Affine embeddings with a finite number of orbits

I. V. Arzhantsev

Abstract

Let G be a simple algebraic group and let H be a reductive subgroup of G. We classify all pairs (G, H) such that for any affine G-variety X with a dense G-orbit isomorphic to G/H the number of G-orbits in X is finite.

1 Introduction.

Let G be a connected reductive algebraic group over an algebraically closed field K of characteristic zero and let H be an algebraic subgroup of G. Let us recall that an irreducible algebraic variety X is said to be an embedding of the homogeneous space G/H if G acts on X with a dense orbit isomorphic to G/H. We shall denote this by $G/H \hookrightarrow X$.

By definition, the complexity of G-variety X is an integer number c(X) equal to the codimension of the generic B-orbit in X for the restricted action B:X, where B is a Borel subgroup of G, see [1] and [2]. Normal G-varieties of complexity zero are called spherical. A homogeneous space G/H and a subgroup $H \subset G$ are said to be spherical if G/H is a spherical G-variety with respect to the natural G-action.

Theorem 1 (F. J. Servedio [3], D. Luna and Th. Vust [2], D. N. Akhiezer [4]). The number of G-orbits in X for any embedding $G/H \hookrightarrow X$ of the homogeneous space G/H is finite if and only if G/H is spherical.

To be more precise, F. J. Servedio proved that any affine spherical variety contains a finite number of G-orbits, D. Luna, Th. Vust and D. N. Akhiezer extended this result to an arbitrary spherical variety and D. N. Akhiezer constructed a projective embedding with infinite number of G-orbits for any homogeneous space of positive complexity.

⁰This work was supported by the European Community Network "Algebraic groups" ERDCHRXCT 940697 and by INTAS-OPEN-97-1570.

Key words: reductive algebraic groups, homogeneous spaces, affine embeddings.

AMS 1991 Math. Subject Classification: 14L30, 14M17, 17B10.

Let us say that an embedding $G/H \hookrightarrow X$ is affine if the variety X is affine. In many problems of invariant theory, representation theory and other branches of mathematics only affine embeddings of homogeneous spaces are considered. Hence for a homogeneous space G/H it is natural to ask: does there exist an affine embedding $G/H \hookrightarrow X$ with infinite number of G-orbits?

Note that a given homogeneous space G/H admits an affine embedding if and only if G/H is quasi-affine (as an algebraic variety), see [5, Theorem 1.6]. In this situation the subgroup H is said to be observable in G. For a description of observable subgroups see [6]. The homogeneous space G/H is affine if and only if H is reductive, see [5, Th. 4.17]. In particular, any reductive subgroup is observable. In the sequel, we suppose that H is an observable subgroup of G. The main problem for this paper is to characterize all quasi-affine homogeneous spaces G/H of a reductive group G with the property:

(AF) the number of G-orbits in X for any affine embedding $G/H \hookrightarrow X$ is finite.

Example 1. For any spherical quasi-affine homogeneous space property (AF) holds (Theorem 1).

Example 2. Property (AF) holds for any homogeneous space of the group SL(2). In fact, here $\dim X \leq 3$ and only a one-parameter family of one-dimensional orbits can appear. But SL(2) contains no two-dimensional observable subgroup.

Example 3. Let T be a maximal torus in G and let V be a finite-dimensional G-module. Suppose that a vector $v \in V$ is T-fixed. Then the orbit Gv is closed in V, see [7]. This shows that property (AF) holds for any subgroup H such that $T \subset H$.

Definition 1. An affine homogeneous space G/H is called *affinely closed* if it admits only one affine embedding X = G/H.

Homogeneous spaces G/H from Example 3 are affinely closed. Denote by $N_G(H)$ the normalizer of a subgroup H in G. The following theorem is a reformulation of a result due to D. Luna [8]:

Theorem 2. Let H be a reductive subgroup of a reductive group G. The homogeneous space G/H is affinely closed if and only if the group $N_G(H)/H$ is finite.

This theorem provides many examples of homogeneous spaces with property (AF). Let us note that the complexity of the space G/T can be arbitrary large and property (AF) cannot be characterized in terms of the complexity only.

In this paper we show that the union of two conditions – the sphericity and the finiteness of the group $N_G(H)/H$ – is very close to characterizing all affine homogeneous spaces of a reductive group G with property (AF). Namely, it follows from Theorem 3 below that if H is reductive then the only case, which is not covered by these two conditions, is the case, where c(G/H) = 1, the rank of $N_G(H)/H$ is

equal to one, and any extension of H by a one-parameter subgroup of $N_G(H)$ is a spherical subgroup of G.

For a simple group G there is a list of all affine homogeneous spaces of complexity one [9]. In this situation we prove that if rk $N_G(H)/H = 1$ and an extension of H by a one-parameter subgroup of $N_G(H)$ is a spherical subgroup in G then property (AF) holds (Proposition 2). This completes the classification of affine homogeneous spaces of simple groups with property (AF) (Theorem 4).

As a corollary, we obtain that for a simple group G there exists only one series of affine homogeneous spaces of complexity one that admit an affine embedding with infinite number of G-orbits. Here G = SL(n), n > 4 and $H^0 = SL(n-2) \times K^*$, where SL(n-2) is embedded in SL(n) as the stabilizer of the first two basis vectors e_1 and e_2 in the minimal representation of SL(n), and K^* acts on e_1 and e_2 with weights α_1 and α_2 such that $\alpha_1 + \alpha_2 = 2 - n$, $\alpha_1 \neq \alpha_2$, and on $< e_3, \ldots, e_n >$ by scalar multiplication.

Let us fix the following notation: K^* is the multiplicative group of non-zero elements of the field K; F^0 is the identity component of an algebraic group F; Z(F) is the center of a group F: $T \subset B$ are a maximal torus and a Borel subgroup of the reductive group G; U is the maximal unipotent subgroup of B; $N_G(H)$ is the normalizer of a subgroup H in a group G; W(H) is the quotient group $N_G(H)/H$; $\gamma: N_G(H) \to W(H)$ is the quotient homomorphism; V^F is the set of F-fixed points in a F-module V; F_v is the isotropy subgroup of a vector v in a F-module V; $V^{\otimes n}$ is the tensor power $V \otimes \ldots \otimes V$ (n times) of a vector space V; $\Xi(G)_+$ is the semigroup of all dominant weights of G; V_{μ} is an irreducible G-module with highest weight μ ; $V_{\mu^*} = V_{\mu}^*$ is the dual module to V_{μ} ; QA is the field of quotients of an integral algebra A; Spec A is the affine variety corresponding to a finitely generated algebra Awithout nilpotent elements.

2 Embeddings with infinite number of G-orbits.

Theorem 3. Let H be an observable subgroup in a reductive group G. Suppose that there is a non-trivial one-parameter subgroup $\lambda: K^* \to W(H)$ such that the subgroup $H_1 = \gamma^{-1}(\lambda(K^*))$ is not spherical in G. Then there exists an affine embedding $G/H \hookrightarrow X$ with infinite number of G-orbits.

We shall prove this theorem in the next section. The idea of the proof is to apply the Akhiezer construction for the non-spherical homogeneous space G/H_1

and to consider the affine cone over a projective embedding of G/H_1 with infinite number of G-orbits.

Corollary 1. Let G be a reductive group with infinite center Z(G) and let H be an observable subgroup in G that does not contain $Z(G)^0$. Then property (AF) holds for G/H if and only if H is a spherical subgroup of G.

Proof. If H does not contain $Z(G)^0$ then there exists a non-trivial one-parameter subgroup $\lambda(K^*)$ in Z(G) with finite intersection with H. The corresponding extension H_1 is spherical iff H is spherical in G.

Corollary 2. Let H be a connected reductive subgroup in a reductive group G. Suppose that there exists a reductive non-spherical subgroup H_1 in G such that $H \subset H_1$ and dim $H_1 = \dim H + 1$. Then property (AF) does not hold for G/H.

Proof. Under these assumptions there exists a non-trivial one-parameter subgroup of H_1 with finite intersection with H, which normalizes (and even centralizes) H.

Corollary 3. Let H be a reductive subgroup in a reductive group G such that the complexity of the homogeneous space G/H is greater than one. Then the number of G-orbits in any affine embedding of G/H is finite if and only if G/H is affinely closed.

Proof. If the subgroup H is reductive then the group W(H) is reductive too [8]. If W(H) is not finite then it contains a non-trivial one-parameter subgroup $\lambda(K^*)$. For $H_1 = \gamma^{-1}(\lambda(K^*))$ we have $c(G/H_1) \geq 1$.

3 Proof of Theorem 3.

Lemma 1. If property (AF) holds for a homogeneous space G/H then it holds for any homogeneous space G/H', where H' is an overgroup of H of finite index.

Proof. Suppose that there exists an affine embedding $G/H' \hookrightarrow X$ with infinite number of G-orbits. Consider the morphism $G/H \to G/H'$. It determines an embedding $K[G/H'] \subset K[G/H]$. Let A be the integral closure of the image of the subalgebra $K[X] \subset K[G/H']$ in the field of rational functions K(G/H).

We have a natural G-action on the affine variety Spec A and we can consider Spec A as an affine embedding of G/H. The embedding $K[X] \subset A$ defines a finite

(surjective) morphism Spec $A \to X$ and therefore, Spec A contains infinitely many G-orbits. This contradiction completes the proof.

Remark 1. The converse statement does not hold. Indeed, set G = SL(3) and $H = (t, t, t^{-2}) \subset T \subset SL(3)$. We can extend H by the one-parameter subgroup $(t, t^{-1}, 1)$. Then $H_1 = T$ is not a spherical subgroup in SL(3) and by Theorem 3 property (AF) does not hold here. On the other hand, there is an overgroup H' of H of finite index such that the group W(H') is finite. By Theorem 2 property (AF) holds for G/H'.

Lemma 2. 1) In the notation of Theorem 3 there exists a finite-dimensional G-module V and a H_1 -eigenvector $v \in V$ such that G_v is an overgroup of H of finite index;

2) If H is reductive then one can suppose that $G_v = H$.

Proof. 1) Since H is observable, there exists a finite-dimensional G-module U and a vector $u \in U$ such that $G_u = H$, see [5, Th. 1.5 and Th 1.6]. We have the representation $W(H): U^H$ and the vector u has the trivial stabilizer in W(H). Let u_1, \ldots, u_k be an eigenbasis for the action $\lambda(K^*): U^H$ and let n_1, \ldots, n_k be the weights of $\lambda(K^*)$ on the vectors u_1, \ldots, u_k respectively. Here n_1, \ldots, n_k are integer numbers such that $\gcd(n_1, \ldots, n_k) = 1$.

Choose a basis $B_2 = (b_1^2, \ldots, b_k^2), \ldots, B_k = (b_1^k, \ldots, b_k^k)$ of the sublattice $\mathbb{Z}^{k-1} \subset \mathbb{Z}^k$ defined by the equation $n_1x_1 + \ldots + n_kx_k = 0$. Set $b = \max \mid b_i^j \mid$. Let $A = (a_1, \ldots, a_k)$ be an integral vector such that $a_i > b$ for any i and $a_1n_1 + \ldots + a_kn_k = N_1 \neq 0$. Set $N = |N_1|$. Then the vectors $A_1 = A, A_2 = A + B_2, \ldots, A_k = A + B_k$ generate a sublattice in \mathbb{Z}^k of index N. The coordinates (a_i^j) of the vectors A_i are positive integers. Set $c_j = a_1^j + \ldots + a_k^j$.

Consider the G-module

$$V = U^{\otimes c_1} \oplus \ldots \oplus U^{\otimes c_k}$$

and the vector

$$v = (u_1^{\otimes a_1^1} \otimes \ldots \otimes u_k^{\otimes a_k^1}, \ldots, u_1^{\otimes a_1^k} \otimes \ldots \otimes u_k^{\otimes a_k^k}) \in V.$$

The vector v is a $\lambda(K^*)$ -eigenvector of weight N. The stabilizer of this vector (in the group G) is contained in the intersection of stabilizers of the lines $\langle u_1 \rangle$,..., $\langle u_k \rangle$ and is an overgroup of H of index N.

2) If H is reductive then one can suppose that the orbit Gu is closed in U. This implies that the orbits W(H)u and $\lambda(K^*)u$ are closed (in U and in U^H). Consequently the numbers n_1, \ldots, n_k cannot be all positive or all negative, and there exist positive integer numbers $a_1, \ldots, a_k, b_1, \ldots, b_k$ such that $a_1n_1 + \ldots + a_kn_k = 1$, $b_1n_1 + \ldots + b_kn_k = 0$, and $gcd(b_1, \ldots, b_k) = 1$.

Arguing as above, we construct a set of integer vectors A_1, \ldots, A_k , a space V and a vector $v \in V$ such that $G_v = H$ (here N = 1). This completes the proof.

Remark 2. For an arbitrary observable subgroup statement 2) of the previous lemma does not hold. For example, let G be the group SL_3 and H = U be a maximal

unipotent subgroup normalized by T. Consider the subtorus $T' = diag(t^2, t^3, t^{-5})$ in T as a one-parameter subgroup $\lambda(K^*)$. Any H-stable vector in a finite-dimensional G-module is a sum of highest weight vectors. The restriction of any dominant weight to T' has a non-trivial kernel and the stabilizer of such a vector contains H as a proper subgroup.

Proof of Theorem 3. Let V be the G-module from Lemma 2. In the projective space $\mathbb{P}(V)$ the point < v > has the stabilizer H_1 . Let Y be the closure of the orbit G < v > in $\mathbb{P}(V)$. Now we shall recall the Akhiezer construction. By assumption, the complexity of the homogeneous space G/H_1 is positive. This implies that there exists a character $\xi : H_1 \to K^*$ such that for the corresponding line bundle L_{ξ} on G/H_1 the G-module $H^0(G/H_1, L_{\xi})$ of regular sections contains two different isomorphic irreducible G-submodules, say W_1 and W_2 , see [11, Theorem 1]. Choose two associated bases of T-eigenvectors $\{\phi_1, \ldots, \phi_m\}$ and $\{\psi_1, \ldots, \psi_m\}$ in W_1 and W_2 such that ϕ_1 and ψ_1 are highest weight vectors.

Consider the rational G-equivariant morphism $f:Y-\to \mathbb{P}^{2m-1}$ defined on the open G-orbit by the formula:

$$f(gH_1) = [\phi_1(g) : \ldots : \phi_m(g) : \psi_1(g) : \ldots : \psi_m(g)].$$

Let \overline{X} be the closure of the graph of f in $Y \times \mathbb{P}^{2m-1}$. Set

$$Z_c = \{ [a:b] \in \mathbb{P}^{2m-1} \mid a_i = cb_i \text{ for } i = 1, \dots, m \},$$

where c is a parameter. Then Z_c is a closed G-invariant subvariety in \mathbb{P}^{2m-1} and for $c_1 \neq c$ the intersection of Z_c and Z_{c_1} is empty. It is shown in [4] that the subsets $f^{-1}(Z_c)$ in \overline{X} are non-empty for infinitely many values of c. This proves that \overline{X} contains infinitely many G-orbits.

Let X be the affine cone over \overline{X} with respect to the Segre embedding of $\mathbb{P}(V) \times \mathbb{P}^{2m-1}$. We fix a basis in V such that v is the first basis vector. The point (< v >: f(< v >)) on \overline{X} corresponds to the line l on X with coordinates

$$(\alpha\phi_1(eH_1),\ldots,\alpha\phi_m(eH_1),\alpha\psi_1(eH_1),\ldots,\alpha\psi_m(eH_1),0,\ldots,0),$$

where α is a coordinate on the line $\langle v \rangle$. The values $\phi_i(eH_1)$ and $\psi_i(eH_1)$ do not change under the action of $\lambda(K^*)$, the line l is H_1 -invariant, and the stabilizer of any non-zero point on l is an overgroup H' of H of finite index. The cone over the dense G-orbit in \overline{X} isomorphic to G/H_1 is a dense G-orbit in X isomorphic to G/H' and X contains infinitely many G-invariant cones corresponding to G-orbits in \overline{X} . Lemma 1 completes the proof.

4 Very symmetric embeddings.

The group of G-equivariant automorphisms of a homogeneous space G/H is isomorphic to W(H) (the action W(H): G/H is induced by the action $N_G(H): G/H$ by

right multiplication). Let $G/H \hookrightarrow X$ be an affine embedding. The group Aut_GX of G-equivariant automorphisms of X is a subgroup of W(H).

Definition 2. An embedding $G/H \hookrightarrow X$ is said to be very symmetric if $W(H)^0 \subseteq Aut_GX$.

Any spherical affine variety is very symmetric. In fact, for a spherical homogeneous space G/H any isotypic component $K[G/H]_{\mu}$ of the G-algebra K[G/H] is irreducible G-module (see [10] or Section 6) and W(H) acts on $K[G/H]_{\mu}$ by scalar multiplication. This shows that any G-invariant subalgebra in K[G/H] is W(H)-invariant too.

In the case of affine SL(2)-embeddings only the embedding X=SL(2) is very symmetric, in all other cases the group $Aut_{SL(2)}X$ is isomorphic to a Borel subgroup in SL(2), see [10, III.4.8, Satz 1]. More generally, if X is an affine embedding of the homogeneous space $G/\{e\}$ then X is very symmetric if and only if the action G:X can be extended to an action of the group $G\times G$ with an open orbit isomorphic to $(G\times G)/H$, where H is the diagonal in $G\times G$. Hence X can be considered as an affine $(G\times G)/H$ -embedding. Theorem 2 implies that if G is a semisimple group then $X=(G\times G)/H$, for other proofs see [12] and [13, Proposition 1].

If G is a reductive group then the set of all very symmetric embeddings of the homogeneous space $G/\{e\}$ is exactly the set of all affine algebraic monoids with G as group of units [13]. This demonstrates that very symmetric embeddings have a natural characterization in the variety of all affine $G/\{e\}$ -embeddings. The classification of reductive algebraic monoids is obtained in [13] and [14].

Now we are interested in the following problem: when does there exist a very symmetric affine embedding of a homogeneous space G/H with infinite number of G-orbits? The example of $SL(3)/\{e\}$ -embeddings shows that the latter property is not equivalent to (AF).

Proposition 1. Let H be a reductive subgroup in a reductive group G.

- 1) If $W(H)^0$ is semisimple then there exists only one very symmetric affine embedding of G/H, namely X = G/H.
- 2) If $W(H)^0$ is not semisimple and $c(G/N_G(H)) \ge 1$ then there exists a very symmetric affine embedding of G/H with infinite number of G-(and even $G \times W(H)^0$ -) orbits.
- **Proof.** If X is a very symmetric affine embedding of G/H then one can consider X as a $(G \times W(H)^0)$ -variety. The stabilizer of a point in a dense $(G \times W(H)^0)$ -orbit in X is conjugated to $\tilde{H} = \{(h, hH) \mid h \in \gamma^{-1}(W(H)^0)\}$.
- 1) If $W(H)^0$ is semisimple then the Lie subalgebras in $Lie(G \times W(H)^0)$ corresponding to the group \tilde{H} and to the normalizer of \tilde{H} coincide. To check this, one may use the fact that the normalizer of a reductive Lie subalgebra in a reductive Lie algebra is the sum of this subalgebra and its centralizer. Hence Theorem 2 implies statement 1).
- 2) By assumption, there exists a non-trivial central one-parameter subgroup in $W(H)^0$. Extending \tilde{H} by this subgroup we obtain a subgroup in $N_G(H) \times W(H)^0$,

which is not spherical in $G \times W(H)^0$. Theorem 3 implies that there exists an affine $(G \times W(H)^0)/\tilde{H}$)-embedding with infinite number of $(G \times W(H)^0)$ -orbits.

5 Classifications.

Let H be a reductive subgroup of G. We are interested in property (AF) for the homogeneous space G/H. Corollary 1 allows us to suppose that G is semisimple. If either H is spherical in G or the group W(H) is finite then property (AF) holds. If W(H) is not finite then there exists a non-trivial one-parameter subgroup $\lambda(K^*) \subset W(H)$ (W(H) is reductive) and we can extend H by this subgroup. If we obtain a non-spherical subgroup in G then property (AF) does not hold for G/H (Theorem 3). So the only unclear case is the following:

H is a non-spherical subgroup in G but any extension of H by a one-parameter subgroup of W(H) is spherical in G.

In this case the homogeneous space G/H has complexity one. Moreover, the rank of the group W(H) is equal to one. Indeed, the field of B-invariant rational functions $K(G/H)^B$ is a field of rational functions in one variable. There is a natural action $W(H): K(G/H)^B$. If T' is a torus in W(H) and $\dim T' \geq 2$ then the restricted action $T': K(G/H)^B$ has a non-trivial kernel. The extension of H by this kernel is a non-spherical subgroup in G.

If the group G is simple then there is a classification of all connected reductive subgroups such that c(G/H) = 1, see [9, Table 1]. Below we list all such pairs (G, H):

- 1) $(SL(n), SL(n-2) \times (K^*)^2), n \ge 3;$
- 2) $(Sp(2n), Sp(2n-4) \times SL(2) \times SL(2)), n \ge 3;$
- 3) $(SL(6), Sp(4) \times SL(2) \times K^*), R(\tilde{\phi_1})|_{H} = R(\phi_1) \otimes 1 \otimes \epsilon + 1 \otimes R(\phi_1') \otimes \epsilon^{-2};$
- 4) $(SO(9), G_2 \times K^*), R(\tilde{\phi_1})|_{H} = R(\phi_1) \otimes 1 + 1 \otimes \epsilon + 1 \otimes \epsilon^{-1};$
- 5) $(SO(11), SL(2) \times Spin(7)), R(\tilde{\phi_1})|_{H} = R(2\phi_1) \otimes 1 + 1 \otimes R(\phi_3');$
- 6) $(Sp(4), SL(2)), R(\tilde{\phi}_1)|_{H} = R(3\phi_1);$
- 7) $(E_6, Spin(9) \times K^*), R(\tilde{\phi_1})|_{H} = 1 \otimes 1 + R(\phi_1) \otimes 1 + R(\phi_4) \otimes \epsilon + 1 \otimes \epsilon;$
- 8) $(F_4, Spin(8)), R(\tilde{\phi_1})|_{H} = R(\phi_1) + R(\phi_3) + R(\phi_4) + 2;$
- 9) $(SL(2n), SL(n) \times SL(n));$
- 10) (SO(n), SO(n-2)), n > 4;

11)
$$(SO(2n+1), SL(n)), n > 2, R(\tilde{\phi}_1)|_{H} = R(\phi_1) + R(\phi_{n-1}) + 1;$$

12)
$$SO(4n)$$
, $SL(2n)$), $n > 1$, $R(\tilde{\phi_1})|_{H} = R(\phi_1) + R(\phi_{n-1})$;

13)
$$(Sp(2n), Sp(2n-2)), n > 1, R(\tilde{\phi}_1)|_{H} = R(\phi_1) + 2;$$

14)
$$(Sp(2n), SL(n)), R(\tilde{\phi_1})|_{H} = R(\phi_1) + R(\phi_{n-1});$$

15)
$$(E_7, E_6), R(\tilde{\phi_1})|_{H} = R(\phi_1) + R(\phi_5) + 2;$$

16)
$$(SO(10), Spin(7)), R(\tilde{\phi_1})|_{H} = R(\phi_3) + 2;$$

17)
$$(SL(n), SL(n-2) \times K^*), n > 4, R(\tilde{\phi}_1)|_{H} = R(\phi_1) \otimes \epsilon + 1 \otimes \epsilon^{\alpha_1} + 1 \otimes \epsilon^{\alpha_2}, \alpha_1 + \alpha_2 = 2 - n, \alpha_1 \neq \alpha_2.$$

Comments. In the line $R(\tilde{\phi_1})|_{H}=\ldots$ we indicate the restriction of the simplest representation of G to H. The fundamental weights of simple components of the semisimple part of H are denoted by ϕ_i, ϕ_i', \ldots , the corresponding irreducible representations are denoted by $R(\phi_i), R(\phi_i'), \ldots$; ϵ is a faithful 1-dimensional representation of the multiplicative group K^* ; 1 is the trivial 1-dimensional representation.

Theorem 4. Let G be a simple group and H be a reductive subgroup in G. Then there exists an affine embedding $G/H \hookrightarrow X$ with infinite number of G-orbits if and only if (G, H) satisfies one of the following conditions:

- 1) $c(G/H) \ge 2$ and the group $N_G(H)/H$ is infinite;
- 2) G = SL(n), n > 4 and $H^0 = SL(n-2) \times K^*$, where SL(n-2) is embedded in SL(n) as the stabilizer of the first two basis vectors e_1 and e_2 in the minimal representation of SL(n), and K^* acts on e_1 and e_2 with weights α_1 and α_2 such that $\alpha_1 + \alpha_2 = 2 n$, $\alpha_1 \neq \alpha_2$, and on $e_3 = 2 n$, $\alpha_1 \neq \alpha_2$, and on $e_3 = 2 n$, $\alpha_1 \neq \alpha_2$, and on $e_3 = 2 n$, $\alpha_2 \neq \alpha_3 = 2 n$, $\alpha_3 \neq \alpha_4 \neq \alpha_5 = 2 n$, $\alpha_3 \neq \alpha_4 \neq \alpha_5 = 2 n$, $\alpha_4 \neq \alpha_5 = 2 n$, $\alpha_5 \neq \alpha_5 = 2 n$, $\alpha_6 \neq \alpha_7 = 2 n$, $\alpha_7 \neq \alpha_7 = 2 n$, $\alpha_8 \neq \alpha_7 = 2 n$,

Proof. We have to consider only the case c(G/H) = 1. Suppose that H is connected. The pairs 1)-8) from the above list are covered by Theorem 2. The pairs 9)-16) are considered in Proposition 2 in the next section. By Lemma 1, property (AF) holds for any finite extension of H in these cases. Finally, the pair 17) (and all finite extension of H here) satisfies the conditions of Theorem 3.

6 Embeddings of complexity one.

Now we need some more specific information about homogeneous spaces of complexity one. Let X be a G-variety. The decomposition of the algebra of regular functions

$$K[X] = \bigoplus_{\mu \in \Xi(X)} K[X]_{\mu},$$

where $\mu \in \Xi(G)_+$ and $K[X]_{\mu}$ is the sum of all irreducible G-submodules in K[X] isomorphic to V_{μ} , is called the isotypic decomposition of the algebra K[X]. Here

 $\Xi(X)$ is the subset in $\Xi(G)_+$ consisting of all dominant weights μ such that $K[X]_{\mu} \neq \{0\}$. This subset is a subsemigroup in $\Xi(G)_+$, see [10]. The semigroup $\Xi(X)$ is called the rank semigroup of a G-variety X. In particular, if H is an observable subgroup in G then we obtain the rank semigroup $\Xi(G/H)$ for the quasi-affine homogeneous space G/H. It follows from Frobenius reciprocity that

$$\Xi(G/H) = \{ \mu \in \Xi(G)_+ \mid V_{\mu^*}^H \neq 0 \}.$$

Denote by m_{μ} the multiplicity of the irreducible G-submodule V_{μ} in the G-algebra K[G/H]. An observable subgroup $H \subset G$ is spherical iff $m_{\mu} = 1$ for any $\mu \in \Xi(G/H)$, see [11, Theorem 1].

Theorem 5 ([9, Theorem 2]). Let G be a simply connected semisimple group, and H be an observable subgroup in G without rational characters. If c(G/H) = 1 then there exists a unique weight $\omega \in \Xi(G/H)$ such that

- 1) $m_{\omega} = 2$;
- 2) if $\mu \in \Xi(G/H)$, $\mu = e\omega + \delta$, $e \in \mathbb{N}$, $\delta \in \Xi(G/H)$, and $\delta \omega \notin \Xi(G/H)$ then $m_{\mu} = e + 1$.

Definition 3. The weight $\omega \in \Xi(G/H)$ is called the remarkable weight for G/H.

If a subgroup H is reductive then the semigroup $\Xi(G/H)$ is stable under the Weyl involution $\mu \to \mu^*$ and $\omega^* = \omega$.

Without loss of generality it can be assumed that G is simply connected.

Proposition 2. Let G be a simply connected simple group and H be a connected reductive subgroup in G such that $W(H)^0 \neq \{e\}$ and any extension of H by a one-parameter subgroup $\lambda(K^*)$ of W(H) is spherical in G. Then property (AF) holds for G/H.

Proof. Applying the normalization, we have to consider only normal embeddings. The center of any spherical reductive subgroup in a simple group is at most one-dimensional. Hence H is semisimple in our case. The rank semigroup $\Xi(G/H) = \langle \omega, \mu_1, \ldots, \mu_k \rangle$ is free and the remarkable weight is one of the generators of $\Xi(G/H)$, see [9, 3.1]. We have $K[G/H]^U = K[x,y] \otimes K[f_{\mu_1},\ldots,f_{\mu_k}]$, where x and y are highest weight vectors with weight ω , and $f_{\mu_1},\ldots,f_{\mu_k}$ are other generators of $K[G/H]^U$, $\mu_i \neq \mu_j$ for $i \neq j$. There are a G-equivariant $\lambda(K^*)$ -action on $K[G/H]^U$.

Fact 1. One can choose x and y in $K[X]^U_{\omega}$ that are $\lambda(K^*)$ -eigenvectors with opposite weights.

Fact 2. For the pairs 9)-15) $f_{\mu} \in K[G/H]^{\lambda(K^*)}$ for any $\mu \in <\mu_1,\ldots,\mu_k>$.

In order to check these facts one can compare the rank semigroups $\Xi(G/H)$ [9, Table 1] and $\Xi(G/H_1)$ [17, Table 1], where $H_1 = \lambda(K^*)H$.

Let $G/H \hookrightarrow X$ be a normal affine embedding. Then $X \setminus (G/H) = \bigcup_i D_i$, where D_i are irreducible G-stable divisors in X. Denote by ν_i the valuation of the field

K(X) defined by the divisor D_i . A function $f \in K[G/H]$ is regular on X iff $\nu_i(f) \geq 0$ for all i, and the restriction of f to D_i is a non-zero function iff $\nu_i(f) = 0$. Suppose that for a divisor D_i ,

(*) there exists a linear form $z = \alpha x + \beta y$ such that $\nu_i(x) \neq \nu_i(z)$.

Let $\mu \in \langle \mu_1, \ldots, \mu_k \rangle$. The *T*-isotypic component of $K[G/H]^U$ of weight $\mu + n\omega$ consists of the functions $f_{\mu}(a_0x^n + a_1x^{n-1}z + \ldots + a_nz^n)$. Here $\nu_i(x^{n-j_1}z^{j_1}) \neq \nu_i(x^{n-j_2}z^{j_2})$ for $j_1 \neq j_2$ and there exists at most one j such that $\nu_i(f_{\mu}) + \nu_i(x^{n-j}z^j) = 0$. Hence the algebra $K[D_i]$ is multiplicity free as a G-module. This proves that the number of G-orbits in D_i is finite. Let D be a union of all divisors D_i with property (*).

Consider $\tilde{X} = X \setminus D$. This is a quasi-affine unirational G-variety of complexity one and by a result of F. Knop [16] the algebra of regular functions $K[\tilde{X}]$ is finitely generated. Here $\nu_i(x) = \nu_i(z)$ for any $D_i \subset \tilde{X}$ and for any $z = \alpha x + \beta y$. We have $\nu_i(f_\mu(x^n + a_1x^{n-1}y + \ldots + a_ny^n)) = \nu_i(f_\mu(c_1x + d_1y) \ldots (c_nx + d_ny)) = \nu_i(f_\mu) + n\nu_i(x)$. Hence either $K[G/H]_{\mu+n\omega} \subset K[\tilde{X}]$ or $K[G/H]_{\mu+n\omega} \cap K[\tilde{X}] = \{0\}$ for any $\mu+n\omega \in \Xi(G/H)$. This implies that the G-equivariant $\lambda(K^*)$ -action on G/H can be extended to \tilde{X} .

Consider the quotient morphism $\pi: \tilde{X} \to S = \operatorname{Spec} K[\tilde{X}]^{\lambda(K^*)}$. The affine variety S carries a natural G-action. We claim that $K[\tilde{X}]^{K^*} \neq K$. In fact, $K[\tilde{X}]$ is not a multiplicity free G-module and there exist $\mu \in \langle \mu_1, \dots, \mu_k \rangle$ and n > 0 such that $K[G/H]_{\mu+n\omega}^U \subset K[\tilde{X}]$. In cases 9)-15), we have $f_{\mu} \in K[G/H]^{K^*}$ for all μ (see Fact 1 and Fact 2) and then

(C) there exist
$$\mu \in \langle \mu_1, \dots, \mu_k \rangle$$
 and $n > 0$ such that $f_{\mu}x^ny^n \in K[\tilde{X}]^{\lambda(K^*)}$

In the exceptional case 16) (SO(10), Spin(7)) we check that $\nu_i(x) \geq 0$ for all i. Indeed, consider the affine G-variety $X' = \operatorname{Spec} K[\tilde{X}]$. There is an embedding $X \subset X'$ and it suffices to prove that the number of G-orbits in X' is finite. If the closed G-orbit in X' is isomorphic to G/L, where L is reductive and $L \neq G$ then $X' \cong G *_L X''$, where X'' is an affine embedding of L/H, see [5, Theorem 6.7]. In our case there are only two candidates for L: SO(8) and $SO(8) \times SO(2)$, the pair (L, H) is spherical and therefore the number of G-orbits in X' is finite. If X' contains G-fixed point then, by the Bogomolov theorem [15], there exists a surjective G-equivariant morphism $X' \to C(\sigma)$ for some $\sigma \in \Xi_+(G)$, $\sigma \neq 0$, where $C(\sigma)$ is the closure of the orbit of a highest weight vector v_{σ} in V_{σ} . In this case H is contained in the proper parabolic subgroup $P_{\sigma} = G_{\langle v_{\sigma} \rangle}$. But the subgroup Spin(7)is contained only in one proper parabolic subgroup of SO(10). Denote by $\hat{\phi}_1, \ldots, \hat{\phi}_r$ the fundamental weights of G. Then $\sigma = k \dot{\phi}_1 = k \omega$ (here $\omega = \dot{\phi}_1$, see [9, Table 1]) for some k>0. The morphism $X'\to C(k\omega)\subset V_{k\omega}$ induces a homomorphism $K[V_{k\omega}] \to K[X']$. This implies that there exists a B-semi-invariant function in K[X'] of weight $k\omega$. This function can be written as $f = a_0x^k + a_1x^{k-1}y + \ldots + a_ky^k$ and $\nu_i(f) = k\nu_i(x) \geq 0$. Hence $\nu_i(x) \geq 0$ for all $D_i \subset X$. Finally we have $xy \in K[X']^{\lambda(K^*)}$ (see Fact 2).

The action G: S is quasihomogeneous. Let G/F be a dense G-orbit in S. Recall that $H_1 = \gamma^{-1}(\lambda(K^*))$. We have the restricted map $G/H_1 \to G/F$ and hence $H_1 \subset F$. The subgroup F is an observable subgroup in G. We claim that F is reductive. In fact, if $rk(H_1) = rk(G)$ then rk(F) = rk(G) and F is reductive [6]. In the exceptional case (SO(10), Spin(7)) it is also possible to show that $H_1 = Spin(7) \times SO(2)$ is not contained in any proper quasiparabolic subgroup (for the definition see [6]) of SO(10) and thus H_1 is not contained in any observable non-reductive subgroup of SO(10).

Case 1. $F = H_1$.

Then $S = G/H_1$ by Theorem 2. Any fiber of the morphism π is the closure of $K^* \cong H_1/H$ in \tilde{X} . Hence any fiber is isomorphic either to K or to K^* and the number of G-orbits in \tilde{X} is at most two.

Case 2. $F \neq H_1$.

There are only three possibilities for F. In all cases S = G/F by Theorem 2.

- 1) $G = SO(2n+1), \ F = SO(2n), \ H = SL(n), \ n > 3.$ Here $\omega = \tilde{\phi}_n$ [9] and $\Xi(G/F) = <\tilde{\phi}_1 > [17].$ This contradicts condition (C).
- 2) $G = Sp(2n), \ F = Sp(2n-2) \times SL(2), \ H = Sp(2n-2), \ n > 1.$ Here $\omega = \tilde{\phi}_1$ [9] and $\Xi(G/F) = \langle \tilde{\phi}_2 \rangle$ [17]. This contradicts condition (C).
- 3) G = SO(10), $F = SO(2) \times SO(8)$, H = Spin(7). Consider the restricted morphism $G/H \to G/F$. The preimage of the point eF is F/H. The closure Z of F/H in \tilde{X} is a spherical F-variety (for the restricted action $F:\tilde{X}$) and it contains finitely many F-orbits. We have $\tilde{X} \cong G *_F Z$ and the number of G-orbits in \tilde{X} is finite. The proof of Proposition 2 is completed.

Acknowledgments. The author is grateful to M. Brion, D. I. Panyushev, D. A. Timashev and E. B. Vinberg for useful discussions.

This paper was written during a stay at Institut Fourier (Saint Martin d'Hères, France). The author wishes to thank this institution and especially M. Brion for invitation and hospitality.

References

- [1] E. B. Vinberg, Complexity of actions of reductive groups, Funktsional'nyi Analiz i ego Prilog. **20** (1) (1986), 1-13 (in Russian); English transl.: Func. Anal. and its Appl. **20** (1) (1986), 1-11.
- [2] D. Luna and Th. Vust, Plogements d'Espaces Homogénes, Comment. Math. Helvetici **58** (1983), 186-245.
- [3] F. J. Servedio, Prehomogeneous vector spaces and variety, Trans. Amer. Math. Soc. 176 (1973), 421-444.
- [4] D. N. Akhiezer, Actions with a finite numbr of orbits, Funktsional'nyi Analiz i ego Prilog. 19 (1) (1985), 1-5 (in Russian); English transl.: Func. Anal. and its Appl. 19 (1) (1985), 1-4.

- [5] V. L. Popov and E. B. Vinberg, Invariant theory, Itogi Nauki i Tekhniki, Sovremennie Problemy Mat. Fundamentalnie Napravleniia, vol. 55, VINITI, Moscow 1989 (in Russian); English transl., Algebraic Geometry IV, Encyclopaedia of Math. Sciences, vol. 55, Springer-Verlag, Berlin 1994, pp. 123–278.
- [6] A. A. Sukhanov, Description of the observable subgroups of linear algebraic groups, Mat. Sbornik 130 (1986), 310-334 (in Russian); English transl.: Math. USSR-Sb. 58 (1987), 311-335.
- [7] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404.
- [8] D. Luna, Adhérences d'orbite et invariants, Inventiones Math. **29** (1975), 231-238.
- [9] D. I. Panyushev, Complexity of quasiaffine homogeneous varieties, t-decompositions, and affine homogeneous spaces of complexity 1, Advaces in Soviet Mathematics, Volume 8, ed. by E. B. Vinberg, 1992, 151-166.
- [10] H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg Verlag, Braunschweig 1985; Russian transl.: Mir, Moscow 1987.
- [11] B. N. Kimel'feld and E. B. Vinberg, Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups, Funktsional'nyi Analiz i ego Prilog. **12** (3) (1978), 12-19 (in Russian); English transl.: Func. Anal. and its Appl. **12** (3) (1978), 168-174.
- [12] W. C. Waterhouse, The unit group of affine algebraic monoids, Proc. Amer. Math. Soc. 85 (1982), 506-508.
- [13] E. B. Vinberg, On reductive algebraic semigroups, In: Lie Groups and Lie Algebras, E. B. Dynkin Seminar, Amer. Math. Soc. Transl (2) **169** (1995), 145-182.
- [14] A. Rittatore, Algebraic monoids and group embeddings, Transformation Groups **3** (4) (1998), 375-396.
- [15] F. A. Bogomolov, Holomorphic tensors and vector bundles on projective varieties, Izv. Akad. Nauk SSSR, Ser. Mat. 42 (6) (1979), 1227-1287 (in Russian); English transl.: Math USSR, Izv. 13 (1979), 499-555.
- [16] F. Knop, Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z. **213** (1993), 33-35.
- [17] M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Composit. Math. 38 (1979), 129-153.

Ivan Arzhantsev Department of Mathematics Moscow State Pedagogical University ul. Krasnoprudnaia 14, Moscow, Russia

e-mail: ivan@arjantse.mccme.ru

Current address:

Université de Grenoble I
Institut Fourier
Laboratoire de Mathématiques
UMR 5582 CNRS - UJF
B. P. 74
38402 ST MARTIN D'HÈRES Cedex (France)

 $e-mail: \ arjantse@mozart.ujf-grenoble.fr$