AN INDEX THEOREM FOR FAMILIES ELLIPTIC OPERATORS
INVARIANT WITH RESPECT TO A BUNDLE OF LIE GROUPS
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ABSTRACT. We define the equivariant family index of a family of elliptic oper-
ators invariant with respect to the free action of a bundle G of Lie groups. In
this paper we concentrate on the issues specific to the case when G is trivial,
so the action reduces to the action of a Lie group G. For G simply-connected
solvable, we then compute the Chern character of the (equivariant family) in-
dex, the result being given by an Atiyah-Singer type formula. We also study
traces on the corresponding algebras of pseudodifferential operators and ob-
tain a local index formula for families of invariant operators, if the bundles are
trivial. We discuss then two applications, one to higher-eta invariants, which
are morphisms K, (¥J2 (Y)) — C, and the other one to Fredholm boundary
conditions on a simplex. As ann application of our formalism with traces, we
obtain also new proofs of the regularity at s = 0 of (Do, s), the eta function
of Dy, and of the relation n(Dg,s) = #~'Tr1(D~'D’) (here D = Dg + 0%,
D' = [D,t]). The algebras of invariant pseudodifferential operators that we
study, %2 (Y) and ¥ (Y), are generalizations of “parameter dependent” al-
gebras of pseudodifferential operators (with parameter in R?), so our results
provide also an index theorem for elliptic, parameter dependent pseudodiffer-
ential operators.
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INTRODUCTION

Families of Dirac operators invariant with respect to a bundle of Lie groups
appear in the analysis of the Dirac operator on certain non-compact manifolds.
They arise, for example, in the analysis of the Dirac operator on an S'-manifold
M, if we desingularize the action of S* by replacing the original metric g with ¢~2g,
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where ¢ is the length of the infinitesimal generator X of the Sl-action. In this way,
X becomes of length one in the new metric. The main result of [25] states that
the kernel of the new Dirac operator on the open manifold M ~ M St s naturally
isomorphic to the kernel of the original Dirac operator.

It turns out that the Fredholm property of the resulting Dirac operator (obtained
by the above procedure on the non-compact manifold M ~ M 51) is controled by
the invertibility of a family of operators invariant with respect to the action of a
bundle of solvable Lie groups. This follows from the results of [16] and it will be
discussed in greater detail in a future paper. In general, neither the bundle Y — B,
on which these operators act, nor the bundle of Lie groups ¢ — B, acting on Y,
are trivial. A natural problem then is to study the invertibility of these invariant
families of operators, and more generally, their index.

We define the (equivariant family) index of a family of invariant, elliptic oper-
ators as it is customary, using K-theory. It turns out that the index of such an
elliptic family is the obstruction to finding an invertible perturbation of the orig-
inal family by invariant regularizing operators, if we exclude the degenerate case
dimY = dim G. This shows the relevance of computing the index to the problem
of determining the invertibility of a given family.

In this paper, we study the index and certain non-local invariants of families
of elliptic operators invariant with respect to a bundle of solvable Lie groups G.
Actually, for most of our results, we assume that the bundle of Lie groups G is
trivial, G = B x @, so invariance with respect to G reduces to invariance with
respect to G. The case G = B x @ is significant, non-trivial, and it suffices for
many applications. It is resonable then to first study this case, which allows us to
avoid some conceptual issues; moreover, the results are easier to state and grasp in
this case.

For G = B x G, where G is a simply-conneced Lie group, we obtain a formula
for the Chern character of the index bundle that is similar to the Atiyah-Singer
index formula for families. Then, we turn to the local analysis of these families,
for which we assume that G consists of abelian groups. Our analysis leads then to
the construction of several traces on the algebras ¥ (Y'). We use these traces to
obtain local index theorems.

In a remarkable paper [6], Bismut and Cheeger have generalized the Atiyah-
Patodi-Singer index theorem [3] to families of Dirac operators on manifolds with
boundary (see also [21]). Their results apply to operators whose indicial parts are
invertible. The indicial parts are actually families of Dirac operators invariant with
respect to a one-parameter group, so they fit into the framework of this paper
(with G = B x R). In addition to the usual ingredients of an index theorem —
curvature and characteristic classes — their result was stated in terms of a new
invariant, called the “eta-form,” in analogy to the additional invariant appearing in
the Atiyah-Patodi-Singer index formula for operators on manifolds with boundary.
Thus, the results of this paper are relevant also to the problem of determining an
explicit formula for the index of a family of pseudodifferential elliptic operators on
a bundle of manifolds with boundary.

With an eye towards this problem, we also give a new proof of the regularity
of the eta function at the origin and discuss some possible generalizations the eta
invariant. Actually, we suggest two possible generalizations, one which is a direct
generalization of a result of [19] and one using higher algebraic K-theory. The
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first possible generalization is to associate to a Dirac operator invariant with re-
spect to R? the quantitiy defined by the formula Tr,((D~'dD)?*~1). This possible
generalization was considered before by Lesch and Pflaum [17], who proved that
this formula does not lead to new invariants for Dirac operators and also that this
formula is not additive for a product of two invertible operators, except for k = 1,
when one recovers the usual eta invariant [19]. The second possible generalization,
which has the advantage of being additive, is to define the higher eta invariant as
a morphism on higher algebraic K-theory.

We now describe the contents of each section of this paper. In Section 1, we
discuss the action of a bundle of Lie groups G on a fiber bundle Y and we introduce
the algebras 92 (Y) and ¥° (Y'), which will be our main object of study. (Both
these algebras consist of invariant pseudodifferential operators.) Assuming that
both G and Y are trivial with fixed trivializations, we prove that the group of gauge
transformations of G acts on 952 (Y') and ¥ (V). In Section 2, we define the index
of a family of elliptic, invariant pseudodifferential operators A. We shall sometimes
use the term “the equivariant family index” of an elliptic operator A € ¥ (Y),
for the index of such an operator, to stress that it involves both a vector bundle
component and an equivariant component. We prove that the index of A is the
obstruction to finding a regularizing operator R such that A + R, acting between
suitable Sobolev spaces, is invertible in each fiber (excluding the degenerate case
dimY = dim G). This generalizes the usual property of the Fredholm index of a
Fredholm operator. Then, using the methods of [20], we obtain a formula for the
Chern character of the index of an operator A € ¥ (Y). In the third section, we
develop the necessary facts about the assymptotics of the trace of the operators
in ¥ (Y). This allows us to define various regularized and residue traces. Using
these traces, we obtain in Section 4 two local formulae for the (equivariant family)
index of an elliptic A € ¥ (Y), if the bundles Y and G are trivial and G consists
of abelian Lie groups.

More applications are contained in the last two sections. In Section 5, we use
our formalism with traces to give a new proof of the regularity of the eta function
of Dg, n(Dyg,s), at s = 0, and we discuss two possible generalizations of the eta
invariant. We also obtain a new proof of the relation 5(Dy,s) = Try(D~'D'), D =
Dy +8y, D' = [D,t], first proved in [19] using the local index theorem (see also [17]).
Operators invariant with respect to R?, a particular case of our operators when the
base is reduced to a point, appear in the formulation of elliptic (or Fredholm)
boundary conditions for b-pseudodifferential operators on manifolds with corners.
In the last section, we discuss how the equivariant index can be used to study
this problem. Let Y be a smooth manifold without corners and T be an elliptic
b-pseudodifferential operator on A,, x Y. More precisely, we give a necessary and
sufficient condition for the existence of a perturbation of T' by a smoothing operator
in the same algebra that makes it Fredholm. Our results are complete if we exclude
the case dimY = 0. These results are relevant for the problem of extending the
Atiyah-Patodi-Singer boundary conditions to manifolds with corners.

The algebras of invariant pseudodifferential operators that we study, 52 (Y) and
¥ (Y), are generalizations of “parameter dependent” algebras of pseudodifferen-
tial operators considered by Agmon [1], Grubb and Seeley [13], Lesch and Pflaum
[17], Melrose [19], Shubin [30], and others. Our index theorem, Theorem 2, hence
gives a solution to the problem of determining the index of elliptic, parameter de-

pendent families of pseudodifferential operators, parameterized by A € R?7. We note
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that the concept of index of such a family requires a proper definition, and that
the Fredholm index, “dimension of the kernel” - “dimension of the cokernel,” is not
appropriate for ¢ > 1. Actually, our definition of the (equivariant, family) index is
closer related to the definition of the L?-index for covering spaces introduced in [2]
and [29]. For the proof of our local index theorem, we use ideas of non-commutative
geometry [10], more precisely, the general approach to index theorems using cyclic
cohomology as developed in [26]. These computations are also an example of a com-
putation of a bivariant Chern-Connes character [23]. We also expect our results to
have applications to adiabatic limits of eta invariants [7, 31].

I would like to thank Richard Melrose for several useful discussions. Actually,
this paper grew out of an initial joint project. Part of the results of this paper
were presented in a talk at University of Illinois at Chicago in January 1997, and
I would like to thank the Chairman of their Mathematics Department for his kind
invitation. Also, I would like to thank for the hospitality of Fourier Institute, where
part of this project was completed, and Louis Funar for his kind invitation to spend
some time at his Institute.

All pseudodifferential operators considered in this paper are “classical,” that is,
one-step polyhomogeneous.

1. INVARIANT PSEUDODIFFERENTIAL OPERATORS

We now describe the setting in which we shall work. Let B be a smooth compact
manifold and
d:G—+B andwn:Y —+ B

be two smooth fiber bundles with fibers G, := d='(b) and Y}, := 7~ (). We shall
assume that G is a bundle of Lie groups acting smoothly on Y, and then we shall
consider families of operators along the fibers of Y and invariant under the action
of G. For simplicity, we shall assume that B is connected. The index and local
invariant of these operators will form our main object of study. We now make all
these assumptions and concepts more precise.

Throughout this paper, G will denote a bundle of Lie groups on a manifold usually
denoted B. Recall that this means that G — B is a smooth fiber bundle, that each
Gp is a Lie group, and that the multiplication and inverse depend differentiably on
b. Hence the map

(1) GxpG:={(g,9) €GxG,dg")=d(g)}> (¢',9) — g'g " €G

is differentiable. This implies, by standard arguments, that the map sending a
point b € G, to ep, the identity element of Gy, is a diffeormorphism onto a smooth
submanifold of G. It also implies that the map G € g — g~! € G is differentiable.

We also assume that G acts smoothly on Y. This means that there are given
actions G, X Y, = Y}, of Gy on Yj, for each b, such that the induced map,

GxpY :={(9,y) €GxY,d(g) =7(y)} > (9,y) — gy €Y,

is differentiable. We shall also assume that the action of G on Y is free, that is,
that the action of G, on Y} is free for each b.

On Y, we consider smooth families A = (4;), b € B, of classical pseudodiffer-
ential operators acting on the fibers of Y — B such that each A, is invariant with
respect to the action of the group G;. Unless mentioned otherwise, we assume that
these operators act on half densities along each fiber. The algebra that we are inter-
ested in consists of such invariant operators satisfying also a support condition. To
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state this support condition, first notice that a family A = (A;) defines a continu-
ous map C(Y) — C=(Y), and, as such, it has a distribution (or Schwartz) kernel,
which is a distribution K4 on Y xgY CY x Y. (We ignore the vector bundles in
which this distribution takes its values.) Because the family A = (A4;) is invariant,
the distribution K 4 is also invariant with respect to the action of G. Consequently,
K 4 is the pull back of a distribution k4 on (Y xpY)/G. We will require that ka
have compact support. We shall sometimes call k4 the convolution kernel of A.
This condition on the support of k4 ensures that each Ay is a properly supported
pseudodifferential operators, and hence it maps compactly supported functions (or
sections of a vector bundle, if we consider operators acting on sections of a smooth
vector bundle) to compactly supported functions (or sections). This support con-
dition is automatically satisfied if Y/G is compact and each A, is a differential
operator. The space of smooth, invariant families A of order m pseudodifferential
operators acting on the fibers of Y — B such that k4 has compact support will be
denoted by 7 (Y). Then 432, (Y) is an algebra, by classical results [14].

We now discuss the principal symbols of the invariant operators that we study.
Let

T,;Y := ket TY — TB

be the bundle of wvertical tangent vectors to Y, and let T,,Y be its dual. We fix
compatible metrics on T,;Y and T,Y, and define S},Y’, the cosphere bundle of the
vertical tangent bundle to Y, to be the set of vectors of length one of T, Y. Also,
let

Om : O™(Y,) = C(S;, NT*Y})

be the usual principal symbol map, defined on the space of pseudodifferential op-
erators of order m on Yj. The definition of ¢,, depends on the choice of a triv-
ialization of the bundle of homogeneous functions of order m on T,Y, regarded
as a bundle over S},Y. The principal symbols o,,,(A4p) of an element (or family)
A = (4p) € Y (V) then gives rise to a smooth function on C*°(S},Y"), which is
invariant with respect to G, and hence descends to a smooth function on S;,Y,
which has compact support because of the support condition on the kernel of A.

The resulting function,
(2) om(A4) € C°((5,,Y)/9),

will be referred to as the principal symbol of an element (or operator) in ¢ (Y).

mv

In the particular case Y = G, ¥, (G) identifies with convolution operators on
each fiber G, that have compactly supported kernels, are smooth outside the iden-
tity, and have only conormal singularities at the identity. In particular, ¢; °(G) =
C°(G), with the fiberwise convolution product.

Suppose now that the quotient Y/G is compact, which implies that (S;,Y)G is
also compact. As it is customary, an operator A € ¢! (Y) is called elliptic if, and
only if, its principal symbol is everywhere invertible. The same definition applies
to

A=[Ay] € My (Wi, (Y)) :
the operator A, regarded as acting on sections of the trivial vector bundle CV, is
elliptic if, and only if, its principal symbol
om(A) = [om(Aij)] € Mn(C=(S,,Y/G))

is invertible.
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Assume that there is given a G-invariant metric on T5;Y, the bundle of vertical
tangent vectors, and a G-equivariant bundle W of modules over the Clifford algebras
of T,+Y. Then a typical example of a family D = (D;) € ¢ (Y) is that of the
family of Dirac operators Dy acting on the fibers Y; of Y — B. (Each Dy acts on
sections of Wy, , the restriction of the given Clifford module W to that fiber.)

Before proceeding, in the next section, to define the equivariant family index of
an elliptic family invariant with respect to a bundle of Lie groups, let us take a

closer look at a particular case of the previous construction. Take
Y=BxYy, xR,
with Yy a compact manifold and
G=B xR,

with 7 and d being the projections onto the first components of each product. The
action of G on Y is given by translation on the last component of Y. Then the
G-invariance condition becomes simply R? invariance with respect to the resulting
R? action. If Y and G are as described here, then we call Y a flat G-space.

One disadvantage of the algebras 932 (Y') is the following. It is possible to find
families A = (4p) € ¢, (Y) such that each Ay is invertible as a bounded operator,
but the family (4; ") is not in ¢ (Y), although it consists of invariant, pseudo-
differential operators. This pathology is due to the support condition. Neverthess,
for G consisting of abelian groups, it is easy to remedy this pathology by enlarging
the algebra ¢, >°(Y), as follows.

Since the enlargement of the algebra 1, ,>°(Y) is done locally, we may assum that
Y is aflat G—space. The residual ideal of the algebra 132 (Y') is ¢, o°(Y) and consists
of operators that are regularizing along each fiber. More precisely, it consists of
those families of smoothing operators on ¥ = B x Yy x R? that are translation-
invariant under the action of R? and have compactly supported convolution kernels.
Thus
Yo (V)= CP(B xR, T °(Y))) C S(B xR T °(Y))) = S(B x Yo x ¥ x R?).
(Here S is the generic notation for the space of Schwartz functions on a suitable
space, in this case on B x R?, and with values regularizing operators.) The second

isomorphism above is obtained from the isomorphism
T0(Yp) = C (Vo x Yo)

defined by the choice of a nowhere vanishing density on Y. If we also endow
T~ °(Yy) with the locally convex topology induced by this isomorphism, then it
becomes a nuclear locally convex space. We now enlarge the algebra ¢ (Y) to
include all invariant, regularizing operators whose kernels are in S(B x Yy x Yo xR?):

(3) P (V) =9y (V) +S(B x Yy x Yy x R?).

inv inv

Explicitely, the action of T € S(B x Yy x Yy x R?) on a smooth function f €
C(B x Yy x R?) is given by

Tf(b,y,t) = / T(b,y1, 0.t — 8)F (b, yo, 8)dyods.
Yo xR¢

For B reduced to a point, the algebras ¥2° (V') were introduced in [18] as the range

mv
space of the indicial map for pseudodifferential operators on manifolds with corners



INDEX FOR FAMILIES 7

Still assuming that we are in the case of a flat G-space, we notice that the Fourier
transformation F5 in the translation-invariant directions gives a dual identification

(4)
T-®(Y)3T - T :=FTF, € S(BxYy xYy xR =8(B x RI; T~2(Y))

mnv
with the space of Schwartz functions with values in the smoothing ideal of Yj. The
point of this identification is that the convolution product is transformed into the
pointwise product. The Schwartz topology from (4) then gives ¥, °(Y) the struc-
ture of a nuclear locally convex topological algebra. Following the same receipe,

the Fourier transform also gives rise to an indicial map
(5) B0 (V)3T =T :=FTF, ' eC®B xR;T(Yy)).

inv
We denote .

T(r) = &(T)().
The map ® is not an isomorphism since A(7) has joint symbolic properties in the

variables of R? Aa,nd the fiber variables of T*Y,. Actually, the principal symbols of
the operators A(7) is constant on the fibers of 77, — B.

Lemma 1. Assume Y = B x Yy x R? is a flat G-space. Then the action of the
group GLy(R) on the last factor of Y = B x Yy x RY extends to an action by
automorphisms of C®(B,GL4(R)) on ¢X (Y) and on T (V).

inv inv

Proof. The vector representation of GL,(R) on the second component of Y x R?
defines an action of GLy(R) on ¥>°(Yy x R?) that preserves the class of properly
supported operators and the products of such operators. It also normalizes the
group R? of translations, and hence it maps R?-invariant operators to R?-invariant
operators. This property extends right away to the action of C*°(B,GL,4(R)) on
families of operators on B x Yy x R?, and hence C*(B,GL,(R)) maps ¢ (Y)
isomorphically to itself. From the isomorphism (4), we see that C* (B, GL,(R)) also
maps ¥, *°(Y) to itself. This gives an action by automorphisms of C*°(B, GL,(R))

mnv

on ¥ (Y), which is the sum of ¥,_*°(Y) and 43 (V). O

inv inv inv

Suppose the family of Lie groups G consists of abelian Lie groups, so that G is a
vector bundle. By choosing a lift of Y/G — Y, which is possible because the fibers
are contractible, we obtain that locally the bundle Y is isomorphic to a flat G space.
Then the above lemma allows us to extend the previous definitions, including those
of the algebras ¥2° (V) and of the indicial family from the flat case to the case G

abelian. The indicial family A of an operator A € T (Y), will then be a family of

pseudodifferential operators acting on the fibers of Y x g G* — G* (here G* is the
dual of the vector bundle G):

A(r) € B*(V4/Gy), if 7€ G*.
The considerations of this section extend immediately to operators acting be-
tween sections of a G-equivariant vector bundle.

2. HOMOTOPY INVARIANTS

We now define homotopy invariants of elliptic operators in 1% (Y), the main
invariant being the (equivariant family) index of such an invariant, elliptic family.
For G consisting of simply connected, solvable Lie groups and dimY > dim G, we

then show that the index gives the obstruction for an invariant, elliptic family A to
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have a perturbation by regularizing operators which consists of invertible operators
(on suitable Hilbert spaces, see Proposition 1). For families of abelian Lie groups G,
we give an interpretation of the index of an elliptic operator in terms of its indicial
family. This leads to an Atiyah-Singer index type formula for the Chern character
of the index of a family of invariant, elliptic operators. If G is abelian (that is, if its
fibers are abelian Lie groups), then we can consider the algebra ¥2° (Y) instead of
5, (1),

We now proceed to define the index of an elliptic family A € ¢ (Y). This
will be done using the K-theory of Banach algebras. Let C*(G) be the closure of
Y. >°(G) with respect to the norm

inv
[l All = sup | As|l
beB

each operator Ay acting on the Hilbert space of square integrable densities on the
fiber V3. For example, if G is abelian, we have C*(G) ~ Co(G*), the space of con-
tinuous functions vanishing at oo on G*.

Assumption. From now on in this paper we shall assume that G consists of simply-
connected solvable Lie groups. By “simply-connected” we mean, as usual, “con-
nected with trivial fundamental group.”

We shall denote by g the bundle of Lie algebras of the groups G, and by
exp:g—G.
the exponential map. In order to study the algebra C*(G), we shall deform it
to a commutative algebra. This deformation is obtained as follows. Let G,q =
{0} xguU (0,1] x G, By =[0,1] x B, and d : G,q — B; be the natural projection.
On G,q we put the smooth structure induced by the bijection
¢ : Bl Xg— Gad

#(0,X) = (0,X) and ¢(t, X) = (t,exp(tY)), for all X € g in a small neighborhood
of the zero section. Then we endow G,q with the Lie bundle structure induced by
the pointwise product. Evaluation at ¢ € [0, 1] induces algebra morphisms

et : Yiny (Gaa) = ¥ine(G), >0,
and
eo : ¥in, (Gaa) = ¥, (9), t=0.

Passing to completions, we obtain morphisms e; from C*(G,q) to C*(G), for ¢ > 0,
and to C*(d=1(0)) ~ Co(g*), for t = 0.

Lemma 2. The morphisms e; : C*(Goq) = C*(G), fort >0, and eg : C*(Gyq) —
Co(g*), for t =0, induce isomorphisms in K -theory.

Proof. Assume first that there exists a Lie algebra bundle morphism G —+ B x R.
(In other words, there exists a map G — R that is a morphism on each fiber.) Let
G' denote the kernel of this morphism and let G, ; be obtained from G’ by the same
deformation construction by which G,; was obtained from G. Then we obtain a
smooth map G,q4 — R that is a group morphism on each fiber, and hence

C*(Gaq) ~ C*(G'y) xR, C*(G) ~ C*(G') x R, and Co(g*) ~ Co(g"™) x R.

Moreover, all above isomorphisms are natural, and hence compatible with the mor-
phisms e;. Assuming now that the result was proved for all Lie group bundles
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of smaller dimension, we obtain the desired result for G from the Connes’ Thom
isomorphism in K-theory [9], which in this particular case gives:

Ki(C*(Gaa)) = Ki11(C*(Gaa)), Ki(C™(G)) = Ki1(C*(G")), and

Ki(Co(g")) =~ Kit1(Co(g'™)).

This will allow us to complete the result in the following way. Let Uy be the
open subset of B consisting of those b € B such that [Gs, Gp] has dimension > k.
From the Five Lemma and the six term exact sequences in K-theory associated
to the ideal C*(Gadlvy\vi11) Of C*(Gadlvy,_1\Uyy,), for each k, we see that it is
enough to prove our result for Gu4l|v,\v,,, for all k. Thus, by replacing B with
Ui \ Uk+1, we may assume that the rank of the abelianization of G is independent
of b. Consequently, the abelianizations of G, form a vector bundle

A :=UGy/[Gs, Gb)

on B.

A similar argument, using the Meyer-Vietoris exact sequence in K-theory and
the compatibility of K-theory with inductive limits [8] shows that we may also
assume the vector bundle A of abelianizations to be trivial. Then the argument at
the beginning of the proof applies, and the result is proved. O

From the above lemma we immediately obtain the following corollary:
Corollary 1. Let G be a bundle of simply connected, solvable Lie groups. Then
Ki(C*(G)) = Ki(Co(g")) = K*(g")-

Define C*(Y, G) to be the closure of 4 °(Y") in the sup norm of operators acting
on L%(Y;), for each b.

We denote below by & the minimal tensor product of algebras. This minimal
tensor product is defined to be (isomorphic to) the completion of the image of
m @ me, the tensor product of two injective representations m; and mwe. For the
cases we are interested, the minimal and the maximal tensor product coincide [28].

Lemma 3. Assume dimY > dim G. Also, let K = K(Y;/Gy) denote the algebra of
compact operators on one of the fibers Yy /Gy, for some fized, but arbitrary, b € B.
Then

C*(Y,G) ~ C*(G)&K.
Consequently, K;(C*(Y,G)) ~ K;(C*(G)) ~ K'(g*).

Proof. IfY is a flat G-space, then this follows, for example, from the results of
[16]. Our assumptions imply that K is infinite dimensional, and hence its group of
automorphisms is contractible, see [11]. This implies that there is no obstruction
to trivialize the bundle of algebras K(Y;/Gs). Let 2 be the space of sections of this
bundle of algebras, then 2 ~ Co(B)&K, and hence

C*(¥,G) = C*(§)&co(m® = C*(GBRK,

as desired.
The last part of lemma, follows from the above results and from the natural
isomorphism K;(A®K) ~ K;(A), valid for any C*-algebra A. O
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We proceed now to define the index of an elliptic, invariant family of operators
A= (4) € MN(W(Y)) = ¥ (V;CY).

We assume that Y/G is compact, for simplicity; otherwise, we need to use algebras
with adjoint units. First, we observe that there exists an exact sequence

(6) 0— C*(Y,G) » £ = C®(SLY) =0, &:=¢2.(Y)+C*(Y,0),

obtained using the results of [16]. The operator A (or, rather, the family of operators
A = (A4p)) has an invertible principal symbol, and hence the family T' = (T}),

Ty = (1 + AZAb)ilmAb
consists of elliptic, operators. Moreover, T € £ = ¢ (V) + C*(Y,G). It’s principal

inv

symbol is still invertible, and hence defines a class in K;(C*®(S:,Y)) ~ K(S:Y).
Let

0: K"(S5,Y)) = K§'(C*(Y,9)) = Ko(C*(Y,9))

be the boundary map in the K-theory exact sequence

K (C*(Y,0)) = KY(E) = K (S5Y)) 3 K§(C* (Y, G))
- KJ(E) = K§U(S,Y))

associated to the exact sequence (6). Because Ko(C*(Y,G)) ~ K°g*) by Corollary
1, this gives rise to a group morphism

(7) ind, : K78(C™(S5,Y)) = K°(g"),

which we shall call the analytic index morphism. The image of A under the com-
position of the above maps will be denoted ind,(A) and called the analytic index
of A. The analytic index morphism descends in this case to a group morphism
K¥8(C®(8%,Y)) — K°(g*) denoted in the same way. For G abelian, we can re-
place £ with ¥ (V).

The main property of the analytic index of an operator A is that it gives the
obstruction to the existence of invertible perturbations of A by lower order opera-
tors. We denote by H*(Y}) the sth Sobolev space of 1/2-densities on Y3, which is

defined using the bounded geometry of Y} for Y/G is compact.

Proposition 1. Assume that Y and G are as above and that Y/G is compact of
positive dimension. Let A € YT (Y, CN) be an elliptic operator. Then we can find
R e y™ 1(Y,CN) such that

Ay + Ry - H* (V)N = H™(1)N
is invertible for all b € B if, and only if, ind,(A) = 0.

Proof. It is clear from definition that if we can find R with the desired properties,
then ind,(4) = 0 € K°(g*). Suppose now that 4 € ™ (Y,CV) is elliptic and
has vanishing analytic index. Using the notation T = (1 + A*A)"'/2) we see
that A is invertible between the indicated Sobolev spaces if, and only if, each
Ty is invertible as a bounded operator on L%(Y;). Because C*(Y,G) is a stable
C*-algebra for dim G > dimY (that is, C*(Y, G) ~ C*(Y, G)®K, by Lemma 3), the
“Atiyah-Singer trick” ([4], Proposition (2.2)) can be used to prove that the vanishing
of ind,(B) = ind,(A) implies that T (and hence also A) has a perturbation by
invariant, regularizing operators in t; (Y, C") that is invertible on each fiber (see

[24] for details). O
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We now give an interpretation of ind, (A), for G abelian, using the properties of
the indicial family A(r) of A.

We shall also use the following construction. Let X be a compact manifold with
boundary. If T'(x) is a family of elliptic pseudodifferential operators acting on the
fibers of some bundle M — X whose fibers are compact manifolds without corners,
then we can realize the index of T' as an element in the relative group K°(X,0X).
This can be done using Kasparov’s theory, or the “Atiyah-Singer trick” as follows.
We assume for simplicity that the bundle on which B acts is trivial, and proceed as
in [4], Proposition (2.2), to define a smooth family of maps R(z) : CN — C®(Y),
such that the induced map V := T@R : C®(X)NoC>®(X, L3(Y)) = C=(X, L2(Y))
is onto for each z. Since T'(z) is invertible for € 0X, we can choose R(z) = 0 for
x € 0X. Then ker(V) is a vector bundle on X, which is canonically trivial on the
boundary 0X. The general definition of the index of the family T in [4] is that of
the difference of the kernel bundle ker(V') and the trivial bundle X x CV. Since the
bundle ker(V) is canonically trivial on the boundary of X, we obtain an element in
the relative group K°(X,0X). We shall use this constructin for X = Bg, a large
closed ball in G*.

Returning to our considerations, we continue to assume that Y/G is compact, and
we fix a metric on G (which, we recall, is a vector bundle in these considerations).
If Ae ¥ (Y) is elliptic (in the sense that its principal symbol is invertible outside

the zero section), then the indicial operators A(7) are invertible for |7| > R, T € G*,
and some large R. In particular, by restricting the family A to the ball

Bpg :={|7| < R},

we obtain a family of elliptic operators that are invertible on the boundary of Bg,
and hence A defines an element in the K-group of the ball of radius R, relative to
its boundary, as explained above. We define the degree

(8) degg(A) € K°(Bg,0Bg) ~ K°(g*)

to be the class defined above.

For the proof of the following result we borrow terminology from algebraic topol-
ogy: if Iy, C Ay are two-sided ideal of some algebras Ay and A; and ¢ : Ay — Az
is an algebra morphism, we say that ¢ induces a morphism of pairs ¢ : (Ao, Iy) —
(Al,Il) if, by definition, ¢(Io) Cc L.

Theorem 1. Let G be a bundle of abelian Lie groups and A € ¥ (Y;CN) be an
elliptic operator. Then

ind,(A) = degg(A4).
Proof. Let Br = {|7| < R} C G* be as above. The algebra
Ap := C>®(Bg, T*(Y}))

of C*°-families of pseudodifferential operators on Bg acting on fibers of Y xg B —
Bp, contains as an ideal g = C§°(Bgr, ¥~>°(Y})), the space of familis of smoothing
operators that vanish of infinite order at the boundary of Br. If A is an elliptic
family, as in the statement of the lemma, and R is large enough, then A, the indicial
family of A, defines by restriction an element of My (%) that is invertible modulo
Mn(3).

Recall that the boundary map 0; in algebraic K-theory associated to the ideal J
of the algebra 2 gives 0:[A] = degg(A), by definition. Also, the boundary map Jy
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in algebraic K-theory associated to the ideal ¥; >°(Y") of the algebra ¥{ (Y') gives
Oo[A] = indg(A). We want to prove that 01[A] = do[A]. The desired equality will
follow by a deformation argument, which involves constructing an algebra smoothly
connecting the ideals J and ¥, °(Y).

Consider inside C*([0, R~'], ¥;2°(Y)) the subalgebra of families T' = (7}) such
that T,(7) = 0 for |7| > z~. (In other words, T, € J,—1 if z # 0 and Tp is
arbitrary.) Denote this subalgebra by Jgro. Also, let g be the set of families
A= (4;),z€[0,R], Ay € U1, if z #0, Ag € U (V) such that the families
AT := (A, T,) and TA =: (T, A,) are in Jgy, for all families T' = (T}) € TRoo-

It follows that Jps is a two-sided ideal in Ao, and that the natural restrictions

of operators to £ = R~! and, respectively, = 0, give rise to morphisms of pairs
[ (QlRoo;jRoo) e (Q[R,jR), and
€0 : (ARoo, Troo) = (T (V), ¥ " (V).

Moreover, the indicial family of the operator A gives rise, by restriction to larger
and larger balls B,., to an invertible element in g, also denoted by A. Let 0 be
the boundary map in algebraic K-theory associated to the pair (g0, Jreo). Then
(€0)«0[A] = 0o[A] and (e1).0[A] = 01[A]. Since (eg)« : Ko(Troo) = Ko (¥ (Y))
and (e1)« : Ko(Jroo) = Ko(Jg) are natural isomorphisms, our result follows. O

We now want to compute the Chern character of the analytic index ind,(4),
for an elliptic family A € ¥ (Y), along the lines of the Atiyah-Singer index the-
orem for families. One difficulty that we encounter is that the space on which the
functions defining the principal symbols live, that is (S},Y)/G, is not orientable
in general. However, S;,Y is always orientable. There is no such problem when
G = B x @ is trivial. For G simply-connected solvable, we obtain complete results.

We denote by 7 the Todd class of the vector bundle (7,,;Y)/G ® C over Y/G and
by 7. the integration along the fibers of (S%,Y)/G — B. We assume B compact.

Theorem 2. Assume G = B x G is trivial, with G simply-connected, solvable. Let
A€ P (Y,CN) be an elliptic, invariant family, and let [0,,(A)] € K'((S2,Y)/G)

mv

be the class defined by the principal symbol 6,,(A) of A. Then the Chern character
of the analytic index of A is given by

Ch(indq(A4)) = (-1)"m. (Chlowm (A)]T) € H*(B) ~ H:*(g"),
where n is the dimension of the fibers of (S%,Y)/G — B.

Proof. Note first that we can deform the bundle of Lie groups G to the bundle of
commutative Lie groups g as before, using G,4. Moreover, we can keep the principal
symbol of A constant along this deformation. This shows that we may assume G
to consist of commutative Lie groups. Thus we shall assume from now on that
G =R

In [20], this theorem was proved in the case B reduced to a point. To obtain the
proof in general, we repeat the arguments of that paper for families. Let us briefly
review those arguments as modified in our setting.

First, we choose a trivialization of the principal R? bundle Y — Y/R?, so we
may assume that ¥ = Yy x R?. The idea of the proof is to prove the theorem
by induction on g. For the inductive step, which relates the case ¢ with the case
g — 1, we use the manifold with boundary Z := Yy x [0,1) x R?~! and the algebra
A(Z), the closure of the algebra of b-pseudodifferential operators on Z. The results
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of [16] show that the algebra A(Z) fits into two exact sequences. The first exact
sequence is associated to the face of codimention one and the second exact sequence
is associated to the kernel of the principal symbol map.

The K-theory six term peridic exact sequences associated to the above two ex-
act sequences of C*-algebras provide us with the isomorphisms necessary for the
inductive step of the argument. Then, for ¢ = 0, the theorem is nothing but the
Atiyah-Singer index theorem for families [4]. O

3. REGULARIZED TRACES

Having in mind future applications and generalizations, we also want to give
a local formula for the equivariant family index of an invariant, elliptic family of
operators, as considered in the previous section. This will be done in terms of
various residue type traces. In this section, we develop the analytic tools required
to define these regularized traces.

Assumption. Throughout the rest of this paper, we shall assume that G consist of
abelian Lie groups, and hence that it is a vector bundle.

We shall say that Y is a flat G-bundle if Y = B x Yy x R? and G = B x R?. The
results we will establish are local in B, and hence we can reduce the general case
to the flat case. Actually, it is easier to assume first that B is reduced to a point.
We thus carry the analysis first in this case, and then we extend the results to the
general case.

There is an action of R? on ¥, 2°(Yy x R?), the action of £ € R? is obtained by

mv
multiplying the convolution kernel of an operator A € ¥% (Y5 x R?) by exp(it - §),
where t € R? are coordinates for the second component in Yy x R?. In terms of
the Fourier transform representation of these operators, the action of £ becomes
translation by £ € RY.
We shall denote by T'r the usual (Fredholm) trace on the space of trace class

operators on a given Hilbert space.
Lemma 4. The space of R? —invariant traces on ¥, °° (Yo xR?) is one-dimensional.

Proof. Consider the map

(9) Tr(A) = / Tr(I(A,7))dr.

We need to show that this is the only invariant trace functional. In terms of
indicial families, the infinitesimal generators of the R?-action correspond to the
multiplication operators with the functions t;. Let
HHo (03,57 (Yo x R)) := W3, (Yo x RY) /[W;, (Yo x R?), ¥; (Yo x RY)]

be the first homology group of ¥; *°(Yy x R?). It remains to show that the subspace
of HHo (¥, >°(Yo xR?)) ~ S(R?) spaned by t, HHo(¥; >°(Yy x R?)) has codimension
1. Indeed, the kernel HHy (¥, °°(Yy x R?)) — C of the evaluation at 0 is the span
of t;, HHo (¥ >°(Yo x R?)). This proves the lemma. O

Let z be the identity function on [0,00) and l; be a smooth function on [0, 00)
such that I (z) = z°~! for x > 1. (So that, in particular, lo(z) = Inz, for = large.)

We define then the spaces of functions
My = 5°([0,00)) + Clz)ly, for k€ Z,
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and

M =8%([0,00))l;, forseC\Z.
Thus, Mg consists of smooth functions on [0,00), that can be written, for any
MeZ,, as

-1 N
(10) f(z) =hu(z) + Z arz® + Z(bk +cplogz)z®, Vx> 1,
=M

where ay, bg, ¢, are complex parameters, N € Z, and hy € S™M71(][0,00)). Sim-
ilarly, the space My, s € Z, consists of smooth functions f € C*([0,00)) that can
be written, for any M € Z, as

N
(11) f(z) = hpy(z)x® + Z ekt Vo > 1.

for some constants ay € C, N € Z, and hyr € S~ 1([0, 00)). Fix M > max{s,0}
and R > 1, and define

(12) 1(f)(z) = / " ft)dt

-2

(13) /f /f dt+/ har(t)dt — Z “’“RHl—a,llogR

o~ R b Ch 1 £ !
14 - — i Z
(14) k:0k+1(k (k+1)+ck0gR); if feMgle
and
(15)

R o) N akRk+5+1
pv—/f=/ f(t)dt+/ herdi— S T re M, se
0 R b M k + s+ 1

It is easy to see that I maps My to itself and that the definition of pv— f is
independent of M and R, for f € M, s € C. Moreover,

(16) pof 14(7) = o= 1),

if f € Mo, because I*(f) — I**1(f') is a polynomial of degree at most k and pv—
vanishes on polynomials. If s € Z, then I maps M, to M, + Clz] ~ M, & Clz],
and since this is a direct sum decomposition, we can extend pv— to M, + Clz]
to vanish on polynomials, which guaranties that the Equation (16) is still satisfied.

Moreover, if f € M is as in Equation (11), P(z) = Zivzo brz®, and g = f+P, then
the original definition of pv—[ is still valid in this case, with the obvious changes:

N N
_ . akRk+s+1 kak+1

It not difficult to check that pv—f extends the integral on [0, 00), that is

(18) b 1 = / T e, i £ e S72([0,00)),
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and that it is homogeneous of degree —1 for s ¢ Z. Indeed, this follows from the
definition. If f € C*(R) is such that fi,f- € M, + C[X], for some s, where
f+ = fljo,00) and f_(7) = f(=7), 7 > 0, then we define

pv—/f = pv—| f+ + pv—[ f+.

Then equation (16) has to be changed to pv— I**s f = pv f.
Fix from now on an invertible positive operator D € ¥} (Y5 x R?). Let C 3
z — A(z) € ¥ (Yy x R?) be an entire function. Then

(19) f(r) = Tr(D(r)*|r|F A1), keZy

is defined and holomorphic for any Re(z) > m + dimYy; = m + d and any fixed
T € R?. Moreover, by classical results (see [12], for example), the function z — f,(7)
has a meromorphic extension to C, for each fixed 7, with at most simple poles at
integers. Let

Q= (C\Z)u{z,Re(z) > m+d},
d = dimYj,.

Lemma 5. Let A(z) € ¥,
for z € Q, be as above

(i) The function f,(7) is in C®°(Q x R?) and the map z — f,(7) is holomorphic
on Q, for each fixed T € R?.

(i) There is a holomorphic map g :  — S™+4([0,00)) C Mg such that f,(1) =
g-(7)|7|¥=%, for all T > 1, and hence f, € Muytatk—z, d = dim Y.

(iii) The function z — pv— f. is holomorphic on C\ Z, with at most simple
poles at integers.

(Yo xR?) be an entire function. Also, let f.(7), defined

Proof. The proof for k # 0 is the same as for k£ = 0, so we will assume k = 0 in
Equation (19).

We first prove the lemma for m = —oo, that is for A(z) € ¥, °°(Yo x R?). Denote
by K the algebra of compact operators acting on L?(Yy) and by C; C K the normed
ideal of trace class operators. For any M € Z, the product D™ (r)A(z,7) is in
S(R,C1) = S(R)®C; (here ® denotes the completed projective tensor product).
Also, because D is invertible and positive, the function (z,7) — D(r)™% € K
is differentiable, with bounded derivatives, and holomorphic in z, for Re(z) > 1.
Since Tr : K&®C; — C is continuous, it follows that the function

(z,7) > Tr(ﬁ(T)_Z_M_ID(T)M+IA(z,T)) eC

is differentiable, with bounded derivatives, and holomorphic in z for Re(z) > — M.
Since M is arbitrary, this proves (i) and (ii) for A(z) € ¥ °(Yp x R?). The
last statement is an immediate consequence of (ii), because z — g, € S(R?) is
holomorphic.

Using now the fact that the lemma is true for A(z) in the residual ideal, we may
assume, using a partition of unity, that Yy = R? and that the Schwartz convolution
kernels of A(z,7) are contained in a fixed compact set.

Let Ag,A; > 0 be the constant coefficient Laplacians on Yy = R¢ and RY,
respectively. We define Dy = (1 + Ag + A)Y/2 € ¥} (Y x R?). To prove the

lemma for A(z) € ¥ (Yo x R?), m > oo, we shall first assume that D = D,.
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Clearly, Dy € U} (Yo x R?). If A(z) = a(z,z, D, D;), for a symbol a(z,-,-,-) €
S™(T*Yy x RY) = S™(R? x R¢ x RY), then

A(z,7) = a(z,2,Dp,7) and  Do(r) * = (1+ Ao + |7[) =

This gives, by the standard calculus, that A(z,7)Do(7) "% = ay(2,, D,, 1) for
(20) ai(z,2,€,7) = a(z,2,& 7)1+ |7* + [€[) /2.

From the above relation, we obtain
f:(r) = Tr(A(r)D(r) )
= (27r)_d/ a(z,z,&, 7)1+ |7> + [£]*)"*dédx,  for T > 1.
T*Yy

Using the substitution £ — |7]|¢ and the assymptotic expansion of az in homo-
geneous functions in (£,7), we obtain (i) and (ii) for this particular choice of
D = Dy. The proof of (iii) is similar, except that one integrates with respect
to (z,&,7) € T*Yy x R? and that one separates the integrals as the sum of two
other integrals, one for |7| < 1 and one for |7| > 1.

The case D arbitrary follows by writing D™ = Dy *(DgD™*) and observing
that C3 2 = DED~* € ¥ (Y, x R?) is an entire function. O

mv

Assume now that ¢ = 1 (and hence that ¥ = Y5 x R). Using the above lemma
and the functionals pv— and I, we obtain, as in [19], a functional Tr; on ¥ (Y, x
R)[|7|], by the formula

(21) T (4) = pv—/ T*(fy+ 1),

where k > m +dim Yy + 1, f(7) = 0FA(7), f_(7) = 8¥(A(~7)), and 7 < 0. From
equation (16), we see that this definition is independent on k. The tracial property
of Try follows from

0:[A(r), B(r)] = [0:A(r), B(r)] + [A(r), 0, B(7)].
We continue to assume that B is reduced to a point.

Lemma 6. Restriction of the indicial family A to Rz, z € S9=1 defines an O(q)-
equivariant family of algebra morphism ry : U2 (Yo x R?) — ¥ (Yo x R). Fach
ry restricts to a degree preserving isomorphism U2 (Yo x R1)C() ~ U2 (Y, x R)%2
independent of x.

Proof. It is clear that the restriction of A to a line Rz is in S(Rz, ¥ (Yy)),

provided that A is in ¥ °(Yp x R?). Moreover, this gives isomorphisms

T-2(Yy x R?)CW ~ S(RY, & 2(Y5))°W ~ S(R, & (Yp))%2 ~ U -2(Y, x R)%2.

inv inv

These isomorphisms allow us to assume, using a partition of unity argument, that
Yy = R'. Using the fact that a symbol a € S™(T*Y, x RY) restricts to a symbol in
S™(T*Yy x Rx), z € SP~1, and the relation

A(T) = a(z, D,, 1),

if A=a(z,D,,D,), we see that the restriction of A to Rz is the indicial family of
an operator in ¥ (Yp x R), denoted r,(A). Since

S™(T*Yy x R1)CW ~ §™(T*Y,y x R)%2,
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the isomorphism ¥§° (Yy x R?)O(0) ~ ¥ (Y, x R)%2 follows. O
Let A € T, (Yy x R?) and denote by A; = fo(q) v(A)dv its average over O(q),

which we identify with an element of ¥ (Yo x R)Z2, thanks to Lemma 6. Define

Try(A) = Try (7771 Ay).

Lemma 7. The functional Try is an O(q)—invariant trace on U2 (Yo x RY), which

extends the trace Tr defined on ¥, °(Yy x R?) by Equation (9).

mv

Proof. The map Tr, is obviously well defined and O(q)-invariant, in view of the
above lemma. In order to check the tracial property, we use the definition. Fix
z € R? of length one, arbitrarily, then

v, (4) = /O TRl e ()

Since 7, is a morphism, |7| is central, and Tr; is a trace [19], the tracial property
of ﬂq follows.

To complete the proof, we need only prove that Tr, extends Tr, and this follows
by integration in polar coordinates using also Equation (18). |

It is not essential in the above statements that A have integral order. Both the
formula for 7,(A) and the definition of Tr,(A4) make sense for 4 € ¥ (Y), with
s not necessarily integral. We shall use this for operators of the form D~*A4 in
the following proposition. Actually, more is true of the Tr,-traces of elements of
non-integral order than for elements of integral order: let s & Z, then the action of

GL,(R) by automorphisms on ¥£ (Yp x R?) has the property

mv

(22) Tr,(T(A)) = | det(T)| ™" Tr, (A).

Proposition 2. For any self-adjoint, invertible, positive element D € ¥} (Y, x
R?) and any holomorphic function A : C — ¥ (Y x R?), the function

F(4;2) = TE,(D—A(2))

is holomorphic in Rez > m + q + dim Yy and extends to a meromorphic function
with o simple pole at z = 0. The residue of this holomorphic function depends
only on A(0) and will be denoted by Trr(A(0)). Moreover, Trg(A(0)) vanishes on

regularizing elements, is independent of D, and defines a trace on U (Yo x RY).

Proof. The properties of Fp stated in the first part of this proposition follow from
Lemma 5(iii) and the definition of Tr, in terms of Try, see Proposition 7. For the
rest of the proof, it is enough to assume that A(z) is independent of z. We set then
A= A(z) = A(0).

The proof of the fact that Trg is a trace and that it is independent of the choice
of D is obtained from a standard reasoning, as follows. We first write

Tr,(D *[A, B]) = Tr, (D *[D *, D*A]B)
and observe that [D~%, D* A]B is a holomorphic function vanishing at 0. This shows
that Tr, vanishes on commutators. The independence of Tr, on D is a consequence
of
¢, (D" 4) - Try(D; *4) = Tr,(D~*(1d -D*D; ) 4),

using that (Id —D?Dy*)A is a holomorphic function vanishing at 0. O
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Proposition 3. Let D be as above, let A € ¥ (Yo x R?). We denote

B, =D"*Aec ¥ "*(Yy x ZR(; and write the assymptotic expansion
B.(7) Zasz/lTl I7I7%,
with a homogeneous of order k in 7, for |r| > 1. Then
Trr(A) = / | 104,1(0,7),

and

lim (Tr, (D™*A) — 27! Trp (A)) = Try(A) +/ 0,0_1(2,7T)|2=0-
z—0 |7|=1
Proof. By the definition of Tr, using integration with respect to the orthogonal
group, it is enough to prove the result for ¢ = 1 and Zs invariant operators. The
Tr, trace of these operators is completely determined by fi(r) = d%A(r), and
f (r) = 8%(A(~1)), for 7 < 0. This reduces our analysis to a lemma about
integrals of functions in M,.

Fix € > 0, and define C, to be the space of functions f(s,z), —e < Re(s) < ¢,
x > 0, with the following properties:

1. f is smooth in (s,z) and holomorphic in s for each fived x;

2. For any M € N there exist R > 0, ¢, € C and complex valued functions

a(s),br(s), ck, and ha(s, ) satisfying

f(0,2) = hp(0,2) + Z apT +Z ak(0) + bi(0) + ¢ log z) 2*
fors=0,z> R, and
N
f(s,2) = ha(s,z)z™% + Z apzh~ S+Z 8) + cps (1 —z7%))a",
=M k=0

fors#0,xz > R, and—e<Re(s)<6
3. ax(s), br(s) are holomorphic in s and ha(s,x) is holomorphic in s, for each
fired z, and has(s,+) € STM7L([0,0)), for each s in the strip —e < Re(s) < €

Of course the choice of R > 0 is not important. It is easy to see that if f € C,,
then I(f) € C.. Moreover, for any f € Ce,

li_I}l’(l) pv—[ f(s,z)dx —a_1(s)s*R™° = pv—[ f(0,z)dx + a_1(0)logR,
from definition. This gives
tsg (pv-{ f(s,2)ds — a_1(0)s 1) = Tem(£(0,) + a1 0).
In view of our first remark, this completes the proof. O

We now drop the assumption that B be reduced to a point. To extend the above
results to the general case, we proceed to a large extent as we did when B was
reduced to a point.
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Fix an invertible positive operator D € ¥L_(Y),andlet C 3 z — A(z) € ¥,
be an entire function. Then

(23) fo(r) =Tr(D(n)*|r[F A(r)), k€ Zy,

¥)

is defined and holomorphic for any Re(z) > m +d = m + dimY, and any fixed
T € G*, and the function z — f,(7) has a meromorphic extension to C, for each fixed
T, with at most simple poles at integers. Let Q = (C\Z)U{z,Re(z) > m+dimYy}.

Lemma 8. Let A(z) € ¥,
with z € Q and T € G*.

(i) The function f.(7) is in C=°(Q x G*) and the map z — f.(7) is holomorphic
on Q, for each fixed T € G*.

(i) There is g € C*®(2 x G*), g(s,-) € S™T([0,00)) C Mo, for each s, g(s,T)
holomorphic in s, for each fized T, such that f.(1) = g.(7)|7|F=%, for all T > 1, and
hence f, € Mpm+tdik—z, d=dimY —dimG.

(iii) The function z — pv—f f, is holomorphic on C\ Z, with at most simple
poles at integers.

(Y) be an entire function. Also, let f,(T) be as above,

Proof. Since all the statements of the above theorem are statements about the
local behaviour of certain functions, we may assume that Y is a flat G-space. This
means, we recall, that Y = B x Yy x R? and G = B x R?. Then we just repeat the
proof of Lemma 5 including an extra parameter b € B, with respect to which all
functions involved are smooth. O

We now extend the definition of the various traces and functionals we considered
above when B was reduced to a point. This is not completely canonical, because
we need to fix a metric on G* in order to obtain a volume form on the fibers of
G* — B. The choice of the metric defines the group O(G) of fiberwise orthogonal
isomorphisms of G. We also fix a lifting Y/G — Y, which gives an isomorphism

YZY/g xBQ.

This isomorphism and the metric on G give an action of O(G) on Y, which normal-
izes the structural action of G by translations on Y. Consequently, the group O(G)
acts by isomorphisms on the algebra 52 (Y). By Lemma 1, the group O(G) also
acts by isomorphisms on ¥ (V).

Lemma 9. Fix a lifting Y/G — Y, which gives an isomorphism' Y ~Y/G xp G
and an action by automorphisms of the group O(G) on VX (Y), as above. Then
there exists an O(G)-linear map

(Y) = g, (V)0

mv

Ey : ¥

mv

such that Ey (AB) = AEy(B) and Ey(BA) = Ey(B)A, for all A € ¥ (V)09
and B € UL (V). Moroever, U2 (V)09 ~ ¥ (V/G x R)2/?2, and hence the

isomorphism class of the algebra ¥52 (Y)O(9) depends only on Y/G.

Proof. If Y is a flat G space, then this result follows right away from Lemma
6. In general, we can choose trivilizations of ¥ such that the transition functions
preserve the metric on G, and hence the transition functions are in O(G). Because
the isomorphisms of Lemma 6 commute with the action of the orthogonal group,
the result follows. O
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We now consider C*°(B)-linear traces on ¥ (Y), for a general G space Y. That

mv

is, we consider C*°(B)-linear maps T : ¥ (Y) — C°°(B) such that

T(fA) = fT(A), for fe C*®(B)and A€ ¥ (()Y),

and
T([A,B])=0, for A,Be ¥ (V).
If we fix a metric on G, then we obtain a C*(B)-linear trace Try that generalizes
the Tr,—traces as follows. Suppose Y = B x Yy x R? and A = (4;) € ¥ (Y), then

we set o
(24) Try (4)(b) = Try(As).

Because trace Try, for Y = B x Y x R?, is invariant with respect to the action of
the orthogonal group, the choice of an isomorphism Y/G x G ~ G of G-spaces and
of a metric on G allow us to extend the definition of Try to arbitrary Y. We stress
that this trace depends on the choices we made. This new trace satisfies

(25) Try (4) = Try/gxr(Ey (4)).
We then have the following immediate generalization of Proposition 2 above:

Proposition 4. For any self-adjoint, invertible, positive element D € ¥l (V)
and any holomorphic function A : C — ¥ (Y), the function

Fp(A;z) = Try (D™*A(2))

18 holomorphic in Rez > —m + p+dimY — dim G and extends to a meromorphic
function with o simple pole at z = 0. The residue of this holomorphic function
depends only on A(0) and will be denoted by Trry (A(0)). Moreover, Trry(A(0))
vanishes on regularizing elements, is independent of D, and defines a C*°(B)-linear
trace on U (Yo x R?). This trace is independent of the choice of the trivializations.

nv

Proof. Everything in this proposition follows from the case when B is reduced to
a point, except the independence of trivialization. For this we also use Equation
(22). O

Proposition 3 extends virtually without change to families (that is, to the case
B-nontrivial).

The traces Tr, and Try extend to matrix algebras by taking the sum of the
traces of the entries on the main diagonal.

4. LOCAL INDEX FORMULAE

We now return to the the study of the index of a family of invariant, elliptic oper-
ators. More precisely, we want local formulae for Ch(ind,(A)), and, to this end, we
shall use regularized traces and their properties developed in the previous section.
If A is a family of Dirac operators and G is trivial, local formulae for Ch(ind,(A))
were obtained using heat kernels by Bismut in a remarkable paper, [5]. Our re-
sults are a step towards a similar result for arbitrary families of pseudodifferential
operators invariant with respect to a bundle of Lie groups.

Fix a group morphism x : H™(g*) — C. We want to obtain local formulae for
x(Ch(ind,(A))). For simplicity, we shall assume in this section that Y is a flat
G-space, that is Y = Bx Yy xR? and G = B x R?, so g* also identifies with B x R?.
We shall also assume in this section that B and Y, are compact. The case of a
general bundle is more technical and will be treated in a future paper.
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Our approach is based on an interpretation of x(Ch(ind,(A))) using the Fedosov
(or x) product. We begin by recalling the definition of the Fedosov product and by
making some general remarks on traces and their pairing with the K-theory of the
algebras we consider.

Let A = & A be a graded algebra endowed with a graded derivation d : Ay —
Ak+1, the Fedosov product is defined by

axb=ab+ (—1)%8%(da)(db).

(The name is due to Cuntz and Quillen who have thoroughly studied the Fedosov
product in connection to their approach to Non-commutative de Rham cohomol-
ogy.) We shall denote by Q2 the algebra 2 with the Fedosov (or %) product and
by Qe C QA the subalgebra of even elements.

Since we shall work with non-unital algebras also, it is sometimes necessary
to adjoin a unit “1” to Q2. The resulting algebra will be simply denoted by
QA ~ QA C. Similarly, QA := Q.,2.

A graded trace 7 on Q% restricts to an ordinary trace on Q7 2, and hence it
gives rise to a morphism

1
T KQR(QL) — C mlel =) Tles),
J
for any idempotent e = [e;;] € Mn(QF ). If m, : K28(QA) — K3'8(2p) is the
natural morphism induced by 7 : QA — 2o ® C, then =, is an isomorphism, by
standard algebra results. Consequently, the trace 7 also gives rise to a morphism

(26) Ti=Toom ': Kglg(leo ®C) — C,

see [10, 27].
The explicit form of the morphism 7 is not difficult to determine. Let e € Ao ®C
be an idempotent, then

N
(27) €= Z(—l)k%e(de)%
k>0 ’

is an idempotent in Q7F, 2. Assume the trace 7 is concentrated on ™Asx,, k € N. Then
the explicit formula for 7([e]) is
~ 2k)!
(28) #(iel) = (-1 P ((edede)®,
(we used e(de)* = (edede)*, valid for all e satisfying e? = e).
Traces on Q+% are easy to obtain. Indeed, if 7 is an even graded trace on 2
satisfying 7(2;) = 0, if j # p, and 7(d) = 0, then

T(a*xb—(=1)%bxa) =0,

for any a € A; and b € 2, and hence 7 defines a graded trace on Q2. The trace 7
defined above then extends to a trace on Q7,2 by setting 7(1) = 0.

We now define the algebras to which we shall apply the above considerations.
Let Q*(B) be the space of smooth forms on B, and consider the differential graded
algebra
A:= V>

mv

(V;CV) Qoo () 07 (B) @ AR ~ My (T3S, (V) ®coo () 0*(B) @ A*RY,

inv
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Let dp the the de Rham differential in the B variables (here we use the assumption
that Y is a flat G-space). The differential of 2/ is then the usual de Rham differential
dDR:
dpr(A) =) [ti, Aldri + d(A), and d(Aw) = d(A)E,

i 4 € WE(V5CY) e 2" (B) = My(¥E, (1)) Som (e 2°(B) and €1 . produc
of some of the “constant” forms dry,...,dr,. Thus the differential dpg is with
respect to the B x R? variables.

Let 7*A*T*B be the pull back to Y of the exterior algebra of the cotangent
bundle of B and F = n*A*T*B ® A*R?. Then

A~ TX(V;FCV)

mv

Inside 2 we have the ideal of regularizing operators

3= T2V CY) ®ceo () Q1 (B) @ AR ~ UL2°(YV; F o CV)

lIlV mv

with quotient algebra

B = AT = My (U5, (V)/ 50 (Y)) ®cee () ¥7(B) @ AR

~ U2 (V;FeCN)/¥;

mv

mv

<(Y; FoCN).

mnv

We consequently obtain the exact sequence of algebras
(29) 0= QT = Qe = QB — 0,

which gives rise to the boundary map 0g,
g : K1"(QevB) = K (Qeudo) C K5 (Q4, %),

on algebraic K-theory.

We now define the traces we shall consider on the algebras A,B,...,QJ. Let
w : QF(B) = C be a closed current, that is, a continuous map such that w(dn) = 0
for any form 7. Then w defines a morphism x,, : H}(g*) — C. Also let

AR(®EeN =T (V;CV) ®coo(p) *(B) ® A*RY,
and define

(30) To(A®(®E) = = Trg(A)w(C) . £

(2k)
Then 7, is a trace on 2 satisfying 7,(d(a)) =0if a € 7.

If e € Mn(P.,2°(Y)+C) is an idempotent, then e defines a class z. € K°(g*). It
is useful to review the definition of this class. First, we can replace e by an equivalent
projection such that there exists another projection p satisfying dp = 0 and pe =
ep = p. The projection p is required to consist of a smooth family of projections
on G*, acting on the fibers of G* xp Y — G*, with values in My (¥~°(Y};) + C),
and constant along the fibers of G* — B. This projection p has the property that
pJo C Jo- Then we define the vector bundle V, on g* such that its fiber at 7 is the
range of the indicial operator é(7) — p. Finally, the class z. defined by e, which we
are looking for, is [V,] — r[1], where r is the rank of V.

It is interesting to compare the Chern character of the bundle V, to the pair-
ing 7,[e]. First, the vector bundle V, is trivial at infinity. The curvature of the
Grasmannian connection V¢ = e o d is then R® := (e o d)? = edede, by a standard
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computation. If k+ ¢ = 2p > 0 is even, then 7, is an even, graded trace, and hence
it pairs with [e]. Using the explicit formula from Equation (28), we obtain that

(31) Tule] = w((—R°)* /K1)

recovers the pairing of Ch(V;), the Chern character of V., with the cohomology
class of the form w. In the notation introduced above, we have

Tule] = Xw(Ch(Ve)) = xw (Ch(ze))-

See [10]. It also follows that all morphisms K3 (¥ (Y)) ~ Ko(¥;°(Y)) = C
are of the form 7., for a suitable w.
Recall now that we defined the analytic index ind, to be the composite map

ind, : KM (Bo) - K&9(J0) ~ K°(g*),
where Jg = My (P, 2°(Y)) and 9 is the boundary map in algebraic K-theory as-

inv
sociated to the exact sequence 0 — Jg — R — By — 0. As we explained at the
beginning of the section, we are interested in understanding the morphism

x o Choind, : KM (B2 (V;CN) /W 2(Y;CV)) = KM (B,) — C,

mv mv

where x : H¥(g*) — C is an arbitrary group morphism. By the above discussion
and linearity, we may assume that y = ., for some closed current w : Q*(B) — C.
Then a preliminary formula for the composition x, o Ch o ind, is given in the
following lemma.

Lemma 10. Let w: Q¥(B) — C be a closed current such that k+q = 2p > 0 is
even. Denote by x., : HX(g*) — C the morphism defined by w. Then

XooChoind, =7,00: Kflg(‘Bg) — C.
Proof. This follows by applying the above constructions to ind,(A), A elliptic. O

We now turn to the computation of 7, oind,. We shall use the generic notation
7 for all the quotient morphisms Q2 — 2y and QB — By, and QT — Jo. Also,
we shall denote by
[A4,B], = A% B — (-1)YBx A,
for A € ;, B € 2;, the graded commutator in Q2 with respect to the x-product.

Lemma 11. Let u € By be an invertible element with inverse v. Choose liftings
A and B of u and, respectively, v. Also, let T be a closed graded trace on J and
B' =% (-1)*B(dAdB)*. Then
70 0u] = 7([4, B'],).
Proof. The map
Tt KM8(QB) — K'8(By)
is onto because if u € By = T, (V;CV) /¥, 2 (Y;CN) is invertible in By with

nv mv
inverse v, then its image u' in QB is also invertible with inverse

oo

v = Z(—l)kv(dudv)k.

k=0
(The sum is actually finite for our algebras.) The relations

uxv =1=v" xu
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are easily checked. From the naturality of the boundary map in algebraic K—theory,
we obtain that

T 00 = Do, : KME(QB) = K2'8(Jp),
and hence

(32) T 0 O[u] = 75 0 Og[u'].

This simple relation will play an important role in what follows because it reduces
the computation of 7, o d to the computation of 7, o 9g.

Lift w € Mn(2Bo) to an element A € My (o) = My (T, (Y)) and its inverse
v to an element B € My (¥, (Y)), as in the statement of the lemma. This gives
for v' (the inverse of the image u' of v in Q9B with respect to the x product) the

explicit lift

B':=) (-1)"B(dAdB)*.
k=0
From a direct computation (see for example [26])

7 09g([u']) = 7(2[A, B'l, — [A,B'AB'],) = 7(A* B' — B' x A).
From this the result of the lemma follows. O

Let D € ¥} (V) be the operator used to define Tr, and Trg in the previous
section. Also, let + : AYR? — C be the isomorphism given by contraction with the

(dual) of the top form on R?. This gives rise to maps

(33) Try ® 1, Trry ®¢: QU (Y) = Q*(B),

mv

which vanish on forms of degree less than g in dri, ... ,dr,. Because Try and Trry
are C*°(B)-linear graded traces on 2o, Try ® ¢, Trry ®¢ are Q*(B)-linear (graded)
traces. If w : *(B) — C is a closed current, we denote

(34) pu(A) = (w, Trry ®u(A)).

and note that p, is a closed graded trace. Also, note that 7,(4) = (w,Try ®
t(A)), which we shall use to extend 7, to operators of non-integral orders, still
preserving the tracial property. Moreover, 7,(dA) = 0, if A has non-integer order.
Consequently, 7,,([4,B]«) = 0 if ord A + ord B is not an integer. This is seen
by noticind that 7, (d(D~*A) = 0 for Re(z) large first, and then for z such that
zord D + ord A not an integer, by analytic continuation.

We then have

Lemma 12. If A(z) € Q2 is holomorphic in a neighborhood of 0 € C\ Z*, then
the function 1, (D~ * % A(2)) holomorphic except possibly at 0, where it has a simple
pole with residue p,(A(0)).

Proof. We have that
D™ x A(z) = D™?A(2) + dD7*dA(z).
Now we observe that

i —1ap—% = i -1 . D~ R . R
lim »~'dD™* = lim 2~ [t;, D~*|dr; = = ) _[t;,log D]dr; = —dlog D

Consequently, D% x A(z) = D~*B(z) for some holomorphic function B such that
B(0) = A(0). The result then is an immediate consequence of Proposition 4. O
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Let 8 : Ki'¥(%0) = KRS(Us, (V) /U5 (V) = Ke¥(T5(V)) = K§'(30) be
the boundary map in algebraic K-theory, as above. We continue to assume that
Y =B xYyxR! is aflat G =B x Ri-space and that B and Yy are compact.

Recall that the map 7, : K3'%(Jy) — C is given by the Equations (26) and (31)
and that p,, is given by the Equation (34).

Theorem 3. Fiz u € My(¥2 (Y)/¥, °(Y)). Assume u to be invertible, and

mv

choose A,B € Mn(¥ (Y)) such that A maps to u and B maps to u™'. If w :

mv

Q%(B) — C is a closed current such the k + q = 2p is even, then
7y 0 0lu] = —2(-1)P7,((dAdB)?) = 2(—1)P1, @ w((dBdA)P)
= —p, (u"log D, u](u~"du)??),
Proof. We shall denote
A= MN(‘Ilmv(Y) ®C°°(B) Q*(B) ® A*Rq),
as before. Moreover, B and J will have the meaning they had before.
We shall use Lemma 11. Let B’ = Y77 ,(—1)* B(dAdB)F be as in that lemma
and evaluate the commutator [4, B'], (with respect to the x product). We obtain
[4,B], =) (~1)'AB(dAdB)' —
1=0 !

(-1)!B(dAdB)' A

[M]8

(—1)Y(dAdB)"T* — 3" (—1)/(dBdA)' T,
=0

75

+
I

Il
©

the sum being of course finite.

We next observe that 7,(AB(dAdB)') = 7,(B(dAdB)'A) and 7,((dAdB)") =
—7,((dBdA)") because 7, is a graded trace on 2 (with the usual product). Using
this we obtain from Lemma 11 that
(35) 7, 00[u] = 7,(A* B' — B' x A) = 2(=1)?"'7,((dAdB)?).

This proves the first half of our formula.

The commutator [4, B'|x = Ax B’ — B’ x A maps to uxv—v*u = 0in @B, and
hence [A, B']« is in @7, and hence 7,([4, Blx) = lim,—0 7, (D% % [A, B]x). Next
we use that lim, .o 27 'dD~* = —dlog D and hence dlog D is actualy in \Ilmv(Y)
in spite of the fact that log D is not in the algebra lIva(Y). Moreover, z~1dD~?
holomorphic at 0.

Using that 7, ([4, D~*B'],) for all z such that —z+ord A+ ord B not an integer,
we finally obtain

1.([4,B']) = lir%Tw(D_z *[A, B']y)
zZ—r
= lim 7, ([D"?, Alx * B') = lim 27,(D *F(z)),
z—0 z—0

where F(z) = 27!1[D~*, D* A], x B'. Since F is a holomorphic function in a neigh-
borhood of 0 with
F(0) = —[log D, A]B' + d[logD, AldB',
it further follows that
lim 27, (D F(2)) = pu(F(0)) = ~pu (u~[l0g D, ul(u" du)?)

Putting toghether the above formulae, we obtain the desired result. O
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5. HIGHER ETA INVARIANTS IN ALGEBRAIC K-THEORY

We consider the same setting as in the previous section. In particular, w :
QF(B) — C is a closed current and 7, is the associated trace on 2. Then a direct
computation gives that

dw(ao,a1,...,a) = 1,(aoday ... da))/l!, l=q+k

is a [-Hochschild cocycle on ¥° (Y). The Dennis trace map [15]

mnv

KU, (V) = HH (T3, (V)

mnv mv

and the morphism HH; (T (Y)) — C defined by ¢, give rise to a morphism

mnv

(36) v KM8(82, (V) = C.

mv

Because the restriction of ¢, to ¥
the composition

(YY) is cyclic (so it defines a cyclic cocycle),

K80, 2(Y)) — K8 (T2, (V) 2 C
factors as
K8(@,2(V) — KiP(,2(7) “F ¢,
where (¢, )« is the pairing of cyclic homology with topological K-theory. In partic-
ular, n,, is non-zero if w is not exact.

The morphism 7,, does not factor through topological K-Theory though, as a
matter of fact

mnv

KPP (R (V) — K (T35, (Y)

mv
vanishes for any p, as proved in [20]. Moreover, for B reduced to a point, G = R,
k=1, w(fdt) = [, f(t)dt, and

D = Do+, € My (U35, (Y)),

mv

the indicial map of an admissible (chiral) Dirac operator on Y x R, the main result
of [19] states that n,, (D) = (Dy)/2, where n(Dy) is the “eta”—invariant introduced
by Atiyah, Patodi, and Singer in [3]. This is not difficult to see as follows.
Consider a first order, elliptic, self-adjoing operator D, acting on sections of
a vector bundle E on a smooth, compact manifold M. Let \,, n € Z be the
eigenvalues of Dy, counted with multiplicity. Assume that Dg is invertible, for
simplicity (so A, # 0, for all n). Then n(Dy, ), the “eta-function of” Dy is

DOa Zl)‘ ||)‘ |7

for Res > n. This function was considered in connection with elliptic operators by
Atiyah, Patodi, and Singer in a cellebrated paper, [3].

Now let Y = M xR, G =R, so B is reduced to a point. Let ¢ be the coordinate
on R and consider D = Do+8; € ¥L (V). Note that D is in ¥, (V') because Dy is
a differential operator. If Dy is the Dirac operator on M associated to some Spin‘—
structure on M and M is odd dimensional, then D is the Chiral Dirac operator on
the even dimensional manifold M x R. (The full Dirac operator has D as one of its

corners.) Then D(7) = Dy + ir. Consider the functions

f(s) = /R(l +22)7%/2 14z,  and
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9(s) = ——Tr, @ 1((D* D)~*/2D~'dD) = / Tr((D2 +7%) /2~ (Do — ir))dr
27 27 Jr

-1 / Tr((D2 +7%)~%/>"1Dy)dr, Res > dim M.
2r Jp

Then f is defined and holomorphic for Re s > —1 and g is defined and holomorphic
for Res > dim M. Moreover, we know that g(s) has a meromorphic extension to
C, whose only possible poles are simple poles at integers. A simple computation
then gives

(37) 9(s) = f(s)n(Do, 5),

on the common domain of definition. This shows that 7(s) has a meromorphic
extension to Res > —1 with the same poles as g. (Actually, it follows that 1 has a
meromorphic extension to C, because f extens meromorphically to C also, but this
is not important for us.)

Now we use that

g(s) = pv—/ I2”Tr(62p(D(2) +T2)_S/2_1D0)d7'
B pv—/ IQPTT((D(Z’ +72)_s/2_1_pP(T, Do))dT,

with P an even polynomial in 7, with coefficients differential operators on M (more
precisely, constant coefficient polynomials in Dg). Now, as expected,

Tr((DZ + 7%)~*/>71=?P(1, Dy))

has an expansion in a neighborhood of oo (7 real) with only even powers of 7. This
is a particular case of Theorem 2.7, page 503, of [13]. (Their theorem is much more
general, we use it for m = 2, A = D%, A = 72, Q one of the differential operators
appearing as coefficients of P, and p large.) By integrating an even number of
times, the property that the coefficients of odd, negative powers of |7| vanish is
preserved, and we get the following result.

Lemma 13. Let g(1) = I??Tr(02P(D} + 72)~%/>=1Dy). Then

N

g(r) ~ Y ag(s)lrf*

k=—o0
as T — oo andaszfork odd, k < 0.

Note that the above arguments also give a* = a~, but this makes no difference
in the next applications.

From the above lemma, using Proposition 3 we obtain the following result which
combines results from [3, 12, 19]. See also [7, 22, 32] for generalizations. We use
the notation that D' = [D,t], t being the parameter of the R-action.

Theorem 4. Let Dy be a first order, self-adjoint, differential operator. Then the
function (D, s) is regular at s =0 and

11—
n(Do, s) = ;Trl(D_lD’), D = Dy + 6.
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Proof. By Equation (37), the residue of mn(Do, s) at 0 is the same as that of the
function
Tt ((D*D)~*/?D71D") = Tr, (D*D)~*/>71Dy).
Let ozkjE be as in Lemma 13 above, for some large p € N. The first part of Proposition
3 gives that the residue of Tr; ((D*D)~%/2Dy) at s = 0 is a,(0) + aZ,(0). By
Lemma 13 above, we obtain that at,(0) + a~;(0) = 0. This proves the regularity
of the function 7n(Dy, s) at s = 0.
The second relation of Proposition 3 gives

Tr,(D7'D') - lim Tr, (D*D)~*/2D7'D") — Res,—oTr, (D*D)~*/?D7'D')]
§—
= —85aF,(0) — 8;a_,(0).
Since Res,—oTry((D*D)~*/2D~'D') = 0 and 8,a™,(0) + d,a~,(0) = 0, we obtain
Try (D 'D') = lim g(s) = 7n(Dy,0),
s—0
which proves the second part of the theorem. O

Put differently, the second part of the above theorem states that the eta invariant
of Dy is the value at D of a group morphism K; (¥ (M x R)) — C. This group
morphism coincides with 7, w(f) = [; f, in the above notation.

It is tempting to try to define a higher eta invariant on ¥ (YV), ¢ = 2k — 1,
by the formula ny,(Do) = Tr,((D~'dD)**~1), D = Dy + ¢(7); however, as it was
proved by Lesch and Pflaum, this is not multiplicative, and besides, it coincides

with usual eta invariant of Dy (up to a multiple depending only on k).

6. INDEX THEORY ON A SIMPLEX

In this section, we discuss an application of the computation of the degree in
Section 4 to the question of formulating (i.e., the existence of) Fredholm boundary
conditions for b-pseudodifferential operators on the simplex

An = {(Z‘O,,’Cl,... ,z‘n),.'L',' Z O,ZIIJ, = ].}

More generally, we shall consider the same question for the manifold with corners
A, x Y, where Y is a smooth, compact manifold without corners. We obtain
complete results for dimY > 0. The answer to this existence question is “local,”
that is, it can be given in terms of the principal symbol. The problem of computing
the index of the resulting Fredholm operators, if any, is a non-local’ problem and
will be addressed in a future paper.

In addition to the results of the previous sections, we shall also use computations
from [20]. All the definitions not included in this section can be found in that paper.

We formalize the above question as the following natural problem:

Problem (F(T)). Suppose an elliptic operator T € ®;*(A, x Y; E) is given. For
what T we can find a perturbation T + R of T, by a regularizing operator R €
U, (A,), such that T + R: H°(A, x Y;E) = H*"™(A, xY; E) is Fredholm?

We can reduce the general case to the case m = 0 by replacing T' with D~™T,
where D is an elliptic strictly positive operator in ¥} (A, x Y; E). (The resulting
operator D~™T is then in the norm completion of ¥9(A, x Y;End(E)), but this
makes no difference to us.) For m = 0, we then obtain an operator acting on the
Hilbert space L2(A,,).
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The answer to the above Problem is independent on the metric chosen on A,, XY,
although the choice of R may depend on the metric.

Let ﬁg(An x Y') be the norm closure of ¥9(A,, x V). By the results of [20], the

algebra Tg(An x Y) contains the ideal of compact operators K on L?(A, x Y).
(See also [16].) Denote by @ be the algebra of “joint symbols” of ¥9(A,, x Y):

Q =T, (A, xY)/K,

The principal symbol morphism then extends to a surjective morphism og :  —
C(*S*A,, x Y) with kernel J.

A first, tautological observation is that Problem (F(T")) has a solution if, and
only if, the invertible element o¢(T) € C(%S*A,, x Y;End(E)) has a lifting to an
invertible element in @ (the lifting is T+ R). Since there is a necessary condition for
this to happen in terms of K-theory, and the K-groups involved do not depend on
E, up to isomorphism, we obtain the following necessary condition for our problem
to have a solution: Problem (F(T')) has a solution only if the class [oo(T)] €
K (C(®S*A, x Y)) is in the image of the morphism K;(Q) — K1(C(*S*A, x Y)).

Now the standard six term K-theory exact sequence associated to the short exact
sequence of C*-algebras

0J—-Q—=C(¢S*A, xY) =0

tells us that the class [00(T)] € K1(C(%5*A,, xY)) is in the image of the morphism
Ki(Q) — K;(C(®.S*A,, x Y)) if, and only if, it is in the kernel of the boundary
map 9 : K1(C(®S*(A, x Y))) = Ky(J) associated to the above exact sequence of
algebras.

Lemma 14. If Problem (F(T) has a solution, then 8o, (T)] = 0 € Ko(J). This
condition is also sufficient if dimY > 0

Proof. Only the second part was not yet proved. Now, for dimY > 0, the ideal
I is stable (i.e., J ® K ~ J, where K is the algebra of compact operators on an
separable, infinite Hilbert space). This is enough to prove that the existence of a
stable lifting for an invertible element T in () implies the existence of an invertible
lifting of T'. (|

Denote by I = T;l(An x V) the norm closure of ¥; (A, x V) (the closure
is in the norm topology of bounded operators on L?(A, x Y)). Then J = I/K.
The results of [20] give a spectral sequence converging to the K—theory groups of I
(and, with some obvious changes, a spectral sequence converging to the K—theory
of J). The E' complex of this spectral sequence is independent of ¥ and is (dual
to) the combinatorial simplicial complex of A,,, more precisely, it is a direct sum
of complexes isomorphic to

n(n—1)

0—Z"—7Z = —...Z"—7Z—0.

The direct sum commes from the fact that K-theory is indexed by Z/27Z and not
by Z. The resulting spectral sequence, which is indexed by Z x Z, will be periodic
of period 2 in each variable.

It follows that the spectral sequence converging to K,(I) degenerates at E?,
which shows that K,,(I) ~ Z and K,,—1(I) = 0 (the same n as in A,). To obtain
the K—theory of J one proceeds similarly, the only difference being that one drops
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the last copy of Z in the above complex. Finaly, this gives Ko(J) ~ Ko(I) and
Kl(J) ~ Kl(I) &) Z.
Denote by
Ing : U°(A, xY) = ¥ (V),
k =0,...,n, the indicial maps corresponding to the corners of A, x Y. If B is
reduced to a point and G = R", we shall denote degg = deg,,. We are now ready
to formulate and prove the main result of this section.

Theorem 5. Let T € ¥;"(A, xY), m > 0, be an elliptic operator. Assume
dimY > 0. Then, for n odd, Problem (F(T)) always has a solution. For n even,
Problem (F(T)) has a solution if, and only if, deg,,(Ing(T)) = 0 for some (equiva-
lently, for all) k.

Proof. Using the results of [20], we first observe that, in order for T+ R to be
Fredholm, it is necessary that Ing (7 + R) be invertible for all &, so

deg,,(Ing(T)) = deg,,(Ing (T + R)) =0, for all k.

This condition is automatically satisfied for n odd. The vanishing of all deg,, (Iny (T"))
is hence necessary for Problem (F(T")) to have a solution,

To prove that the vanishing of any of deg,, (Iny(T')) is enough for Problem (F(T'))
to have a solution, we shall show that all deg,, (Ing (7)) are equal and that 9o (T')] =
0 if, and only if, deg,,(Ing (7)) = 0. The result will follow then from Lemma 14.

As discussed above it is enough to consider the case m = 0. Now

Ko(J) = E2, = ker(Z™ — Z"("~1)/2),
so Ko(J) = {(p,p,-..,p)} C Z™ Because
8[o0(T)] = (deg,,(Ing(T)), deg,, (In1 (T)), . . . , deg,, (In,(T))) € Ep,,

we obtain that the degrees deg, (Ing(T))) are all equal and that the vanishing
of J[oo(T)] is equivalent to the vanishing of any of the degrees deg, (Ing(T))).
As observed above, an application of Lemma 14 is now enough to complete the
proof. O
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