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Abstract. In this paper we investigate an eigenvalue problem which
appears naturally when one considers the second variation of a constant
mean curvature immersion. In this geometric context, the second variation
operator is of the form Ay + b, where b is a real valued function, and it
is viewed as acting on smooth functions with compact support and with
mean value zero. The condition on the mean value comes from the fact
that the variations under consideration preserve some balance of volume.
This kind of eigenvalue problem is interesting in itself. In the case of a
compact manifold, possibly with boundary, we compare the eigenvalues
of this problem with the eigenvalues of the usual (Dirichlet) problem and
we in particular show that the two spectra are interwined (in fact strictly
interwined generically). As a by-product of our investigation of the case of
a complete manifold with infinite volume we prove, under mild geometric
conditions when the dimension is at least 3, that the strong and weak
Morse indexes of a constant mean curvature hypersurface coincide.

Résumé. Dans cet article, nous étudions un probléme de valeurs propres
qui apparait naturellement quand on considére la variation seconde d’une
immersion & courbure moyenne constante. Dans ce contexte géométrique,
Popérateur de variation seconde est de la forme Ay + b, ol b est une fonc-
tion & valeurs réelles et on fait agir Popérateur sur les fonctions lisses &
support compact et dont la valeur moyenne est nulle. La condition de
valeur moyenne nulle vient du fait que les variations considérées doivent
préserver une contrainte de volume. Ce type de probléme de valeurs pro-
pres est intéressant en lui-méme. Dans le cas compact (éventuellement a
bord), nous comparons les valeurs propres de ce probleme avec celle du
probléme de Dirichlet (usuel) et nous montrons en particulier que les deux
spectres sont entrelacés (en fait strictement entrelacés pour un potentiel
générique). Comme sous-produit de I’étude de ce probléme spectral dans
le cas d’une variété compléte de volume infini nous montrons, sous une
hypothése géométrique faible en dimension supérieure ou égale a 3, que
les indices de Morse faible et fort d’une hypersurface a courbure moyenne
constante coincident.
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1 Introduction

Motivations. Leti:(M™, g) - ™! be an isometric immersion with mean
curvature Hy, where v is a unit normal vector field along i(M). Let i; be a
variation of the immersion ¢, associated to the normal vector field fv, with
f € C§° (M) The corresponding variation of the area functional A(t) is given by

A'0) = —n/M Hf dv,.

Minimal immersions are critical points of the area functional. Constant mean
curvature immersions can be viewed as critical points of the area functional
restricted to variations which preserve the enclosed volume, i.e.to functions
[ € C§°(M) which satisfy the additional condition [,, f dv, = 0.

For such critical points, the second variation of the area functional is given by
A"(0) = [,, FLf dvg, with L := Ay —|A|* +7(v), where A is the non-negative
Laplacian, A the second fundamental form of the immersion and 7(v) the Ricci
curvature of M evaluated on the unit vector v. The operator L is called the
stability operator of the immersion.

In the minimal case, the stability operator is viewed as acting on C§°(M); in the
case of a constant mean curvature immersion, the stability operator is viewed
as acting on C§°(M) N {f,, f dvy = 0}. This is geometrically meaningful as the
following observation shows. The stability operator of a geodesic sphere M in a
space form M has a negative eigenvalue on C°° (M) whereas it is non-negative
on Cg°(M) n{/f,, fdv, = 0} (geodesic spheres are stable as constant mean
curvature immersions) [2].

Of particular interest in this context is the index (i.e. the number of negative
eigenvalues) of the quadratic form [, fLf dvy on either C§° (M), the so-called
strong index, or on C§°(M) N {[,, fdv, = 0}, the so-called weak index. As
pointed out precedingly, the weak index is the more geometrically natural in
the context of constant mean curvature immersions. On the other-hand, it is
easier for example to use the strong stability condition than the weak stability
condition (stability meaning zero index). Our main motivation for writing this
paper was an attempt at understanding the relationship between these two
notions. We refer the reader to [2, 4, 8, 9, 12] for more details on index questions.

Contents. Let (M, g) be a Riemannian manifold with boundary and let b be

a continuous real valued function on M. We want to investigate the eigenvalue
problem, and in particular the index, associated with the quadradic form

(1.1) alf) = [ (2 +0F) doy,
on smooth functions subject to the conditions
(1.2) floM =0 and / fdvg =0.
M
We call this eigenvalue problem twisted because the condition [,, fdvy = 0 is

in general not related to the ordinary Dirichlet problem associated with the
quadratic form (1.1) on smooth functions subject to the sole condition



(1.3) F1OM = 0.

We shall in fact consider two cases:

(a) M is compact with boundary OM (possibly empty);
(b) M is complete, with infinite volume.

In case (a), the condition [ w f dvg = 0 is in general not related to the spectral
properties of the operator A+b. When M has a boundary, we will only consider
Dirichlet boundary conditions (one could also consider Neumann boundary con-
ditions). In case (b), the condition [,, fdv, = 0 does not a priori make sense
and we will have to find out what the natural eigenvalue problem is.

We will consider the following questions.

1. Investigate the operator and the eigenvalue problem associated with (1.1)
and (1.2). We will call this eigenvalue problem the twisted eigenvalue
problem (or T-eigenvalue problem).

2. Properties of the T-eigenvalues: comparison with the eigenvalues of the
(ordinary) problem (1.1) and (1.3), multiplicities, monotonicity properties,
generic properties.

3. Properties of the T-eigenfuctions (unique continuation, Courant prop-
erty).

4. Explicit examples of T-eigenvalues (intervals, cylinders, Euclidean balls).

5. Applications to geometry (second variation of constant mean curvature
immersions).

Section 2 is devoted to the compact case. The basic properties of the twisted
Dirichlet eigenvalues and eigenfunctions are stated in Proposition 2.2, in par-
allel with those of the ordinary Dirichlet problem. The proofs are similar for
both cases; we only sketch them. We also give the structure of the eigenspaces
when the twisted and the ordinary Dirichlet problems have a common eigenvalue
(Proposition 2.4). In Section 2.3, we show that the T-eigenvalues are generi-
cally simple (with respect to the potential function b) and that they generically
strictly intertwine the Dirichlet eigenvalues. The methods for proving such
genericity results may not be so well-known; we have decided to give them with
some details. Section 2.4 is devoted to some examples in which one can de-
scribe the T-eigenvalues quite explicitly (with b = 0). These examples provide
negative answers to some natural questions.

In Section 3 we deal with the case of complete manifolds with infinite volume.
For such manifolds, the condition | [ dvg = 0 does not make sense for arbitrary
L? functions and it is not clear then what the spectral problem actually is.

We consider the operators

L:=(C§(M),Ay +b)



and

Ly = (Cg"(M)m{f | /Mfdvg :0},Ag+b>.

We first show that they are densely defined in L?(M) (this follows from the
infinite volume assumption). Under a mild volume growth assumption on the
manifold M, Assumption (3.24), and an assumption on the potential function
b, Assumption (3.29), we prove that the Friedrichs extensions of the operators
L and Ly coincide (Theorem 3.5).

We finally investigate index questions (Theorems 3.7 and 3.10). In terms of our
geometric motivations, we prove that the weak and strong Morse indexes of a
constant mean curvature surface into hyperbolic space coincide. We also prove
that the same result holds, under mild assumptions on the volume growth of
the manifold, when the dimension is at least 3, for constant mean curvature
hypersurfaces (see Section 4). As a corollary, we prove da Silveira’s result that
a weakly stable surface of constant mean curvature 1 in hyperbolic space (with
sectional curvature —1) is a horosphere [6, 16].

2 Compact manifolds

In this section we investigate the twisted Dirichlet problem (to be defined in
Section 2.2) and we compare the associated eigenvalues with the eigenvalues
of the (ordinary) Dirichlet problem on the manifold. This is the purpose of
Proposition 2.2.

In Section 2.3, we consider the generic properties of the eigenvalues (with respect
to variations of the potential function b).

In Section 2.4, we give examples in which one can explicitly describe the eigen-
values of the twisted Dirichlet problem.

2.1 Notations

e Let (M, g) be a compact Riemannian manifold. We use dv, to denote the
Riemannian measure, |df|, to denote the norm of the differential of the function

f and Ay to denote the (non-negative) Laplacian (i.e. A, = —% on R). In
the sequel, b will denote a continuous real valued function on M.

o The spaces LP(M) will be understood with respect to the Riemannian measure
vy. In particular, the L?-norm is given by

(2.4) 151 s= [ 11 doy.

Since M is compact, L?(M) embeds continuously into L' (M) and we can define
the Hilbert space

(2.5) L3(M) := {f € L*(M) | /Mfdvg =0}.



We denote by D(M), resp. by Dr (M), the space of smooth functions with com-
pact support in the interior of M, resp. the subspace of those functions in D(M)
which have mean value zero,

(26) D(M) = CF(M) and Dr(M):= {f € D(M) | / fdv, =0}
M
e Whenever it is defined, the H'-norm is given by

1) 1= [ (el + 1) doy.
M
We denote by H} (M) the closure of D(M) with respect to the H'-norm defined

by (2.7). When M = 0, Hi(M) is just the closure H!(M) of C*°(M) with
respect to the H'-norm. We also define the space

(2.8) H} (M) = H}(M) N L3 (M).

e We denote by H?(M) the closure of C*° (M) with respect to the H2-norm

1713 := /M (ID9df 2 + |df2 + £7) dv,

where | DYdf|? is the norm of the Hessian of the function f (with respect to the
metric g).

e We introduce two linear forms ®, and ¥, given by the following formulas
whenever they make sense:

(pg(f) = fodUga

U, (f) :== Vol (M)~ [,,(Ay +b)f du,.

(2.9)

o We let ¢ denote the quadratic form

(2.10) q(f) :== /M (1df 2 + bf?) do,
which we will consider on various function spaces.

e Finally, we fix a function p such that
(2.11) peDM), 0<p<l1, / pdv, = 1.
M

2.2 Preliminary results

The (ordinary) Dirichlet problem for the operator Ay, + b on M is classically
associated with the quadratic form ¢™ given by ¢, with domain Hg(M).

We call twisted Dirichlet problem the problem associated with the quadratic g2/
given by ¢, with domain Hg .(M).

The twisted Dirichlet problem arises naturally when one considers the stability
operator of a constant mean curvature hypersurface. The twisted condition
comes from the fact that one then considers variations which keep some balance



of volume fixed (see [2] for more details). Since we will work on the space
L2.(M), we state the following lemma for future reference.

Lemma 2.1 The space Dr(M) is dense in L3 (M) and in Hg (M) with respect
to the L?-norm and to the H'-norm respectively.

The twisted Dirichlet problem has eigenvalues and eigenfunctions which have
properties similar to those of the (ordinary) Dirichlet problem. The eigenvalues
of both problems are intertwined. These properties are summarized in the
following proposition.

Proposition 2.2 The Dirichlet and the twisted Dirichlet eigenvalue problems

have the following properties.
1. Quadratic forms and operators:

The quadratic form
¢ = (Hy(M),q |Hs(M))

1s closed and is associated with the
self-adjoint operator

(H*(M)NHy(M),Ay +b)

on L?(M). The corresponding
eigenvalue problem on L2(M) is
given by

(Ag +bd)u = du
(2.12)
wlOM =0

2. The spectra:

The spectrum &6(M;g,b) of the
Dirichlet problem consists of eigen-
values with finite multiplicities

A (M) < AP (M) <A (M) < ...

The quadratic form
CI%J = (Hé,T(M)7Q|H6,T(M))

is closed and is associated with the
self-adjoint operator

(H*(M)NHyp(M),Ay +b—T,)

on L%(M). The corresponding eigen-
value problem on L%(M) is given by

(Ag+bu—¥y(u) = Au
(2.13)¢ w|dM =0

®,(u)=0

The spectrum 6T (M;g,b) of the
twisted Dirichlet problem consists of
eigenvalues with finite multiplicities

A (M) <A (M) <A (M) < ...

The eigenvalues satisfy the min-mazx principle and they are deacreasing functions
of the domain (with respect to inclusion).

3. Properties of the eigenfunctions: The eigenfunctions satisfy the unique con-

tinuation property.

An eigenfunction associated with
the k-th eigenvalue has at most k
nodal domains.

An eigenfunction associated with the
k-th eigenvalue has at most (k + 1)
nodal domains.



4. Comparison of the eigenvalues: The eigenvalues of the Dirichlet and of the
twisted Dirichlet problem are intertwined,

a) AP (M) < M (M),

b) VE>1, AP <AL <MD,

Proof. We have written the statements in two columns to make the comparison
between the ordinary and the twisted problems easier. The assertions concerning
the (ordinary) Dirichlet problem are well known. The assertions concerning the
twisted problem can be proved using similar methods.

Proof of Assertion 1. The fact that ¢} is closed follows immediately from the
fact that b is bounded and from the definitions (see [13], §VI.1.3, page 313 ff).

In order to identify the self-adjoint operator associated with ¢/, we use the first
representation theorem, Theorem VI.2.1 of [13], and its corollaries. Consider
the operator Jrf := (Agy + b)f — ¥, (f), with domain D(Jr) = Dr(M), where
U, is defined by (2.9). Since Dy (M) is dense in L2.(M), Jr is densely defined.
Furthermore, Jr is symmetric and its adjoint Jr is given by

D(J;) = H*(M) N L7 (M),

Jru=(Ag +bu — Ty(u),
where A, acts in the sense of distributions.
Let us denote by S the operator

D(S)=H?>NH 1,
S(u) = (Ay +b)u — ¥, (u),Yu € D(S).

Integrating by parts, we have (S(u),v) = ¢¥[u, ] for any u € D(S),v € Dr and
it follows from Corollary 2.4 in [13] (§VL.2.1, page 323 ) that S C Q¥ the self-
adjoint operator associated with the quadratic form ¢#{. Since Jy C S, we have
S c QM c S*CJr Forue D(S),v € D(S*), we have (Su,v) = (u, S*v).
This implies that (u, (Ay +b)v) = ((A4 +b)u, v) and hence, integrating by part,
that faMU% = 0 for all u € D(S). It follows that v must vanish on OM i.e.
that v € D(S). This implies that S is self-adjoint and hence that S = Q¥. O

Proof of Assertion 2. The easiest method to prove Assertion 2, at least for our
purposes, is the variational method. The proof is exactly the same as for the
(ordinary) Dirichlet problem (see [3] for example). This methods provides the
existence result and the fact that the eigenvalues satisfy the min-max principle,
from which we deduce that they are decreasing functions of the domain with
respect to inclusion.

Proof of Assertion 8. Let u be an eigenfunction of the twisted Dirichlet problem
in M,

(Ag +bd)u = du+ Ty (u),

ulOM and ®,4(u) =0,



and assume that u vanishes at infinite order at some point zy. Evaluating the
above equation at this point, we find that ¥,(u) = 0 and hence that u is an
eigenfunction of the (ordinary) Dirichlet problem. The assertion follows from
the unique continuation of Dirichlet eigenfunctions.

The proof of Courant’s theorem for the eigenfunctions of the twisted Dirichlet
problem is the same as in the case of the Dirichlet problem (see [3] for exam-
ple). Assuming that some eigenfunction u associated with A{ has at least (k+2)
nodal domains, one uses the min-max principle to construct another non-trivial
eigenfuction v associated with A} and which vanishes on an open set, a contra-
diction with the preceding assertion. Note that (k+ 1) would not suffice because
we have to write that v has mean value zero and is orthogonal to the first &
eigenfunctions.

Proof of Assertion 4. The proof of the second assertion follows immediately
from the min-max principle.

In order to prove the first assertion, we only have to prove that the equality
case is not possible. Assume that AP (M) = A (M) =: X\. Then there are
corresponding eigenfunctions which satisfy (A, +b)u? = AuP and (A, +b)u? =
Mt 4+ U, (ul), with u? >0, [,,u” = 0. Multiplying the first equation by u”,
the second by u” and integrating by parts, we obtain ¥ (u”)(f,,u”) = 0.
This implies that ¥,(uT) = 0 and hence that u” is an eigenfunction for the
Dirichlet problem, associated with the first eigenvalue AP. This is not possible
since [,, u’ =0.

We have concluded the proof of Proposition 2.2. x

The following corollary is a direct consequence of the unique continuation prop-
erty of the eigenfunctions of the twisted Dirichlet problem.

Corollary 2.3 Assume that My and My are two relatively compact domains in
some Riemannian manifold M, and that M; C M. If furthermore My \ M;
has non empty interior, then

VE, AL (M) > A{(Ms).

Remark 1. The Courant theorem for the twisted Dirichlet eigenfunctions is
best possible because any eigenfunction associated with A\] (M) has at least two
nodal domains.

Remark 2. The general picture for the eigenvalues is therefore

D _\T o \D T D D _\T o \D
AT <AL SAY <A KA S s KA S S S

The equality A’ = A} will in particular occur whenever AP, = AP or A} | =
/\{. The following proposition describes what happens when AP = )\Z.

Proposition 2.4 Let the compact Riemannian manifold (M,g) and the po-
tential b be given. Assume that there exists some common eigenvalue \ to
the Dirichlet and to the twisted Dirichlet spectra X € §(M;g,b) N 6T (M;g,b).
Let ET denote the eigenspace for the twisted Dirichlet problem associated with
A€ dT(M;g,b) and let E/\D denote the eigenspace of the Dirichlet problem as-
sociated with A € §(M; g,b). Let



Ey" :={u € Ef{ | ¥y(u) =0},

EY? = {u € EP | &,(u) = 0}.
Then,
T.0 _ 1=D,0
1. E," =E,",
2. For E{ and Ef’, one has one of the following possibilities
(a) Ef = E{* = E)° = EP,

L
(b) ET = E;":’O and there ezists v € EP such that EP = E)I\)’0 ® R,
with ®,4(v) # 0,

L
(¢c) EP = EP° and there exists v € ET such that EY = E}° & R,
with ¥4 (v) # 0.

Proof. The first assertion is clear. Take u € E] and v € EP (associated with
the same eigenvalue A). Multiplying the equality (A, + b)u = Au + ¥ (u) by v
and integrating, taking into account the properties of u and v, we obtain

By (0) Ty (u) = 0.

On the other-hand, it is clear that there is a subspace of codimension at most
1 in ET (resp.in EP) on which ¥, (resp. ®,) vanishes. The second assertion
follows from these observations. ]

Questions. We may ask two natural questions.

a) May the equality A\ = AP occur ?
(2.14)
b) Does A always have multiplicity one ?

Examples show that the answer to Question (2.14a) is Yes and that answer to
Question (2.14b) is No in general (see Section 2.4). On the other hand, one can
show that for generic potentials b, AT (b) < AP (b) and that AT (b) has multiplicity
one. We prove that in the next Section.

2.3 Generic properties of eigenvalues and eigenfunctions

To simplify the presentation, we limit ourselves to the case of perturbations by
potentials.

Let (M, g) be a compact Riemannian manifold, possibly with boundary. With
the notations as in Proposition 2.2, we have the following genericity result.

Proposition 2.5 Let the compact Riemannian manifold (M, g) be given. Then,

1. There exists a residual set U in C°(M) such that for b € U, the spectra
§(M;g,b) and 6T (M;g,b) are simple;

2. There exists a residual set V in C°(M) such that for b € V, the spectra
8(M;g,b) and 67 (M;g,b) are simple and disjoint.



Consider the (Dirichlet) eigenvalue problem

(Ay+b)u=Au in M,

(2.15)
u|O0M = 0.
Let
216 AP(g,b) < AP(g,b) <...<AP(g,b) < ... Moo
2.16

ul(gab)7u2(gab)a .- -auk(gab) s

be the set of eigenvalues and an orthonormal basis of associated eigenfunctions.

Let us state a preliminary result.
Proposition 2.6 The following properties hold.

1. For a fized metric g on M, the set

By :={be C°(M) | \P(g,b) is simple for all k> 1}
is residual in C°(M).

2. For a fized metric g on M, and a fized continuous linear functional ® on
L?(M), the set

By :={be C%(M) | XY (g,b) simple and ®(ur(g,b)) #0 for all k> 1}

is residual in C°(M).

Proof. Assertion 1 is well known; Assertion 2 does not seem to appear explicitly
in the literature. The proofs follow classical lines [17, 1]. "

Proof of Proposition 2.5. For k > 0, define the sets

Up:={beC®(M) | X,...;)\l and AP,...,\P are simple}.
Then, clearly,

oo
COM)=UyDU1D...0Uk... D Uso = [ | Uk
k=1
The sets Uy are open because the eigenvalues of both the Dirichlet and the
twisted Dirichlet problem are continuous with respect to variations of the po-
tential function b (this follows from the min-max principle).

Claim: Upy; is dense in Uy.
Take b € Ug. If A, ; and A} ; are both simple, b € Ug41 and we have nothing

to prove. We now assume that A\{ # X == X[, = ... =X, # A,
and AP # X = A2 = ... = A2y, # Aypq1- We consider the perturbation

Ly := Ay + b+ tf of the operator Lo, where 3 is a real valued continuous func-
tion. According to the perturbation theory of self-adjoint operators (see [13],
Chap. II and VII), there exist analytic families of eigenvalues and orthonormal
eigenfunctions

10



wl +tw] +o(t), 1<j<m,
where {w]T} is an orthonormal basis of the AT -eigenspace, and
A+tp;+o(t), 1<j<p,
wj + ti; +o(t), 1<j<p,
where {w;} is an orthonormal basis of the A-eigenspace, such that
(Ag + b)) + Bw] = ATw] + o w] + /M Buw] + /M(Ag + by}
and

(Ag + b)U)j + ,B’U)j = )\U')j + ﬂj’w]'

respectively. Integrating the first relation against qu and the second against
wy, we obtain the relations

(2.17) /M Bwwy = 1] 654, 1<j,q<m
and
(2.18) /M Pwjwg = 1054, 1< 7,9 <p.

We can now use the relations (2.17) and (2.18) to show that Ug4q is dense in
Uy (see [17, 1] for more details) and this proves Assertion (i).

Let us now introduce the sets

Vii={beUs | AP < AT <A <. <A <R, )

This set is clearly open (by the continuity of the eigenvalues) and contained in
Uk. Assume that for some b € Ug, A = AT = AP or A = AT = AP,,. Denote
by u®, v corresponding normalized eigenfunctions. Since the eigenvalues are
simple, the relations (2.17) and (2.18) can be written as

[ sty =it [ =i

If these numbers are different for some choice of 3, we can make a small pertur-
bation b+13, so that the eigenvalues separate. If not, this means that (u?)? = 2
identically. Looking at the equations, it follows that ¥,(u”) = 0 and hence that

uT is also an eigenfunction for the untwisted Dirichlet problem. Since the eigen-

values are simple, we must have u” = v or 47 = —v identically. In particular,

®,(v) = 0. It now suffices to apply the second assertion in Proposition 2.6. n

11



2.4 Examples
2.4.1 Example 1

The simplest example for which one can make explicit computations is the case
of an interval with zero (or constant) potential function. Consider M = [0,a] C
IR. The twisted Dirichlet eigenvalue problem on M is given by

§+xy="Y(y), in ]0,aq],
(2.19) y(0) = y(a) =0,

Jo y(t)dt =0,
where (y) =a ! [ ij(t) dt.

Fact. The pairs (eigenvalue, eigenfunction) for the twisted Dirichlet problem
(2.19) are given by

4k272 | 2kmx o
(a—2,51n( )),kE]N
and
472 2T T .
(?,cos( — Tm) — Tm),m € IN®,

where the 7, are the zeros of the equation x = tanx. They satisfy 7, ~ (2m +
1)w/2 when m is large.

In this particular case, the eigenvalues )\f (resp. )\JT) of the Dirichlet problem
(resp. of the twisted Dirichlet problem) are arranged as follows,

M AT = AD < AT < DD < AT = AP < AT < NP < AT =00 < ...

and this shows in particular that the answer to Question (2.14a) is Yes in
general.

2.4.2 Example 2

A simple example, of geometric interest, for which one can still make explicit
computations, is that of a cylinder in Euclidean space. We consider the cylinder
with radius 7, F : IR x S} — IR®, given by

R x]0, 27r[> (t,0) 5 (t,rcos(g),rsin(g)).

In these coordinates, the metric is given by the identity matrix and we consider
the operator

L:=A—r2

in a domain of the form Q, = [0, a] x S} on the cylinder. Here, 7=2 can be viewed
as the norm square of the second fundamental form of the cylinder, whose mean
curvature is (2r) 1), and hence L can be viewed as the stability operator of the
cylinder.

12



Since there is an isometric circle action on the cylinder, the eigenspaces of
both the Dirichlet and of the twisted Dirichlet problems decompose under this
action and we can look at eigenfunctions of the form u(t) cos(kf/r),k € IN and
u(t) sin(kf/r),k € IN®. Since the sine and cosine functions have mean value 0
over S} for k > 1, it follows that the spectra of the Dirichlet problem and of
the twisted Dirichlet problem agree except possibly for the rotation invariant
functions and we are therefore reduced to the case we considered in Example 1.

From the geometric point of view, we are interested in the strong Morse index
of the domain Q, (resp.in the weak Morse indez) i.e.in the number of negative
eigenvalues of the operator A —r~2 in Q, for the Dirichlet problem (resp. for the
twisted Dirichlet problem). It is easy to check that, for any a, the only negative
eigenvalues come from rotation invariant eigenfunctions. To count them, we
have to look at the eigenvalues of the Laplacian in , for the (twisted) Dirichlet
problem which are less that r~2. When a tends to infinity, the number of such
eigenvalues, i.e. the strong and weak indexes, grow to infinity as well (like a)
and, for “most values” of a, they differ by one. This is in contrast with Theorem
3.10.

2.4.3 Example 3

We now consider the case in which M is a ball in Euclidean space. We can take
M = B(0,1) C IR™. Asin Example 2, the Dirichlet and twisted Dirichlet spectra
can only differ for eigenvalues corresponding to rotation invariant eigenfunctions.

Lemma 2.7 Let M = B(0,1) be the unit ball in Euclidean n-space. Write
n =: (2v + 2). The eigenvalues of the twisted Dirichlet eigenvalue problem in
M = B(0,1), corresponding to radial eigenfunctions, are the squares of the
positive 100ts jy42m,m > 1, of the equation J,yo(z) = 0 (where J, is the
Bessel function of order a). The corresponding eigenfunctions are given, up to
o multiplicative constant, by

U(’I’) = Fl/(ju+2,m 7') - Fu(ju+2,m)7

where

It is a well-known fact that the eigenvalues of the Dirichlet problem in M are the
squares of the positive roots juyr,m ,m > 1,k € IN, of the equations J,y(z) =
0.

Let us consider the case n = 2, i.e.v = 0. Numerical computations easily give
the inequalities

jO,l < j1,1 < j2,1 < j(),g < ....

The results for the 2-dimensional Dirichlet problem can be summarized as fol-
lows:
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k eigenfunction(s) | eigenvalue m mult.
k=0 Jo(jo,mT) Jo,m m>1 1
J1(j1,m1) cos(6)
k=1 Bm  |m>1] 2
Jl (jl’mT) Sin(e)
J2(j2,mT) cos(20)
k=2 m  |m>1] 2
JQ (j2,m7') sin(20)

The results for the 2-dimensional twisted Dirichlet problem can be summarized
as follows:

k eigenfunction(s) eigenvalue m mult.
k=0 Jo(Jo,m ™) — Jo(j2,m) J3.m m2>1 1
Jl (jl,m T) COS(G)
k=1 Rw  m=1| 2
J1(j1,m ) sin(9)
Ja2(j2,m ) cos(26)
k=2 Bm  |m=1| 2
Jz (jg,m T) sin(2(9)

The preceding results and numerical computations show that

B

AW <A T =0 =M =00 <A =AP =0T =02 =T < AP

~~

a

which proves that the answer to Question (2.14b) is No in general. More pre-

cisely, we have mult(A\f) = 2 and mult(\l) = 3. We note (compare with
Proposition 2.4) that
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( B =Y = BL® = BB,
and

70 _ D,0 _ D
Eg” =By = Ep,

| B} = E;°oRo.

are simple and that 62, NéT . = 0.

radial radial

One may also observe that 62, and 6~

radial radial

3 Complete manifolds, the Morse index
revisited

3.1 Notations

Let (M, g) be a complete non-compact Riemannian manifold and let b : M — IR
be a continuous function.

o We let

D(M) = O (M),
Dr(M) = {f € CF(M) | [, fdv, = 0}.

e For any domain Q C M, we let D(Q), resp. Dr(Q2), denote the set of smooth
functions with compact support contained in 2, resp. the set of smooth functions
u, with compact support contained in , satisfying [ y wdvg = 0.

e Given any relatively compact domain Q CC M, we let Ind (Q2), resp. Ind (),
denote the index (i.e. the number of negative eigenvalues) of the quadratic form
S (ldf|2 + bf?) dvy on D(Q), resp.on Dr ().

e We denote by Ind (M) and Ind 7-(M) the numbers
Ind (M) :=sup{Ind (Q) | @ cC M},
(3.20)
Ind (M) :=sup{Ind () | @ CC M}.
e We consider the operators L and Lz defined by
L= (D(M), Ay +1),
(3.21)
Lt := (DT(M),Ag + b) .

e Finally, we introduce the spaces

H'(M) := the closure of D(M) for the norm || - [|1,
(3.22)

HYL(M) := the closure of Dy (M) for the norm || - ||;.
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3.2 Assumptions and immediate consequences

We shall now make some assumptions on M and on the potential function b and
deduce immediate consequences.

Geometric assumptions

We assume that our complete manifold has infinite volume,

(3.23) Vol (M, g) = 0

and we point out that this is true whenever M is a constant mean curvature
hypersurface in a space form with non-positive curvature [10, 16]. Under this
assumption, we have

Lemma 3.1 For all ¢ € L*(M),
lim V(R)_I/Q/ pdvg = 0.

Furthermore, the space Dr(M) is dense in L*(M).

As a matter of fact, the condition that the volume of M is infinite is not sufficient
for our purposes. We will use the following stronger assumption,

Vol (M, g) = oo and
(3.24)

AC >0, VR, V(R+1) <CV(R),
where V(R) denotes the volume of the geodesic ball B(xzg, R) C M, for some
fixed point xo (the assumption does not depend on the choice of zg).

Remark. If the manifold (M, g) satisfies Ric, > —k?(n — 1)g then, by the
Bishop—Gromov comparison theorem,

V(R+1) < Ve(R+1)
V(R) = Vi(R)
where Vi (R) denotes the volume function in the simply-connected model space

with constant sectional curvatures —k2, and hence (M, g) satisfies the second
line in (3.24).

An analytic consequence of Assumption (3.24) is the following result whose
proof is easy.

Proposition 3.2 Assume that (M, g) is a complete Riemannian manifold satis-
fying Assumption (3.24). Then, the space Dp(M) := {f € Cg°(M) | [,, f dvy}
is dense in L>(M) and in H' (M) for the norms || - || and || - |1 respectively.

For future reference, we introduce the following notations. Define ¥z to be a
piecewise C! function on IR such that

Yr(t)=1 for t< R and 9gr(t)=0 for t> R+1,
(3.25)
0<9r <1 and |¢Yg| <2,
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and define fgr(z) to be the function ¥g(d(zo,x)), where d(zg,z) is the Rie-
mannian distance from z to 9. The function g is in H*(M) and it can be

approximated by smooth functions with compact support in M, i.e. by elements
of D(M). Define

(3.26)

A(R) := [,,0rdvy,
¢r = A(R)"'/?6R.

Then
Supp(¢r) C B(R+1) and [,, prdy, = A(R)Y/?,
(3.27) S PR dvg = A(R)™! [, 0% dvy < A(R)™! [, 0rdvy =1,

V(R) < A(R) < V(R +1).

Assumptions on the potential function

We will now make assumptions on the function b. We point out that they will
be satisfied in the geometric context we are interested in (see Section 4).

(3.28) 3ID >0, Yue D(M), —D /M u? dvy < /M (dul? + bu?) dvg

i.e. the operator L is semi-bounded from below, or

b:=b+—b7 and EIB>0, V.Z'GM, Osb(+$)SB
(3.29)

D >0, Yue D(M), —D [, udvy < [y (|dul? —b_u?) dv,

where by denote the positive and negative parts of b.

3.3 Spectral results for L and L;.

The purpose of this section is to investigate the spectral properties of the oper-
ators L and Ly and in particular their relationships with the numbers Ind (M)
and Ind r(M).

Proposition 3.3 Let (M,g) be a complete Riemannian manifold. With the
above notations, we have

1) vQcc M, Indy(Q) < Ind(Q) <Indr()+1;
(2) Ind(M) < 00 <= Indr(M) < o0}

(3) If Ind(M) < oo, then L is semi-bounded from below on D(M).

Proof. The first assertion follows easily from the min-max and yields the second
one. We restate the third assertion as the following lemma [8], whose proof we
will need later on.
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Lemma 3.4 Let M be a complete Riemannian manifold. If Ind (M) < oo, then
the operator Ay + b s positive outside a compact set and is semi-bounded from
below on D(M), i.e. there exists a positive constant Ay such that

—AM/ ¢ du, S/ ©(Ag + b)pdvg =: q(p)
M M

for any function ¢ € D(M).

Proof of Lemma 3.4. It follows from [8], Proposition 1, p. 123, that Ind (M) <
oo implies that the operator A, + b is positive outside a compact set, 4.e.

@ 3o, Yo e CFM\BR), a(¢)= [ pld+Dpdu, >0

Fix Ry and take R > Ry. Given such an R, choose a Lipschitz function 7; such
that 0 <m <1, =0on B(R), 1 =1 on M\ B(2R) and |dmy| < 2R'. We
also define  := 1 — (1 — n;)? for which we have

(b) |dn|* = 4(1 —n*)|dm > < 16R*(1 —n*) < 16R>.

For R > Ry to be chosen later, and for any ¢ € C§°(M), we apply inequality
(a) to the function ny and we obtain the inequality

( ){ — [ bnp)? dvg < [3 |d(n)|2 dvg = [y 17|deol? do,

+2 [y neldn, do) dvg + [, ¢*|dn|? dvg.

Adding q(¢) = [,,(|dpl2 + bp?®) dv, to both sides of (c), we obtain

Lo @ =) (ldel2 +bp?) dvg < q() + 2 [, np{dn, dp) dv,
(d)
+ o @2ldnl} dvas.

Since 2 [, np(dn, do) dvg < [, 0 dvg + [, |deo|2]dn|? dvy, using (d), we obtain

© { S (=) (dol2 + bp®) dvg < q(p) + [3, 9% duy
e
+ o ldn?(ldeo|2 + ) dv,.

Using (b) and taking into account the fact that 1 — n? vanishes outside B(2R),
we obtain

(f) [ (1 =1P) (A —16R 2)|dp|* dvy < q(y) + c(R,b) [, 9> donr

where ¢(R,b) := supg(ap) |b| + 2. We now fix R > Ro + 4 and we conclude that
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—e(B,b) [ vy < (o)

for any ¢ € C§°(M). O
We have finished the proof of Proposition 3.3. n
Observations

e Under the geometric assumption (3.23), the operators L and Ly are densely
defined (Lemma 3.1) and they admit self-adjoint extensions by von Neumann’s
theorem (since they commute with complex conjugation, [15] Theorem X.3).

¢ Under the analytic assumption (3.28), the operator L is essentially self-adjoint
(M is complete and there is a real number in the resolvent set of L, see [4]).
Under the assumptions (3.23) and (3.28), the operator L is essentially self-
adjoint and the operator L7 admits a Friedrichs extension L% in L2(M).

Theorem 3.5 Let (M, g) be a complete Riemannian manifold with infinite vol-
ume. Assume furthermore that M satisfies

iC >0, VR, V(R) <V(R+1)<CV(R)
and that the function b satisfies

b:=by—b_ and AB>0, Ve M, 0<b(;z) <B,

D >0, Yue D(M), —D [, u’dvg < [, (|du|? —b_u?) dv,.

Then, the operators L and Lt have the same Friedrichs extension, LE = L.

Proof. With the constant D as in the statement of the theorem or as in (3.29)
and with obvious notations, we let

ol = [ ldoP + D+ 1-b)p? > [ o2,

M M
Since b > 0, we also have [|¢[|11 < (D +1)/2?||¢|l: and it follows that H' (M)
is contained in the closure Hi1 of D(M) with respect to the norm || - || 41.
Furthermore, since L is essentially self-adjoint, the closure L of the operator L
is associated with the quadratic form g, see (2.10), on H,1.
Let Hr,4+1 denote the closure of D (M) for the norm || - ||4+1. The Friedrichs
extension LE of the operator Lt is precisely the operator associated with the
quadratic form g on Hy 4.

It is clear that Hr 1 C Hy1. In order to prove the theorem, we have to show
the reverse inclusion.

Take some f € H,ii. Then, there exists a sequence {f,} C D(M) such that
[|f = fnll4+1 tends to 0. Choose an increasing sequence R, ,* oo such that
Supp(frn) C B(R, + 1) and let ¢, := pg,, where g is the family defined in
(3.27). Finally, let
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Then, h,, € Dpr(M) and

1 = Ball4r < NIf = Fall4r + A(RR) Y2 llonll+1-

/ f
B(Rn+1)

Notice that ||@n||l+1 < Cil|enllt £ Cs for some constants Cy,C2. On the other-
hand, in view of (3.27) and (3.24), one has
B(Rn+1)

A(Rn)_1/2

/ f
B(Rn+1)

whose right-hand side tends to zero. It follows that ||f — hy||+1 tends to zero
and hence that f € Hr,41. This finishes the proof of Theorem 3.5. n

< Cjs {Hf — fall+1 + V(Rn +1)71/2

It is not clear whether Lp is actually essentially self-adjoint. We have the
following result in this direction (compare with a similar result in [7]).

Proposition 3.6 Let M be a complete Riemannian manifold with infinite vol-
ume such that

3C >0, VR, V(R)<V(R+1)<CV(R).

Assume the function b is bounded on M. Assume furthermore that there exists
o family pr of functions, pr : M — IR, such that

0<pr<1 and Supp(pr) C B(R+1)
(3.30) pr|B(R) =1

JA, VR, |dprly, |Agpr| < A.

Then, the operators L and Lt have the same closure, in particular the operator
Lt is essentially self-adjoint.

Remark. The functions 6 defined in (3.25) satisfy (3.30), except possibly the
last inequality |Agpgr| < A.

Proof. By analogy with (3.26), we define

A(R) = /M prdv, and ¢g:= A(R)"Y?pg

and we have, under Assumption (3.30),

V(R) < A(R) <V(R+1) < CV(R)

prdv, = A(R)'/? and oL dv, = 1.
M 9 M PRy

Let u € L? and let {u,} C D be a sequence such that u, — » in L?. Choose
an increasing sequence R, such that Supp(u,) C B(R,).
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Fact 1. There exists a constant C; such that for any R > 0,
lldorll, 1Ag¢rll < Cy (L? norms).

This follows immediately from the from Assumption (3.30).

Fact 2. For the sequence defined above,

lim A(Rn)*1/2/ Uy, dvy = 0.
n oo M

This follows immediately from the inequalities

_ V(Rn, +1)\1/2
A(R, 1/2/ U—Up) dVy| < (————~F U — Un||,
(Ry) B(Rn+1)( ) dvg| < ( AR )l |
and
n+ 1 -
am) 2 [ way < (A @) [,
B(Rn+1) A(Rp) B(Ra+1)

whose right hand sides tend to zero by Assumption (3.30) and Lemma 3.1.

Fact 8. If u, Ayu € L? and if there exists a sequence u, such that
un, — u and Lu, — Lu in L? (i.e.if u € D(L)) then, under the
assumption of the proposition, u € D(Lr).

Indeed, let fn = un — A(Ryn) " Y2(f,, un dvg)¢@r, , where R, is an increasing
sequence such that Supp(u,) C B(R,). We can then write

/ Up dvg
M

since both terms on the right hand side go to zero because ||¢rg, || = 1. Similarly,

llu = fall < llu—unll + A(Rn)™'/?

ller, Il =0

I = ] < ldu = dunl) + AR | [ | o, | =0
and
18 (w = fa)ll < [1Ag(u = up)|| + A(Rn) 2| /M un dvg| || Ay, | = 0
using Fact 1. This proves the proposition. ™

Theorem 3.7 Let (M, g) be a complete Riemannian manifold with infinite vol-
ume.

1. If Ind(M) and Indr(M) are finite, the operators L and Lt admit Fried-
richs extensions, denoted by LY and L% respectively, and Ind(M) =
Ind(LY), Indp(M) = Ind (L%).

21



2. If Ind(M) and Indp(M) are infinite, the quadratic form [, (|dul? +
bu?) dvy has infinite index on both D(M) and Dr(M).

Proof. The first part of Assertion (1), Ind (M) = Ind (L¥), is an amplification
of [8], Proposition 2, page 124 (see also [4], Proposition 3). The second part of
Assertion (1), Ind (M) = Ind (LY), is an analogous statement, for the operator
Ly. We give the proof of this second part for completeness.

Let us assume that Ind (M) < oco. It follows from Proposition 3.3 that L1 has
a Friedrichs extension. In the sequel, we denote by Ind 7(B(p)) the index of the

quadratic form qTB () associated with the twisted Dirichlet problem in the ball

B(p).

Let N := Indr(M). By the monotonicity of the eigenvalues of the twisted
Dirichlet problem (Proposition 2.2, Assertion (2)), there exists a constant R
such that the index Ind r(B(p)) is equal to N for any p > R;. Denote the

negative eigenvalues of the quadratic form qﬁ(” ) by Ay, < ... < Ay, and
denote an orthonormal basis of associated eigenfunctions by fi ,,..., fn,,, with
the functions being extended by zero outside the ball B(p).

Lemma 3.8 With the above notations, there exist positive constants apr, Ay,
Cy and Rpr such that for oll p > Ry, for all R > Rpr and for all j €
{1,...,N},

(Z) )\j,p S [—AM,—GM],

(i) fM\B(2R) f7pdvg < CumR72,

(iii) 1< | fipll3e == S (|dfj,p|§ +(Am +1+0) j2,p) dvg < Cu,

(iv) there exists a constant C(R) such that fB(R) (|dfj,p|§ + ff’p) dvy < C(R).

With the notations as in the preceding Lemma, let Hr i denote the domain
of the quadratic form ¢, i.e. the closure of Dy (M) with respect to the norm
| - ||+1 (see the proof of Theorem 3.5).

Lemma 3.9 With the above notations, one can find functions fi,...,fn €
L*(M) N Hr 41, forming an L*-orthonormal basis, numbers A1, ..., \n in the
interval [—Apr, —ap] and a sequence py, /oo such that

(i) fip. converges to f;, strongly in L? and weakly in Hr 11,
(Z’L) /\j,Pk — )\j,
(iii) (Agy +Db)f; = Ajf; in the sense of distributions.

The second part of Assertion (1) in Theorem 3.7 follows from Claim 1 below
and the second part of Assertion (2) follows from Claim 2.

Claim 1. If N := Ind r(M) is finite, then Ind (¢}) is finite and these numbers
are equal.

Under the assumption of the claim, it follows from Lemma 3.9 that for all
j €{1,...,N}, the function f; is in the domain of ¢¥, and satisfies ¢}/ (f;, ¢) =
((Ag + b)g, f5) = Nj{p, f;) for all ¢ € D. Tt follows from [13], Theorem 2.1,
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Chapter VI.2.1, page 322, that f; € D(L), the domain of the Friedrichs exten-
sion of L. It also follows that Ind (¢#!) > N.

Let us now prove that Lz is non-negative on {f1,..., fy}+. Take an element
@ € D(Lt) N {f1,--.,fn}*. There exists a sequence {¢,} € Dr(M) which
converges to ¢ in L? and such that ¢¥(p,) converges to ¢¥(p). Choose a
sequence p,, such that for all n, Supp(vn) C B(pn). Write

N
On =D infin+tn
i=1
where we have set f;,, 1= f; . for simplicity. Let us also write A;, 1= ;...
Since ¢, is in the domain of the operator A, + b with Dirichlet boundary
conditions on B(p,), we can easily compute

N
B(pn
A (pn) = D NjnaZ, + a0 " ().
j=1

Since the A;, are the negative eigenvalues of the quadratic form qg(p "), it

follows that qﬁ(" ")(¢n) > 0. On the other-hand, it follows from the definitions
of ¢, a;, and from Lemma 3.9 that a;,, tends to zero for all j when n goes to
infinity and hence we conclude that ¢ (¢) = lim g% (¢,) > 0. This shows that
Ind (¢¥) < N and the claim is proved.

Claim 2. 1f Ind (¢}7) is finite then so is Ind 7(M).

Let W be the direct sum of eigenspaces of g¥ corresponding to negative eigen-
values. Its dimension Ind (¢!) is finite by assumption. Assume that oo >
Ind7(M) > dim W + 1. This means that there exists some relatively compact
open subset 2 C M such that Ind (¢) > dim W + 1 and hence that there exists
some subspace £ C Dr(Q2) whose dimension is at least dim W + 1, on which the
quadratic form ¢$ is negative. One can in particular find some non-zero ¢ € £
which is also orthogonal to W and for which ¢} (¢) < 0, a contradiction. This
proof in particular shows that Ind 7(M) < Ind (¢¥). "

Proof of Lemma 3.8. Take Ry as in the proof of Lemma 3.4 and choose Ry >
Ry + 8 such that p > Ry implies that Ind r(L; B(p)) = N and we use the above
notations Aj ,, fj,,. Because the eigenvalues are non increasing functions of p,
there is some positive constant aps such that Ay, < —ap for any p > R;.
We can now apply Lemma 3.4 with ¢ = f;,,5 € {1,...,N} and p > Ry and
conclude that A;, € [-An, —aum].

Since [, n*|do|2 dvy = [,,(dp,d(n*p) — 2nedn) dv,, we have that

/ n?|de|? dvg + 2 / ne(dn, dp) dvg = / (d, d(n?p) dvy = / n> oAy dv,
M M M M

and relation (c) applied to ¢ = f; , gives

N [ B pdoy < [ £, a3 v, < 167
M M

since the functions f; , form an orthonormal basis. It follows that
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3C;, YR> Ry, VYp> Ry, / fi,dvy < C1R™2.
M\B(2R)

Assertion (iii) is clear.

Inequality (f) also gives, with ¢ = f; ,,

VR > R;, 3Cy(R), Vp> Rl,/ (dfipl2 + f7,) dvg < Ca(R).
B(R)

This proves Lemma 3.8 |

Proof of Lemma 3.9. Let g; := fi,,. The sequence {g;} being bounded in
Hr.4+1 C L?, there exists a function g € Hr,41 and a subsequence, which we
still denote {g;}, which converges weakly to g. Taking another subsequence
if necessary, we can assume that the sequence \; ,, converges to some )\; €
[—Am, —am]-

We claim that the sequence {g;} is relatively compact in L?. To show this,
it suffices to show that is is totally bounded. Take € > 0 and, using Lemma
3.8, choose R big enough such that [ M\B(2R) gf- dvy, < €. Since the inclusion
H'(B(3R)) — L?*(B(3R)) is compact and since {g;,} is bounded in H'(B(3R))
by Lemma 3.8, we can find ki, ..., kn() such that for any j, there exists some
k(j) € {1,...,N(e)} such that ||g; — gr(j)llz2(B3R)) < €- Tt follows easily that
lg; — 9r(j)ll2(ary < 3e, which proves our claim.

From our subsequence {g;}, we can therefore extract a subsequence which con-
verges strongly in L? to some function § and weakly in Hr,1 to the function
g- It follows that § = g.

We can now repeat this argument with j = 2,..., N and this proves Lemma
3.9. O

Theorem 3.10 Let (M,g) be a complete Riemannian manifold with infinite
volume. Assume furthermore that M satisfies

AC >0, VR, V(R) <V(R+1)<CV(R)
and that b satisfies

b:=by —b_ and IB>0, Vze M, 0<b(yz) <B,

D >0, Yue D(M), —D [, vdvy < [,, (|dul? — b_u?) dv,.

Then, Ind(M) = Indr(M).

Proof. This is a direct consequence of Theorems 3.7 and 3.5. N
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4 Applications

Let i : M™ — H™™ be an isometric immersion with constant mean curvature
H into the hyperbolic space with curvature —1. The stability operator of the
immersion is the operator A — n(H? — 1) — |A°|?, where A° is the traceless
second fundamental form (see [6] Section 6.2.2, with a different sign convention
for the Laplacian).

For such an immersion, there are two different notions of Morse index. We call
weak Morse index of the immersion ¢ the index of the stability operator acting
on all smooth functions with compact support and with mean value equal to
zero; we call strong Morse index of the immersion ¢ the index of the stability
operator acting on all smooth functions with compact support (our terminology
differs from that of [12]).

Comparing with Section 3, we see that the strong Morse index corresponds
to Ind (M), while the weak Morse index corresponds to Ind ¢(M), when the
operator under consideration is A — n(H? — 1) — |A°? in place of A, +b. We
say that the immersion is weakly stable (resp. strongly stable) if it has weak index
(resp. strong index) equal to zero. We can reformulate Theorems 3.7 and 3.10
in this geometric context as:

Theorem 4.1 Let i : M™ — IH™™ be a complete non-compact isometric im-
mersion with constant mean curvature H into the hyperbolic space with curvature
—1.

(1) The strong and weak Morse indexes of M are simultaneously finite or
infinite.

(2) Assume furthermore that M satisfies the assumption

3C such that YR, V(R)<V(R+1)<CV(R),

where V(R) is the volume of the geodesic ball of radius R centered at some
fized point xo. Then, the weak and strong Morse indexes of M are equal. In
particular, the notions of weak stability and of strong stability coincide.

Theorem 4.2 Leti: M2 — IH® be a complete non-compact isometric immer-
ston with constant mean curvature H into the hyperbolic space with curvature
—1. Then, the weak and strong Morse indexes of M are equal. In partiuclar,
the notions of weak stability and of strong stability coincide.

Proof. Assertion (1) follows from Theorem 3.7 and Assertion (2) from Theorem
3.10. This proves Theorem 4.1.

In dimension 2, we can apply [6], Theorem 4.2 and conclude that |A°| and the
Gaussian curvature are uniformly bounded on i(M). In particular, Assumptions
(3.24) and (3.29) are satisfied and it follows that the quadratic forms ¢ and
g™ coincide. We can then apply Theorem 4.1. x

Using the above result, one can give a new proof of the following result of A.
da Silveira [16].
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Corollary 4.3 A weakly stable complete surface with constant mean curvature
1 in hyperbolic space IH® with curvature —1 is a horosphere.

Proof. By the above theorem, weakly stable implies strongly stable and ac-
cording to [6], the traceless second fundamental form of our surface satisfies the
inequality

|A%(zo)] < CR™!

for any ball B(zg, R), with a constant C' which does not depend on R. Letting
R tend to infinity, we conclude that A° = 0. n

Remark. In the geometric context of constant mean curvature immersions,
Theorem 3.10 shows that when M satisfies Assumption (3.24) and has finite
Morse index, then it is equivalent to consider the stability operator A —n(H? —
1) — |[A°? on C§°(M) or on C(M)N{f | [, fdvy =0. Ph. Castillon ([7],
Proposition 3.1) proved a similar result when the mean curvature H satifies
|H| < 1 and when M™ has finite total curvature, [,, |A%" dv, < co. As shown in
[5], a constant mean curvature immersion M — IH "™ with finite total curvature
actually satisfies Assumption (3.24). Indeed, |A°| tends to zero at infinity and
hence the Ricci curvature of M is bounded from below.
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