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Abstract

Let G be a simple algebraic group and let H be a reductive subgroup of
G. We classify all pairs (G, H) such that for any affine G-variety X with a
dense G-orbit isomorphic to G/H the number of G-orbits in X is finite.

1 Introduction.

Let G be a connected reductive algebraic group over an algebraically closed field K
of characteristic zero and let H be an algebraic subgroup of G. Let us recall that
an irreducible algebraic variety X is said to be an embedding of the homogeneous
space G/H if G acts on X with a dense orbit isomorphic to G/H. We shall denote
this by G/H — X.

By definition, the complexity of G-variety X is an integer number ¢(X) equal to
the codimension of the generic B-orbit in X for the restricted action B : X, where
B is a Borel subgroup of G, see [1] and [2]. Normal G-varieties of complexity zero
are called spherical. A homogeneous space G/H and a subgroup H C G are said to
be spherical if G/H is a spherical G-variety with respect to the natural G-action.

Theorem 1 (F. J. Servedio [3], D. Luna and Th. Vust [2], D. N. Akhiezer [4]).
The number of G-orbits in X for any embedding G/H — X of the homogeneous
space G/H is finite if and only if G/H is spherical.

To be more precise, F. J. Servedio proved that any affine spherical variety con-
tains a finite number of G-orbits, D. Luna, Th. Vust and D. N. Akhiezer extended
this result to an arbitrary spherical variety and D. N. Akhiezer constructed a pro-
jective embedding with infinite number of G-orbits for any homogeneous space of
positive complexity.
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Let us say that an embedding G/H < X is affine if the variety X is affine.
In many problems of invariant theory, representation theory and other branches of
mathematics only affine embeddings of homogeneous spaces are considered. Hence
for a homogeneous space G/H it is natural to ask: does there exist an affine em-
bedding G/H — X with infinite number of G-orbits 7

Note that a given homogeneous space G/H admits an affine embedding if and
only if G/H is quasi-affine (as an algebraic variety), see [5, Theorem 1.6]. In this si-
tuation the subgroup H is said to be observable in GG. For a description of observable
subgroups see [6]. The homogeneous space G/ H is affine if and only if H is reductive,
see [5, Th. 4.17]. In particular, any reductive subgroup is observable. In the sequel,
we suppose that H is an observable subgroup of G. The main problem for this paper
is to characterize all quasi-affine homogeneous spaces G/H of a reductive group G
with the property:

(AF) the number of G-orbits in X for any affine embedding G/H — X is finite.

Example 1. For any spherical quasi-affine homogeneous space property (AF)
holds (Theorem 1).

Example 2. Property (AF) holds for any homogeneous space of the group
SL(2). In fact, here dim X < 3 and only a one-parameter family of one-dimensional
orbits can appear. But SL(2) contains no two-dimensional observable subgroup.

Example 3. Let 7" be a maximal torus in G and let V' be a finite-dimensional
G-module. Suppose that a vector v € V is T-fixed. Then the orbit Gv is closed
in V', see [7]. This shows that property (AF) holds for any subgroup H such that
TCH.

Definition 1. An affine homogeneous space G/H is called affinely closed if it
admits only one affine embedding X = G/H.

Homogeneous spaces G/H from Example 3 are affinely closed. Denote by Ng(H)
the normalizer of a subgroup H in G. The following theorem is a reformulation of
a result due to D. Luna [8]:

Theorem 2. Let H be a reductive subgroup of a reductive group G. The homo-
geneous space G/H 1is affinely closed if and only if the group Ng(H)/H is finite.

This theorem provides many examples of homogeneous spaces with property
(AF). Let us note that the complexity of the space G/T can be arbitrary large and
property (AF) cannot be characterized in terms of the complexity only.

In this paper we show that the union of two conditions — the sphericity and
the finiteness of the group Ng(H)/H — is very close to characterizing all affine
homogeneous spaces of a reductive group G with property (AF). Namely, it follows
from Theorem 3 below that if H is reductive then the only case, which is not covered
by these two conditions, is the case, where ¢(G/H) = 1, the rank of Ng(H)/H is



equal to one, and any extension of H by a one-parameter subgroup of Ng(H) is a
spherical subgroup of G.

For a simple group G there is a list of all affine homogeneous spaces of complexity
one [9]. In this situation we prove that if rk Ng(H)/H = 1 and an extension of H
by a one-parameter subgroup of Ng(H) is a spherical subgroup in G then property
(AF) holds (Proposition 2). This completes the classification of affine homogeneous
spaces of simple groups with property (AF) (Theorem 4).

As a corollary, we obtain that for a simple group G there exists only one series of
affine homogeneous spaces of complexity one that admit an affine embedding with
infinite number of G-orbits. Here G = SL(n), n > 4 and H° = SL(n — 2) x K*,
where SL(n—2) is embedded in SL(n) as the stabilizer of the first two basis vectors
e; and ey in the minimal representation of SL(n), and K* acts on e; and ey with
weights a7 and ay such that a; + as = 2 —n, oy # g, and on < e3,...,e, > by
scalar multiplication.

Let us fix the following notation:

K* is the multiplicative group of non-zero elements of the field K;

FY is the identity component of an algebraic group F;

Z(F) is the center of a group F;

T C B are a maximal torus and a Borel subgroup of the reductive group Gj;
U is the maximal unipotent subgroup of B;

N¢(H) is the normalizer of a subgroup H in a group G;

W (H) is the quotient group Ng(H)/H;

v: Ng(H) — W(H) is the quotient homomorphism;

VF is the set of F-fixed points in a F-module V;

F, is the isotropy subgroup of a vector v in a F-module V;

V® is the tensor power V ® ... ® V (n times) of a vector space V;

Z(G)+ is the semigroup of all dominant weights of Gj

V, is an irreducible G-module with highest weight p;

Ve =V, is the dual module to V;

QA is the field of quotients of an integral algebra A;

Spec A is the affine variety corresponding to a finitely generated algebra A
without nilpotent elements.

2 Embeddings with infinite number of G-orbits.

Theorem 3. Let H be an observable subgroup in a reductive group G. Suppose that
there is a non-trivial one-parameter subgroup \ : K* — W (H) such that the subgroup
H, = v Y\(K™*)) is not spherical in G. Then there erists an affine embedding
G/H — X with infinite number of G-orbits.

We shall prove this theorem in the next section. The idea of the proof is to
apply the Akhiezer construction for the non-spherical homogeneous space G/H;



and to consider the affine cone over a projective embedding of G/H; with infinite
number of G-orbits.

Corollary 1. Let G be a reductive group with infinite center Z(G) and let H
be an observable subgroup in G that does not contain Z(G)°. Then property (AF)
holds for G/H if and only if H is a spherical subgroup of G.

Proof. If H does not contain Z(G)° then there exists a non-trivial one-parameter
subgroup A(K*) in Z(G) with finite intersection with H. The corresponding exten-
sion H, is spherical iff H is spherical in G.

Corollary 2. Let H be a connected reductive subgroup in a reductive group
G. Suppose that there exists a reductive non-spherical subgroup Hy in G such that
H C H; and dim Hy; = dim H + 1. Then property (AF) does not hold for G/H.

Proof. Under these assumptions there exists a non-trivial one-parameter sub-
group of H; with finite intersection with H, which normalizes (and even centralizes)
H.

Corollary 3. Let H be a reductive subgroup in a reductive group G such that
the complezity of the homogeneous space G/ H is greater than one. Then the number
of G-orbits in any affine embedding of G/H is finite if and only if G/H is affinely
closed.

Proof. If the subgroup H is reductive then the group W (H) is reductive too [8].
If W(H) is not finite then it contains a non-trivial one-parameter subgroup A(K*).
For H; = v 1(A(K*)) we have ¢(G/H;) > 1.

3 Proof of Theorem 3.

Lemma 1. If property (AF) holds for a homogeneous space G/H then it holds for
any homogeneous space G/H', where H' is an overgroup of H of finite index.

Proof. Suppose that there exists an affine embedding G/H' < X with infinite
number of G-orbits. Consider the morphism G/H — G/H'. It determines an
embedding K|G/H'] C K|G/H]. Let A be the integral closure of the image of the
subalgebra K[X] C K[G/H'] in the field of rational functions K(G/H).

A < K|G/H] — K(G/H) Spec A < G/H
T T T \ \’
K[X] — K[G/H| — K(G/H") X < G/H

We have a natural G-action on the affine variety Spec A and we can consider
Spec A as an affine embedding of G/H. The embedding K[X| C A defines a finite
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(surjective) morphism Spec A — X and therefore, Spec A contains infinitely many
G-orbits. This contradiction completes the proof.

Remark 1. The converse statement does not hold. Indeed, set G = SL(3) and
H = (t,t,t7?) ¢ T C SL(3). We can extend H by the one-parameter subgroup
(t,t71,1). Then H; = T is not a spherical subgroup in SL(3) and by Theorem 3
property (AF) does not hold here. On the other hand, there is an overgroup H' of
H of finite index such that the group W (H’) is finite. By Theorem 2 property (AF)
holds for G/H'.

Lemma 2. 1) In the notation of Theorem 3 there exists a finite-dimensional
G-module V' and a H,-eigenvector v € V such that G, is an overgroup of H of finite
inder;

2) If H is reductive then one can suppose that G, = H.

Proof. 1) Since H is observable, there exists a finite-dimensional G-module U
and a vector u € U such that G, = H, see [5, Th. 1.5 and Th 1.6]. We have
the representation W (H) : U” and the vector u has the trivial stabilizer in W (H).

Let uy, ..., u; be an eigenbasis for the action A\(K*) : U” and let ny,...,n; be the
weights of A(K*) on the vectors ui, ..., uy respectively. Here ny, ..., ny are integer
numbers such that ged(nq,...,ng) = 1.

Choose a basis By = (b?,...,b7),..., By = (b5, ..., bE) of the sublattice ZF~! C
ZF defined by the equation myx; + ... + ngxy = 0. Set b = maz | b} |. Let A =
(a1,...,ax) be an integral vector such that a; > b for any i and a1ny + ... + axng =
N; #0. Set N =| N; |. Then the vectors A = A, Ay = A+ Bs,..., Ay = A+ By
generate a sublattice in Z* of index N. The coordinates (a!) of the vectors A; are
positive integers. Set ¢; = al +...+ af;.

Consider the G-module

V=U"q®...0U%

and the vector
v=w®.. . @ul™, .. ... out) e V.

The vector v is a A(K*)-eigenvector of weight N. The stabilizer of this vector
(in the group G) is contained in the intersection of stabilizers of the lines < u; >
,...,<ug > and is an overgroup of H of index N.

2) If H is reductive then one can suppose that the orbit Gu is closed in U.
This implies that the orbits W (H)u and A(K*)u are closed (in U and in U¥).
Consequently the numbers nq, ..., n, cannot be all positive or all negative, and there
exist positive integer numbers ay, ..., ak, b1, ..., b such that ayny + ...+ agng =1,
biny + ...+ bgng =0, and ged(by, - .., by) = 1.

Arguing as above, we construct a set of integer vectors Ai,..., Ag, a space V
and a vector v € V such that G, = H (here N = 1). This completes the proof.

Remark 2. For an arbitrary observable subgroup statement 2) of the previous
lemma does not hold. For example, let G be the group SLs and H = U be a maximal
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unipotent subgroup normalized by T'. Consider the subtorus 7" = diag(t?, ¢3,¢7°) in
T as a one-parameter subgroup A\(K*). Any H-stable vector in a finite-dimensional
G-module is a sum of highest weight vectors. The restriction of any dominant weight
to T" has a non-trivial kernel and the stabilizer of such a vector contains H as a
proper subgroup.

Proof of Theorem 3. Let V be the G-module from Lemma 2. In the projective
space P(V') the point < v > has the stabilizer H;. Let Y be the closure of the orbit
G <v > in P(V). Now we shall recall the Akhiezer construction. By assumption,
the complexity of the homogeneous space G/H; is positive. This implies that there
exists a character £ : H;y — K™ such that for the corresponding line bundle L,
on G/H; the G-module H°(G/Hy, L¢) of regular sections contains two different
isomorphic irreducible G-submodules, say W, and Wy, see [11, Theorem 1]. Choose
two associated bases of T-eigenvectors {¢1, ..., ¢, } and {1, ..., ¢, }in Wi and Wy
such that ¢, and 1); are highest weight vectors.

Consider the rational G-equivariant morphism f : Y — — P?"~! defined on the
open G-orbit by the formula:

JlgHy) = [61(9) : - dm(g) 1 ¥h1(g) : .- s Ym(g)]-
Let X be the closure of the graph of f in ¥ x P*™~!. Set

ZC:{[a:b]EPQm_1| a; =cb; fori=1,...,m},

where c is a parameter. Then Z, is a closed G-invariant subvariety in P*" ! and for
¢1 # c the intersection of Z, and Z., is empty. It is shown in [4] that the subsets
fYZ.) in X are non-empty for infinitely many values of c¢. This proves that X
contains infinitely many G-orbits.

Let X be the affine cone over X with respect to the Segre embedding of P(V') x
P?™~!. We fix a basis in V such that v is the first basis vector. The point (< v >:
f(< v >)) on X corresponds to the line [ on X with coordinates

(O‘d)l(eHl): - -aad)m(eHl)aawl(eHl)a .- -7a¢m(eH1): 07 .- -70)7

where « is a coordinate on the line < v >. The values ¢;(eH;) and ¢;(eH;) do not
change under the action of A\(K*), the line [ is Hj-invariant, and the stabilizer of
any non-zero point on [ is an overgroup H' of H of finite index. The cone over the
dense G-orbit in X isomorphic to G/H; is a dense G-orbit in X isomorphic to G/H'
and X contains infinitely many G-invariant cones corresponding to G-orbits in X.
Lemma 1 completes the proof.

4 Very symmetric embeddings.

The group of G-equivariant automorphisms of a homogeneous space G/H is isomor-
phic to W(H) (the action W (H) : G/H is induced by the action Ng(H) : G/H by



right multiplication). Let G/H — X be an affine embedding. The group AutgX of
G-equivariant automorphisms of X is a subgroup of W (H).

Definition 2. An embedding G/H — X is said to be very symmetric if

Any spherical affine variety is very symmetric. In fact, for a spherical homo-
geneous space G/H any isotypic component K[G/H], of the G-algebra K[G/H] is
irreducible G-module (see [10] or Section 6) and W (H) acts on K[G/H], by scalar
multiplication. This shows that any G-invariant subalgebra in K[G/H] is W(H)-
invariant too.

In the case of affine SL(2)-embeddings only the embedding X = SL(2) is very
symmetric, in all other cases the group Autgz )X is isomorphic to a Borel subgroup
in SL(2), see [10, I11.4.8, Satz 1]. More generally, if X is an affine embedding of the
homogeneous space G/{e} then X is very symmetric if and only if the action G : X
can be extended to an action of the group G' X G with an open orbit isomorphic to
(G x G)/H, where H is the diagonal in G x G. Hence X can be considered as an
affine (G x G)/H-embedding. Theorem 2 implies that if G is a semisimple group
then X = (G x G)/H, for other proofs see [12] and [13, Proposition 1].

If G is a reductive group then the set of all very symmetric embeddings of
the homogeneous space G/{e} is exactly the set of all affine algebraic monoids
with G as group of units [13]. This demonstrates that very symmetric embeddings
have a natural characterization in the variety of all affine G/{e}-embeddings. The
classification of reductive algebraic monoids is obtained in [13] and [14].

Now we are interested in the following problem: when does there exist a very
symmetric affine embedding of a homogeneous space GG/H with infinite number of
G-orbits 7 The example of SL(3)/{e}-embeddings shows that the latter property is
not equivalent to (AF).

Proposition 1. Let H be a reductive subgroup in a reductive group G.

1) If W(H)? is semisimple then there ezists only one very symmetric affine
embedding of G/H, namely X = G/H.

2) If W (H)° is not semisimple and c(G/Ng(H)) > 1 then there exists a very sym-
metric affine embedding of G/H with infinite number of G-(and even
G x W(H)°-) orbits.

Proof. If X is a very symmetric affine embedding of G/H then one can consider
X as a (G x W(H)?)-variety. The stabilizer of a point in a dense (G x W (H)°)-orbit
in X is conjugated to H = {(h, hH) | h € v~*(W (H)°)}.

1) If W(H)" is semisimple then the Lie subalgebras in Lie(G x W (H)°) corre-
sponding to the group H and to the normalizer of H coincide. To check this, one
may use the fact that the normalizer of a reductive Lie subalgebra in a reductive Lie
algebra is the sum of this subalgebra and its centralizer. Hence Theorem 2 implies
statement 1).

2) By assumption, there exists a non-trivial central one-parameter subgroup in
W(H)°. Extending H by this subgroup we obtain a subgroup in Ng(H) x W (H)?,

7



which is not spherical in G x W(H)°. Theorem 3 implies that there exists an affine
(G x W(H)%) /H)-embedding with infinite number of (G x W (H)°)-orbits.

5 Classifications.

Let H be a reductive subgroup of G. We are interested in property (AF) for the
homogeneous space G/H. Corollary 1 allows us to suppose that G is semisimple. If
either H is spherical in G or the group W (H) is finite then property (AF) holds. If
W (H) is not finite then there exists a non-trivial one-parameter subgroup A\(K*) C
W(H) (W(H) is reductive) and we can extend H by this subgroup. If we obtain a
non-spherical subgroup in G then property (AF) does not hold for G/H (Theorem 3).
So the only unclear case is the following:

H is a non-spherical subgroup in G but any extension of H by a one-parameter
subgroup of W (H) is spherical in G.

In this case the homogeneous space G/ H has complexity one. Moreover, the rank
of the group W (H) is equal to one. Indeed, the field of B-invariant rational functions
K(G/H)B is a field of rational functions in one variable. There is a natural action
W(H) : K(G/H)B. If T' is a torus in W(H) and dim T' > 2 then the restricted
action 7" : K(G/H)® has a non-trivial kernel. The extension of H by this kernel is
a non-spherical subgroup in G.

If the group G is simple then there is a classification of all connected reductive
subgroups such that ¢(G/H) = 1, see [9, Table 1]. Below we list all such pairs
(G, H):

N
@)
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X
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=
=
&
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'—l
&
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+
'—l
&®
m|

10) (SO(n), SO(n —2)), n > 4;



(SO(2n +1), SL(n)), n>2, R(d1)|u= R(61) + R(dn_1) + 1;
SO(4n), SL(2n)), n>1, R(¢1) |u= R(¢1) + R(pn_1);
Sp(2n), Sp(2n —2)), n>1, R(¢1) |u= R(¢1) +2;

Sp(2n), SL(n)), R(b1) |a= R($1) + R(by 1);

Er, Eg), R(¢1) lu= R($1) + R(¢5) + 2;

SO(10), Spin(7)), R(¢1) |u= R(¢s) +2;

17) (SL(n), SL(n—2) x K*), n >4, R(d) |n=R($1) @ e+1® €™ +1Q€>,
a1+ =2—n, oy # Qs.

~_~~ o~ o~ o~

Comments. In the line R(¢;) |g= ... we indicate the restriction of the sim-
plest representaton of G to H. The fundamental weights of simple components of
the semisimple part of H are denoted by ¢;, ¢}, ..., the corresponding irreducible
representations are denoted by R(¢;), R(#}),...; € is a faithful 1-dimensional repre-
sentation of the multiplicative group K*; 1 is the trivial 1-dimensional representa-
tion.

Theorem 4. Let G be a simple group and H be a reductive subgroup in G. Then
there exists an affine embedding G/H — X with infinite number of G-orbits if and
only if (G, H) satisfies one of the following conditions:

1) ¢(G/H) > 2 and the group Ng(H)/H is infinite;

2) G=SL(n), n>4 and H* = SL(n — 2) x K*, where SL(n — 2) is embedded
in SL(n) as the stabilizer of the first two basis vectors e; and ey in the minimal
representation of SL(n), and K* acts on e; and ey with weights aq and ag such that
oy +ap, =2—n, a; # ag, and on < es, ..., e, > by scalar multiplication.

Proof. We have to consider only the case ¢(G/H) = 1. Suppose that H is
connected. The pairs 1)-8) from the above list are covered by Theorem 2. The pairs
9)-16) are considered in Proposition 2 in the next section. By Lemma 1, property
(AF) holds for any finite extension of H in these cases. Finally, the pair 17) (and
all finite extension of H here) satisfies the conditions of Theorem 3.

6 Embeddings of complexity one.

Now we need some more specific information about homogeneous spaces of com-
plexity one. Let X be a G-variety. The decomposition of the algebra of regular
functions
KIX|= @ KIX),.
HEE(X)
where p € Z(G); and K[X], is the sum of all irreducible G-submodules in K[X]
isomorphic to V,, is called the isotypic decomposition of the algebra K[X]|. Here
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E(X) is the subset in Z(G) ;. consisting of all dominant weights p such that K[X], #
{0}. This subset is a subsemigroup in =Z(G),, see [10]. The semigroup Z(X) is called
the rank semigroup of a G-variety X. In particular, if H is an observable subgroup
in G then we obtain the rank semigroup =(G/H) for the quasi-affine homogeneous
space G/H. It follows from Frobenius reciprocity that

S(G/H) = {ne=(G)s | VE £ 0}

Denote by m, the multiplicity of the irreducible G-submodule V,, in the G-algebra
K[G/H]. An observable subgroup H C G is spherical iff m, = 1 for any p €
E(G/H), see [11, Theorem 1].

Theorem 5 ([9, Theorem 2]|). Let G be a simply connected semisimple group,
and H be an observable subgroup in G without rational characters. If ¢(G/H) = 1
then there ezists a unique weight w € =Z(G/H) such that

1) m, =2;

2)ifuceE(G/H), p=ew+0d,e €N, § € 2(G/H), and § —w ¢ Z(G/H) then
m, =e+ 1.

Definition 3. The weight w € Z(G/H) is called the remarkable weight for G/H.

If a subgroup H is reductive then the semigroup Z(G/H) is stable under the
Weyl involution y — p* and w* = w.

Without loss of generality it can be assumed that G is simply connected.

Proposition 2. Let G be a simply connected simple group and H be a connected
reductive subgroup in G such that W(H)® # {e} and any extension of H by a one-
parameter subgroup N\(K*) of W(H) is spherical in G. Then property (AF) holds
for G/H.

Proof. Applying the normalization, we have to consider only normal embed-
dings. The center of any spherical reductive subgroup in a simple group is at
most one-dimensional. Hence H is semisimple in our case. The rank semigroup
E(G/H) =< w, 1, . .., ug > is free and the remarkable weight is one of the genera-
tors of 2(G/H), see [9, 3.1]. We have K|G/H|Y = K[z, y|QK|[fu,- - -, fu,], where z
and y are highest weight vectors with weight w, and f,,, ..., f,, are other generators
of K[G/HY, u; # p; for i # j. There are a G-equivariant A\(K*)-action on K[G/H]
and a T-equivariant A(K*)-action on K[G/H|.

Fact 1. One can choose z and y in K[X]Y that are A\(K*)-eigenvectors with
opposite weights.

Fact 2. For the pairs 9)-15) f, € K[G/HPME for any p €< py, ..., pg >.

In order to check these facts one can compare the rank semigroups Z(G/H) [9,
Table 1] and Z(G/H,) [17, Table 1], where H; = \(K*)H.

Let G/H — X be a normal affine embedding. Then X \ (G/H) = U; D;, where
D; are irreducible G-stable divisors in X. Denote by 1; the valuation of the field
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K (X) defined by the divisor D;. A function f € K[G/H]isregular on X iff v;(f) > 0
for all 4, and the restriction of f to D; is a non-zero function iff v;(f) = 0.
Suppose that for a divisor D;,

(*) there exists a linear form z = ax + By such that v;(x) # v;(2).

Let 1 €< pi1, ..., pux >. The T-isotypic component of K[G/H|Y of weight p+nw
consists of the functions f,(apz™ + 12" 'z + ... 4+ a,2"). Here v;(z"7127) #
vi(z"792297) for j; # jo and there exists at most one j such that v;(f,)+v;(z"727) =
0. Hence the algebra K[D;| is multiplicity free as a G-module. This proves that the
number of G-orbits in D; is finite. Let D be a union of all divisors D; with property

(*)-

Consider X = X \ D. This is a quasi-affine unirational G-variety of complexity
one and by a result of F. Knop [16] the algebra of regular functions K[X] is finitely
generated. Here v;(x) = v;(2) for any D; C X and for any z = az + By. We have
vilfu@"+az"ty+. . tany™)) = vi(fulaz+diy) .. (eaz+dny)) = vi(fu) +rvi(z).
Hence either K[G/H],ino C K[X] or K[G/H],1nw N K[X] = {0} for any p+ nw €
=(G/H). This implies that the G-equivariant A\(K*)-action on G/H can be extended
to X.

Consider the quotient morphism 7 : X — § = Spec K[X]MX"). The affine
variety S carries a natural G-action. We claim that K[X]¥" # K. In fact, K[X] is
not a multiplicity free G-module and there exist u €< p1,...,ux > and n > 0 such
that K[G/H]Y,,., C K[X]. In cases 9)-15), we have f, € K[G/H]X" for all y (see

p+nw
Fact 1 and Fact 2) and then

(C) there emist p €< puy, ..., pg > and n > 0 such that f,z"y" € K[X]MKED

In the exceptional case 16) (SO(10), Spin(7)) we check that v;(xz) > 0 for all
i. Indeed, consider the affine G-variety X’ = Spec K[X]. There is an embedding
X C X' and it suffices to prove that the number of G-orbits in X' is finite. If
the closed G-orbit in X’ is isomorphic to G/L, where L is reductive and L # G
then X' & G x;, X", where X" is an affine embedding of L/H, see [5, Theorem
6.7]. In our case there are only two candidates for L: SO(8) and SO(8) x SO(2),
the pair (L, H) is spherical and therefore the number of G-orbits in X’ is finite.
If X' contains G-fixed point then, by the Bogomolov theorem [15], there exists a
surjective G-equivariant morphism X' — C(o) for some o € Z,(G), o # 0, where
C(o) is the closure of the orbit of a highest weight vector v, in V. In this case H is
contained in the proper parabolic subgroup P, = G, ~. But the subgroup Spin(7)
is contained only in one proper parabolic subgroup of SO(10). Denote by b1y..., by
the fundamental weights of G. Then o = k¢ = kw (here w = b1, see [9, Table
1]) for some k£ > 0. The morphism X' — C(kw) C Vj, induces a homomorphism
K[Vi,] — K[X']. This implies that there exists a B-semi-invariant function in
K[X'] of weight kw. This function can be written as f = aoz* +a12* ty+... +apyr
and v;(f) = kvi(z) > 0. Hence vj(z) > 0 for all D; ¢ X. Finally we have
ry € K[X'MEY) (see Fact 2).
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The action G : S is quasihomogeneous. Let G/F be a dense G-orbit in S. Recall
that H; = v '(A(K*)). We have the restricted map G/H; — G/F and hence
H, C F. The subgroup F' is an observable subgroup in G. We claim that F' is
reductive. In fact, if rk(H;) = rk(G) then rk(F) = rk(G) and F is reductive [6].
In the exceptional case (SO(10), Spin(7)) it is also possible to show that H; =
Spin(7) x SO(2) is not contained in any proper quasiparabolic subgroup (for the
definition see [6]) of SO(10) and thus H; is not contained in any observable non-
reductive subgroup of SO(10).

Case 1. F = H;.

Then S = G/H; by Theorem 2. Any fiber of the morphism = is the closure of
K* = H,/H in X. Hence any fiber is isomorphic either to K or to K* and the
number of G-orbits in X is at most two.

Case 2. F' # H;.

There are only three possibilities for F. In all cases S = G/F by Theorem 2.

1) G =8S0@2n+1), F=50(2n), H=SL(n), n> 3. Here w = ¢, [9] and
Z(G/F) =< ¢, > [17]. This contradicts condition (C).

2) G = Sp(2n), F = Sp(2n —2) x SL(2), H = Sp(2n — 2), n > 1. Here
w = ¢y [9] and Z(G/F) =< ¢, > [17]. This contradicts condition (C).

3) G = SO(10), F = SO(2) x SO(8), H = Spin(7). Consider the restricted
morphism G/H — G/F'. The preimage of the point eF" is F//H. The closure Z of
F/H in X is a spherical F-variety (for the restricted action F : X) and it contains
finitely many F-orbits. We have X 2 G % Z and the number of G-orbits in X is
finite. The proof of Proposition 2 is completed.
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