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1. INTRODUCTION

We consider the situation of the Lefschetz-Atiyah-Bott formula of [2], i.e. M is
a compact manifold, ¢ : M — M a smooth map, £ an “elliptic complex” on M
and v’ : p*& — £ a “lifting” of ¢ to £; the cohomology groups of £ are finite-
dimensional and the trace of the morphism TI'(u) induced by u on the cohomology
is given by a fixed point formula. We are interested in deformations of ¢ and u,
¢p:TXM — M,u' :¢*E — p*E, where p: T x M — M is the projection. For each
t € T they restrict to a map ¢; : M — M and a lifting of ¢y, u} : ¢;€ — £ and
t — trI'(uy) is a function on T'. In fact, following Atiyah’s idea about transversally
elliptic operators (see [1]), it is possible to weaken the hypothesis of ellipticity on
& (the cohomology is no longer finite-dimensional) and still get a hyperfunction
on T', which corresponds to a trace in a generalized sense. We do this in the more
general framework of D-modules and constructible sheaves using the character cycle
construction of Kashiwara in [13] and the microlocal Euler class of Schapira and
Schneiders in [20]. Our construction is local on the space of parameters, which is
not supposed to be a Lie group.

More precisely, let Z, X be complex analytic manifolds, Zg a real submanifold
of Z whose Z is a complexification, ¢ : Z x X — X a map such that for each z € Z
the map ¢, : X = X, z — (z,7) is smooth and proper. Let M € DP, (Dx),
F € D5_ (Cx); we consider “liftings” of ¢ for M and F, ie. u: QilM —p M
a Oz ® Dx-linear morphism and v : ¢7'F — Cz, X F (in the above setting X
should be a complexification of M, M = Dx ®0, £ and F = Cypy). The motivation
for these definitions is the example of quasi-equivariant D-modules and equivariant
sheaves, in which case we assume moreover that Z is a group and u and v are
compatible with the law of the group. However for the main results of this paper
we will not need that Z be a group.

For each z € Zg, the liftings restrict to u, : ¢;* M — M, v, : ¢~ 'F — F and
induce a morphism on the global solutions of M and F":

S(uz,v;) : RHomp (M ® F,Ox) - RHomp, (M ® F, Ox).

Hence we obtain 7; : Zg X Ext’;DX (M®F,0x) — Extipx (M®F,Ox). We want to
compute the “generalized trace” of m; as a hyperfunction on Zr. This generalized
trace should be understood as in representation theory. Let 7 : G — End (FE)
be a continuous representation of a Lie group; we assume that for each infinitely
differentiable form w with compact support on G the endomorphism of E, 7, : 2 —
Jom(g)(x) - w is trace class and that x : w — trm, is a distribution. Then x is
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called the character of E. We note that this definition makes sense also if G is not
a group and 7 is just a family of endomorphisms of E.

In our case the vector spaces Ext%x (M ® F,0x) have in general no natural
separated topology (we will consider also the particular case when Z is a semi-
simple Lie group and X its flag manifold; for this case Kashiwara and Schmid have
proved in [16] that the Ext’, (M ® F,Ox) are continuous representations of Zg).
But RHom, (M®F, Ox) is well-defined in the derived category of Fréchet nuclear
spaces and continuous linear maps. We can build directly ; in this category if we
send Zg into T'.(Zg; Bgiz )) by the map z — ¢, (0, being the Dirac function at z).
Indeed in section 4 we will see that u and v define a morphism

S(u,v) : Te(Zr; BY?)) ® RHom , (M ® F,Ox) — RHom,, (M ® F,Ox),

such that for z € Zg, S(u;,v,) = S(u,v)(d, ® -) and, more generally, w,, above
corresponds to S(u,v)(w ® -).

In section 2 we show that the notions of nuclear map and trace of a nuclear
map extend well to the derived category (the important point here is the fact that
nuclear maps from nuclear spaces are well-behaved with respect to quotient and
inclusion).

In sections 5 and 6 we attach to u and v a hyperfunction x(¢, M, F,u,v) on Zg
by a cohomological trace formula and a microlocal product. More precisely, to u
we associate its “kernel” k(@, M, u) (see definition 5.2) with value in a D-module
supported by the graph, I', of ¢ in Z x X x X, and we take its image by a diagonal
trace map. We microlocalize along I' in order to keep the information carried by
the characteristic variety of M; we obtain a cohomology class:

c(qﬁ,M,u) € H/({l(T*(Z x X x X)?MF(OZ ‘Z(s!wX))a

where A; is a subset of T*(Z x X x X) depending on char M. For F and v we
obtain also a kernel k(¢, F,v) and a similar class:

c(¢, F,v) € HYZ (T*(Z x X x X); pr,(Cz R dwx)),

where Ay depends on SS(F'). If Ay N A} is contained in the zero-section we can
make the “microlocal product” of the two classes and take the direct image to Z.
We obtain a microfunction

X(¢, M, Fyu,v) € H\*(T* Z; uz,(0z)),
where A is a bound expressed in terms of the fixed points of ¢ in char M N SS(F)
(in the case of a group action it coincides with the bound given by Berline and

Vergne in [4]). The condition on A; and A, has a nice expression on X. Let us
introduce the following subset of 7* X associated to ¢:

Ay =p3(TP(Z x X x X)NTZz,A(Z x X x X)),
where p3 : T*Z x T*X x T*X — T*X is the projection to the third factor, and
A the diagonal of X x X. When ¢ is a group action, A4 is the conormal to the
orbits. We see that A; NA$ is in the zero-section if the pair (M, F') is “transversally
elliptic”, i.e.
char(M)NSS(F)NAy C T X.

In particular if ¢g : Gr X M — M is a real group action which can be complexified
into ¢ : G x X = X, then, for F = Cyr, SS(F)NAy = T3 X N Ay can be identified
with T4 M. Hence if M is associated to an equivariant differential operator P, the
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above condition is satisfied if and only if P is transversally elliptic in the sense of
Atiyah.

To make the link between x(¢, M, F,u,v) and the trace of S(u,v) we will use
that x(¢, M, F,u,v) is the trace of the microlocal product of the kernels k(¢, M, u)
and k(¢, F,v). Unfortunately we need a stronger hypothesis on (M, F') to make
the product of these kernels because their supports are bigger than A; and Ay. We
set:

L= ps(TR(Z x X x X) N (T3Z x T*(X x X))).

In general Ay is strictly included in A:ﬁ but for a group action they are equal. We
say that (M, F) is strongly transversally elliptic if

char(M) N SS(F)N Ay C Tx X.

The main result of the paper is theorem 8.2 which says that if Zg is compact, M
is good and (M, F) is strongly transversally elliptic then, for an analytic form w
on Zg, S(u,v)(w ® -) is nuclear with trace fZTg w - x(¢, M, F,u,v). (In particular,
for actions of compact Lie groups, we obtain in section 10 that our cohomological
index coincides with Atiyah’s index of transversally elliptic operators.)

The idea of the proof is roughly that, if (M, F') is strongly transversally elliptic,
then S(u,v)(w ® -) can be defined with a “smoothing operator”. We first prove
that, for M good, a morphism from RHomj, (M ® F,Ox) to itself induced by a
kernel with value in

Qxxx @5 (M®F)R(DMeD' F))

(this could be compared to a smoothing operator) is nuclear with trace the co-
homological trace of the kernel. For this we use the realification of a D-module
introduced by Schapira and Schneiders. Now let k£ be the microlocal product of the
kernels k(¢, M, u) and k(¢, F,v). For an analytic form w on Zg, let k,, be the direct
image on X x X of k-w. This is a kernel on X x X of the kind above; hence it has
a well-defined trace. The morphism associated to k, is nothing but S(u,v)(w ® -)
(see proposition 6.5) and the theorem follows.

In section 9 we assume that the graph of ¢, T', is transversal to the diagonal,
Z x A, of Z x X x X (for a group action this means that X is homogeneous). In
this case Ay is included in the zero-section so that any pair (F, M) is transversally
elliptic and the microlocal product reduces to a usual cup-product on the zero-
section. If we assume moreover that M arises from a complex of vector bundles
and u from a morphism of complexes, we can show that ¢(¢, M,u) is the image
of a holomorphic form on the fixed points manifold Z =T N (Z x A). (If Z is a
point this means that ¢ : X — X is a map transversal to id and we obtain the
Atiyah-Bott formula of [2] for a “linear” lifting.)

In section 10 we consider in particular the action of a complex semi-simple Lie
group, G, on its flag manifold, X. For M = Dx and F a Gr-equivariant sheaf on
X (Gr being a real form of G), the pair (M, F) is strongly transversally elliptic
and our formula for x (¢, M, F,u,v) is the formula given by Kashiwara in [14]. We
prove that x(¢, M, F,u,v) has a well-defined restriction to any translate, g - K,
of a maximal compact subgroup, K, of Gg. Hence we obtain (theorem 10.4) that
x(¢, M, F,u,v) is the character of Gg in RHom (F,Ox) (which is a continuous
representation of Gr by Kashiwara-Schmid results), as conjectured in [14] (see [21]
for another proof).
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Notations. We will mainly follow the definitions and notations of [15]. For a mani-
fold X, mx : T*X — X (or 7 is there is no risk of confusion) is the projection from
the cotangent bundle to X. For a morphism of manifolds f : X — Y, we have the
induced maps on the cotangent bundles:

T*X I X xy T*V 225 TV,

If A is a closed conic subset of T*Y, we say that f is non-characteristic for A if
tf" is proper on f_1(A). We denote by A® the image of A by the antipodal map
of T*Y, (y,€) — (y,—&). We denote by D*(Cx) (resp. DE_.(Cx)) the bounded
derived category of sheaves (resp. R-constructible sheaves) on X.

The topological dualizing sheaf is wx = a'C, for a the projection from X to a
point. More generally, for f : X — Y, we set wx|y = f'Cy. For F € D}_ (Cx),
its dual and its naive dual are:

DF = RHom (F,wx), D'F = RHom (F,Cx).

If M is a submanifold of X, the conormal to M is denoted by T, X and Sato’s
microlocalization functor along M is denoted by pps. The diagonal of X x X is
usually denoted by Ax or A. The functor phom is defined by:

phom(F,G) = uaRHom (¢; ' F, ¢\ G),

where g; is the projection from X x X to the i** factor. The micro-support of
F € D"(Cyx) is denoted by SS(F).

For a complex analytic manifold X, we denote by dx its complex dimension, by
Qx or (’)gf") the sheaf of holomorphic maximal degree forms on X. For a product
of complex manifolds we denote by Og?’:%/ the holomorphic forms of degree a on X
and bon Y. A Dx-module is “good” if, in a neighborhood of any compact subset of
X, it admits a finite filtration by coherent Dx-submodules, such that each quotient
of this filtration can be endowed with a good filtration. We denote by D, (Dx)
(resp. Dlg’ood(D x)) the bounded derived category of complexes of Dx-modules with
coherent (resp. good) cohomology. If f : X — Y is a morphism of complex analytic
manifolds, the inverse and direct images for D-modules are denoted by f~* and f .

The dualizing sheaf for left Dx-modules is

ICX = Homox (Qx,Dx)[dx].
It has two left Dx-module structures. The dual of a left Dx-module M is the left
Dx-module:

DM = RHom, (M, Dx).
The characteristic variety of M is denoted by char M. We say that a map is non-
characteristic for a D-module M or a sheaf F' if it is non-characteristic for char M

or SS(F). We denote by X and X the external tensor products for sheaves and
D-modules.
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2. NUCLEAR MAPS IN THE DERIVED CATEGORY

We will need a notion of trace for a morphism in the derived category of Fréchet
nuclear spaces (F'N-spaces), or DF N-spaces. We prove that the notions of nuclear
map and trace of a nuclear map extend well to the derived category.

The derived category of F'N-spaces and linear continuous maps is constructed as
follows (see [3] and also [22]). Let C°(FN) be the category of bounded complexes
of FN-spaces. The category KP(FN) is obtained from CP(FN) by identifying to 0
a morphism homotopic to 0. The complexes which are algebraic exact form a null
system in KP(FN). The derived category DP(FN) is defined as the localization
of KP(FN) by this null system. Since the topological tensor product ® is exact
on the category of F'N-spaces, it extends to the derived category. The category
DP(DFN) is defined similarly.

In [9] Grothendieck develops a theory of “p-summable” Fredholm kernels and
introduces the nuclear spaces. We give a brief summary of the results we will need.
In the following we write LCTVS for locally convex topological vector space. For

G, F two LCTVS and p a real number such that 0 <p <1let G (é) F Dbe the set of
elements of G®F which can be written Y, \; z; ® y; with >, |A;|? < oo and (z;)
(resp. (y;)) in a bounded convex circled subset A (resp. B) of G (resp. F') such
that the associated normed space G 4 (resp. Fp) be complete.

By [9], chapter II, corollary 4 of theorem 4, we know that for a LCTVS E the

(2/3)
natural map E' 2®3 E — L(E,E) is injective (here E' is the strong dual of E
and L(E, E) is the set of continuous linear maps from E to itself). Hence a map

2/3)
u € L(E, E) which belongs to the image of E' ® E has well-defined determinant
(2/3)
and trace, namely the determinant and trace of its unique kernel in E' @ E.

Let u € E' (é; E and let @ be its image in L(E, E). The link between the
determinant of u and the eigenvalues of @ is explained in [8], chapter II, theorem 4.
For A € C~\ {0} set Ey/x = U, cnker(l — A@)P. Then n = dim E) /, is finite and
A is a zero of order n of det(1 — zu). Moreover, if F;;, = im(1 — A@)" then E
is the topological direct sum of E;,y and F}/y, and (1 — Aii) : Fy/y — Fyyy is an
isomorphism.

(2/3)
Ifu € E' ® E and (\;)en is the sequence of eigenvalues of @, with multiplicities,
we have also (see [9] chapter II, corollary 4 of theorem 4):

det(l—zu):H(l—z)\i), Z|)\i| < 00, tru:Z)\i.

i€EN €N [Sh

These results apply in particular to nuclear maps from nuclear spaces because,
by [9] chapter II, corollary 3 of theorem 11, any bounded map from a nuclear

quasi-complete space E to itself is in the image of E’ (é) E for any p > 0.

If u: E — E is a nuclear map between two LCTVS and F is a closed subspace
of E such that u(F) = {0}, the induced map E/F — G is in general not nuclear
(see [9] chapter I, remark 9 after proposition 16). However this is true if F is a
nuclear space.

Lemma 2.1. Let u : E — G be a nuclear map between two LCTVS and assume
that E is a nuclear space.
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i) Assume F is a closed subspace of E such that u(F) = 0. Then the induced
map u' : EJF — G is nuclear.

1) Assume F' is a closed subspace of G such that u(E) C F. Then the induced
map u" : E — F is nuclear.

Proof. i) Since u is nuclear it decomposes as E = B LN By 5 G where By, By
are Banach spaces and b is nuclear. We can factor ¢ through the quotient of Bj
by ker(c) and hence assume that ¢ is injective. Then ker(u) = ker(b o a) and '
decomposes as E/F % By < G. Now E/F is nuclear too and any continuous
linear map from a nuclear space to a Banach space is nuclear. Hence u;, and «/,
are nuclear.

ii) We write u = co boa as above. Since im(a) C (co b)~!(F) we may replace
B by (cob)™!(F) and hence assume that im(c o b) C F. Then u"” decomposes as

b .. .
E 22 B, =% F and it is nuclear because us is. O

Definition 2.2. Let E', F" be objects of D*(FN). A morphism u : E- — F" in
DP(FN) is called nuclear if there exists a morphism of complexes v" : E* — F" in
CP(FN) such that all maps v' : E* — F? are nuclear and u = v in D?(FN). A
nuclear morphism in DP(DFN) is defined in the same way.

The following lemma implies that a nuclear morphism in DP(FN) or DP(DFN)
has a well-defined trace which depends only on the (purely algebraic) morphism
induced on the cohomology. It is convenient to introduce the following notations
and terminology. For an endomorphism w : G — G of a C-vector space and A € C,
we write:

Gy = U ker(w — A)", AG = ﬂ im(w — A)™.
neN neN
We say that w has a “naive trace” if, setting my = dim G, we have:

VAeC', my<oo  and Zm;-|)\|<oo.
AEC*

If this is the case we set tr, w = )\ . ma - A

Lemma 2.3. Let E be a complex of nuclear spaces and v : E° — E° a morphism of
complexes such that each u'® is nuclear. Then, for eachi, H'(u') : H(E') — H'(E")
has a “naive trace” and:
S (=it Hi(w) = Y (—1) tru.
2 2

Proof. We prove the lemma by induction on the length of the complex E". If it is
of length 1 this is a restatement of the properties of nuclear maps in nuclear spaces
recalled above, namely that they have a “naive trace” equal to the trace of their
kernel.

Let us assume E" is of length n (with E¢ = 0 for i < 1 and i > n) and the result is
true for complexes of length less than n — 1. Let us consider the truncated complex
F = 7., E and the endomorphism v* of F" induced by u'. By definition F? = E!
fori<n—2, F*~! =ker d%_l, Fi =0 for i > n. The F' are also F N-spaces and,
by lemma 2.1, ¥™ ! is nuclear so that the induction hypothesis applies to F" and
v". Tt just remains to prove that H"(u’) : E*/imdy ' — E™/imd} ' has a naive
trace and

tr, H"(u') = tru™ —tru™ ' 4+ tro™ L
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Since u™, u™ 1, v"~! are nuclear maps in nuclear spaces they have a naive trace
equal to their trace as nuclear maps. Hence our lemma will follow from the exactness
of the sequence:

0— F ' 5 EY' -5 EY - (E"/imd} ')\ = 0,

for all A € C*.

The exactness at the first two terms is obvious. Recall that E” = E} © \E"
and E"' = B! @ \E™! and since djy " commutes with u’, dy ' respects this
decomposition. Hence an element of E which is in imdjy ' is in fact the image of
an element of Ef\‘_l. This prove the exactness at the third term. Let us prove the
surjectivity at the last term. Let € E™ be such that (u™ — A\)*(z) € imd*. We
have to find an element of E} in the class of z modulo imd}; . We may as well
assume that k is great enough so that im(u"—X)*¥ = yE™. Since (u™—\)*(z) belongs
to \E™ Nimd}, " there exists y € \E™ ! such that d}; 'y = (" — \)*(z) (again
because d%*l respects the decomposition of E™ and E"~!). We know that u™~1—\ :
AE""! — yE" ! is an isomorphism, so that we may write y = (u"~! —\)*(y') with
y' € »\E™ ! and we have (u” — \)*(z —d'y') = 0. Hence 2’ = z — d}5 'y’ belongs
to ER N (z +imdpy ') and this prove the surjectivity. O

Definition 2.4. Let u: E' — E' be a nuclear morphism in D?(FN) or DP(DFN)
andlet v’ : E° = E" be a morphism of complexes representing u with the v* nuclear.
We call trace of u the number tru = Y, (—1)¢ trv* which only depends on u by the
preceding lemma.

Remarks 2.5. 1) Since the trace of nuclear maps between topological vector spaces
is additive, the trace we have defined is also additive.

2) From the algebraic description of the trace it is easy to see that if E, F' are
objects of DP(FN) or DP(DFN) andu : E — F and v : F — E are two morphisms
such that u o v and v o u are nuclear then truov =trvou.

3) The lemma implies in particular that if idg is nuclear for an object E of
DP(FN) then the cohomology groups of E are of finite dimension.

4) If u : E — E is a nuclear morphism in DP(FN) and imdi; is closed for a
given i, then H'(E) is an FN-space and H(u) : H'(E) — H*(E) a nuclear map.
In particular H?(u) has a trace as a nuclear map and tr H'(u) = tr,, H'(u).

5)For three LCTVS E, F, G and two continuous linear maps u : E — F,
v: F — G, the composition v o u is nuclear as soon as u or v is nuclear. The same
is true in the category DP(FN) for our notion of nuclear morphism as will follow
easily from the next lemma.

Lemma 2.6. Let E', F', G be objects of C°(FN).

i) Letw : B = F, ¢ : B — G be morphisms in C®°(FN) such that each
u' 1 E'* — F* is nuclear and ¢ is a quasi-isomorphism. Then there exists a
morphism of complezes v’ : G — F" such that each v* : G* — F* is nuclear
and v’ o @ is homotopic to u’.

1) The same with reversed arrows.

Proof. i) Let us denote by dy;, dy, di; the differentials of E, F*, G". We consider the
) . ) ) _git1
mapping cone M of ', i.e. M* = E*F! @ G with differential d, = ( (pcffl d(g ) .
G
Since ¢’ is a quasi-isomorphism, M" is (algebraically) exact. The morphism
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induces a morphism v’ = (u’, 0) from M" to F'[1], where F"[1] is the complex with
components Fi[1] = Fi*1 and differential —dy. Each v’ is of course nuclear. We
claim that there exists a homotopy s/ : M7 — F7 such that each s/ is nuclear and
u? = —dl 057 + st od’ . Since the complexes are bounded we may prove this by
increasing induction. We assume that s’ has been built for j < i and we construct
s, We consider a = u'' + di o s'. Since a o di;' = 0 and imd¥;' = kerdi,,
a factors through a map b : M?/kerdi, — F'*' which is nuclear by lemma 2.1.
By the open mapping theorem (M? and imdj, = kerd4}' are Fréchet spaces) the
injection i : M¢/kerdi, — M**! is an isomorphism of M?/kerd}, onto its image.
In this situation b factors through a nuclear map s*' : M — F&1 (see [9]
chapter I, proposition 16) so that u'* = —dt, o s*+ st+1 0 d,. Hence we have proved
the existence of the homotopy.

Now we decompose s* = (s, s%,) and write the preceding equality in terms of
this decomposition. We obtain:

(1) ul = —d o sg'l — Sg-z o digl + sg'l o pitl
(2) 0=—dyosh+sdtod.

Let us set v® = s&; this is a nuclear map since s’ is. Formula (2) shows that
v : G — F" is a morphism of complexes and formula (1) shows that v and v’ o ¢’
are homotopic.

1) The proof is similar. We consider the morphism from F" to the mapping
cone of ¢ induced by v and we show that this morphism is homotopic to 0 by a
nuclear homotopy. This is done by decreasing induction, using a property of lifting
of nuclear maps (see [9] chapter I, proposition 16 or also [20], proposition 2.3 of the
third part):

Let u : A - B, v : C = B be two morphisms of Fréchet spaces with u
surjective and v nuclear. Then there exists a nuclear map w : C' — A such
that v = w o w.

O

Nowletw: B — F',v: F* — G be two morphisms in D?(FN) and assume u is
nuclear. Then u is equal in D?(FN) to a morphism of complexes u'” : E° — F" such
that each u'* is nuclear and there exist a complex H' and morphisms of complexes
¢ :H = F,v" : H — G such that ¢ is a quasi-isomorphism and v = v’ o 1.
Hence vou = v' o p~! ou' in DP(FN). By the previous lemma there exists
a morphism of complexes u; : E° — H' such that the ul are nuclear and u' is
homotopic to ¢ ou;. Hence vowu = v' ouy in DP(FN). Since the composition of a
nuclear map with a continuous linear map is nuclear this show that v o is nuclear.
In the same way we can prove that v o u is nuclear if v is.

3. REVIEW ON THE MICROLOCALIZATION FUNCTOR

Since we will make constant use of Sato’s microlocalization functor we recall here
some of its main properties as stated in [15].

Let X be a real manifold, M a closed submanifold of X. Let ¢ : M — X,
j : TyyX — T*X be the inclusions and 7x : T*X — X the projection. The mi-
crolocalization along M, 15 is a functor from D (Cx ) to D®(Cry, x ). We will often
write pas for jupar. The functor pas has the following properties (see paragraph 4.3
of [15]).
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Proposition 3.1. Let F € D*(Cx). We have:
pr(F)|m ~ Rrx pune (F) ~i'F,
Rrxypun (F) ~ R (ua (F)) | ~ i F @ wyy x,
supp pup (F) C SS(F)YN Ty X.
By the first isomorphism, for any closed conic subset A of T},X, we have a
morphism:
HR(T*X; um(F)) = Hg(X; F),
where S = mx(A). We will call this morphism “projection to the zero-section”.
More generally, for a submanifold M’ of X such that M C M' C X, we have a
morphism, setting T' = T3, X N Ty, X:
py (F)|lr = RUrpne (F).

If L € DP(Cx) is locally constant then g (F ® L) ~ pup(F) ® 7% L. Microlo-
calization behaves well with respect to non-characteristic inverse image as shown
in the next proposition. Let f : Y — X be a morphism of manifolds, N a closed
submanifold of Y such that f(N) C M. Let us denote by *fi and fn, the restric-
tions of if' 1Y xx T*X - T*Y and fr : Y xx T*X - T*X to N x5 T3;X. The
following result is contained in proposition 4.3.5 and corollary 6.7.3 of [15].

Proposition 3.2. Let F € D*(Cx). We have a commutative diagram:

RYN Fnipnr(F) pn(f1F) @ nyt (wyx ®wR,TM)

| |

R finbins (F) @ 15wy <———— v (£ F) @ 17wy

compatible with the projection to the zero-section. If f is non-characteristic for F
and f|n : N = M is smooth then r is an isomorphism.

Remark 3.3. The compatibility with the projection to the zero-section means the
following. Let nx : T*X — X, 7y : T*Y - Y, 7: Y xx T*X — Y be the
projections. We set for short:

Fy = fT'RTm(F), F» = RIN(f7'F) @ wy|x @ wy|ys F3 = RON(f'F) @ wyly-
The first isomorphism of proposition 3.1 induces:
a: Ry J(R'fy fniin (F)) = Fi,
b: Rry.(un(f ' F) @1y (wy x ® wijy)) = P,
¢: Rry, (un(f'F)® w;lwx,llM) = F3.
Morphism a is obtained from the morphism of functors Rfy,(-) = R} . (-) and
the isomorphism R7. fyL(G) ~ f~'Rrx,(G) for any conic object G of D®(Cr- x).
There is in general no morphism from Fj to F (this is in fact the reason why we

need to microlocalize). However we have two natural morphisms F; — F3 and
F5 — F3 described by the following compositions:

to: Fi = (RTy(F))y = RUNRT i (F) ® wJ—V}M ~ Fj,
s0: Fo = RON(fT'F @ wy|x) @ wy|y = Fa.
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The diagram of the proposition is compatible with the projection to the zero-section
in the sense that Rmy,(s) = so and Rwy,(sor) = to o a. Roughly speaking, o can
be factorized through sg for sections of F} arising from “microlocal sections of F”
whose support is non-characteristic for f (see also proposition 3.8 below).

The inverse image morphism r induces a morphism on the global sections whose
support is in good position. Let A be a closed conic subset of T*X. Assume
that f is non-characteristic for A. Then %f’ is proper on f.!(A) and, setting
A = tf'(f-1(A)), morphism r gives us a morphism:

(3) HR(T*X; p (F)) = HR (T*Y 5 pn (f7HF) @ 15 (v x @ wiy p)-
When f is a diagonal embedding this morphism yields a product between microlocal

classes. This is the way the product of Euler classes is defined in [20]. We will need
such a product in the following situation.

Lemma 3.4. Let X be a real manifold, M and N submanifolds of X, with N C M.
Let F,G € Db((CX) and let A1 and Az be closed conic subsets of Ty X. We assume
that A1 NAS C T5xX. Then morphism (3) induces a “microlocal product”:
HY, (T*X; pm(F)) x HR, (T*X; un (G))
= HY, 0, (T*X; un(F @ G) @ mx'wpr x)

compatible with the projection to the zero-section in the sense of remark 3.3.

Proof. The external product defines a morphism from the left hand side to
HR o, (T*(X x X); s (F R G)).

Let 6 : X —+ X x X be the diagonal embedding. The assumption Ay NA§ C Tx X
is equivalent to the fact that § is non-characteristic for A; x A;. Hence we may
compose the external product with the morphism (3) where Y, X, N, M, f are
replaced by X, X x X, N, N x M, §. This gives the desired morphism if we identify
w_I:T|1NxM®wX|X><X and (wM|X)N. O
Remark 3.5. This microlocal product is compatible with the inverse image in the
following situation. We keep the notations of lemma 3.4 and consider moreover a
morphism of manifolds f : X' — X, M', N' submanifolds of X' such that N' ¢ M’,
f(M"Yy C M and f(N') C N. We assume that f is non-characteristic for A; + Ay
(hence also for A; and As) and we set A} = 'f'(f-1(A1)), AL = ¥f'(f-1(A2)). Let
us set for short:

Ay = HY (T*X;um(F)),  Ax = HY, (T*X; un(Q)),
A=HR 2, T*X;un(F ® G) @ my'wx),
Ay = HY (T* X5 pare (F71F) @ gt (Wxr)x © wigs ),
Ay = HY, (T*X"s pnve (f1F) @ s (wxr ) x ® wivi )
A= HRy 0 (T X s v (fTHF © ) @ mxsw),
where w = f‘l(wM|X) ®wxrx ® w;,}lN. Since f is non-characteristic for Ay, Ag,
A1 + A, we have inverse image morphisms as (3): r1 : Ay — A}, ro : Ay — AL,

r: A — A’ Since f is non-characteristic for A; + Ay and A; NA§ C T3 X, we have

also Af N AL* C T% X', so that there exists a microlocal product from A} x A} to
Al
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The microlocal products, starting from 4; x Ay and A} x A}, commute with
the inverse images r; x r9 and r. This is a consequence of the fact that the inverse
image as (3) is compatible with the composition of morphisms of manifolds.

Remark 3.6. We keep the notations of the preceding remark. We set moreover
Ay =ANT}HX and AY = HX’z’ (T*X; up(@)). Since N C M we have a morphism
Ay — Al Setting:

we have also a morphism A — A" and, since A; N AY" C T%X, the microlocal
product from A; x A} to A" is well-defined. We obtain a commutative diagram:

A1XA2—>A

|

A1 X AIZI — A"

where the horizontal arrows are microlocal products and the vertical arrows are
projections to T3, X . In view of this diagram it is useless to consider two subman-
ifolds of X to define the microlocal product of lemma 3.4 if we are only interested
in the projection of the result to the zero-section, because N does not appear in
the second line. However the bound for the support of the product obtained in the
first line is more precise than the bound obtained in the second line.

Remark 3.7. The microlocal product is related to the cup-product when M is non-
characteristic for F, i.e. Ty, X NSS(F) C TxX. In this case we have F Qwysx —
RT'y(F) and supp pp(F) C T%X so that mx is proper on supp pp (F) and the
projection to the zero-section gives isomorphisms:

HR,(T* X5 pu (F)) = Hg, (X; RTy(F)) = Hg, (X3 F ® wayx),

where S; = mx(A;). Let us also identify the sheaves corresponding to Fy, F, F3 of
remark 3.3 in our case. We have:

Fy = RTy(F)®RI'n(G), F» = RIn(F®G)®@wu x, F3 = RIN(0'(FRG))@wr.

Since we have also F1 ~ wyx ® F ® RT'n(G), there exists a morphism F; — F
which factorizes the morphism ¢y of remark 3.3. Hence the compatibility of the
microlocal product and the projection to the zero-section gives the commutative
diagram:

A1 X A2 A
Hg'l(XyF®wM|X) X ngz(X,G) —>Hg1052(X;F®G®wM|X),
where the bottom arrow is the usual cup-product.

We will also need a slightly different version of the microlocal product. Let F, F',
G, G’ be objects of DP?(Cx). Let § : X — X x X be the diagonal embedding. We
consider phom(F,G) and phom(G’, F'); they are objects of DP(Cr- x) and satisfy

Rr.phom(F,G) ~ RHom (F,G) Rm.puhom(G',F') ~ RHom (G', F').
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We have the canonical morphisms:
(4) Hom (F,G) ® Hom (G', F') — Hom (RHom (F', F), RHom (G', G))
(5)  Hom (RHom (F',F),G ®D'G') — Hom (RHom (F', F), RHom (G', Q)).

We are looking for conditions which imply that morphism (4) can be factorized
through (5). This is the case if the morphisms in Hom (F,G) and Hom (G', F')
arise from sections of phom(F,G) and phom(G', F') with suitable supports. The
following result is contained in the proof of proposition 4.4.8 of [15].

Proposition 3.8. Let A, A’ be closed conic subsets of T*X satisfying A>NA' C
TxX. There exists a natural morphism:

HY(T*X; phom(F,G)) ® HY. (T*X; uhom(G', F"))
— HY o (T*X; phom(RHom (F',F),G ® D' G"))
— Hom (RHom (F',F),G @ D' G'),

whose composition with morphism (5) coincides with the composition of the projec-
tion to the zero-section and morphism (4).

4. LIFTINGS AND ACTION ON GLOBAL SECTIONS

In this section we introduce liftings of an application for a D-module and a
constructible sheaf and define their action on the solutions. In the rest of the paper
we will be interested in the trace of this action.

The general situation will be the following. Let X and Z be complex analytic
manifolds. We consider a family of maps from X to itself parameterized by Z. By
this we mean a morphism of manifolds ¢ : Z x X — X; for 2 € Z we denote by
i : X = Z x X the embedding z — (z,z) and we set ¢, = poi, : X - X. We
will always make the following hypothesis on ¢:

(6) Vze€ Z, ¢, : X - X is smooth and proper.

We consider also a real analytic submanifold Zg of Z such that Z is a complexifi-
cation of Zg. To simplify the exposition we will always assume that Zg is oriented.
We denote by ¢r : Zr x X — X the restriction of ¢, by p : Zx X — X and
Pr : Zr X X = X the projections, by ' C Z x X x X and I'r C Zg x X x X the
graphs of ¢ and ¢g.

Definition 4.1. Let M € D®, (Dx), F € DR__(Cx). A lifting of ¢ for M is a
morphism:

u € Hom g, mp, (¢ (M),p~H(M)).
A lifting of ¢r for F is a morphism:

v € Hom (¢~ (F), pr ™! (F)).

These definitions are motivated by the example of group actions and quasi-
equivariant D-modules. Indeed if a complex Lie group G acts on a complex manifold
X with action ¢ : G x X — X then a Dx-module M is quasi-equivariant if there
is an isomorphism Qil/\/l ~ Q_IM which is Og X Dx-linear (but in general not
Dgx x-linear) and compatible with the law of the group. In our definition we just
forget the fact that Z is a group (and of course the compatibility with a group law).
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We will often consider v as a morphism from ¢ 1(F) to Cz, X F through the
isomorphism:

(7) Hom (¢r ™' (F),pr~*(F)) ~ Hom (¢ ' (F),Cz, R F).
In the same way it will be convenient to change our Oz X Dx-linear lifting into a
Dz« x-linear one through the isomorphism:

8)  RHomgy,gp, (¢ ' (M),p~ (M) ~ RHomp, (¢ (M),Kz BM).

This isomorphism is a particular case of the following one. Let A be a Dzyx-
module which is a coherent Oz X Dx-module and P a coherent Dx-module; then

RHom ¢y, gp, (N,0z®P) ~ RHomy, (N,KzRP).

It is enough to check this for P = Dx. Since it is local on Z x X we may take a
resolution of N by finite free Oz X Dx-modules and we are reduced to Oz K Dx ~
R”HomDZXX (02X Dx,KzXRDyx), which is a consequence of RHom (0z,Kz) ~
Oyz.

For z € Zg the base change by the embedding {z} — Z transforms ¢~'M into
¢, ' M and the lifting v into a lifting of ¢, for M, u, € Hom, (¢, ' M, M). The
inverse image of v by i, gives also a lifting of ¢, for F, v, € Hom (¢, 1 F, F). From
u, and v, we obtain a morphism from RHom, (M ® F,Ox) to itself as follows.
We first remark that we have a natural morphism:

(9) RHom,, (7'M ® ¢;'F,0x) — RHom,, (M @ F,Ox).

Indeed the Cauchy-Kowalevski-Kashiwara theorem (which we may apply since ¢,
is smooth) and standard adjunction formulas for sheaves give:

RHom,, (¢,'M® ¢,'F,0x) ~ RHom (¢, ' F, RHom , (¢,' M, Ox))
(10) ~ RHom (¢, 'F, ¢, RHom, (M, Ox))
~ RHom (R¢.,¢; ' F, RHom, (M, Ox)),
where in the third isomorphism we used ¢;! ~ ¢L. Since ¢, is proper we have
an adjunction morphism F — R¢,,¢;'F. Composing it with (10) and using the

adjunction between RHom (-,-) and - ® - we obtain (9). The tensor product of u,
and v, gives a morphism:

RHom;, (M ® F,0x) = RHomp, (¢;'M® ¢;'F,Ox),
whose composition with (9) gives:
S(uz,v;) : RHomp, (M ® F,Ox) = RHom, (M ® F,Ox).

Taking cohomology we obtain morphisms 7; , : ExtiDX (MQF,0x) — ExtiDX (Mo
F,Ox) and letting z run over Zr we obtain maps m; : Zg X Ext’DX (M®F,0x) —
Ext’, (M®F,Ox). We want to say that these maps are continuous in some sense
but the topology of the Ext groups is in general not separated; hence we have
to stay in the derived category. Indeed RHom} (M ® F,Ox) is well-defined as
an object of DP(FN) and any relatively compact subset U of Zg, contained in a
compact subset K of Zg has a natural embedding j : U — FK(ZR;B(ZCLZ)), where
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j(z) = 4, is the Dirac function at z. Now FK(ZR;B%Z)) is also a F'N-space and
we define a morphism:

Sk (u,v) : T (Zz; By*)) ® RHom,, (M ® F,0x) — RHom,, (M @ F,Ox),

such that the m; are obtained by taking the cohomology of Sk (u,v) and composing
with j. We note that T (Zg; Bgiz)) ~ RHom, (Kz ® Ck,0gz)[2dz], and we
obtain Sk (u,v) similarly as S(u.,v,) by composing a morphism deduced from the
tensor product of v and v:

(11) RHomy (Kz ® Cx,0z) @ RHom,, (M ® F,0x)[2dz]

_— RHom’szx((’CZ EM) ® ((CK X F)70Z><X)[2dZ]

e, RHom,,,, (67 M ® §7'F ® Croxx, Ozxx)[2dz],

and a natural morphism:

(12) RHomp, (Q_IM ® ¢ 'F @ Crxx,0zxx)[2dz]
— RHomp, (M ® F,Ox).

The last one is defined as (9) by the following sequence of morphisms, where we
remark that ¢! ~ ¢'[2dz] since ¢ is smooth, and RpCxx x ~ R¢.Cxx x since ¢
is proper on K x X:

RHomp, (67" M ®¢™'F ® Cxxx,0zxx)[2dz]
~ RHom (Cxxx, R'HomeZXX ((,2571./\/( ® ¢ 'F, Ozxx))[2dz]

~ RHom (Cx xx, qflR’HomDX (M@ F,0x))[2dz]
~ RHom (R Cxxx , RHom (M ® F,Ox))

— RHom (Cx, RHom, (M ® F,Ox))

~ RHom p, (M ® F,Ox).

For w € I"K(ZR;B%Z)) we denote by
(13) S(u,v)(w) : RHomp, (M ® F,Ox) = RHomp (M ® F,Ox)

the morphism induced by Sk (u,v) (it does not depend on K). For z € Zg we
have S(u,v,) = S(u,v)(d,). The purpose of the paper is to show that, when Zp is
compact and w is an analytic form on Zgr, S(u,v)(w) is nuclear with a trace given
by a cohomological formula.

If the topological vector space E = ExtiDX (MQ®F,Ox) is separated the fact that
Sk (u,v) is well-defined in the derived category of Fréchet nuclear spaces implies
the continuity of ;. Indeed 7; : K X E — E is the composition of the continuous
maps j X idg and H*(Sk(u,v)) and is itself continuous.

Remark 4.2. When 7 is a group and the data are equivariant and Extli M
F,Ox) is separated, 7; is a representation of Zg. Under suitable hypothesis this
representation is admissible. The following construction is used to define the char-
acter of an admissible representation of a Lie group. Let w be a maximal degree
Ce°-form with compact support in Zg. We set for z € E, m; ,(z) = fZ‘R mi(z, 2)w(z).
(When Zg is a semi-simple Lie group and E is admissible, m;,, is trace-class and
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w — trm, is a distribution on Zg, the character of m;.) The definition of m;
makes sense without assuming that Zr be a group and we have:

Tiw = S(U, U) (w)

Remark 4.3. In the above computations we can replace RHomp, (M ® F,Ox)
by RHom, (M,Ox ® D' F) and obtain a morphism similar to S(u,v)(w):

S1(u,v)(w) : RHomp, (M,0x ® D'F) - RHom,, (M,0Ox ® D'F),
which commutes with S(u,v)(w) and the contraction morphism:
RHomp, (M,0x ® D' F) - RHom}, (M ® F, Ox).

5. COHOMOLOGY CLASSES ASSOCIATED TO A LIFTING

In this section we will build microlocal cohomology classes from u and v. In the
next section we will make the product of these classes, under the assumption that
the pair (M, F) is “transversally elliptic”, and obtain a hyperfunction on Zg.

The method for defining these cohomology classes is taken from [13] and from [20]
for the microlocal aspect. We identify our lifting with the section of a “kernel” and
apply a trace morphism to it. The following general result appears in slightly
different form in [20] (see also [6] for integral transforms in the framework of D-
modules).

Lemma 5.1. Let f : Y — Y' be a morphism of complex analytic manifolds and
ir:Y > Y XY,y (y, f(y)) the graph embedding of f. Let P € DP, (Dy), P' €

coh

Dth (Dy+). We set for short S = RHom (P,0y) and 8" = R’HomDYI (P!, Oy).
If f is non-characteristic for P' we have two natural morphisms:

RHomp (fH(P"),P) = i'p(Qy v ®gm, (PRDP")[dy —dy],

it(Qvxy ®;  (PRDP")[dy: —dy] - RHom (S, f~'S"),

Y XY’

whose composition coincides with the image by the functor RHom (-, Oy).

We note that 'S’ ~ RHomy, (f~'(P'),Oy) because f is non-characteristic
for P'. When Y =Y, f = id and P = P’ = Dy the morphisms of the lemma are
Sato’s morphism Dy — Hg‘; (Og]fl‘,’)) and HZ‘; (0$;d§)) — RHom (Oy, Oy).

Proof. Since f is non-characteristic for P’ we have, by the duality isomorphism
of [19], theorem 3.5.6, D f 'P' ~ f ' DP'. Let Iy C Y xY” be the graph of f and

P2 the projection from Y xY”' to Y. Let us set Blgllf’llg),xy, = ng;(b%,, ®0y vy Bry|y xy'-
. L 0,dy
Since Dy L5y ~ zfl(Bl(w;x)Y')’ we have:

- 1 12(0,dys .
[ DP i 1(B§,|1¥x)yf ®,{;—1®y, p;' DP')

~ i B @5 (Ky BDP)[-dyl.

Composing this isomorphism with Bﬁi’[l;d;;), — RI'r;(Qyxy)[dy'] we obtain fi-

nally:
RHomp, (f7'P',Ky) = i (Qy <y ®gw (Ky RDP))[dy — dy].

The tensor product with Qy ®, P gives the first morphism of the lemma.
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For the second one we will in fact build a morphism:

(14) Qv xyr ®% (PRDP') — RHom (p7'S,p3 *S)[dy + dy'].

YxY/!

Since f is non-characteristic for S’ again, we have f~1S’ ~ f'S'[2dy: — 2dy] and
we deduce the isomorphism

i RHom (p;*S,p; ' S")[2dy+] ~ RHom (S, f~'S").

Together with (14) this gives the second morphism of the lemma. Let K be the
left hand side of (14). By adjunction between RHom and ®, morphism (14)
corresponds to a morphism from K @ p;'S to p; 'S'[dy +dy+]. A contraction gives

K®p 'S = Qyxy @y (Oy IDP').
By the Cauchy-Kowalevski-Kashiwara theorem we have the isomorphisms:
Qvxy ®p  (Oy BDP') = RHomp (p3 P',Ovxy)ldy +dy]
~p, 'S'[dy +dy]
and thus we obtain (14). O

We apply this lemma, to the situation of section 4; we keep the notations introduced
there. Because of formula (8) we may consider the lifting u for M as an element
of Homp (Q‘l(M),ICZ X M). Let us set:

(15) Ly =Qzxxxx®p5,  (KzBMEDM)[-dy].

Lemma 5.1 above applied to Y = Zx X, Y' = X, f = ¢, P = Kz XM and
P' = M yields a morphism

(16) RHomyp, (671 (M),Kz ® M) — RTr (L)

The duality contraction between M and D M defines the trace morphism of [20]:
MEDM — 0Kx ~ Bajxxx[dx].

Since Qxxx ®1I;XXX Ba|xxx[dx] ~ dwx and Ba|xxx is holonomic this gives a

morphism

(17) Ly = Oz Rwx.

Composing this with (16) and taking global sections we obtain from the lifting

u a cohomology class in H2(Z x X x X;0z K dwx). However we will need the

microlocal information carried by the characteristic variety of M. Hence before we
apply the trace morphism, we microlocalize along the graph of ¢; we have:

RTr(Lm) = Rmopr(Lm) = R RT 4, pr (L),

where

Ay =supp pr(Lam) = SS(Lam) NTE(Z x X x X)

= (T*Z x char M x char M) NT{(Z x X x X).
Taking global sections we obtain finally the following two morphisms:
(18) Hom ¢,z ($7 (M), p~ (M) = H,(T*(Z x X x X); pr(Lm))

(19) HY, (T*(Z x X x X); pur(Lam)) = HR, (T*(Z x X x X); ur(Oz R dwx)),
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where
A=A N(T*"Z x TA(X x X)).

In the “transversal case” (see section 9) we will not need to know the support A;.
Forgetting the support is equivalent to the projection to the zero-section:

(20) HRI (T*(Z x X x X);/J,F(OZ X (Sng)) — HIQ(Z x X x X;OZ X 61(4))().

This last group is isomorphic to H%(Z x X;0zRwx), where Z is the fixed points
set of ¢, Z=TNZ x Ax.

Definition 5.2. Let Z and X be complex manifolds, ¢ : Z x X — X a morphism
of manifolds, M € D& (Dx). Let u € Hom g, gp, (67" (M),p~1(M)) be a lift-
ing of ¢ for M. The image of u by the morphism (18) above will be denoted
by k(¢, M,u). The image of k(p, M,u) by the morphism (19) will be denoted
by ¢(¢, M,u) and its projection to the zero-section by (20) will be denoted by

C0(¢,M7U).

Remark 5.3. Through formula (8) we deduce a structure of Dz X Cx -module on
RHom ¢y, gp, (97" (M),p1(M)) since Kz has two structures of left Dz-module.
In the same way L and OzXdwx also have a Dz-linear structure. It is immediate
from the construction that the maps u — k(¢, M,u) and u — ¢(¢, M, u) are Dz-

linear.

Example 5.4. The Dx-module M = Dx has a natural lifting whose class is re-
lated to the fundamental class of the graph, I, of ¢ in Z x X x X. We have the
following isomorphism:

RHom , gp, (¢~ (Dx),p *(Dx)) ~ RHomyp,,  (Dzxx2x,Kz B Dx)

dz, *
~Dx¢® 7xx ®0zxx (O(Zf)?))

0,dx,0
~ HE (025:%),

where H, fdr)]( (+) is the algebraic local cohomology with support in T'. The fundamental

class of T, r € HE*(Z x X x X; O(de))(xx), gives by the projection O(de))(xx -
Og)’xdjé ;(0;( a canonical lifting, [y, of ¢ for Dx. We have also L ~ Og);(d)’(‘ ;0))( [dx]
and morphism (16) is just the natural inclusion:
0,dx ,0 0,dx ,0
HE (005550 = HEX (05555,
The trace map (17), Og)f)’(‘f;( [dx] = Oz X dwx, is decomposed through the
restriction to the diagonal and the map Qx[dx] = wx:

(21) 075 xldx] = 1,055 [dx] = 07 R b,
where ia is the diagonal embedding of Z x X in Z x X x X. Setting Z = T'N
Z x Ax, we have an isomorphism between HZ* (iA*Og);d)’(‘)) and ng (Og);(d)’(‘)). In

particular ¢o(¢, M, 1) is the image of a class in ng ((’)g))’(djg )), but, even if I and

Z x Ax are transversal, so that Z is a submanifold of Z x X, this class is not the
projection of the fundamental class of Z in Z x X (see section 9).
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Example 5.5. The preceding example generalizes to the case of a Dx-module
induced by a fiber bundle, M = Dx ®o, £, where £ is a locally free Ox-module.
We have:
¢ (M) 2 Dyuxbx Q105 ¢ '€, p M) 2 DzuxBx ®p-10, p E,
Rﬂomozgpx (¢_1(M)71_7_1(M))

~Homg,  (97°E,P°E) ®oy,yx Hf’lr}]((og)%dfiogf)-

Let us call a lifting of ¢ for £ an Oz« x-linear morphism u' : ¢*€ — p*E. The last
isomorphism says that «' determines a lifting u = u' ® I of ¢ for the associated
Dx-module M. We set F = Oz X E K E* so that

it F =Homy,  ($*E,0°E) and Lag = Ok ®04yxux Fldx]
and the morphism (16) corresponds to the tensor product of Sato’s morphism with
F. The trace morphism is also just the tensor product of (21) and the contraction
F = irnOzxx.
Remark 5.6. When M is represented by a complex N, Q_l/\/l and Q_IM are
represented by the complexes 9_1/\/' " and Q’IN " since ¢ and p are smooth. If we
assume that u is given by a morphism of complexes u' : ¢ 7' N* — p~'A”* we have

c(¢,M,u) = Z(_l)ic(¢7Ni7ui)'
A similar construction holds for sheaves. We just state the result.

Lemma 5.7. Let f : Y — Y’ be a morphism of real manifolds. LetTy CY x Y’
be the graph of f, which we identify with Y. Let G € D}_.(Cy), G' € D}_.(Cy/)
We have a natural isomorphism:

RHom (f 'G',G) = RIr,(GRDG").

We apply this to the situation of section 4, with Y = Zg x X, V' = X | f = ¢,
G =Cz, XF, G' = F. We microlocalize and take global sections so that we obtain
an isomorphism:

Hom (¢r " (F),pr " (F)) = HY(T*(Zg x X x X); pr, (Cz, R FRDF)).

The class associated to v will be defined as its image through this isomorphism.
But we need to consider it on T*(Z x X x X), like the class of u, rather than
on T*(Zgr x X x X). For this we use the following identification. Let ¢ be the
inclusion of Zr x X x X in Z x X x X; we identify ' C Zg x X x X with its
image by 4. The inverse image morphism r of proposition 3.2 applied to i gives the
following isomorphism, for G € D?(Cx x x ), A a closed conic subset of T*(X x X),
N =T3Z x A, \" =T}, Zg x A:

HR(T*(Z x X x X); ur,.(Cz RG)) = HRW(T*(Zr x X x X);pr, (w7, 12 K G)).

Since Zg is oriented we have in fact wy, |z ~ Cz [—dz]. There is also a trace
morphism for F":
FXRDF — dwx.

Setting Lr = Cz X F X D F, we obtain finally two morphisms:
(22)  Hom (¢r ' (F),pr (F)) = H{Z(T*(Z x X x X); pr,.(Lr))
(23) = H{?(T*(Z x X x X); pr,. (Cz B wx)),
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where
Ay = (T7zZ x SS(F) x SS(F)*")NTY (Z x X x X)
Ao =AN(T;Z x TX(X x X)).
We have also the projection to the zero-section:
(24) H{Z(T*(Z x X x X); ur.(Cz B owx)) = HY?(Z x X x X;Cz Rowx)

Definition 5.8. With the notations of section 4, the image of a lifting v of ¢ for F'
by the morphism (22) will be denoted by k(¢, F,v). The image of k(¢, F,v) by (23)
will be denoted by c¢(¢, F,v) and its projection to the zero-section will be denoted
by cO(d)a Fa U)'

Remark 5.9. The action Sk (u,v) defined in section 4 can be recovered from the
“kernels” k(¢, M,u) and k(¢, F,v) associated to v and v in the definitions above.
Indeed let ko (u) and ko(v) be the projections of k(¢, M, u) and k(¢, F, v) to the zero-
section. Then ko(u) € H(Z x X x X; L) and ko(v) € H{?*(Z x X x X;Lp).
By lemma 5.7 A

Hl‘fg(Z x X x X;Lp) ~Hp (Zr x X x X;Cz, RFRDF)
~ Hom (¢= ' (F),pr~"' (F))
and the image of ko (v) by this isomorphism is of course v; hence we can even recover

v from k(¢, F,v). We cannot recover u from k(¢, M, ) but only its action on the
solutions:

w':RHomp, (Kz®M,0zxx) = RHomyp (¢ (M), O0zxx).

Indeed ko(u) is nothing else than the image of u by (16), hence its image by the
second morphism of lemma 5.1 is «4'. Now the data of ' and v are sufficient to
recover the morphism (11) and hence Sk (u,v).

Remark 5.10. From k(¢, M, u) and k(¢, F,v) we can also obtain microlocal ana-
logues of the morphisms v and u' of the preceding remark. Let us set:

G:R’HOT)%DZXX(IngM,OZxx), G':RHomDX(M,OX).

Let pio: Zx X xX > ZxXandps: ZxX xX — X be the projections on the
first two and on the third factors. Morphism (14) in the proof of lemma 5.1 yields
in fact a morphism:

L — RHom (p5 G, p3 *G")[2dx].

Let ir be the embedding of the graph of ¢ in Z x X x X. By proposition 4.4.5
of [15] (which is a consequence of proposition 3.2), we have, since ¢ is smooth:

phom(G, ¢~ 'G") = R'ipyir, ! (ur RHom (p1y G, p3 ' G"))[2dx].
Let usset A} = %% (ir;'(A4,)). Hence k(¢, M, u) gives a section of uhom(G, ¢ 'G"),
ul, € HY, (T*(Z x X); phom(G, 67",
whose projection to the zero-section coincides with u’.
In the same way we have an isomorphism:
phom(¢ F,p ' F)® = Rlifir;* (ur(Cz R FRD F)),
where we denote by (-)* the inverse image by the antipodal map of T*(Z x X).
Since I'g is a closed subset of I" we have a morphism of functors ur, (-) = RT'rur(-),
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where T = T (Z x X x X) NTH(Z x X x X). Let us set Ay = %f.(ir;"(A2)).
Hence k(¢, F,v) gives

vy, € H{Z (T*(Z x X); phom(¢~ ' F,p ' F)*),

whose projection to the zero-section is v. (Note that since m, A C Zgr X X the pro-
jection of v/, to the zero-section belongs to HgixX(Z x X;RHom (¢~ 1F,p~'F))
which is isomorphic to Hom (¢g ' F,pr 'F).) Under geometric hypothesis on
char M and SS(F) we will be able to make the microlocal product of u; and
v, and this will give another construction of S(u,v) showing that it is trace-class

in some sense.

6. MICRO-PRODUCT OF THE CHARACTERISTIC CLASSES

In this section we will make the microlocal product (defined in lemma 3.4) of
the cohomology classes ¢(¢, M, u), ¢(¢, F,v) and k(¢p, M, u), k(¢, F,v) obtained in
section 5, under geometric assumptions on the characteristic varieties of M and
F. The product of ¢(¢, M,u) and c(¢, F,v) will give a hyperfunction on Zg. The
product of k(¢, M,u) and k(¢, F,v) will give a “kernel” from which we can recover
the morphism S(u,v)(w) of formula (13). It will be used to show that S(u,v)(w)
has a trace.

Before we state the result we introduce a subset of T*X associated to ¢, which
corresponds to the conormal to the orbits when ¢ is a group action.

Definition 6.1. Let Z, X be complex analytic manifolds and ¢ : Z x X — X a
morphism of manifolds. We set

Ao =p3(TP(Z x X x X)NTz,A(Z x X x X)),

where p3 : T*Z x T*X x T*X — T*X is the projection to the third factor, and A
the diagonal of X x X. Let M € D2, (Dx), F € D}_.(Cx). We say that the pair

coh

(M, F) is transversally elliptic for ¢ if
char(M)NSS(F)NAy C Tx X.
In local coordinates we have:
Ao = {(0,6) €T*X; 3z € Z glz,0) = 3, "¢, ,,(€) = (0,6)}.

If Z is a point and ¢ is the identity map, then Ay = T*X and (M, F') is transversally
elliptic if it is elliptic in the sense of [20]. The following proposition associates a
hyperfunction on Z to liftings of ¢ for a transversally elliptic pair.

Proposition-Definition 6.2. We consider complex analytic manifolds, Z, X and
¢:ZxX — X a map satisfying (6). Let Zg be a real, oriented submanifold of Z
such that Z is a complezification of Zgr. Let M € D2, (Dx), F € DR_ (Cx) such
that (M, F) is transversally elliptic for ¢ and supp(M)Nsupp(F) is compact. Then
the construction of microlocal classes and the microlocal product define a natural

product:

Hom g, mp, (¢~ (M), p~(M)) x Hom (¢r " (F),pr~" (F))

25
(25) — H*(T*Z; 1, (02)),
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with the following bound for the wave front set of the hyperfunction so obtained:
A ={(z,n) €Tz Z; Iz,&) € char(M) N SS(F)*, ¢p(z,2) =
and 19!, (€) = (n,€)}.
Let u and v be liftings of ¢ for M and F (see definition 4.1). The hyperfunction
image of (u,v) by the previous morphism will be denoted by x (¢, M, F,u,v).

Proof. Let us set for short 7" = T*(Z x X x X). The morphisms (19) and (23)
sending a lifting to a cohomology class already give us a morphism from the left
hand side of (25) to

A= Hgl (T';pr(@z X (Sle)) X Hﬁg (TI;ﬂFR(CZ X 5!wX)).

Hence we just need to define a morphism from A to Hy?(T*Z; uz,(Oz)). For this
we will apply the microlocal product of lemma 3.4 and integrate the result.

The microlocal product is defined if the sets A; and A§ have no intersection
outside the zero-section of T*(Z x X x X). Recall that

A =(T*"Z x char M x char M) NI (Z x X x X)N(T*Z x TA(X x X)),
Ao =(T7zZ x SS(F)x SS(F)*)NTy (Z x X x X)N(TzZ x TA(X x X)).
Let us set L = char(M) N SS(F). We see that
MNASCT*ZxL*xL)NTH(Z x X x X)N(T3Z x TA(X x X)).
This last set is included in the zero-section if and only if L N Ay C TxX; but this

is precisely the hypothesis of transversal ellipticity. Hence lemma 3.4 gives us a
morphism from A to

HXﬁAQ (T pry. (07 R (wx ® dwx)) @ T wrizxxxx)
~ Hy?, (T pr, (O B wx)).
Let p; : Z x X x X — Z be the first projection. We have a topological integration
morphism Rp;,(Oz R dwx) = Oz and the compatibility of microlocalization and
direct image gives a map from Hl‘{f+A2 (T'; pr, (0zRéwx)) to Hi? (T* Z; pz. (07)),
where A = p1, (p}) 1(A1 + As). This gives the construction of morphism (25). In
order to obtain a more explicit description of A we notice that:
A = {(z,z,2,1,€,-¢) € T(Z x X x X); (z,§) € char(M), é(z,7) = =,
' (&) = (1,6},
A2 = {(z,z’,m,O,&, _§) € T*(Z x X x X)7 z € ZR: (maf) € SS(F)7
¢(Z7$) =T, ¢ zz,m) (5) = (7775) where n € TEEZ}

and the expression for A is easily deduced. O

In order to understand x(¢, M, F,u,v) as the trace of a nuclear map we will need
also the microlocal product of k(¢, M,u) and k(¢, F,v). However this last product
is defined only under a condition stronger than transversal ellipticity (see definition
below). When defined it will yield a “kernel” with value in

(26)  Lar =Qzxxxx O KzBM@F)R(DM®D'F))[—dz].

ZXX XX

If Zg is compact this kernel will define a morphism
H®(Zz;Qz) ® RHomy, (M ® F,0x) - RHomp, (M,0Ox @ D' F),
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which coincides with the morphism S(u,v) of section 4 on the analytic forms. We
will show in section 8 that it has a well-defined trace given by x (¢, M, F,u,v).

Definition 6.3. In the situation of definition 6.1 we set
s =p(TH(Z x X x X)N(T7Z x T*(X x X))),
and we say that the pair (M, F) is strongly transversally elliptic for ¢ if
char(M) N SS(F)N Ay C Tx X.

For a given point € X let us denote by ¢ : Z — X the function z — ¢(z, z).
In local coordinates we have:

Ay ={(2,6) € T*X; 3(z,y) € Z x X ¢(z,y) =z, '(;¢)1(6) = 0}.

We can see from the definitions that Ay C A} and in general this inclusion is strict.
For example if Z is a point, so that ¢ is just a morphism from X to X, and if
we assume that ¢ is transversal to id with a (discrete) set of fixed points S, then
Ay =S xx Tx X but A, = T{X. However, if ¢ is a group action then Ay = A} is
the conormal to the orbits.

Proposition-Definition 6.4. In the situation of proposition 6.2 we set moreover
S = supp(M) Nsupp(F). We assume that (M, F) is strongly transversally elliptic
for ¢. The construction of microlocal kernels and the microlocal product define a
morphism:

Hom, gp (671 (M),p ' (M)) x Hom (¢r ™' (F),pr ' (F))
— H3(Z x X x X; Lp,r),

where T =TrN(Z x S x S). For u and v, liftings of ¢ for M and F, we denote
by K(¢, M, F,u,v) the image of (u,v) by this morphism.

(27)

Proof. The proof is the same as that of proposition 6.2. We can make the product
of k(¢, M,u) and k(¢, F,v) if Ay N AS is included in the zero-section (A; and A,
are the supports of k(¢, M,u) and k(¢, F,v) introduced in (18) and (22)). It is
easy to see that this condition is implied by the strong transversal ellipticity. The
result of the product belongs to

H{7 (T*(Z x X x X); pr, (Lm ® Lp) @ 7 'wrjzxx xx)s

where the set A’ has its projection included in T. We take the image by the
projection to the zero-section and we remark that

RO, (Lym ® Lr) ® wrzxx xx =~ RO7(Lm,r).
This gives the product of the proposition. O

The tensor product of the duality contractions for M, MX D M — §Kx, and for
F, FRD'F — §Cx, define a trace morphism for L, r:

(28) tr:LM,F—)Ozg(Sng.

By functoriality of the microlocal product, tr(K (¢, M, F,u,v)) coincides with the
product of ¢(¢p, M, u) and ¢(¢, F,v).

We want also to recover the action of v and v on the global sections, from
K(¢, M, F,u,v). Let us set:

H= RHOTI’lDZXX(]CZ XM®RF),0zxx), H = RHOT)’LDX (M, 0x ® D' F).
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Let pio: Zx X xX > ZxXandps: ZxX xX — X be the projections on the
first two and on the third factors. We have a morphism

(29) L,r = RHom (pyy H,p; ' H')[2dx],

defined as morphism (14) in the proof of lemma 5.1, by a contraction and an
isomorphism:

Lymr ®@pg H = Qzxxxx ®1I;z><x><x (Ozxx B (DM @ D' F))[—dz]
~ Czxx W RHomp (M,0Ox @ D' F)[2dx].
We have also:
RTr, RHom (pry H,p3 "H')[2dx] =~ RT 7, « x xx RTr RHom (p1, H,p3 ' H')[2dx]
~ RTz «xRHom (H,¢ ' H'),
so that, taking global sections, we get:
H37(Z x X x X; Ly, r) = RHom (H ® Cgy xx, ¢~ H')[dz).

Through this morphism, a “kernel” k € H%Z (Z x X x X; Lp,F) yields a morphism
from H @ D' Cz, xx to ¢*1H’. On the global sections we obtain

Sl(k) . RHom’Dsz(ICZ X(MQF),Ozxx ® D' Cz. xx)[2dz]
— RHoszxx (Q_IM, Ozxx ® ¢71(DI F))[2dz].

For Zr compact and w an analytic form of degree dz on Zg, we will show that
Sz, (u,v)(w), defined in section 4, is nuclear. For this we will compare S’ (u,v)
(defined in formula (11)) and S'(K (¢, M, F,u,v)); in fact they form a commutative
diagram with the natural morphisms ¢; and ¢ described as follows. The inclusion

(30)

H(Zp;Qz) — H(Zg; B(Z‘iz)) corresponds to a morphism of contraction of duality:
cy: RF(Z X X;H® D' (CZR Xx)[de] — RHom ((CZp XX 5 H)[de]
We have a similar morphism:

c2: RI(Z x X;¢ "H')[2dz] - RHomp, (¢~ (M ® F),0zxx)[2dz].

Proposition 6.5. We keep the notations and hypothesis of proposition 6.4. We
set for short k = K(¢, M, F,u,v). We have with the notations above:

i) trk is the microlocal product of c(¢, M,u) and c(¢, F,v).

ii) ca 0 S'(k) =Sy (u,v)oct.

Proof. The first assertion is a simple consequence of the functoriality of the microlo-
cal product, applied to the morphisms Ly - Oz X dwx and Ly - Cz X fwx-
For the second assertion we keep the notations H, H' above and we set:

G:R’HOmDZXX(IngM,OZxx), G':RHomDX(M,OX).

In remark 5.10 and formula (29) we have already built three similar morphisms,
from which we deduced S’._(u,v) and S'(k):

Ly — RHom (p1y G, ps 'G")[2dx],
LF l) RHom (p3_1F7p1_21F)[2dx],
Lm,r — RHom (piy H,p3 ' H')[2dx].
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We set for short T/ = T*(Z x X x X) and T" = T*(Z x X). When we microlocal-
ize along T, we get:
HY, (T ur(Lag)) = Hyy (T"; phom(G, 971 G")),
HZ (T' pr (L)) — HyZ (T"; phom(¢™' F, Cz W F)),
H? (T" pr (L)) — HgZ (T"; phom(H, ¢ 1 H')),
where A = A; + Ay and A’ = A| + A}, (note that A, and A’ have a projection
included into Zg x X). Let uy,, v;,, w), be the images of k(¢, M, u), k(¢, F,v), k by
these last three morphisms. The projection of wj, to the zero-section is S'(k). By
remarks 5.9 and 5.10 the projections of u), and v}, to the zero-section are
u' € H(Z x X; RHom (G, ¢ 'G")) ~ Hom (G, ¢ 'G"),
v € HyZ, x(Z x X;RHom (¢~ F,Cz R F)) ~ Hom (¢~ F,Cz, R F),

where v’ is the morphism induced by u on the solutions. One has to be careful that
there are two ways of making the product of v’ and v:

Hom (G, ¢ 'G') x Hom (¢ ' F,Cz, K F)

31
( — Hom (RHom (Cz, B F,G), RHom (¢~ F,¢~1G")),

H°(Z x X; RHom (G, ¢ 'G")) x HY?  «(Z x X; RHom (¢ ' F,Cz K F))
32) = HY +(Z x X; RHom (G, ¢ *G') ® RHom (¢ 'F,C; K F))

— Hy?  (Z x X; RHom (RHom (Cz R F,G), RHom (¢~ F,¢™'G")))
— Hom (RHom (Cz R F,D' Cz, ® G), RHom (¢~ F, ¢~ G")).

The image of (u',v) by (31) is of course S7_(u,v) but its image by (32) is S’;_(u,v)o
Ci.

By functoriality of the microlocal product, wj, is the product of u;, and v},. The
product on the zero-section corresponding to this microlocal product is (32). Hence

it follows from proposition 3.8 that S’ (u,v) o c; is equal to ¢ o S' (k). O

Remark 6.6. It should be noted that all the constructions in sections 5 and 6, in
particular the definitions of ¢(¢, M, u), ¢(¢, F,v) and their product x(¢, M, F,u,v),
are “local on Z” in the following sense. Let U be an open subset of Z and ¢’ the
restriction of ¢ to U x X. The liftings v and v restrict to liftings ' and v’ of ¢';
the pair (M, F) is (strongly) transversally elliptic for ¢’ if it is for ¢ and we have
for example X(¢Ia M7 Fa ul7 UI) = X(¢3 Ma F) u, U)lU'

7. RESTRICTION TO A NON-CHARACTERISTIC SUBMANIFOLD

We keep the notations of sections 4 and 6. We consider moreover a submanifold
Zg' of Zg with a complexification Z’ in Z. For suitable Zg' the pair (M, F) is still
transversally elliptic with respect to Z'. The following proposition asserts that, in
this case, the hyperfunction x’' on Zg' associated to the restriction of the data to
Z' is the inverse image of x.

More precisely, let ¢' : Z' x X — X and p' : Z' x X — X be the restrictions of
¢ and p. The lifting u € Hom y, &, (¢71(M),Q_1(M)) of ¢ for M restricts to a

lifting v’ € Hom ¢, mp, (¢' '(M),p' 1(M)). The restriction of v will be denoted
similarly by v'.
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Proposition 7.1. Assume the pair (M, F) is transversally elliptic with respect to ¢
and to ¢'. Then Z' is non-characteristic for the wave-front set of the hyperfunction
x(¢, M, F,u,v) and the restriction of x(¢, M, F,u,v) to Zg' is x(¢', M, F,u',v").

Proof. Letusdenotebyi:Z' - Zandj: Z'xX xX — Z x X x X the inclusions,
by I and I" the graphs of ¢ and ¢'. In (19), we obtained the following bound for
the support of ¢(¢, M, u):

A = (T*Z x char M x char M)NTP(Z x X x X)N(T*Z x TA(X x X)).

Since A; is included in the conormal bundle to the graph of a map from Z x X to X
(in our case @) it is non-characteristic for j. Moreover, if we set A} = %'(j-1(A1)),
we have:

A} =(T*Z' x char M x char M) NT{ (Z' x X x X)N(T*Z' x TA(X x X)),

and A] is the bound of the support of ¢(¢', M,u'). Let us denote by T and T’
the cotangent bundles of Z x X x X and Z' x X x X. We have the inverse image
morphism of proposition 3.2 (see (3)):

HY,(T; pr(0z R bwx)) = H (T'; pre (i H(Oz2) R b))

Let us denote by r1 the composition of this morphism with the map i=1(0z) — Oz:.
The same reasoning for F' yields a similar morphism, 75 (A5 is also non-characteristic
for j because it is contained in T3 Z x T*(X x X)). In view of remark 3.5 on the
compatibility of the microlocal product with the inverse image, the proposition will
be proved if we show that j is non-characteristic for A; + Ay and

T1(C(¢,M,’LL)) = c(¢I:M7u1)7 TQ(C(¢, F, U)) = C(¢I:Fa UI)'

Let us show that j is non-characteristic for A; + As. Let p € Z' x X x X and
& € mHp) N Ay, & € 77 (p) N Az be such that 4'(& + &) = 0. Then %'(&) =
—14'(&) belongs to A} N AL". But this last set is contained in the zero-section
because (M, F) is transversally elliptic for ¢' and we have %'(£) = %'(&) = 0.
Since j is non-characteristic for A; and A, this implies & = & = 0. This proves
that j is non-characteristic for A; + As.

Now we show that r1(c(¢p, M,u)) = c(¢', M, u') (the proof for 74 is similar). We
set as in formula (15):

Lm = Qzxxxx ®£Z><xxx (KzBMRD M)[—dz],

M= Qzixxxx ®1I§Z, Kz RMEDM)[-dz].

XX xX

Since Kz has two structures of left Dz-module, La, is a left Dz-module and we
have:

i L -—1 ~ T!
DZ"_)Z ®’i_1Dz J LM — LM

In particular the tensor product with the canonical section 1; of Dz iz gives a
morphism j~'Ly; — L'y,. The construction of ¢(¢, M,u) is in three steps. First
we use morphism (16), then we microlocalize with the isomorphism

RTr (L) ~ RmoRT 4, pr (L),

and finally we apply the trace morphism Ly; — Oz K fwyx. The trace morphism
commutes obviously with the inverse image by 7, the microlocalization also in view
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of proposition 3.2. Hence it remains to prove that we have a commutative diagram:

j'RHomyp, (¢7H(M),Kz ®M) ——= j~ R (L)

|

Rﬂomvz,xx(ﬂ'_l(/\/l),’cz’ X M)

RTr (LY.

But in this diagram the vertical arrows are just “taking tensor product with 1; €
Dz iy 7z” and they commute with the functorial morphisms described in the proof
of lemma 5.1 to obtain morphism (16). O

8. THE INDEX AS A TRACE

In this section we will interpret the index built in section 6 as a generalized
trace on RHomp, (M ® F,Ox), when (M, F) is strongly transversally elliptic,
M e Dgood(DX) and Zg is compact. More precisely, we will show that, for an
analytic form w on Zg, the morphism Sz, (u,v)(w) (defined in section 4), from

RHomp, (M ® F,Ox) to itself, is nuclear, with trace Jw-x(¢, M, F,u,v).

8.1. Trace of kernels. We consider the action of a “kernel” in the solution space
of a D-module and show that it is nuclear, with trace, the trace of the kernel. Let

X be a complex analytic space, M € Dgood(DX), F e D} _.(Cx). We set

Kmr=Qxxx ®£Xxx (M@F)R(DM®D'F))

(this corresponds to the notation L, r of formula (26) with Z = {pt}). We have
the trace morphism (28), tr : Ky,r — diwx. We denote also by tr the morphism
induced on the global sections, from H?(X x X; K r) to HO(X;wx). Setting

S =RHomp, (M®F,0x) and S8 =RHomp (M,0x@D'F),

we have a morphism induced by (29) (for Z = {pt}) on the global sections:
RT.(X x X; K r) — RHom (RT(X;S), RT(X;S")).
In particular a “kernel” k € H?(X x X; K, r) defines
T(k) : RHom,, (M ® F,0x) - RHom, (M,Ox ® D'F).
We have also the contraction morphism:
¢: RHomp (M,0x @ D'F) - RHomy, (M ® F,Ox).

The following proposition identifies the trace of T'(k) o ¢ and the trace of k.

Proposition 8.1. Let X be a complex analytic space, M € Dgood(DX), F €

Dﬁ_c((CX). We assume that supp M N supp F' is compact. With the notations
above, for k € H°(X x X; Kpm,r), the morphisms T (k) o c and coT (k) are nuclear
morphisms (in the sense of definition 2.2) respectively in DP(DFN) and D°(FN).
They have the same trace (in the sense of definition 2.4) and:

trT(k)oc=trcoT(k) = / tr(k).
b's
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Proof. In the proof Cx (resp. Ax) is the sheaf of infinitely differentiable (resp. real
analytic) functions on X, C;) (resp. Ag?) is the sheaf of forms of degree i on X

with coefficients in Cx (resp. Ax) and, for a product of manifolds, C;i)x is the
sheaf of forms of degree i in the first factor and j in the second factor.

In order to represent the kernel k and its action we need resolutions of K r
by soft sheaves. For this we will use the “realification” of a D-module introduced
in [20]. Let us recall some of their definitions and results. We denote by Dx= the
sheaf of real analytic differential operators, i.e. Dxz = (Dxyx)|x®, where X is
the conjugate manifold of X and X® is the real analytic manifold underlying X,
identified with the diagonal of X x X. The realification of a Dx-module M is the
sheaf Mg = Ax ®p, M with a structure of Dye-module defined as follows. For
a,f € Ax, m € M we set:

i(a®m)—%(X)mﬁ—a@)im i((J(X)m)—%@)m f-(a®@m)= fa@m
621' B 82,’ 82,’ 6271' B 82_,' B )
The reason for introducing Mg is that, for M € D'g°00 1(Dx), Mg has a finite global

resolution by finite free Dy=-modules, in a neighborhood of any compact subset of
X (see [20] proposition 3.1).

The links between the de Rham complex, the sheaf of solutions, the dual of M
and Mg are explained as follows. We have (see lemmas 3.3-3.4 of [20]):

(33) Qx @p M=C¢™ of  Mel-dx]
(34) RHomp (M, Ox) ~ R’HomDﬂ (Mg, Cx)

We set Kx= = Hom 4 (Ag?d"),’D x=) where the structure of Ax-module of Dx= is
defined by multiplication on the right. Then K x= has two compatible structures of
left Dxz-module. We have:

(35) (D M)R =~ R’Hompﬂ (MR, ICXR)[QCZX].

In view of these formulas we have:
SZR’HOWLDXR(MR@F,C)(), S’ :RHomDXR(MR,Cx(X)D’F),

K p ~ C20%,20%) @75( (Mr ® F) B RHomy,  (Mg,Kx=®D'F)).

X xx)R
The morphism from RT(X x X; K r) to RHom (RI'(X;S), RT'(X;S')) general-
izes immediately to Dx=z-modules as follows. Let N7, A> be in DBOh(DXR), F, F
in D} (Cx) and let us set
2dx ,2d
K= Cgfx);( x) ®7I)/(X><x)1?» (N ® Fy) ERHOWL’DXR (N2, Kx= ® D'Fg))-

If supp N7 N supp F; is compact, our morphism is given by the composition of a
contraction and a relative integration:

RT(X x X;K)® RHomep (M ® F1,Cx)

(36) — RT(X x X;Che*™) ok (Cx ® RHom,, (N>, Kx= ®D' Fy)))

(xxx)R
!

(37) — RHOIILDXR (NQ,CX QD F2).

Note that the integration morphism

HY(X;C0%) ok Cx) ~ H*x(X;Cx) = C

(xxx)R
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is nothing but w ® ¢ = [w - ¢ for a form w and a function .

Now, up to shrinking X to a suitable neighborhood of supp M N supp F' we
may take a global resolution N of Mg of the form N? = ng By (35) we have
(DM)r ~ N, where N = K;id"_j. Hence, by (33), Qxxx ®1I;x><x MEDM

. .. . ) . . Lo 2dx,0
is quasi-isomorphic to a complex £ of sheaves of matrices with entries in Cg( X ),

L= @p—i—q:i Ma‘th XN_gq C&?i);(’())

Now we need a resolution of F X D' F. By proposition 3.10 of [20], any R-
constructible sheaf has a bounded resolution G* with G* = Duver, Cu, where I;
is a locally finite family of relatively compact open subsets U of X such that
RHom (Cy,Cx) ~ Cy. Up to shrinking X once more we may assume that
F has such a resolution, for which the families I; are finite. Hence F X D'F is
quasi-isomorphic to a complex H', where HI = @T+S:j @UEI“VEI_S Coxv-

With the resolutions £ and H* we can represent the global sections of K r ~
L ®H'. Indeed soft sheaves are acyclic for the functor I'(X x X;(-); ), where U,
V are open subsets of X. Hence we obtain a representative K~ of RT'(X x X; K, r)
with K! = Dy DX x X; Lt ® H7). We have:

D(X x X;£0® HY) = @ Mat, «n_, (T(X x X; (Core i)

where the sum runs over the couples of integers (p, ¢) such that p + ¢ = 4, and the
couples of opens sets (U,V) € |, ,— ;I x I_,. In particular the kernel k admits a

representative ko in K°, which we assume fixed in what follows. Note that a section
of I(X x X; (Cxxx)yxv) is represented by a function defined on U x W for W a

neighborhood of V', with support in C x W for C a compact subset of U.
Using the same resolutions for Mg and F and isomorphism (34) we obtain
resolutions S° of RT(X;8) and S”" of RT'(X;S8') of the form:

(38) S'= P @ rw;ex)Vr

prr=iUel_,

(39) "= P € rT;cx)N-r.

p+r=iUel_,

In view of these resolutions, it just remains to describe morphisms (36) and (37)
when N = Dg%e[il]: Ny = D%,[iz], Fy = Cy, [71], F> = Cu, [j2] with 41 —ia + j1 —
j2 = 0. In this case we have:

RI(X x X; K) = Matn, o (DX % X5 (55", u17,))
RHOIIIDXR (Nl ® Fl,Cx) ~ F(Ul;CX)Nl[—il —jl]
RHOHIDXR (NQ,CX ® D’ FQ)) =~ F(UQ;CX)NZ [—iz - Jg]

Let A be a matrixin H%(X x X;K), ¢ € H°(U1;Cx)™t. Then morphism (36) sends
A®p to - A which is an Na-vector with entries in T'(X x X; (Cg%go))w «U,) and
morphism (37) integrates ¢ - A with respect to the first variable (recall that A has
support in C x U, for C a compact subset of U;). This gives a No-vector, ¢/,
with entries in I'(U2;Cx). The map ¢ — ¢ is nuclear. Its compositions with the
restriction maps, which sends functions defined in a neighborhood of U; or Us to
their restrictions to Uy or Us, are also nuclear. If A7 = N, and Fy = F5 they have
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the same trace:
> [ Aslav,
T Jx

which is the image of A by the morphism tr.
Summing over the components of N~ and G° we obtain the proposition. O

8.2. The index as a generalized trace. In this paragraph we consider the sit-
uation described in section 4; ¢ : Z x X — X is a morphism of complex mani-

folds satisfying condition (6), M € D}, 4(Dx), F € D} _(Cx). We assume that

supp M Nsupp F' is compact and moreover that Zg is compact. We still denote by
v a lifting of ¢ for M and v a lifting of ¢r for F.
Since Zp is compact we may consider the morphism

Sz, (u,v) : T(Zg; BS?)) ® RHom, (M ® F,0x) — RHomp, (M ® F,Ox),

defined in section 4. We show that, for w € I'(Zr; Qz), S(u,v)(w) (defined in (13))
is nuclear with trace the evaluation of the index on w.

Let us set k = K (¢, M, F,u,v) for short. Composing the morphism S’(k) defined
in formula (30) and the natural morphism

RHomyp, = (¢7'M,0zxx ® ¢ ' D' F)[2d;] - RHomy, (M,0x @ D'F)
defined similarly as (12), we obtain

S(k) : T(Zg; 07) ® RHom p,_(M ® F,Ox) — RHom,_(M,Ox ® D' F).
For w € T'(Zg; Q2z) we denote by S(k)(w) the morphism from RHom ;, (M®F, Ox)
to RHom}, (M,Ox ® D' F) induced by S(k). Let i be the inclusion of T'(Zg; Q)

in T'(Zg; Bgi;)) and ¢ the contraction morphism:
¢: RHomp, (M,0Ox ® D'F) - RHom,, (M ® F,Ox).
As an immediate consequence of proposition 6.5 we have:
co S(k) = Sz,(u,v) o (i ®id).

Hence we only need to show that S(k)(w) is nuclear; in fact we will see that it
is defined by a kernel as in the preceding paragraph. Recall that k is a section
of La,r, where Laq r is defined by formula (26). We may multiply k£ by w €
I'(Zg;Qz) and integrate along the projection to X x X. We obtain a kernel k, €
H%(X x X; Km,r), where K, is defined in the preceding paragraph. From the
definitions of S(k) and T'(k,) we see that S(k)(w) = T'(k,). By proposition 8.1
this implies that ¢ o S(k) is nuclear with trace [, tr(k.,). But the trace morphisms
tr : Ly = Oz W dwx and tr @ Ky, p — diwx commute with the integration
along the projection q : Z x X x X — X x X; hence tr(k,) = fq tr(k) - w. Now,
denoting by *, the microlocal product, we have by proposition 6.5:

[ ume=[ (M) e )
ZxXxX ZxXxX

:/X(¢,M,F,U,U)'W-
4

Finally we have obtained the desired result:
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Theorem 8.2. We consider complex analytic manifolds, Z, X and ¢ : Z x X — X
a map satisfying (6). Let Zr be a real, oriented submanifold of Z such that Z is a
complexification of Zw. Let M € D2, (Dx), F € Dy_(Cx); let u be a lifting of
¢ for M and v a lifting of ¢r for F.

We assume that (M, F) is strongly transversally elliptic in the sense of defini-
tion 6.3, that supp(M) Nsupp(F) is compact and that Zg is compact.

Then for any form w € T'(Zg;Qz) the morphism (13):
S(u,v)(w) : RHom;, (M ® F,0x) — RHom, (M ® F,Ox)

in DP(FN) is nuclear and its trace in the sense of definition 2.4 is:

tr(S(u,v)(w)):/Z w - x(p, M, F,u,v).

9. TRANSVERSAL CASE

In this section we will make additional hypothesis on the map ¢ : Z x X —
X and then on the lifting u of ¢ for M, in order to compute more easily the
hyperfunction x (¢, M, F,u,v). We denote as before the diagonal of X x X by Ax.

9.1. Transversal case. Until the end of the section we assume that the graph
I of ¢ and the graph Z x Ax of the projection p : Z x X — X are transversal
in Zx X x X (if ¢ is a group action this is the case if and only if the action is
homogeneous). This is equivalent to

A¢, - T)*(X,

where Ay is the subset of T*X introduced in definition 6.1. Hence any pair (M, F)
with M € DP (Dx), F € Dy (Cx) is transversally elliptic, so that no microlocal
information on F' and M is needed to build the hyperfunction x(¢, M, F,u,v).
In this paragraph we will give a construction without using the microlocalization
functor.

In definitions 5.2 and 5.8 we introduced the following cohomology classes asso-
ciated to liftings of ¢; they are the projections of ¢(¢, M, u) and ¢(¢, F,v) to the

zero-section:
co(p, M,u) € HN(Z x X x X; 0z R dwx),
co(¢, F,v) € HY?(Z x X x X;Cz R dwx),
where S =Tr N (Z X supp F' x supp F) N (Z x Ax). Let
Z=TN(ZxAx)={(z,7) € Zx X; ¢(z,z) =z}

be the “fixed points set” of ¢; by the transversality hypothesis this is a submanifold
of Z x X x X of dimension d; = dz. Let ¢ : Z — Z be the projection. We have
canonical isomorphisms (note that S C Z):

(40)  HR(Zx X x X;07Réwx) ~ HYZ x X; 0z Rwx) ~ H(Z;¢ Oz),
(41) HI(Z x X x X;Cz Réwx) ~ HI? (Z x X;Cz Rwyx) ~ HY (Z;Cy).
Let ¢'(u) € H°(Z;¢'Oz) and c¢'(v) € HY?(Z;Cz) be the images of co(p, M, u)
and cq(¢, F,v) by these isomorphisms. The cup-product of ¢'(u) and ¢'(v) belongs

to HgZ(Z :¢'Oz). We can integrate it along the projection q using the morphism
Rqiq' — id.
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Lemma 9.1. If the graph, T', of ¢ is transversal to Z x Ax in Z x X x X, we
have, with the notations above:

X(é M, Fyu,v) = / ¢'(u) U ().

q
Proof. The lemma is in fact just a consequence of the commutativity of the diagram
in remark 3.7. We set for short T/ = T*(Z x X x X). In view of remark 3.6 the
micro-product of ¢(¢, M, u) and ¢(¢, F,v) is also obtained by first sending

c(¢, F,v) € H{Z(T'; ur, (Cz B dwx))

to H& (T"; ur(Cz ® diwx)) by the natural morphism associated to the inclusion
I'r C T'. By the transversality hypothesis I' is non-characteristic for Cz X dwx so
that remark 3.7 applies and tells us that the projection of the micro-product to the
zero-section is equal to the cup-product of ¢/(u) and ¢'(v), after the identification

HE(T'; ur(Cz Rbwx)) = HI*(Z x X x X;(Cz R wx) ® wr|zxx xX)
~ H¥(Z x X x X;Cy)
~ H¥(Z;Cy).
This identification is the same as (41) and integration along ¢ yields the lemma. O

9.2. Lifting induced by a fiber bundle morphism. In this paragraph we still
make the hypothesis of transversality. We want to describe the class ¢'(u) €
HY%(Z;¢'Oy). In particular we will show that it is related to the fundamental class of
Zin Z x X. For a morphism of complex manifolds f : ¥ — Y we have the integra-
tion morphism o : RfiQy[dy] — Qy/[dy] which gives 7 : fifly — Hyr™ (Qy)
(this morphism is used to define the fundamental class, for example in [15], defini-
tion 11.1.5).

We would like to substitute the complex ¢'Qz for something easier to describe.
We remark that if ¢ is a local diffeomorphism then ¢'Oz ~ O, but in general there
is no natural map between ¢'Oz and O ;. However the choice of a volume form w on
Z gives an identification Oz ~ 1z and the integration morphism oz : Rgid; — Qz
gives by adjunction a natural morphism o/, : Q5 — ¢'Qz. It is natural to ask
whether ¢/(u) arises from a section ¢.,(u) € H°(Z;Q;) by the composition:

~ ! ~ -1 ~
H(Z;Q3) =5 H°(Z;4'Q7) 22— H*(Z;¢'02),
where we write, by abuse of notations, o', for H(c';) or H%(Z;c;). For this we
assume that the D-module M arises from a “differential complex of fiber bundles”,
ie.
M ~ - 5 Dx R0, & i>DX®0X gl 5.,

where the £ are locally free Ox-modules and the differentials d; are Dx-linear.
We assume moreover that the lifting u of ¢ for M is induced by Ozxx-linear
morphisms u'* : ¢*E* — p*E? as explained in example 5.5. In this case we know
from remark 5.6 that

Co(¢,M,U) = Z(_l)i00(¢a DX ®(9x gi,uli ® ld))a

where l4 is the natural lifting of Dx. Hence we are reduced to M = Dx ®p, €&,
where £ is a fiber bundle and u = v’ ® [ for a lifting u' of ¢ for .
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We set ' = Oz KEKWE*; we have it.F ~Hom,,  (¢*E,p*E). Let ir, ia, i be
the embeddings of T, Z x Ax, Z in Z x X x X. By examples 5.5 and 5.4 we know
that ¢'(u) is the image of u by e o d, where d and e are the compositions (tensor
products between O-modules are taken over O):

0,dx ,0 . 0,d ~ 0,d
d: Hl(“ix (O(Zx))({x;( ®F) - Hl(“ix (ZA*O(ZX;({)) - ng (O(Zx))({))v
e: HX(095)) = HY(0z Rwx) = H(¢'07),
where the first morphism in d is induced by the contraction F — ian,Ozxx. We
are interested in the image of uw by d; in particular we ask if it is related to the

fundamental class of Z in Z x X. But we have to be careful that the morphisms
induced by the fundamental classes of I and Z

it Ozxx — HEX (Og”f)’éf}() and .0z — ng(og)id))(())

do not commute with d and the restriction ir,Ozxx — .0 (indeed the second
morphism could be zero). However the next lemma says that the corresponding
morphisms with maximal degree forms on Z fit into a commutative diagram. We
consider the morphisms defining the fundamental classes of I' and Z:

m ez in (O55) @ F - HiX (075555 © F),
Tz : i*QZ — iA*HgX (QZXX);
where 77 is the integration morphism associated with ir, tensored by (O(ZO)’(O)’? f;()* ®
F. We recall that the canonical lifting, l4, of Dx is defined (example 5.4) as the

projection of the fundamental class of I'. In view of the definition of the fundamental
class we have also, for a dz-form w on Z and for F = Ozxxxx:

w®ly =mWw).
Let d' be “d ® Ogif}?f}(” and €' be “e® O(de}?;?}(”:
d : Hix (0% 2830 o F) in HE (Qzxx),
e tin HP (Qzxx) =& H(¢'Q2).

By definition of 7; we have o), = ¢’ o 7. Writing Z as the transversal intersection
of I and Z x Ax, we obtain also a map from ir*(O?@?)) t0 i 5. Indeed we have

the composition of isomorphisms:

Qs ~irQzxx @iazxx ® Vg xxx

(“42) ~ ir 0%y ®ia 050 ® i (055K 3x)")
(dz,o)

~ir, Oy x ®inOzxx.
The contraction F — ia,Ozxx composed with (42) yields
(43) ag i, 0879 @ F 0,05,
For the link between ag and the inverse image of forms see remark 9.5.

Lemma 9.2. We assume that T’ and Z x Ax are transversal in Z x X x X and
€ is a locally free Ox-module. We set F = Oz RE KR E*. With the notations above
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we have a commutative diagram:

ag

ZF*(Ogifj)((])) ®OZ><X><X F

dz,dx,0 d . d
HI@X(O(ZfX;(X) QOzxxxx -7:) ZA*HZX(QZXX)'
Proof. By the definitions of ag and d' it is enough to show that the same diagram,
with ia,(Ozxx) in place of F, is commutative. We introduce the following sheaf
on Z x Ax, Qret = Qzxay, ® A0, xxx- Since Z is the transversal intersection

of I" and Z x Ax, the integration morphisms associated to 7 and ir are related by
the commutative diagram:

it Qzxx © 82— i85

| |

Dz xxx[dx] ® ia Qrer — ia.Qzxx[dx].
Since Q¢ is canonically isomorphic to i*A(Og);(O)’g f;()*, we have also the isomor-
phisms:
. Q s Dy 0z o (o
Isllzxx @ 1A idre T)U“* ZxX ®in.(Ozxx),

. dz,dx,0) . -
Qzxxxx QtaQre =~ 0(25)(;()() ® ZA*(OZXX)-

We conclude with the remark that the composition a o b~! coincides with ag. O

Now we can write ¢/(u) as the image of a form on Z. Let w be a volume form on
Z. We have B
d(u)-we H(Z;q'Qz).
For M =Dx ®o, € and u = u' ® I as above, w ® u is the image of
weu €ir, 0879 @ F ~ir, (0529 @ Hom (°E,p*E))
by 7t and we have, by lemma, 9.2:
d(u) -w=(eod om)(w®u')
=(e' otz 00ae)(w®u)
= (07 o ag)(w @ u').
If M is given by a complex £ we sum over the components.
Proposition 9.3. With hypothesis and notations of lemma 9.1 we assume that M
is given by a complex of fiber bundles, M ~ Dx ®ox £, and u by morphisms
u' € HomOZXX(qb*Ei,p*Si). Then, for a volume form w on Z we have:
c(u) - w=o0y (Z(—l)iagi (w® uz))
i
Let us set ¢/, (u) = 3 (—1)*ag: (w ® u;); this is a section of Q5. For § C Z such
that ¢|s is proper, we denote by fq the integration morphism from ng (Z ;Q5) to
Hiz )(Z ;Qz). Finally we obtain the hyperfunction x(¢, M, F,u,v) as the direct

(s -
image of a form on Z:
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Corollary 9.4. With hypothesis and notations of lemma 9.1 and proposition 9.3
we have:
x(p, M, Fu,v) -w = /c('d(u) U (v).
q

Remark 9.5. Here is the link between the morphism ap, of (43) and the inverse
image by the projection ¢ : Z — Z (recall that ag is just the product of ap, and
the contraction F — ia,Ozxx). Let p: Zx X — Z be the projection and w
a maximal degree form on Z. We set @ = ap, (p*w) ; the forms @ and ¢*w are
related as follows. For z € Z we denote by ¢, : X — X the map =z — ¢(z,z). If
(z,2) € Z, then ¢ (x) = = and ¢ (z) is an endomorphism of T, X so that it makes
sense to consider the function D(z,z) = det(id — ¢, (z)) on Z. A local computation
gives:

(44) ¢*w = D(z,z) - ©.

In particular, if Z is a point and ¢ : X — X is “transversal to id”, the class

c (u) € HgX(QX) ~ @ C
zeZ

is given by a complex number at each fixed point of ¢. With the notations above
for a lifting induced by fiber bundles morphisms, this number is at a fixed point z:

tru'’

o (u)y = Ei)(—l)im'

This is the Atiyah-Bott formula of [2] for a “linear” lifting (see also [10] for an
expression in the framework of “elliptic pairs”).

10. GROUP ACTION CASE

In this section we consider the previous results in the case of a group action.
Our manifold Z is assumed to be a complex Lie group and we denote it by G;
¢ :Gx X — X is a group action. The condition (6) is clearly satisfied. We denote
by e the neutral element of G, by Gr a real form of G, by g and gr the Lie algebras
of G and Ggr. For g € G, z € X we denote by ¢, : X = X the map y — g-y, by
29 : G — X themap h— h -z and by m, : G = G the multiplication on the right
h—h-g.

We consider a G-quasi-equivariant good Dx-module, M. This means that there
exists an Og K Dx-linear isomorphism u from ¢~ (M) to p~! (M) compatible with
the multiplication of G (this compatibility with the product is in fact not used for
the definition of the index).

In the same way we consider a Gr-equivariant R-constructible sheaf F' on X, i.e.
we have an isomorphism v from ¢g ' (F) to pr ' (F) compatible with the product
of Gr. Hence we are in the situation of section 4. Recall the subsets of T*X
associated to ¢, Ay and A;), introduced in definitions 6.1 and 6.3:

Ay ={(z,§) €T"X;3g € G g-z ==, "¢, ,,(§) = (0,6)}
s={(2,8) €eT*X; Ig,y) €eGxXg-y=u, "(,9),(&) =0}

We have already noticed that Ay C A;. For a group there is also the conormal to
the orbits defined as follows. Let p: T*X — g* be the moment map of T*X. By
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definition, for (z,£) € T*X, u(z,€) = *(+¢).(£). The conormal to the orbits is

e
TEX = p'(0) = {(2,€) € T*X; (), (€) = 0}
We see on this formula that T3 X C A&,.

Lemma 10.1. If ¢ : G x X — X is a group action we have:
TEX = Ay = Ag.

Proof. i) We first show that Ay C T X. Let (z,€) € Aj. By definition there exists
g € G such that, setting y = g~ -2, we have !(;¢)!, (§) = 0. Then ;¢ = y¢om, and
Ho9), = t(my), 0 *(4¢);- Hence we also have *(;¢),(§) = 0, so that (z,£) € TgX.

ii) We show that TAX C Ag. Let (z,€) € T5X, so that {(,4).(€) = 0. It is
sufficient to show that ¢ ’(e’w)(@ = (0,&). But, in general, we have

Hlg) (&) = ((20)5 (), (89)2 (£))-
Since ¢, is the identity morphism of X the result follows. O

From this lemma the pair (M, F) is transversally elliptic if and only if
charM)NSS(F)NTEX C Tx X

and this is equivalent to the strong transversal ellipticity. Until the end of the
section we assume that (M, F) is transversally elliptic and that supp(M)Nsupp(F’)
is compact. Hence the hypothesis of proposition 6.2 are satisfied and we can consider
the hyperfunction x(¢, M, F,u,v). It is invariant by conjugation because of the
equivariance of the data. Indeed let h € Gg; the conjugation by h, ¢, : G — G,
g~ h-g-h~! and the action ¢ of h on X make the following diagram commute:

GxX—>x

Chx¢hl l/d’h

GxX—2=X.
We set M' = ¢ M, F' = ¢ 'F and we let u', v’ be the inverse images of

u, v. We have x(¢, M, F,u,v) = ¢ (x(¢, M', F',u',v")), because ¢, and ¢ are
diffeomorphisms. But, by equivariance, M’ ~ M, F' ~ F and 4, v' coincide with
u) v7 S50 tha‘t X(¢7 M’ F7 u7 v) = C;(Z(X(¢J M7 FJ u7 v))'

We have also a better expression for the bound A of the wave-front set of
x(¢, M, F,u,v) given in proposition 6.2. For g € G let us identify TG = g*
and T/ G through my; this gives an isomorphism 7*G ~ G x g*. Let z, y € X and
g € G be such that x = g-y. For £ € T} X we have:

"y ((49)5(€)) = (29)2 (€) = n(=, ).

Hence with the isomorphism T*G ~ G x g* we obtain *(,¢); (£) = (g, u(x,£)). We
say that (z,€&) € T*X is fixed by g € G if g- z = z and *(¢,).,(£) = & (the second
equality makes sense because z is fixed by g). We denote by gz C g* the orthogonal
of gr in g*. We have the following expression for the bound A of the wave-front set

of x(¢, M, F,u,v):
A ={(g,n) € Gr x gx; 3(z,&) € char M N SS(F)
(z,&) is fixed by g and n = p(z,€) } .
This bound coincides with the one given in [4] in the case of a compact group.

(45)
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Example 10.2. Let G be a complex Lie group with a compact real form Gr. We
let G operate on X = G by multiplication on the left. We consider the action of Gr
on I'(Gr; Agy), i.e. we consider M = Dx which is naturally G-quasi-equivariant,
with lifting u = I, and F' = Cg, the constant sheaf on Gr C X which is also
naturally Gr-equivariant, with lifting v = idp. Since X is homogeneous we are in
the setting of paragraph 9.2 (M being associated to the trivial bundle on X). We
need to determine the form ¢, (l4) of corollary 9.4, for a volume form w on G. It is
the image of w by the morphism ap, defined by formula (43). The fixed points set
of the action of G on X is G = {e} x X viewed as a subset of G' x X, and we identify
G with G = X by the projection G x X — X. If we choose w to be invariant we can
see, with this identification, that ¢!, (I) = w as a form on G. We have to determine
also the class ¢'(v); it belongs to ch (G; Cg), where S = (Gr x supp F) N G. With
our identification G = X = G we have S = Gg, HgG (G; Cg) ~ H°(Ggr;Cg,) ~C
and ¢'(v) = 1. Finally x(¢, M, F,u,v) - w is the direct image of w|s through the
projection ¢ : G — G sending G to {e}. Hence x(¢, M, F,u,v) is the Dirac function
on {e}.

10.1. Real compact Lie group. In this paragraph we show that the hyperfunc-
tion x(¢, M, F,u,v) coincides with the character of transversally elliptic operators
given by Atiyah in [1]. Let Ggr be a real compact Lie group, acting on a real analytic
manifold M, F;, F2 be equivariant fiber bundles on M and ) be an equivariant
differential operator from the sections of F; to the sections of F2. We assume this
situation can be complexified, i.e. we assume that there exist a complex Lie group
G, with G as a real form, acting on a complexification, X, of M, and G-equivariant
fiber bundles £, & on X endowed with a G-equivariant differential operator P,
such that &1, &, P restrict to F1, Fa, @ on M. We set F' = wyr x and

M = 0_)DX®OX‘€;_>DX®OX5T—)O-
If we choose an identification between SS(F) = T3, X and T*M we have
TE M ~T5X NT;X.

Let og : n*F1 — 7*F> be the principal symbol of @ (here 7 is the projection
T*M — M). We have also with the identification T, X ~ T*M:

{(z,&); og(z,§) is not an isomorphism} = char M N T}, X.

Recall that @ is transversally elliptic in the sense of Atiyah if og is an isomor-
phism on Tg M ~\ Ty M. Hence Q is transversally elliptic if and only if (M, F) is
transversally elliptic in the sense of definition 6.1.

We want to show that the hyperfunction x(¢, M, F,u,v) agrees with Atiyah’s
index, which is defined as the trace of the group Ggr on the virtual representation
ker () — coker (), where () acts on the infinitely differentiable sections of F; and Fs.
The equality of this index with x(¢, M, F,u,v) is nearly an immediate consequence
of theorem 8.2 except that we deal with analytic or hyperfunction sections. We have
RHom (F,O0x) ~ By and D'F ® Ox ~ Ap. Let C3 be the sheaf of infinitely
differentiable functions on M. Let us set for short:

A =RHomp (M, Ay), C=RHomy (M,Cf), B= RHomy (M,Buy).

We have natural morphisms A ENNOREN B, and for an analytic form w on Ggr
we have, by section 4, morphisms commuting with f and g, say Sa(w) : A — A,
Sc(w): C = C, Sg(w) : B— B. But in fact we know by proposition 6.5 that they
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are compositions of f, g and a morphism S(w) : B — A. This implies that S (w),
SB(w), Sc(w) have the same “naive trace” (in the sense of section 2) and hence the
same trace.

Proposition 10.3. Let Gr be a real compact Lie group acting on a real compact
manifold M and let Q be a transversally elliptic operator on M. Assume that Gg,
M, @ can be complezified in G, X, P and let M be the Dx -module associated to
P as above. Then x(p, M,wnrx,u,v) is equal to the analytic index of Q) defined
in [1].

10.2. Semi-simple Lie group. In this paragraph G is a connected, semi-simple,
complex Lie group, Gr a real form of G, X the flag manifold of G. We consider
M = Dx which is canonically G-quasi-equivariant, with lifting l4, and is in fact
associated to the trivial line bundle on X; we consider also a Ggr-equivariant R-
constructible sheaf F' on X with lifting denoted by v. The action of G on X is
homogeneous; hence we are in the setting of paragraph 9.2 and we can apply the
results of corollary 9.4. In this case the fixed points set is the following subset of
G x X, where X is identified with the set of Borel subgroups of G:

éz{(g,B)EGxX;gEB}.

Let w € TI(G;Qg). The form & = ¢,(Iy) € T(G; Q) of corollary 9.4 is given by
formula (44):
1

det(id — ¢!, (z)) 1%
where ¢ : G — G is the projection and ¢y () is the derivative of ¢, at the fixed

point € X. Note that, if g is in a maximal torus H C G and z corresponds to a
Borel B D H determined by a set of positive roots A, we have:

det(id — ¢y (@) = [ (1-e)(9)-

(IEA+

=

On the other hand, with the notations of paragraph 9.1, the class ¢'(v) is the
characteristic cycle introduced by Kashiwara in [13]. It belongs to HgG (G; Cs)s
where S = ¢~ '(supp F) C ¢~'(Gr). The subset ¢~'(Gg) of G is the fixed points
set of Ggr in X. But Gr has finitely many orbits in X, say Oi,...,0,. Let us
denote by G, the fixed points set of Gg in O;, i.e. G; = (Gr x O0;) N G. Then G;
is a real smooth submanifold of G of real dimension dg. Hence ¢~ (Gg) = | | G; is
the union of finitely many submanifolds of G of real dimension dg. By corollary 9.4
the index is

(46) X(6,Dx, Fyl5,0) = / d@) U

and is in fact the sum of direct images of a multiple of & on each G;. This formula
coincides with the one given in [13] (see also [21]).

From the results of [16] we know that the complex RHom,, (Dx ® F,0x) ~
RHom (F, Ox) is strict and that the resulting F'N-spaces representations of Gg,

7; : Gr — End (Ext’(F, Ox)),

are admissible. This implies in particular that they have generalized characters.
Let us denote by x; the character of m;; for a maximal degree C*°-form w with
compact support on Gg, the morphism w;,, : Ext'(F,Ox) — Ext'(F,Ox), x —



38 STEPHANE GUILLERMOU

fG? m;i(g)(z) - w is trace-class and, by definition, < x;,w >= trm;,. Now we can
prove that the character Y (—1)%y; is given by formula (46). This was conjectured
in [14], paragraph 6.3, and proved in [21]. (Up to the Matsuki correspondence
(see [17] and [16]) a similar character formula was also given in [13] and proved
n [18], by a comparison method between the character and Kashiwara’s formula,
using a decomposition on Schubert cells and the Osborne conjecture.)

Theorem 10.4. Let G be a connected, semi-simple, complex Lie group, Gr a real
form of G, F' an R-constructible Gr-equivariant sheaf on the flag manifold X of G.
Let x; be the character of the representation Ext'(F,Ox) and ¢ the characteristic
cycle of F'. With the notations above, for a volume form w on G and the associated
volume form & on G, we have:

Z(—l)iXi ‘w = /c' Uo.
q
Proof. We have to show that x(¢,Dx,F,u,v) = >.(=1)%x;. This would be a
particular case of theorem 8.2 if Gr were compact. In fact we prove the result on
all translates of a maximal compact subgroup of Gg.

Let us set for short x = x(¢, Dx, F,u,v) and x' = > (—=1)*y;. We know that x’
is a central eigendistribution. For x we remark that [, itself is annihilated by the
image in Dg of the augmentation ideal Z, (g) of Z(g). Indeed, for P € U(g) let Pg
and Px be its images in Dg and Dyx; it is well-known (see for example [5]) that
if P € Z,(g) then Px = 0. Hence the claim follows from Pg -4 = ls - Px. This
implies that Pg(x) = 0 for P € Z,(g) because the construction of x(¢, M, F, u,v)
is Dg-linear; hence  is also a central eigendistribution.

Since both x and x' are central eigendistributions on Ggr, by the results of
Harish-Chandra [11], they are determined by their restrictions to the open subset
of regular semi-simple elements of Gg, say Grre,- Moreover these restrictions to
GRyeg are analytic functions which are locally L! in Ggr (notice that for x this is
also a consequence of formula (46)). Hence we only need to show that x = x’' on
GRreg- Let K be a maximal compact subgroup of Gg. Let us denote by K¢ the
complexification of K, by € and €¢ the Lie algebras of K and K¢. In fact we will
show that x and x’ have well-defined restrictions to any translate g - K of K and
that these restrictions coincide. This implies clearly that x = X' on Gy, and then
that x = x'.

Let us begin with the existence of the restrictions. Formula (45) gives the fol-
lowing bound for the wave-front set of x:

A ={(g,n) € Gr x gg; I(z,€) € T*X, (x,&) is fixed by g and n = pu(z,£) } .

In fact, if ¢ : G — G is the projection we have A = qﬁ(tq'_l(Téé)). In [12] it
is shown that a central eigendistribution with trivial central character is solution
of the Dg-module ¢ Og. Since charg Og is contained in A, it is a bound for the
wave-front set of x' too and the existence of the restrictions of x and x' to g- K is
a consequence of lemma, 10.5 below.

Now we need a description of the restrictions of x and x'. For x we will apply
proposition 7.1 and theorem 8.2. We fix g € Gr and we consider the restriction of
¢ to g-Kc,say ¢ : g-Kcx X — X. By lemma 10.6 below Aj, N SS(F) is contained
in the zero-section. Since Ay C Aip the pair (Dx, F) is transversally elliptic with
respect to ¢ and it follows from proposition 7.1 that x|,.x = x(¢,Dx, F,ly,v"),
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where v’ is the restriction of v. Now theorem 8.2, together with the fact that the
complex RHom , (M ® F,Ox) is strict, says that for w € T'(g - K;Q,.x.) we have

< XlgK,w >= Z(—l)"trwg’w,

where 7; is the restriction of 7; to g- K and m; , is the endomorphism of Ext‘(F,Ox)
defined by z fg.K mi(k)(x) - w(k).
Hence we will have x|g.x = X'|.x if we show that

< Xilg-k,w >=trm .

This is proved in [7] (for K, not g - K, but the proof adapts immediately). For
the reader convenience we restate their result in lemma 10.7. (Note that =} ,(z) =
7i(9) (5 mi(K')(x) - w(g - k")) to agree with the notations of the lemma). O

Lemma 10.5. With the notations of the proof of theorem 10.4 we have for any
g € Gg:
ANT, g .G CT;G.

Proof. The bound A is contained in
A'={(9,n) € Gr x gg; 3(2,) € T*X n = p(z,€) } =Grx (sg Nu(T*X)).

Up to the identification of g and g* through the Killing form, the image of T*X
by the moment map is the nilpotent cone, N, of g; hence A’ = Gg x (gg N N).
Let £c be the Lie algebra of K¢. With the identification T*G = G x g*, we have
T} k.G = g- Kc x € and the lemma is reduced to A" N &g Ngg = {0} O

Lemma 10.6. With the notations of the proof of theorem 10.4 we have:
Aip NSS(F)cCc TxX.
Proof. Recall that
w=1{(x,8) €T*X; 3(z,y) € g-Kcx X, z-y =z and *(,¢),(§) = 0}.

Here t(y4), : T X — T (g - K¢) is the composition of ?(,¢), : T*X — TG and
the projection T;G — T;(g - K¢). With the identification TG = g*, we have
T:(g - Kc) = € and *(,4)’, is the moment map ug. : Tr X — € with respect
to the action of Kc. Hence A, is a subset of N}t(o) = T X. On the other
hand, since F' is Gr-equivariant its micro-support is contained in T{; X. Since the
orbits of K¢ and Ggr are transversal (see for example [17], lemma 1.3) we have

Tk XNTE X CTYX and the lemma follows. O

Lemma 10.7 (lemma A.5 (3) of [7]). Let Gr be a semi-simple connected Lie group
and K a mazximal compact subgroup. Let m : Gr — End(E) be an admissible
representation of Gg with trivial infinitesimal character, with character x. Let 7K
be the restriction of m to K. Then for g € Gr, x has a well-defined restriction to
g- K and for a density, a, on K we have:

< X|9'Kal;—1a >= tr(ﬂ(g) ° W(Ix{)a

where l,-1 is multiplication on the left by g=* and wk (z) = [, 75 (k)(z) - a(k).
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Proof. For w a density with compact support on Gg we set as before m,(z) =
fGR m(g)(z) -w(g). If X and Y are two submanifolds of Gr such that the multipli-
cation X x Y = G, (z,y) — z-y, is a diffcomorphism and if « (resp. ) is a density
on X (resp. Y') with compact support, we have by Fubini identity magg = 7o © 7g
(by abuse of notations we use the same notations for «, 3, a ® 8 and their direct
images on GR).

Let B be a subgroup of Gg such that K x B — GR, (k,b) = k- b is a diffeomor-
phism. Then the map g- K x B — Gg, (k',b) — k'-b is also a diffeomorphism. Let
a be a C*-density on K such that 7X has finite rank (such a are dense among the
densities on K). Let §; be a sequence of C*°-densities on B, with compact supports
decreasing to {e}, such that [, B; = 1. The distribution x has a restriction to g- K
and we have

<Xlgr lg-ra >=lm < x, I 1a® B > .
But
<X lga® B > = tf(ﬂz;_laeaﬂi)
= tr(”l;_la o 7r,3i)
= tr(m(g ") o Mo 0 ma,).

Since f; tends to the Dirac function at {e}, mg, tends to idg and since 7, has finite
rank tr(m(g~!) oy o mg;) tends to tr(m(g™1) o my). By definition 7, = 7X and the
lemma, is proved. O
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