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Abstract

The technique of singular Hecke operators for groups I'3(q) is extended to sin-
gular Frobenius operators acting on Siegel modular forms with Dirichlet characters
for the groups of prime levels gq. The question of simultaneous diagonalization of
the operators with regular Hecke operators is considered. An application is given
to Euler factorization of radial Dirichlet series associated to eigenfunctions of the
operators.!
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Introduction

0.1. Modular forms with characters. Let k, ¢ be natural numbers and x a
Dirichlet character modulo q. A complex-valued function F' on the (Siegel) upper
half-plane of genus n,

H,={Z=X+iY €C}; 'Z=2ZY >0},

is called a (Siegel) modular form of weight k and character x for the group

I'?(q) = {M: (é g) €z *MJ,M=J,, C=0 (mod q)},

1Key words: Frobenius operators, Hecke operators, Hecke-Shimura rings, Siegel modular
forms, zeta functions of modular forms.
AMS Classification: 11F46, 11F60, 11F66.
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of order n, if it is holomorphic on H,,, including all cusps of the group, if n = 1,
and satisfies the functional equation

where J,, = with the zero matrix 0 = 0,, and the unit matrix £ = E,

(0-1) F((AZ + B)(CZ + D)™ ') = x(det D) det(CZ + D)*F(Z)
. A B
for each matrix M = < C D) of the group I'f(¢). We shall denote by 97 (q, x)

the C-linear space of all such functions. Every function F' of the space has Fourier
expansion of the form

(0-2) F(Z)= Y f(A)exp(niTr(AZ)),
A€E, , A>0

where E,, is the set of all integral symmetric matrices of order n with even entries
on the principal diagonal (even matrices), with constant Fourier coefficients f(A)
satisfying relations

fCUAU) = x(detU)(det U)*f(A) (A €R,, U € GL,(7)).

Modular forms F' whose Fourier coefficients together with Fourier coefficients of the

functions det(CZ + D)"*F((AZ + B)(CZ + D)™1) for all matrices (é g) of

the (Siegel) modular group of genus n,
"= Fg(l)a

are equal to zero on all singular matrices are called cusp forms of weight k and
character x for the group I'j(q). The subspace of all cusp forms of 9} (q, x) will
be denoted by N} (q, x)-

The spaces M} (¢, x) (resp., M (g, x)) for all Dirichlet characters modulo ¢ can
be joined together into the space

(0-3) Mi(a, a) = Y, Mi(a, x)
xmodgq

(resp.,

(0-4) Me(g @)= Y Mg, X))
xmodg

of modular forms (resp.,cusp forms) of weight k for the group

05 reo-{(4 p)et@ waz1mdgf,
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The space M} (g, q) can be characterized as the set of all holomorphic functions on
H,, including cusps of I'"(q, q), if n = 1, which satisfy

(0-6) F((AZ+ B)(CZ+ D)™ ') =det(CZ+D)*F(Z) (¥ (g g) eT"(q, q)).

Fourier coefficients f(A) of functions of M} (g, ¢) satisfy the relations
(0-7) fCUAU) = f(4)  (VA€E,, U € SL,(Z)).

The space M} (g, ¢) is finite-dimensional over C. The subspace 9} (g, g) of cusp
forms have structure of Hilbert space with respect to Petersson scalar product
defined by invariant integration on a fundamental domain of I'"* (g, ¢) on H,,. The
decomposition (0-4) is orthogonal with respect to the scalar product.

For details on modular forms see [An(87)],Ch.2, or [An-Z(90)],Ch.2.

0.2. Hecke—Shimura rings. Fourier coefficients of modular forms have im-
portant multiplicative properties, which reflect multiplicative relations in certain
rings, whose basic definitions we shall now recall.

Let A be a multiplicative semigroup and G a subgroup of A such that every
double coset GMG of A modulo G is a finite union of left cosets GM’. Let us
consider the vector space over the field Q of rational numbers consisting of all formal
finite linear combinations with coefficients in Q of symbols (GM) with M € A being
in one-to-one correspondence with left cosets GM of the set A modulo G. The group
G naturally acts on the space by right multiplication defined on the symbols (GM)
by

(GM)y = (GM~) (M e A, veq).
We denote by
H(G, A) = HSo(G, A)

the subspace of all G-invariant elements. The multiplication of elements of H(G, A)
given by the formula

(Zal (GM;) )(Zb (GN;) )ZZaibj(GMiNj)

does not depend on the choice of representatives M; € GM; and N; € GN;, and

turns ‘H(G, A) into an associative algebra over Q with the unity element (Glg),
called the Hecke—Shimura ring (HS-ring) of A relative to G (over Q). Elements

(0-8) (M)=(M)e= >  (GM;) (MeA)
M;EG\GMG

being in one-to-one correspondence with double cosets of A modulo G' belong to
H(G, A) and form a basis of the ring over Q. For brevity, the symbols (GM) and
(M) will be referred as left and double classes (of A modulo G), respectively.



In the situation of Siegel modular forms of genus n one needs mostly HS-rings
of semigroups A contained in the semigroup

(0-9) St ={M ez 'MJIM = p(M)J,, p(M) > 0}

of all integral symplectic matrices of order 2n with positive multipliers (M) relative
to subgroups of the modular group I'".

Important part in the theory of symplectic HS-rings is played by the duality
defined by means of the anti-automorphism of second degree

M M* = p(M)M™!

of the semigroup ¥". If ¥; is a subsemigroup invariant with respect to the anti-
automorphism, then the linear map of a HS-ring of the semigroup given on double
classes by

(0-10) (M) — (M)* = (M) (M € %)

is an anti-isomorphism of the second degree of the ring, called the star map. Ele-
ments T and T* will be referred as dual (with respect to the star map).

Multiplicative properties of double classes (M)¢ for a congruence subgroup G of
level g of I'", such as I'§(¢) or I'"*(q, q), essentially depend upon the cases whether
the multipliers p(M) of the matrices M are coprime with the level ¢, or divide
a power of ¢ (we write then that u(M)|¢®>®). We shall call such matrices along
with their left and double classes modulo G regular (or g-regular) and singular (or
g-singular), respectively and denote by

(0-11) £, ={M €%% ged(u(M),q) = 1} and £2 = {M € 5% u(M)|q™}

the subsemigroups of ¢g-regular and g-singular matrices of .. The semigroups can
be used to build corresponding HS-rings of the group G, consisting, respectively,
of linear combinations of regular and the singular double classes modulo G. The
star map (0-10) transforms the subrings into themselves.

0.3. Petersson, Hecke, and Frobenius operators. Hecke—Shimura rings
act on modular forms by means of linear representation given by Hecke operators.

First of all, matrices M = (é g) of ¥ = X" act on functions F' on H = H,, by

(normalized) Petersson operators of weight k given by

(0-12) F s FleM = p(M)™= "5 det(CZ + D) "*F(M(Z)),

where M(Z) = (AZ + B)(CZ + D)~!'. The operators map holomorphic functions
into holomorphic functions and satisfy the relations

(0-13) MM, = | M|My (M, M, € %).
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Using Petersson operators, the functional equations (0-6) can be rewritten in the
form

(0-14) FlypM=F  (FeMi(q, ), MeT(g q).

As a rule, Petersson operators do not map modular forms to modular forms for
the same group, but certain linear combinations of the operators coming from
corresponding Hecke—Shimura rings do. For example, if G =T (g, q),

FeM(G)=M(g,q), and T=> a;(GM;)€H(G, %),

then it follows from (0-13), (0-14), and the definition of HS-rings that the function

(0-15) FIT=FT =) a;F[pM;

2

does not depend on the choice of representatives M; € GM; and belongs to the
space IM(G). The operators (0-15) are called Hecke operators (of weight k for the
group G). It follows from the definition of multiplication in H S-rings that the map
T — |T is a linear representation of the ring (G, X) on the space 9(G). The
subspace of cusp forms N(G) = N(g, ¢) is invariant with respect to all of the
Hecke operators.

The special interest for us will be presented by linear combinations of Petersson
operators of the form

E B
(0-16) F F(m)=FyII(m)= Y  Fly ( 0 mE) :
BeS,/mS,

where £ = FE,, and §,, is the set of all integral symmetric matrices of order n,
operating on Fourier series of the form (0-2). The reason is that the operators have
very simple action on Fourier coefficients of the series:

(0-17)
F|II(m Z f(A)ymnk= n(n+1)_"kexp(m'Tr(A(Z+B)/m))
A€E,
= Z f(A) exp(miTr(AZ/m))m - Z exp(miTr(AB/m))
A€E, BeSn/mSn
= Z f(mA) exp(miTr(AZ)).
A€E,

The operators (0-16) will be called Frobenius operators. We shall see in §3 that
the Frobenius operators with numbers m dividing some powers of the level ¢ are



actually Hecke operators of weight k for the groups I'y(¢) and I'"*(q, ¢), and so map
the corresponding spaces of modular forms into themselves.

0.4. Eigenfunctions of Hecke operators and zeta functions. It is well
known that the spaces M7 (q, ¢) are spanned by common eigenfunctions of suffi-
ciently big rings of regular Hecke operators. The questions of simultaneous diago-
nalization of singular Hecke operators for the groups I'3(g) were recently considered
in [An(98)]. Here in §4 we show that singular Frobenius operators for the groups
I'%(q, q) of prime levels ¢ can be simultaneously diagonalized together with regu-
lar Hecke operators on certain subspaces of the space ‘ﬁ,%(q, q). The restriction to
prime levels considerably simplifies consideration, although scarcely is crucial.

Explicit relations between Fourier coeflicients of eigenfunctions of Hecke oper-
ators and corresponding eigenvalues reveal certain multiplicative properties of the
coefficients. For example, the Fourier coefficients f(A) of an eigenfunction of the
Frobenius operator |II(m) with the eigenvalue A(m) satisfy, by (0-17), the relations

(0-18) f(mA)=Am)f(A)  (V Aeck).

In general, the relations between Fourier coefficients and eigenvalues are naturally
formulated in the form of identities among Dirichlet series constructed by Fourier
coefficients of eigenfunctions, from one side, and Euler products (zeta-functions)
formed by the corresponding eigenvalues, from another. In §5 we shall deduce
relations between Dirichlet series of the form

Rp(s, A) =Y _ f(ﬂ";f) (AeE,y, A>0)
m=1

for eigenfunctions F' € 9M2(q, q) with Fourier coefficients f(A) and spinor Euler
products. The relations open a way to approach analytic and functional properties
of the Euler products, but it lies beyond the scope of this work.

The main result of the paper could be interpreted as a theorem of semisimplicity
of certain properly defined Hecke-Shimura algebras (compare with [Hi(93)], p.218).
We hope also to prove a A-adic version of the result which is important for better
understanding of A-adic spinor L-functions for GSpy (see [Pa-PSh(98)]). Note also
that a definition of local factors and analytic properties of the L-functions were
studied from a representation-theoretic point of view in [PSh(98)].

0.5. Why with characters 7 What are the reasons of considering modular
forms for the groups I'}(¢) with Dirichlet characters, whereas the case of the unit
character has been already treated? The first reason is a trivial one: modular
forms with characters appear quite naturally in many of arithmetical questions, for
example, as theta series of integral quadratic forms. The second reason is rather a
mystical one and based on the belief that natural mathematical questions must have
nice answers, at least in some cases. Studies of zeta functions of modular forms
for congruence subgroups indicate that individual functional equations can only
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be expected for zeta functions of modular forms with certain Dirichlet characters
(see [Li(75)]), whereas, in general, zeta functions satisfy only matrix functional
equations. The future research will show whether the belief is justified.

Sources. All omitted details and proofs on Siegel modular forms, regular Hecke—
Shimura rings, and Hecke operators can be found in [An(87)] or [An-Z(90)]; the
singular rings and operators for the groups I'f (¢) were considered in [An(98)].
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work was started during the stay there of the first author in Winter of 1998/99,
and Institut Fourier (Université Joseph Fourier, Grenoble, France), where the work
was completed and reported, for stimulating discussions and constant interest to
our research. We are especially grateful for constant support and encouragement
to Professor Yuri Manin of Max-Planck-Institut and Professor Rolland Gillard of
Institut Fourier.

Notation. We fix the letters Z, Q, and C for the ring of rational integers, the
field of rational numbers, and the field of complex numbers, respectively.

AT is the set of all m X n-matrices with entries in the set A. We use the
notation E, and S,, introduced in (0-2) and (0-16) for the sets of all even matrices
and integral symmetric matrices of order n, respectively.

If M is a matrix, *M always denotes the transposed matrix. E, is the unit
matrix of order n.

§1. Neutral rings and operators

If G C K are two congruence subgroups of level ¢ of the modular group, then
the neutral HS-ring
N(G\K) = H(G, K)
is contained both in regular and singular H S-rings of G, since Xy N3, =T
We shall start with the groups
(1-1) G=TI"(q,q), and K =TI7(q).

The group G is clearly a normal subgroup of K, and the map

C D

defines an isomorphism of the factor group G\K with the multiplicative group
(Z/qZ)* of invertible elements of the residue class ring modulo ¢. For an integer r
coprime with g, we denote by

A B _
(1-2) P(r) = (C’ D) €K, detA=r (modq)
a representative of the inverse image of » mod ¢ under the map. All such matrices
with a given r mod ¢ form the single left and double coset GP(r) = GP(r)G modulo
the group G. The following proposition is an easy consequence of definitions.

K> (A B) — det A mod ¢
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Proposition 1. (1) The double classes modulo the group G of the matrices P(r),

(1-3) p(r) = (P(r))a = (GP(r)),

depend only on r mod q and span the ring N(G\K) over Q;
(2) The classes (1-3) satisfy the relations

p(r)p(r') = p(rr"),  p(r)* =p(r™") (7" € (Z/qZ)"),

where the first star stands for the map (0-10);

(3) The subspaces M (q, x) C ME(q, q) and N (g, x) C NE(q, q) of modular
forms and cusp forms of weight k and character x for the group K can be cha-
racterized as subsets of all functions F' of the corresponding spaces satisfying the
relations

Flrp(r) =x(r)™'F  (r € (Z/qZ)").

In [An(98)], §3.2 the neutral ring N (' (¢)\I'y(¢/p)) was studied for each prime
divisor p of ¢ not dividing the quotient ¢/p. Here we shall only quote a simplified
version of the result in the particular case, when n = 2 and ¢ = p.

Proposition 2. Let q¢ be a prime number, and let n = 2. Then the following
assertions hold:

(1) The neutral ring N'(K\T') of the group T' = T'? and subgroup K = T'3(q)
consists of linear combinations of the three different double classes

(1-4) o= F)k, & =)k, and &= (J)k

of the matrices

E=FEy 1I= , and J=J2:<0 _E2);

Es 0

O = O O
oS O = O
jen B el an)

_ o O O

(2) The double classes have the following decompositions into left classes modulo
K:

(1-5) bo=(KE), &= ) (KIU), &= Y (KJU),

UeU; UeU;

where U1 = U11 U U12 with

1 v w 0
01 0 O
0 0 —v 1



0 -1 0 w
10 0 O

U12 - 0 O O _1 ’medq ?
0 0 1 0

and where
FEy B
U, = {( ” EQ) : BGSz/qS2};

(3) The double classes are invariant under the star map; in particular, the ring
N(K\T') is commutative;
(4) The following formula is valid:

& = a6+ d° (¢ — )& + ¢*(g — 1)éa.
For further applications we shall need analogous facts for the group I'?(g, ¢) in

place of T'4(q), which turn out to be rather more complicated even for primes gq.

Proposition 3. Let g be an odd prime number, and let n = 2. Then the following
assertions hold:

(1) The neutral ring N (G\I') of the group I' = I'? and subgroup G = I'%(q, q)
consists of linear combinations of 2q different double classes

() (P(r))e (re(2/q2)Y),

e = I)a,
(1-6) 51 — (P(d)])e,
(1) = (PN (r € (Z/qZ)"

with & = (J)g, where P(r) are matrices (1-2), matrices I and J were defined in
(1-4), and where d is a quadratic non-residue modulo q;

(2) The double classes (1-6) have the following decompositions into left classes
modulo G:

( p(r) =(GP(r)) (r€(Z/49Z)"),
& = Z (GP(*)U),
t2€(Z/q2)*,U€U;
(1-7) \ &g = Z (GP(dt*)U),
t2€(Z/qZ)*,UeU;

p(riés= Y (GP(r)JU) (r € (Z/qL)"),

\ UeU;

where the sets Uy and Uy were defined in (1-5);
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(3) The class &, satisfies the following relations
(1-8) (p(r)é)* =&p(r™) =p(r)&a  (r € (Z/qL)"),

where the star stands for the map (0-10), and the relation

19 @ =)+ RE ) LY@ (‘7) Dp(r)a

=1

<

T

where (%) 15 the Legendre symbol;

(4) The restriction of the Hecke operator of weight k corresponding to the class 52
on the subspace M2 (q, x1) C M2(q, q), where x1 is the trivial character, coincides
with the operator corresponding to &5.

Proof. First of all, we shall choose a convenient system of representatives of the
left cosets G\I'. Since one can, clearly, take

G\I'={G\K} x {K\T'},
where K = I'3(q), and according to Propositions 1 and 2, respectively, one can take
G\K ={P(1),...,P(¢g—1)} and K\I'={EUIU,;UJU,},
it follows that one can take

K\I'={P(1),...,P(¢—- 1)} | {P()IUU---UP(g— 1)IU,}

(1-10)
H{P(1)JUU---UP(g—1)JU,}.

In order to proceed we shall prove the following three lemmas.

Lemma 4. Two matrices of the set (1-10) can belong to the same double coset
modulo G only when they both belong to the same of the three subsets in curly
brackets.

Proof. All matrices (é g) of a fixed double coset modulo the group G (or

the group K) have, clearly, the same value of the rank r4(C) of the block C' over
the field of ¢ elements. Since this value for the matrices of the sets in curly brackets

is, respectively, 0, 1, and 2, the lemma follows.
O



11

Lemma 5. Two matrices P(r)IU and and P(r")IU" with 1 < r,7' < q¢—1, and
U,U’' € Uy belong to the same double coset modulo G, if and only if the Legendre
symbols of r and ' modulo q equal:

-

Proof. If the matrices P(r)IU and P(r')IU’ belong to the same double coset
modulo G, then it is also true for the matrices P(r)I and P(r')I, since the set U;

/ !/
is contained in G. It means that there are matrices (é IB;>’ (é, IB;’> of G

ror (& 5)= (& o)

(éi g:) = P(r)] (é g) I~'P(r)~ L.

Let us set A = (Zl ZZ , use similar notation for the matrices B, C, and D, set
3 a4

such that

whence

/ /
P(r) = (3 ?), and P(r') = (:, ’?, ) Then we can rewrite the last relation
in the form
d1 —co —c1 da
A B\ [a B —b3 a4 a3z by ty g
¢ D) \vy ¢ b1 a2 a1 by —tyl i) )
—dg Cq C3 d4
Since C' = v =+' = 0 (mod gq), it follows that as = by = d3 = 0 (mod ¢). Since
det A’ =1 (mod ¢), we conclude that

(1-12) det (a (Z; ‘C2> ta’) = (r/r)dyas =1 (mod g).

Q4

Further, by the congruence A!D = E,; (mod q), we get the congruence aid; = 1
(mod ¢), and by det A = 1 (mod q), the congruence aia4 =1 (mod ¢). With the
congruences we obtain from (1-12) the congruence

v /r = diay = a4/a1 = a3/ara4 = a3 (mod q),

which proves necessity of the condition (1-11). Conversely, if the condition (1-11)
is satisfied, then 7’ = rt?> (mod ¢), and we can take a matrix P(r') in the form

P(r') = P(rt?) = P(r)P(t?) with P(t?*) = diag(t,t,t"*,t7) (mod q).
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Then it follows that
GP(rt*)I = GP(r)II"'P(t*)I € GP(r)IG,
since
I7'P()I = diag(t~ ', t,t,t™ 1) (mod q).
O

Lemma 6. Two matrices P(r)JU and P(r")JU" with1 <r,r' <q—1andU, U’ €
U, belong to the same double coset modulo G, if and only if r = 7'.

Proof. Since the set Ug is contained in G, it is sufficient to consider the matrices
P(r)J and P(r')J. Similarly to the proof of previous lemma, if the matrices belong

. A B A B
to the same double coset modulo GG, then there are matrices ( C D ) , ( o D )
in G such that

A B A B
P(T)J<C D) = (C/ D/) P(TI)Ja
whence

(é fiﬁ) = P(r)J (é g) JP(r) ™t = P(r) (_139 —Ac) POt

If P(r) = (i‘ :) and P(r') = (I ;,), then it follows that

1 =det A’ = det(aD%’') = detadetd’ =r/r  (mod q).

U
We can now continue the proof of Proposition 3. By using the system of repre-
sentatives (1-10), one can easily see that the assertions (1) and (2) of the proposition
directly follow from Propositions 1 and 2 and Lemmas 4, 5, and 6. The part (4)
follows from decompositions (1-7) and (1-5).
Let us turn now to the part (3). Since J~! = —J, and the coset GP(r)™?
contains a representative of the form P(r=') = JP(r)J ™!, we get

(p(r)é2)” = (P(r)])g = (J'P(r) e = (P(r)T e,

which proves the formulas (1-8).
By (1-7) and definition of multiplication in H S-rings, we can write

&)= > (GIUJU)= Y c(H)(H)e,

U,U’ €bU, HEG\T/G
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where H runs a system of representatives of double cosets of I' modulo GG, and the
coefficients ¢(H) can be found by the formula

c(H) = v(J)v(H) '‘#{U € Uy; JUJ € GHG}

1-13 _
(-19) =q¢’v(H) '# {B € S2/4Sy; ( é?z _%2) € GHG},

where v(J) = ¢® and v(H) are the numbers of left cosets modulo G contained in
the double cosets GJG and GHG, respectively (see, for example, [An(87)],Lemma
3.1.5). According to the first part of the proposition, one can take H = P(r), I,
P(d)I, or P(r)J, withr =1,...,g — 1 and a quadratic non-residue d modulo q. If
H = P(r), the formula (1-13) gives

(P(r)) = ¢*# {B € S2/4S3; (‘52 _%2> € GP(r)G = GP(T)}

which is ¢3, if r = 1, and 0, if r # 1, since the matrix B must satisfy the congruence
B =0 (modgq). If H=1 or H= P(d)I, then the corresponding matrices B in
(1-13) must have rank 1 over the field of ¢ elements, i.e. be of the form

¢ c¢b 0 0
(1-14) B_<Cb Cb2) or (0 )

with, say, c=1,...,¢—1and b =0,1,...,9 — 1. Using the decompositions (1-7)
for the classes ff‘, it is not hard to check that the number of matrices B of the form
(1-14) with a given c satisfying

—Ey, 0
( B _E2)€GP(T')IU1

is g+ 1, if r = ¢! (mod q), and is zero, otherwise. Summing up over quadratic
residues (resp., non-residues) modulo ¢, we conclude that the number of matrices
B in formula (1-13) for ¢(I) (resp., ¢(P(d)I)) is (¢4 1)(¢ —1)/2. Since the number
of left classes in the double classes £ and & is clearly q(g+1)(g — 1)/2, it follows
that corresponding coefficients are equal to ¢2.

Finally, if H = P(r)J, then the corresponding matrices B in (1-13) must have
rank 2 over the field of ¢ elements. It is easy to see that the number of matrices
B € S3/¢S5 with a fixed modulo g the value of det B =b #Z 0 (mod ¢) and satisfying

—Ey 0
< 5 _E2)€GP(T)JU2

18

(1-15) #{B € S2/¢Ss; det B=b (mod q)},
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if r = b~! (mod ¢), and is zero, otherwise. It is not difficult to verify that the
number (1-15), i.e. the number of solutions of the congruence zy — 22 = b (mod q)
depends only on whether —b is a quadratic residue or non-residue module ¢ and is

equal to ¢ + (_b> g- Then, by (1-13), we get

(P =+ () a=a+ ()

q

§2. Regular rings and operators

We shall define the reqular HS-rings of the groups G and K as Hecke—Shimura
rings

(2-1) H,(G) =H(G, R(G)) and #,(K)=H(K, R(K))

of the semigroups

A B n
R(G):{<C D)eE(q); C=0,detA=1 (modq)}

and y
B n
R(K) = {(C’ D) € Xy C=0 (mod q)}
and the corresponding groups (see (0-11)). The first ring acts on the spaces
(2-2) M =M (q, ¢) and N =N (g g)

by the Hecke operators (0-15), which will be referred as regular.

Lemma 7. Each element of the ring H,(G) commutes with each element p(r) of
the form (1-3); in particular, the reqular Hecke operators map into itself each of the
subspaces
(2-3) Mx) =M (g, x) €M and  N(x) =M (g, x) C N.
Proof. Tt follows from [An(87)], Theorem 3.3.3(3) that
(P(r)"'MP(r))g = (M)g, if MeR(G) and 7€ (Z/qZ)%,

whence

(M)p(r) = (P(r)P(r)""MP(r))e = p(r)(P(r)""MP(r))c = p(r)(M)g;
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U

The action of the ring #,(G) on each of the subspaces 9 (x) or N(x) can be

interpreted as the action of the regular ring H,.(K) of the group K given by Hecke
operators of weight k and character x:

(2-4)  Fle,T = ZaiFm,xMi (FeM(x); T = Zai(KMi) € H,(K)),

where

F i Flg M = x(det AF|pM (M = (é g) € R(K))

is the Petersson operator of weight k and character x, and |M is the operator
(0-12). More generally, we have the following theorem.

Theorem 8. In the above notation, the following assertion hold:

(1) If M = (é g € R(K), then P(M)™'M € R(G), where P(M) =

P(det A), and P(r) are the matrices (1-2); a decomposition
M)k = Z(KMi)
implies the decomposition
(P(M)™*M)g = Z(GP(Mi)_lMi)

and vice versa;
(2) The linear mappings
(2-5) i: M. (K)— H(G), i M. (G) = H(K)

defined on double classes (M) g and (M')a of matrices M € R(K) and M' € R(G)
by
i(M)k = (P(M)"'M)g, j(M')e=M")k

are mutually inverse isomorphisms of the Q-algebras;

(3) The maps (2-5) are compatible with the action of corresponding Hecke opera-
tors on each of the spaces M(x), where the ring H,(K) acts by the operators (2-4)
of weight k and character x.

Proof. The assertions (1) and (2) follows from definitions and [An(87)], Theorem
3.3.3. As to assertion (3), by Proposition 1(3), we have

Fli(M)x = 37 FlP(M) M,
M;EK\KMK
_ Z x(det A;)F|xM; = Flix(M)k,

Mi:(Ai Bi)eK\KMK
C; D;
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if F € M(x) and M € R(K).
O
The regular rings (2-1) are commutative integral domains generated by local
subrings Hp(G) and H,(K) consisting of linear combinations of double classes of
matrices contained, respectively, in R(G) and R(K) whose multipliers are powers
of a prime number p, where p runs over all primes not dividing the level ¢q. Each
of the local rings is a polynomial ring over Q in n + 1 algebraically independent
generators. For example, the ring #,(I'2(¢)) is generated by the double classes

T(p) = T?(p) = (diag(1,1,p,p))k,
(2-6) Ty (p*) = T (p?) = (diag(1,p,p*,p))k,
[p] = T5(p*) = (PE4)k,

where K = T'4(q).
§3. Singular Frobenius elements

We start with general definitions for the groups G and K of the form (1-1) with
arbitrary n and ¢, but later on we shall switch again to the particular case n = 2

and a prime ¢. Elements
(3-1)

H(m):<(b;" m%ﬂ))K and ﬁ(m):«% mOEn>)G with g™,

of the subrings of singular elements of the corresponding H S-rings are called (sin-
gular) Frobenius elements for the groups K and G, respectively.

Proposition 9. The following assertions hold:
(1) The double classes (3-1) have the decompositions into left classes as follows:

oo - 2 (5[5 5) wm- 5 (o(3 )

where E = FE,, and S =S,,;
(2) The Frobenius elements satisfy relations

(3-3) O(mm') = D(m)[I(m/), (mm') =Tm)I(m')  (m, m'[¢>),
and relations

(3-4) p(r)I(m) =T(m)p(r)  (m|¢*, r € (Z/qZ)*),

where p(r) are the classes (1-3);
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(3) The Frobenius elements commute with each element of the corresponding
reqular HS-ring (2-1);

(4) Each of the subspaces IM(x) and N(x) defined by (2-3) is invariant under
all of the operators |, I1(m). The restriction of |xII(m) to the subspace M(x1) with
the trivial character x1 coincides with the operator | I1(m). The operators |I1(m)

and \kﬁ(m) on the spaces M(x1) and M = M (q, q), respectively, are Frobenius
operators in the sence of Introduction.

Proof. (1) Let us prove, for example, the second decomposition (3-2). One
can easily see that all of the left cosets in the decomposition are different and

belong to the double coset G (E 0

0 m E) G. A representative of every left coset

contained in the double coset can be obviously taken in the form <€J n?E) M

with M = (: ’?) € G. Then, if B’ is a matrix of S/mS satisfying the congruence

B’ = a1 (mod m), we have the relation

E 0 . (E B . ,
(2 o )a-aw (5 2 i wree

(2) Multiplicative relations (3-3) directly follow from decompositions (3-2). Let

<
N

P(r) = o f . Then, if B, B’ are matrices of S satisfying the congruence
v 6

B' = (a+ By)"Y(B + B6) (mod m), the matrix
o B\ (E B\[{a B\(E B\ '
v 8 ) \0 mE v 6 0 mE

belongs to K and satisfies det o’ = det o = r (mod q). It follows that the left coset
of the matrix modulo G is GP(r), and so

M(m)p(r) = > (G<Jg TfE) (: g))

BES/mS
- > (e(5 5)(6 )
_ Blgmg (GP(T) (’g £E>) = p(r)Ti(m).

(3) By (3-3), we can assume that m = p is a prime divisor of ¢. The asser-
tion relating to the element II(p) and elements of the ring #,(K) follows from
[An(87)],Proposition 3.4.11(1) and Theorem 3.3.12. Let now M € R(G) and

(M)g =) (GM;).

(3
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Then, by Theorem 8(1), we have the decomposition

(M)k = Z(KMi)'

7

We already know that the last element commutes with II(p), i.e.

(0 (5 4e)) =S (<(0 ) ).

i,B

This means that, for each 7 and B, there are B’ and j such that

E B E B .
M,(O pE>—Li(O pE)Mj with L; € K.

If M; = (ZZ ZZ> and L; = (:’ ’?Z ), then the last relation implies the congru-
(2 (2 1 (2

ence
-1

o; = ald;p(M)~t = a;a;

(mod g),

whence det ; =1 (mod ¢q), and so L; € G.
The part (4) follows from the part (1) and relations (0-17).

Let us consider now the double classes

(3-5) Q=(w)xk and Q= (w)g

0 E,

of the matrix w = (—qEn 0

) modulo the groups (1-1).

Proposition 10. (1). The classes (3-5) have the following properties:

(3-6) Q= (Kw), Q= (Gw),
(3-7) 0? =gk = (¢B2m)k, 9= [dlc = (—qF2)c,
(3-8) =0, Q= (-we=[-1c®

where the star stands for the map (0-10), and

(3-9) p(r)Q=Qp(r™"),  (r€(Z/qD));
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(2). The restriction of the Hecke operator |, on the subspace M(x1) with the
trivial character x1 coincides with the operator |,<2.

Proof. From obvious relations

-1 A B _ D —C’/q
(3-10) w (C D)w-(_qB A
follow relations
(3-11) wlKw=K, w'lGuw=aG,

which imply the decompositions (3-6). The relations (3-7) follow from (3-6), since
w? = —qEs,. The last relation shows that qw™! = —w, which implies (3-8). By

(1-3), (3-6), and (3-10), we get
p(r)Q = (GP(rw)e = (Gww™ *P(r)w)e = Qp(r~Y).

The assertion (2) follows from (3-6).
0

Proposition 11. The Frobenius elements (3-1) with m = q have the following
factorizations:

(3-12) (g) = ANk, (g) = Q(J)a,
0 -E,
whereJ:Jn:<En 0 )

Proof. 1t is sufficient to prove the decompositions

E13) k= Y @I g) e= X ©r(7 p)

BeS/qS BES/qS

where S = §,, and £ = E,,. In order to prove, for example, the second one, we note
that, clearly,

(J)a = Y. (GIM).

MeGNJ-1GJ\G

Since

GOJ_IGJ:{(éY g) €eG; B=0 (modq)},

the decomposition follows.
O
In order to conclude with singular Frobenius elements, we note that their duals
under the star map (0-10),

@) wm = ("7 ) we=((" ) i me

where F = E,,, have, mainly, similar properties:
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Proposition 12. The following assertions hold:

(1) The double classes (3-14) have decompositions into left classes as follows:
(3-15)

o= 3 (65 D) v 3 (63 3)

BeS/mS BES/mS

where S = S,,;
(2) The elements (3-14) satisfy relations

(3-16)  II*(mm') = I*(m)IT* (m),  IT*(mm/) = II*(m)I1* (')~ (m, m/|¢™),
and relations
(3-17) p(r)II*(m) =" (m)p(r)  (mlg™, r € (Z/qZ)"),

where p(r) are the classes (1-3);

(3) The elements IT*(m) commute with each element of the regular ring H,(K)
defined by (2-1);

(4) Each of the subspaces M(x) and N(x) defined by (2-3) is invariant under all
of the operators |II*(m). Restrictions of operators |II*(m) to the subspace M(x1)
coincides with operators | I1*(m);

(5) The following factorizations hold:

(3-18) I*(q) = (J)xQ,  T*(q) = ())e®,

where J = J,.

Proof. (1) Let us prove, for example, the second of decompositions (3-15). By
the second of decompositions (3-2), we obtain

—1 —1 E 0 -1 _ -1 -1 E B
W Gww (0 mE)ww Gw = U W Gww (0 mE )Y
BeS/mS

where w is defined in (3-5). By (3-10) and (3-11), the desired decomposition follows.

(2) Since the map (0-10) is anti-isomorphism, relations (3-16) and (3-17) follow
from (3-3), (3-4), and Proposition 1(2).

By the same reason, the part (3) follows from Proposition 9(3), since each
element of the ring H,(K) is invariant under the star map (see, for example,
[An(87)],formula (3.3.14)).

The part (4), clearly, follows from the part (1) and relations (3-17).

Finally, by applying the star map to both sides each of the factorizations (3-12)
and using (3-8), we obtain the factorizations (3-18), since (J)% = (-J)kx = (J)k
and (J)g = [-1]e(J)e-

U
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§4. New forms and eigenforms

In the course of the section we assume that the genus n = 2 and the level ¢ is an
odd prime number. (The case of ¢ = 2 was, in fact, considered in [An(98)], since
I (2, 2) = [3(2).)

We keep the notation

(4-1) I =T?=T3(1), K=T4(g), and G=T*(q,q),
denote by
(4-2) NT) = N (T) =M1, 1) and N(K) = M(K) = N (g, x1)

the spaces of all cusp forms of weight k for the groups I' and K, respectively, where
X1 is the trivial character, and set

(4-3) N(xX) = Mg, ), N=M(g,0) = > NX),

xmodgq

where x runs over all Dirichlet characters modulo ¢q. The purpose of this section is
to define subspaces of the space M, where all regular Hecke operators and the Hecke
operators corresponding to singular Frobenius elements I1(¢°) can be simultaneously
diagonalized. We follow the pattern of [An(98)], §4.2, §4.3, using corresponding
results and technique.

We shall define the subspace O of old forms of 91 by

(4-4) 0 =0kg) =Y _N) |x II*(¢").

1=0

By Theorem 4.4 of [An(98)], the subspace can be written in the form

(4-5) 0= Z‘ﬁ e T(@)I1* (¢"),

where

(4-6) (@) =T:G™" > (GM)e N(G\I)
MeG\T

is the trace idempotent of the pair (G, T'). Note that, by Proposition 12(4), the
operators |II*(¢*) in (4-4) can be replaced by the operators |II*(¢*), and so the
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space O of old forms is contained in the space D(K) of cusp forms of weight k for
the group K:

(4-7) 0= Zm(r)\n* (¢") C N(K).

We remind that the space 9 is a finite-dimensional Hilbert space with respect to
Petersson scalar product
M>F, F — (F, F')

defined by an invariant integration on a fundamental domain of the group G (see
[An(87)],82.5 or [An(98)],§1.4). We shall note here only one of the properties of the
scalar product, namely that Hecke operators on 91 corresponding to elements of the
HS-ring H(G, ¥?), which are dual relatively to the star map (0-10), are conjugated
with respect to the scalar product:

(4-8) (F|IT,F')=(F, F'|T*) (F,F'e®m, TEecHG, %)

(see [An(98)], Theorem 1.9).
Now we shall define the subspace N of new forms of 91 as the orthogonal com-
plement with respect to the Petersson scalar product of the subspace of old forms:

(4-9) N =Ni(g, 9) ={F e (F, 0)=0}.
By Theorem 4.4 of [An(98)] and (4-8), the subspace N can be presented in the form
(4-10) N={Fe® Fl(¢)r(Q=0 (i=0,1,2,3)}.
It follows from Proposition 1(2) and (4-8) that the decomposition
N= D Nx)=NEK)+ > N(x)
xmodg XFX1

is orthogonal with respect to the scalar product, whence, by (4-7), we obtain an
orthogonal decomposition

(4-11) N =N(K)+ Y Ny,
X#X1

where
N(K) = {F €e N(K); (F,0O)=0}

is the subspace of new forms of M(K); in particular, every cusp form of weight k&
and a non-trivial character y for the group G is a new form.
Let us consider now the action of Hecke operators on the space of new forms.
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Theorem 13. Let g be an odd prime number, k an integer, and n = 2. Then the
following assertions hold:

(1) The subspace N = NZ(q, q) of new forms of M together with each of the
subspaces N(K) and M(x) with x # x1 entering into the decomposition (4-11) are
invariant with respect to all Hecke operators of the reqular ring H,(G);

(2) The regular operators commute with each other and are normal on the sub-
spaces.

Proof. By Theorem 8(3), each of the subspaces 91(x) C M is invariant under
all of the Hecke operators | T' = |,T with T' € H,(G), and the operators can be
interpreted on each subspace (x) as the operators |x,,j(T') with j(T') € H,(K),
where j is the isomorphism defined in Theorem 8(2). It remains only to add that
the subspace N(K) C 9(K) is invariant under all Hecke operators of #,(K), by
Theorem 4.6(1) of [An(98)].

The assertion (2) follows, since the ring H,.(G) is commutative and corresponding
Hecke operators on 9t are normal, by Proposition 4.1.7 of [An(87)].

U

Theorem 14. Let g be an odd prime number, k an integer, and n = 2. Then the
following assertions hold:

(1) The subspace N = NZ2(q, q) of new forms of M together with each of the
subspaces N(K) and MN(x) with x # x1 entering into the decomposition (4-11) are
invariant with respect to Frobenius operators [I1(¢°) = |xII(¢°) and its conjugated
1% (%) = [xI1*(¢°) with 6 =0,1,2,...;

(2) The Frobenius operators are normal on the subspace N(K) and on each
of the subspaces N(x) with a non-trivial character x different from the quadratic

character x»(r) = <§) More precisely, the operators satisfy relations

(4-12) FII(¢°)II*(¢°) = FIIT* (¢°)I(¢°) = ¢~ °F,
if F € N(K), and relations
(4-13) FI(¢°)II*(¢°) = FIIT* (¢°)II(¢°) = ¢’ F,
if F € N(x) with x # X1, X2-

We shall prove first three lemmas.

Lemma 15. The subspace N(K) is invariant under the Hecke operators |g2 and
|§~2 of weight k corresponding, respectively, to double classes defined in Proposition
3 and in (3-5).

Proof. By Proposition 3(4) and Proposition 10(2), restrictions of the operators
|§N2 and |§~2 on the space M(x1) = N(K) coincide, respectively, with the operators
|€5 and |2, and so the lemma is true, by Lemma 4.10 of [An(98)].

O
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Lemma 16. Each of the subspaces M(x) is mapped by the operators |gz and |§V2
into the subspace M(x~1).

Proof. The lemma follows from relations (1-8) and (3-9).

Lemma 17. The operators |Q? and |€2 satisfy relations

(4-14) FIO® =@ °F  (F e M=M(q, 0)),
and

¢°F, if FeN(K),

¢°F, if FeN(x) (x#x1,x2),

°F, if FeW(x),
q4Fa Zf F € m”(X2)7

(4-15) Flg =

where
qg—1

N(x2) = {F = (-1)7 ¢*F' — F'l&2; F' € N(x2)},

and
N (x2) = {F = (=1)T ¢F' + F'|&; F' € N(x2)}-

Proof.  The relations (4-14) follow from (3-7) and (0-12). In order to prove
relations (4-15), we note first that, by Proposition 3(1),(2), the trace idempotent
(4-6) can be written in the form

r=1

T(q) =L :G]™ (Z_: p(r) +& +& +z_:p(7‘)£~z) -

It follows from the formula (1-9) that, for every modular form F € 9 (q, q), we
have the relation

Flg3 = F| {q3p(1) +P (& &)+ 2_:(612 + (%) Q)p(r)gz}

— PFlo) + @[T : CIFIr(a) — F S plr) + aF| (‘7) p(r)ée

By definition, we have F|p(1) = F. By (4-10), if F' is a new form, we conclude that
F|7(q) = 0. By Proposition 1(3), we obtain for F' € 9(x) relations

Ky ! ~F, if x=x1,
F|Zp(r)=<ZX(T)_1)F={((f e

if x# x1,



and
Féi@})m@:(%ﬁ{z?m*(@}mé
:{C4f$@—DF@,ifx=Xm

Oa if X 7& X2-

By using the above formulas, we conclude: if F' € N(K), then
F|& = ¢°F — ¢°(¢— 1)F = ¢°F;
if F e M(x) with x # x1, X2, then F|&2 = ¢3F; but if F € N(x2), then
FIE = ¢°F +(-1)"7 q(q - DFIEa.
Using the last relation, we get: if F' € 9(x2), then

Fl& = ((-1)F ¢F - F'&) [ = —¢*F + (-1) 7 ¢F'|Es
a=1 a=1 = a1
= —(-)Tq ()T @F - Fle) = (-1)*F qF;
but if F € M’(x2), then, similarly, we obtain

Fl& = (-)'TF + Fl6) & = (-1) = ¢°F,
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O

Proof of Theorem 14. By Proposition 9(4) and Proposition 12(4), the operators
| TI(¢°) and | TI* (¢°) coincide on the subspace M(K), respectively, with the operators
| II(¢°) and | IT*(¢%), and so, by Lemma 4.10 [An(98)], they map the subspace N(K)
into itself. On the other hand, by Proposition 1(3), formulas (3-4) and (3-17), the
operators map each of the subspaces 91() into themselves. The part (1) is proved.
By using the multiplicative relations (3-3) and (3-16), and decompositions (3-12)

and (3-18), we obtain the relation

F | T(¢)IT*(¢°) = F | T(¢°~")II(q)IT* (¢)IT* (¢° ")
= F | TI(¢" ") Q0T (¢ ).

If F€ N(K) (resp., F' € M(x) with x # X1, x2), then the function F' | ﬁ(q‘s_l)ﬁ
belongs to N(K) (resp., to M(x~1)), by the first part, Lemma 15, and Lemma 16,

and so, by Lemma 17, the last expression is equal to

¢*F | T(¢° 1) Q2T* (¢°Y) = ¢?¢®F O F | TI(¢®~H)IT* (¢° 1),
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if F e N(K), and is ¢3¢%*SF | II(¢ )II*(¢°7Y), if F € M(x) with x # X1, X2
Similarly, we get

F | II*(¢°)II(¢°) = F | II* (¢°~1)£:Q%6,11(¢° )
= RO F | TI* (% V)E2TI(¢° ),

which is g2 ~4F | IT*(¢%~")II(¢° 1), if F € N(K), and is ¢?*3F | IT*(¢°~1)II(¢° 1),
if € (x), X # X1, x2- The relations (4-12), (4-13) follow then, by induction.
U

Theorem 18. Let q be an odd prime number. Then the subspace N(K) of new
forms of an integral weight k for the group K = T'3(q) as well as each of the sub-
spaces N(x) = Ni(q, x) of cusp form of weight k and character x for the group
K, where x is a Dirichlet character modulo q different from the trivial character

X1 and the quadratic character xo(r) = (Z), has an orthonormal basis consisting

of common eigenfunctions of all Hecke operators corresponding to elements of the
reqular HS-ring H,.(G) of the group G = I'%(q, q) and to all of the singular Frobe-
nius elements ﬁ(q5) with § = 0,1,2,... for the group G. Eigenvalues X\(¢°) of the
operators | I1(q%) satisfy

(k=206
(4-16) M) = {q N,

¢®=32% on M(x) (X # X1, X2)-

Proof. By Theorem 13 and Theorem 14, each of the subspaces is invariant under
all of the indicated operators, and the operators are normal on the subspaces. By
Theorem 13(2) and Proposition 9(2),(3), all of the operators commute with each
other. Then the first statement follows, by a well known theorem of linear algebra.
By (4-8), the operators |TI(¢°) and |IT*(¢°) are conjugated, and so they have complex
conjugate eigenvalues. The relations (4-16) follow then from relations (4-12) and
(4-13).

]

We note that the assumption x # x2 was rather unexpected for us. It has
appeared because we could not prove that at least one of the subspaces 9 (x2)
or M’ (xz) introduced in Lemma 17 is invariant under the operator Q. May be it
means that the Frobenius operators |II(¢°) are not always diagonalizable on the
space M(x2), which, therefore, should be replaced by a subspace of “very new
forms”.
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§5. Euler factorization of radial Dirichlet series

E. Hecke has discovered in [He(37)] that Fourier coefficients of eigenfunctions of
certain operators on spaces of modular forms in one variable, called now Hecke ope-
rators, have definite multiplicative properties. After his works it was just natural
to expect that Fourier coefficients of Siegel modular forms also have some multi-
plicative properties. But even formulation of the question in Siegel case is far from
being definite. Let us take, for example, a modular form F' for the group I'"(q, q).
According to (0-7), the Fourier coefficients f(A) of F' are values of a function on
classes of even matrices of order n modulo the proper integral equivalence

(5-1) A—'WAU  (A€ER,,UcSL,(2)),

or, in other words, on classes of integral quadratic forms %tX AX with respect
to the equivalence. A priori it is not clear in what sence such a function can be
multiplicative, because, in general, there is no natural multiplication of the classes.
Instead of the general question, one can ask whether one or another function of one
integral variable associated to f is multiplicative. The simplest of possible functions
are the radial functions

m — f(mA)

with fixed A € E,, and the simplest question on multiplicativity of such functions
is whether the corresponding radial Dirichlet series

52) Re(s,n, 4)= Y S md)

m=1

where 7(m) is a completely multiplicative function, have, at least formally, an Eu-
ler type factorization over all prime numbers. In the case of modular forms in one
variable Euler factorizations of the radial Dirichlet series associated to eigenfunc-
tions of “all” Hecke operators are well known (see, for example, [Li(75)]). In Siegel
cases little is known, if the genus n > 2. But if n = 2, Euler factorizations of
radial Dirichlet series were obtained in [An(74)] for the case of eigenfunctions F' of
all Hecke operators for the full modular group I'? and n(m) = 1. The result was
generalized in [An(87)], §4.3.2 to regular radial series

(5-3) Ry(s,m A)= Yy mimd)

S
m2>1,ged(m, q)=1

corresponding to eigenfunctions F' of all regular Hecke operators for the groups
I'?(q, q). Here we shall extend the factorization to full radial series of the form
(5-2) under assumption that F is also an eigenfunction of all singular Frobenius
operators for the groups. The extension makes sence in view of the results on
existence of eigenfunctions obtained above and in [An(98)], Theorem 4.15.
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Theorem 19. Let k, q be positive rational integers, x a Dirichlet character modulo
q, and let

F(Z)= > f(A)exp(riTr(AZ)) € Mi(q, x)
A€E,, A>0

be an eigenfunction of all reqular Hecke operators |y , for the group T%(q),
FleT =Ap(T)F (T € #,(T5(2))),
and all of the singular Frobenius operators |iI1(q') for the group T2(q, q),

(5-4) FlI) = Ar(@)F  (d']g™).

For a negative rational integer A, let d denotes the discriminant of the imaginary
quadratic field F = Q(\/A Il = \/A/d, O; the subring of index | in the ring O
of all integers of the field, let H(A) be the group of classes of equivalent complete
modules in F with the ring of multipliers Oy, realized as the group with respect
to the Gauss composition of classes {A} modulo the proper equivalence (5-1) of

matrices 2a b
b 2c

and ged(a, b, ¢) = 1, and let 1) be a character of the group H(A). Then, for every

completely multiplicative function n : {1,2,...} = C, the following assertions hold:
(1) Radial series (5-2) satisfy the formal identity

(5-5) Z v({A)) Zﬂm)f mA;)

{A;}eH(A)

€ Ey (or corresponding quadratic forms) with b*> — dac = A

=0 I (1 _ n(N(ﬁ%s)(ﬂﬁ)ﬁMﬂ) lngE,lF (n p))

(
p, N(p)f(al)? p

AT (1 _ n(p)/\F(p))_l |

pS
plg

where A; on the left runs a system of representatives of proper classes {A;} in
H(A), p(s) on the right is the finite sum given by
(5-6)

p(s) — Z w({Az}) Zt,tlzl,t|t1|l,n(ttl)X(t2t1)u(t)u(tl)f (%(AZ % Ol/t1)>

s—2k+345—k+2
{A;}eH(A) ged(tty, q)=1 t t]

with the Mobius function p, subrings O, of index v of the ring O, and the natural
epimorphism {A} — {A x O,} of the group H(A) = H(dI?) on H(dv?), and where
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p runs over all reqular prime ideals of the ring O; whose norm N(p) is coprime
with ql, p runs over all prime numbers satisfying corresponding conditions, and,
for each of prime numbers p not dividing q, Qp, r(x) is the polynomial of degree
four of the form

Qp,r(z) =1 = Ap(T(p))z + {pAr(T1(p%)) + x(P*)P**°(p*> + 1) } 2°
— x(0*)P** 2 Ap (T (p))2® + x(p*)p** %2,

with the elements T (p), T1(p?) of the regular ring H,(L2(q)) defined by (2-6);
(2) Suppose that radial series Rp(s, n, A') are formally equal to zero for every
2a' v

(5-7)

matriz A’ = YR with ged(a’, b, ¢') =1 and (b')? — 4a’c’ = dv?, where v|l
and v < 1, then the factor p(s) is a constant:
(5-8) ps) =" 3 P{ADS(A);

{A;}eH(A)

(3) If n satisfies |n(m)| < em? with some constants ¢ and o, then the Dirichlet
series on the left in (5-5) and infinite products on the right converge absolutely and
uniformly in each of the right half-plane of the form Res > 2ke + o + 1 + ¢ with
arbitrary € > 0, where e = 1 in the general case, and e =1/2, if F is a cusp form.

Proof. By [An(87)], Theorem 4.3.16, we have the formal identity
(5-9) Y. Y({ADRR(s, m, d ) =

{AiteH(A)

: / ~ (N (p))x(NV(p))1(p) _1 (n(p)
n(q )p(S, Q) p7N(1;[+(ql)2 <1 N(p)s—k+2 ) :II;([QP,F ( ps ) ?

for every ¢’ dividing ¢°°, where the factor p(s, ¢') is equal to

Z w({AZ}) z n(ttl)X(t2t1)ﬂ'(t)/1’(tl)f <qlt1 (AZ X Ol/t1)> ’

p5—2k—+35—k+2 t
{Ai}eH(A) tt1>1, t[t |1, !
ng(ttl ) q)=1

and where formulas for coefficients of polynomials @, r(z) follow from formulas
obtained in [An(87)] (see Proposition 3.3.35 and Exercise 3.3.38), since

kox[P] = Fli,x (T3 (@) (PE4)) = x(p*)p™*°F.
It follows from (5-4) and (0-18) that

F(dA) = r(d)f(A), if ¢'|¢° and A’ €,

F
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whence

(5-10) p(s, ¢') = Ar(q)p(s)

with the sum p(s) given by (5-6). It follows from (5-9) and (5-10) that the series
in the left side of (5-5) is formally equal to

™ n(g )p(s) 11 <1_ n(N(xzp)(s (p) w(p)) HQp, < S )

q'lg> P, N(p)t(ql)?

which proves the identity (5-5), since

Z 77 Hzﬂ _H<1_ ﬂ(p);\SF(p)>_1_

q'|g>® plqg 6=0 plg

The formula (5-8) follows from (5-6), since, by the assumption of part (2),

f <t71(Ai X Ol/tl)) =0,

unless t = ¢ = 1.
The part (3) follows from corresponding assertions on series and products in
(5-9), proved in [An(87)], Theorem 4.3.16.
O
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