulo N . Then

〈 f , L(l)G∗m+1

((

−Z 0
0 ∗

)

; k, χ

)

〉 = αk,lCk,l ,1Λ( f )F k,l ,χ
m ( f , V (l)

1 ).

The proposition is completely similar to Proposition 4.4 of [1] and Theorem 1.3 of [3]. Though
the first assertion mentioned above deals with the full symplectic group, and the second one
does not involve differential operators (i.e. treats the case l = 0), the necessary changes in
the proof are minor. That is why we sketch the argument and refer to [1] and [3] for detailed
treatment. We claim that

〈 f , L(l)E
k,χ
m+1

(

−Z 0
0 ∗

)

〉 = αk,lCk,l ,1Λ( f )E k,l ,χ
m ( f τ, V (l)

1 )(Z). (1)

One begins with the explicit description of the double coset decomposition

Γ
(1+m)
∞ \Γ(1+m)

0 (N )/Γ0(N )
↑
Γ
(m)
0 (N )↓.

This is presented in [3], Theorem 1.1 and Theorem 1.2. The arrows denote the embeddings of
the “small” symplectic groups into the “bigger” one (see [3], Part 1). This decomposition allows
to subdivide the Eisenstein series E

k,χ
m+1 into sub-series. The proof of Theorem 1.3 of [3] stays

true if one substitutes the automorphy factor by jχ,k . Our claim follows from this argument
when l = 0. In general when l > 0 one needs Lemma 4.2 of [1] to accomplish the proof of
(1). We get the formula in Proposition 1 after application the “Fricke-involution” to both sides
of (1).
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2. Klingen-Eisenstein measure.

2.1 Siegel-Eisenstein measure d’après A.A.Panchishkin

Fix a prime p. We assume for simplicity p � 5 (see [4], remarks after Theorem 7.3.2 for the
explanations of this restriction). Zp and Qp denote the ring of p-adic integers and its fraction

field. We fix an embedding ιp : Q ↩ Cp ' Q̂p of the field of algebraic numbers into the
Tate’s field (i.e. the completion of the algebraic closure ofQp). We will tacitly identify algebraic
numbers with their images under ιp. We fix a topological generator u of (1 + pZp)

∗ (say, u =
p + 1). O p denotes the ring of integers in Cp.

The p-adic Lie group X = H omcont (Z
∗
p ,Cp) is the domain of definition for non-Archime-

dean zeta functions. Since Z∗p = (Z/pZ)∗ × (1 + pZp)
∗, the group X splits into p− 1 analytical

domains.

We identify the elements of finite order from X t ors with Dirichlet characters modulo a
power of p. We call such a character wild if its tame component (Z/pZ)∗ → C∗ is trivial.

Note that all integers k can be considered as elements of X . They map x ∈ Z∗ into xk .

Denote byω the Teichmüller character.

The following is a corollary of [10], Theorems 4.3 and 4.4. This serves simultaneously as the
template and the motivation for our consideration.

Consider the normalized Siegel modular forms G+
k,χ(Z) = β(k, χ, n)G∗(Z ; k,χ), where

β(k, χ, n) =











iµπ1/2−k+n/2

Γ((1−k+(n/2)+µ)/2)
C

k−(n/2)
χ

τ(χ)
if n is even

1 if n is odd.

Here µ = 1 if (n/2 + k) is odd and 0 otherwise; Cχ > 0 is the conductor of χ and τ(χ) denotes
the Gauss sum.

Put R = Op[[q
Cn]], where Cn is the additive group of positive semidefinite half-integral

matrices of size n.

P 2. — For an integer i � 0 put ki = k + (p − 1)pi . Let c > 1 be an integer

coprime to p. There exist a (non-zero) measureµc
P on Z∗p ×Z∗p with values in R and a polynomial

H (X , Y ) ∈ Op[X , Y ] such that for all pairs (k, χ) with k ∈ Z sufficiently large, 2k > n, and

primitive Dirichlet character χmodulo pα with α > 1 one has:

�
Z∗p×Z∗p

xk ykχ(y)dµc
P = H (ck − 1, ckχ(c) − 1)l imi→∞G+

ki ,χε(Z).

Here ε is a (fixed) primitive Dirichlet character with an even conductor T coprime to p.

Remark. One can take

H (X , Y ) =







1 − (Y + 1)2cn for n even

1 for n odd.
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Proof. Recall [10] that our normalized Siegel-Eisenstein series G+
k,χ are holomorphic Siegel

modular forms with cyclotomic Fourier coefficients:

G+
k,χ(Z) = β(k, χ, n) �

h∈Cn

b+
(h; k, χ)qh,

with en(Z) = exp(2πi t r(Z)), and

b+
(h; k, χ) =







2−nκ det(h)k−κL+
p(k − (n/2), χθn/2ε)M (h, χ, k) for n even,

2−nκ det(h)k−κM (h, χ, k) for n odd.
(2)

Here κ = (n + 1)/2, the quadratic Dirichlet character ε is associated with the quadratic exten-
sion Q(

√

det(h)), the character θ is defined by θ(a) =
(

−1
a

)

, the symbol M (·) stays for cer-

tain Euler product over the divisors of det(h), and L+
p(·, ·) is the value of (suitably normalized)

Dirichlet L-series:

L+
(s, ξ) = (1 − p−sξ(p))L(s, ξ)

2iδΓ(s) cos(π(s − δ)/2)

(2π)s
, (3)

where δ = 0 or 1 such that (−1)δ = ξ(−1).

We claim that

lim
i→∞

G+
ki ,χ(Z) = �

h∈Cn
(det(h),p)=1

b+
(h; k, χ)en(hZ). (4)

Indeed, the quantities L+
p(k − (n/2), χε)M (h, χ, k) and M (h, χ, k) can be represented as p-

adic integrals. This yields our claim. However, the representation in question is proven (see
[10], proofs of Theorems 4.3, 4.4) only in the case when the conductor of ε is coprime to p. We
put apart the remaining statement to the next section.

Note that one expects the statement of the Proposition to stay true if T = 1 (or, more gen-
erally, for an odd T ). However, since the 2-factor of M is not known in general, we have to
introduce this tame level. We refer to loc. cit. for a more detailed discussion and further refer-
ences.

Notice that the right-hand side of (4) coincide with the series used in the construction of
A.A.Panchishkin. Namely, for an integer c > 1 coprime to p, one has a measure µE−S such that

�
Cn⊗Zp×Z∗p

det(z)k−κxk−m/2
p χ(x)dµE−S =

H (ck − 1, χ(c)ck − 1) �
h∈Cn

(det(h),p)=1

b+
(h; k, χ)qh.

This measure induces our µP after the restriction to Cn ⊗ Z∗p via the map Cn ⊗ Z∗p → Z∗p which
takes a matrix to its determinant. This finishes the proof of Proposition 2.

It follows that there exists a power series S(X , Y ) ∈ R[[X , Y ]] such that S(uk−1, ukχ(u)−
1) = H (ck − 1, ckχ(c) − 1)l imi→∞G+

ki ,χε(Z). This is just the p-adic Mellin transform of the
measure constructed ([9], 4.3).
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2.2 Klingen-Eisenstein measure

Let K be a finite extension of Qp, and O its ring of integers. Put Λ = O [[T ]]. Assume
now f to be a Λ-adic form ([4], Chapter 7). Let f be a normalized cusp Hecke eigenform
with character ε. This means that f is a formal power series in Λ[[q]] such that its special-
izations f (χ(u)uk − 1) ∈ O [[q]] become q-expansions of normalized Hecke eigenforms in
M ord

k+l (χεω
−k , Γ0(M ), O ) = M ord

k (χεω−k , Γ0(M )) ⊗ O . We assume f to be primitive of tame
conductor T . Thus M is a power of p times T (in fact, the conductor of χεω−k ).

Put for an integer k and χ as above

P(k, χ) = 〈 f (χ(u)uk − 1), f (χ(u)uk − 1)〉−1×

k[l]β(k, χεω−k , m + 1)αk,lCk,l ,1Λ( f (χ(u)uk − 1))F k,l ,χεω−k

m ( f (χ(u)uk − 1), V
(l)

1 ).

This is a formal power series inQ[[qBm]][x1, . . . , xm](l).

T 1. — For an integer i � 0 put ki = k + (p−1)pi . There exist a (non-zero) measure

µK on Z∗p × Z∗p with values in Op[[X , Y ]][[qBm]][x1, . . . , xm](l) and a polynomial K (X , Y ) ∈
Op[X , Y ] such that for all pairs (k, χ)with k ∈ Z sufficiently large, 2k > n, and wild primitive

Dirichlet character χmodulo pα with α > 1 one has:

�
Z∗p×Z∗p

xk ykχ(y)dµK = K (uk − 1, ukχ(u) − 1) lim
i→0

P(ki , χ)

Remark. The existence of the limit in the right becomes clear from the proof.

Proof. Let E = lim j→∞ T (p) j ! be the ordinary projector operator. Consider the operator
L̃(l) = 1

k[l ]
d∗(D −D↑ −D↓)

l . Notice that E L(l)F = E L̃(l)F for arbitrary F . Since f is assumed
to be p-ordinary, the operator E does not harm the scalar product with a specialization of f :

〈 f (χ(u)uki − 1), L(l)G∗n

((

−Z 0
0 ∗

)

; ki , χεωki

)

〉 =

〈 f (χ(u)uki − 1), E L̃(l)G∗n

((

−Z 0
0 ∗

)

; ki , χεωki

)

〉.
(5)

Combining (5) with Proposition 1, we obtain

x l
nP(ki , χ) = 〈 f (χ(u)uki − 1), f (χ(u)uki − 1)〉−1×

〈 f (χ(u)uki − 1), k[l]i E L̃(l)G+
ki ,χεωki

(

−Z 0
0 ∗

)

〉.

Since l is fixed, the differential operator k[l]i L̃(l) is interchangeable with the p-adic limits, and
does not harm the the smoothness established in Proposition 2. The same is known about the
ordinary projector E . Thus the term by term consideration together with Proposition 2 shows
then that there exists a power series G(X , Y ) ∈ R[[X , Y ]] ⊗ V

(l)
1 such that

G(uk − 1, ukχ(u) − 1) = H (χ(u)uk − 1) lim
i→∞

k[l]E L̃(l)G+
k,χεωki

(

−Z 0
0 ∗

)

. (6)
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From the other hand one has

x−l
n E L̃(l)G+

ki ,χεω−ki
∈ M ord

χεω−ki ,ki,l ,1,N
[[qBm]][x1, . . . , xm](l).

Let us denote by Φ(ki , χ, h, s1, . . . , sm) (here s1 + . . . + sm = l ) the coefficient of qhx
s1
1 . . . x

sm
m in

this power series. Thus the coefficient of qhx
s1
1 . . . x

sm
m in P(ki , χ) equals

〈 f (χ(u)uki − 1),Φ(ki , χ, h, s1, . . . , sm)〉/〈 f (χ(u)uki − 1), f (χ(u)uki − 1)〉. (7)

It follows from (6) that there is a power series G(X , Y ) ∈ Op[[X , Y ]] such that

G(uk − 1, χ(u)uk − 1) = H (χ(u)uk − 1) lim
i→∞

Φ(ki , χ, h, s1, . . . , sm) (8)

Note that the right hand side is a q-expansion of a p-adic modular form. At the moment, we
can not conclude that this is a specialization of aΛ-adic form,because we do not know whether
it coincides with a complex-analytic modular form. It follows from the control theorem ([4],
Theorem 7.3.1) that there existΛ-adic formsφ1, . . . ,φt ∈ M

ord(ε,Λ) such that

Φ(ki , χ, h, s1, . . . , sm) = α1(ki , χ)φ1(u
kiχ(u) − 1) + . . . + αt (ki , χ)φt (u

kiχ(u) − 1). (9)

Here the coefficients of the linear combinationα j (ki , χ) depend on ki and χ. Then

〈 f (χ(u)uki − 1),Φ(ki , χ, h, s1, . . . , sm)〉 =

�
1 � j � t

α j(ki , χ)〈 f (χ(u)uki − 1),φ j(χ(u)u
ki − 1)〉. (10)

We claim now that the limits limi→∞ α j(ki , χ) exist, and there exist a polynomial H1(X ) ∈
O [X ] such that

H1(X ) lim
i→∞

α j(k j , χ) ∈ Λ. (11)

Moreover, the polynomial H1(X ) does not depend on h, s1, . . . , sm. Indeed, let
φ j =

�
n>0 a( j , n)qn with a( j , n) ∈ Λ be the q-expansion of φ j . We can find positive in-

tegers n1, . . . , nt such that D = det(a( j , nt )) ≠ 0. Thus D ∈ Λ. The p-adic WeierstraSS
preparation theorem yields that there exists a polynomial H1 such that H1/D ∈ Λ. Note that
this polynomial depends only on the character ε and on k mod p − 1. Let us now return to (9),
and extract from this identity a system of t linear equations. We do this while considering the
q-expansion of the right and left sides, and extracting the identities for the coefficients of qn j

for j = 1, . . . , t . We solve this system of linear equations using the Kramer’s method. Our claim
about the limits limi→∞ α j(ki , χ) follows now from (8).

Let us now divide (10) by 〈 f (χ(u)uki−1), f (χ(u)uki−1)〉, and use the algebraic construc-
tion of the scalar product in the space of p-ordinary Λ-adic forms. (The construction and its
connection to the usual Petersson inner product is detailly discussed in [4], 7.4 p.222; see also
[5], section 1.) Now we are able to interpolate p-adically the series P(k, χ) coefficient-wise.
Namely, the coefficient (7) equals to

�
1 � j � t

α j(ki , χ)
〈 f (χ(u)uki − 1),φ j(χ(u)u

ki − 1)〉
〈 f (χ(u)uki − 1), f (χ(u)uki − 1)〉

.
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We take the limit when i → ∞ and make use of (11). Note that the ratio of the scalar products
interpolates to a meromorphic function. Again by the p-adic Weierstraß preparation theorem
it has finitely many poles. The positions of its possible poles depends on nothing but theΛ-adic
form f . Thus we can get rid of these poles multiplying by an appropriate polynomial.

So far we get a formal power series P̃(X , Y ) ∈ Op[[X , Y ]][[qBm]][x1, . . . , xm](l) and a
polynomial K (X , Y ) ∈ Op[X , Y ] such that

K (uk − 1, ukχ(u) − 1) lim
i→∞

P(k, χ) = P̃(uk − 1, ukχ(u) − 1).

The series P̃ is the Mellin transform of the measure µK required.

3. Another Siegel-Eisenstein measure.

3.1 Twisted Mazur measure.

Let f : Z → C be a periodic function i.e. f (a + M ) = f (a). The generalized Bernoulli Bk, f

numbers are defined by

�
k � 0

Bk, f

k !
t k = �

0 � a � M−1

f (a)t eat

eMt − 1
.

The consideration of the Bernoulli polynomials yields the following p-adic limit represen-
tation of Bernoulli numbers ([8], Chapter XIII, Theorem 1.2):

Bk, f = lim
m→∞

1

M pm
�

0 � a � M pm−1

f (a)ak (12)

In order to establish the existence of a measure,we will frequently make use of the following
criterion [6], [9].

P 3 (The abstract Kummer congruences). — Let f i ∈ C (Y , Op) be a system of

continuous functions on a compact totally disconnected group Y with values in Op. Assume that

Cp-linear span of { f i} is dense in C (Y , Op). Let {ai} be a system of elements ai ∈ Op. Then the

existence of an Op-valued measure µ on Y with the property

�
Y

f i dµ = a

is equivalent to the following congruences: for an arbitrary choice of elements bi ∈ Cp almost

all of which vanish

�
i

bi f i(y) ∈ pn
Op for all y ∈ Y implies �

i

biai ∈ pn
Op.

Fix a character ψ modulo d . The numbers Bk,ψ f define a distribution on the profinite
group limm Z/d pmZ. For any function f as above and an integer c we denote by f c the shifted
function f c(a) = f (ca).
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P 4. — Let c > 1 be an integer such that (c, pd) = 1. There exist a unique

measure µc
ψ on Z∗p such that for a character χmodulo a power of p and an integer s � 0�
Z∗p

xsχ(x)dµc
ψ = −(1 − cs+1ψ(c)χ(c))(1 − psψ(p)χ(p))Bs+1,χψ/(s + 1). (13)

Proof. The proof is fairly standard, and we sketch it. Using (12) and Proposition 3, one shows
that, for a fixed k > 0, the distributions E c

k,ψ defined by
�
Zp

f dE c
k,ψ = Bk,ψ f − ck Bk,(ψ f )c

are bounded measures. After that, once more making use of (12), one establishes the connec-
tion between these measures for different values of k:�

Zp

f dE c
k,ψ = k

�
Zp

xk−1 f dE c
1,ψ.

Now one defines µc
ψ = E c

k,ψ. Since the set of functions (k, χ) : x , xkχ(x) is an infinite subset
in C (Z∗p , Op), the p-adic WeierstraSS preparation theorem yields that the measure µc

ψ on Z∗p is
defined by the values (13) uniquely. To accomplish the proof, it stays to calculate the integrals�

Z∗p

xsχ(x)dµc
ψ =

�
Zp

xsχ(s)(1 − δ(pZp))(x)dE c
1,ψ,

and to ensure that they coincide with (13). Here (1 − δ(pZp))(x) = 0 if x ∈ pZp and 0 other-
wise. The calculation involves (12).

Let χ be a primitive Dirichlet character modulo pα with α > 1 (this yields, in particular,
χ(p) = 0). Assume thatψ is a primitive Dirichlet character modulo pd0 with (p, d0) = 1. Then
the character χψ is primitive. Taking into the account the functional equation for the Dilichlet
L-function, one can rewrite (13) as�

Z∗p

xsχ(x)dµc
ψ =

−(1 − cs+1ψ(c)χ(c))

(

Cχψ

2π

)s+1 2Γ(s + 1)iδ

τ(χψ)
cosπ

s + 1 − δ
2

L(s + 1, χψ).

(14)

Here δ equals 0 or 1 such that χψ(−1) = (−1)δ.

In what follows, we need some additional information about the Gauss sum τ(χψ) in-
volved.

L 1. — Let χ be a primitive Dirichlet character modulo pα with α > 1. Let ψ be a

primitive Dirichlet character modulo pd0 with (p, d0) = 1. We write in accordance with the

Chinese residue lemma ψ = ψpψd0 , and the characters ψp modulo p and ψd0 modulo d0 are

defined uniquely. Define lχ ∈ (Z/pZ)∗ by χ(1 + pα−1) = exp(2πilχ/p). Then

τ(χψ) = pα−1χψp(−d0)ψd0(pα)ψp(lχ)τ(ψ)τ(ψp)/τ(χ).

In particular, if the characterψ is quadratic, one has

τ(χψ) = pαχ(−d0)ψp(lχd0)ψd0(pα)τ(ψd0)τ(χ)
−1

The proof consists of a computation with Gauss sums using Lemma 3 of [12] (p.87). We omit it.
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3.2 Fourier coefficients of Siegel-Eisenstein series as p-adic integrals.

Let us now bound ourselves with the case when the characterψ is quadratic. In this case
there exists only one characterψp. The numberψp(lχ) is 1 or −1, and it depends on nothing
but the character χ. Combining the assertion of Lemma 1, (3) and (14) we are now able to
represent the Fourier expansion coefficients (2) of G+

k,χ as p-adic integrals. Namely, we have
got the following assertion.

P 5. — Let h ∈ Cn . Assume that det(h) = pt d with an odd positive integer

t > 0 and (p, d) = 1. Put, in accordance with the Chinese residue lemma, θn/2ε = ψpψd0

with ψp as above and ψd0 modulo d0 such that (p, d0) = 1. Let n be even and c > 1 be a

positive integer coprime to pd0. There exist a measure νc
h on Z∗p which is uniquely defined by the

following properties: for all pairs (k, χ) with k ∈ Z sufficiently large, 2k > n, and a primitive

Dirichlet character χmodulo pα with α > 1, one has�
Z∗p

xk−n/2χ(x)dνc
h =

(1 − χ2
(c)c2k−n

)b+
(h; k, χ) det(h)−kψd0(pα)

ψp(d0)

τ(ψd0)
pα(k−n/2−1)τ(χ)χ(−1).

The corresponding statement for odd n is clear from [10]. Since the case of even n and det(h)
divisible by an even power of p is also clear from [10], the remaining details in the proof (the
validity of (4)) of our Theorem 1 are now fulfilled.

3.3 Another Siegel-Eisenstein measure.

Consider the following subseries of Siegel-Eisenstein series

G̃k,χ(Z) = p−k �
h∈Cn

(det(h),p2)=p

b+
(h; k, χ)en(hZ).

This is somehow less natural then the series (4) considered in [10] for the p-adic construction.
Nevertheless, it follows from Proposition 5 that one can write

G̃k,χ(Z) = lim
i→∞

p−ki (Gki ,χ − lim
j→∞

Gk j ,χ),

where ki = k + (p − 1)pi . This last definition is more natural in the framework of our consid-
eration.

T 2. — Let c > 1 be a positive integer coprime to p. There exist a measure νE−S on

Z∗p × Z∗p with values in R and a polynomial H (X , Y ) ∈ Op[X , Y ] such that for all pairs (k, χ)

with k ∈ Z sufficiently large, 2k > n, and primitive Dirichlet character χmodulo pα withα > 2
one has �

Z∗p×Z∗p
xk ykχ(y)dνES

= H (ck − 1, ckχ(c) − 1)G̃k,χ.

If n is odd, the proof is absolutely similar to the original proof of Theorem 4.4 in [10]. When
n is even, one makes use of the representation of the Fourier coefficients of Siegel-Eisenstein
series given in Proposition 5, and goes along the same lines as the proof of Theorem 4.3 of [10].
For these reasons, we omit it.
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