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0. Introduction

Fundamental groups of complex projective varieties are very difficult to under-

stand. There is a tremendous gap between few computed examples and few general

theorems. The latter all deal with either linear finite dimensional representations ([Sim])

or actions on trees ([Gr-Sch]); besides, one knows almost nothing.

This paper presents a new general theorem, partially settling a well-known conjec-

ture of Carlson-Toledo ([CT]).

M T. — Let Γ be a fundamental group of a compact Kähler manifold.

Assume Γ is not Kazhdan. ThenH 2 0 Γ, 132	45 0.
C. — Suppose∆ is not Kazhdan and b1 0 ∆, 672 5 0. Let 8∆ be the univer-

sal central extension 0 9 H2
0 ∆, :�2;9 8∆ 9 ∆ 9 1. Then Γ is not a fundamental group of

a compact Kähler manifold.

Examples.

1. Any torsion group ∆ of an intermediate growth is amenable, therefore not

Kazhdan, besides, b1
0 ∆, 6<2 5 0.

2. Any lattice in SU 0 n, 1 2 is not Kazhdan; some of them have finite abelianization.

However, in this case one can do better, see remark in section 8 below.

T 0.1. — Let Γ be a fundamental group of a complex projective variety.

Suppose Γ has a Zariski dense rigid representation in SO 0 2, n 2 , n odd. Then
(i)H 2 0 Γ, 132�45 0.

Mots-clés : Kähler groups, property T .
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(ii) Moreover,H 2
b
0 Γ, 1 2�45 0 and the canonical map H 2

b 9 H 2 is not zero.

C 0.1. — Let ∆ be a lattice in SO 0 2, n 2 , n odd, uniform or not. Let 8∆
be a universal central extension of ∆. Then ∆ is not a fundamental group of a complex

projective variety.

T 0.2. — Let Γ be a fundamental group of a complex projective variety.

Suppose Γ has a Zariski dense rigid representation in Sp 0 4 2 . Then
(i)H 2 0 Γ, 132�45 0.
(ii) Moreover,H 2

b
0 Γ, 1 2�45 0 and the canonical map H 2

b 9 H 2 is not zero.

C 0.2. — Let ∆ be a lattice in Sp 0 4 2 . Then 8∆ is not a fundamental group
of a complex projective variety.

C 0.3. — Lattices in Spin 0 2, n 2 , n odd, and �Sp 0 4 2 are not fundamental
groups of a complex projective variety.

1. A geometric picture for rigid representations

Let Y be a compact Kähler manifold. All rigid irreducible representations ρ :

π1
0 Y 2 9 SL 0 N, � 2 are conjugate to representations landing in a SU 0 m, n 2�� SL 0 N, � 2

with m � n 5 N ([Sim 1]) and have a structure of complex variation of Hodge structure

([Sim 1]). Moreover, we can always arrange that this conjugate representation is defined

over 6 (see e.g. [Re 1]). Relabeling , we assume that ρ itself is defined over 6 . We assume
that moreover, ρ is defined over � 0 6 2 ; by a conjecture of Carlos Simpson ([Sim 1]) this is

always the case. Let � ρi � be all the Galois twists of ρ, then ρi are rigid therefore land in

SU 0 mi , ni 2 . The image of π1
0 Y 2 in 	

i

SU 0 mi , ni 2 is discrete; call it Γ.
Coming back to ρ, consider a corresponding θ-bundle E ([Sim 1]). It has the follow-

ing structure: E 5 

p � q � k L

p,q and θmaps Lp,q to Lp  1,q � 1 � Ω1. Any θ-invariant subbun-

dle of E has negative degree; in particular, the degree of Lk,0 is positive. A harmonic metric

K in E is the unique metric satisfying the equation ([Hit]) FK
5�� θ,θ ��� . The hermitian

connection � K leaves all E
p,q invariant. The connection � K � θ � θ � is flat with mon-

odromy ρ. Let V be the corresponding flat holomorphic bundle. In V , we have a flag of

holomorphic subbundles F p 5 V k,0 ��������� V p,k  p , where V p,q are Ep,q thought as C � -
subbundles of V with its new holomorphic structure. We have therefore a ρ-equivariant
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map 8Y s� 9 D, where D is a corresponding Griffiths domain ([G], ch. I–II). Changing the

sign of K alternatively on V p,q we obtain a flat pseudo-hermitian metric in V .

So ifm 5 

p even

dimV p,q , n 5 

p odd

dim V p,q , then ρ lands in SU 0 m, n 2 . The Grif-
fiths domainD carries a horizontal distribution defined by the condition that the derivative

of Fp lies in Fp � 1. The developingmap s is horizontal. Differentiating this condition we ob-
tain a second order equation ([Sim 1]) � θ,θ � 5 0, in other words for Z,W �

TxY ,θ
0 Z 2 and

θ 0 W 2 commute.
Since the image of π1

0 Y 2 in 	
i

SU 0 mi , ni 2 is discrete, we obtain
P 1.1 (Geometric picture for rigid representations). — Let ρ : π1

0 Y 2 9
SL 0 N, � 2 be a rigid irreducible representation, defined over � 0 6 2 . Then there exist Grif-
fiths domains Di

5 SU 0 mi , ni 2 /Ki , a discrete group Γ in 	 SU 0 mi , ni 2 and a horizontal
holomorphic map

S : Y � 9 �
Di/Γ

which induces ρ and all its Galois twists.

Remark. — Though a Griffiths domain D is topologically a fibration over a her-

mitian symmetric space with fiber a flag variety, generally it does not have a SU 0 m, n 2 -
invariant Kähler metric. So the complex manifold 	 Di/Γ is not Kähler.

Remark. — This proposition tells us that one cannot expect too many compact

Kähler manifolds to have a nontrivial linear representation of their fundamental group, of

finite dimension.

L 1.2 (Superrigidity).

(1) Let X 5 Γ � SU 0 m, n 2 /S 0 U 0 m 2�� U 0 n 2 be a compact hermitian locally sym-
metric space of Siegel type I . Let Y be compact Kähler and let f : Y 9 X be continuous. If

f � : π1
0 Y 2 9 SU 0 n,m 2 is rigid and Zariski dense, e.g. f � : π1

0 Y 2<9 Γ an isomorphism,

then either f is homotopic to a holomorphic map, or there exists a compact complex an-

alytic space Y � , dim Y � < dim X , and a holomorphic map ϕ : Y 9 Y � such that f is
homotopic to a composition Y

ϕ� 9 Y � f1� 9 X .

(2) Let X 5 Γ � SO 0 2, n 2 /S 0 O 0 2 2�� O 0 n 2 2 be of Siegel type IV. Let Y be compact
Kähler and let f : Y 9 X be continuous. If f � : π1

0 Y 2 9 SO 0 2, n 2 is rigid and Zariski
dense then either f is homotopic to a holomorphic map f0, or n is even and there exists a

compact complex analytic space Y � , dim Y � < dim X , and a holomorphicmapϕ : Y 9 Y �
such that f is homotopic to a composition Y

ϕ� 9 Y � f1� 9 X .
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(3) Let X 5 Γ � Sp 0 2n 2 /U 0 n 2 be of Siegel type III. Let Y be compact Kähler and let
f : Y 9 X be continuous. If f � : π1

0 Y 279 Sp 0 2n 2 is rigid and Zariski dense, then either
f is homotopic to a holomorphic map f0, or there exists a compact complex analytic space

Y � , dim Y � < dim Y , and a holomorphic map ϕ : Y 9 Y � , such that f is homotopic to a
composition Y

ϕ� 9 Y � f1� 9 X .

(4) Let X 5 Γ � Sp 0 4 2 /U 0 2 2 be a Shimura threefold. Let Y be compact Kähler and
let f : Y 9 X be continuous. Then either f is homotopic to a holomorphic map f0, or

there exists a (singular) proper curve S, and a holomorphic mapϕ : Y 9 S, such that f is

homotopic to a composition Y
ϕ� 9 S � 9 X .

Remarks.

1. I leave the case of Siegel type II to the reader (the proof is similar).

2. If f � is not rigid, one has strong consequences for π1
0 Y 2 , see 9.1.

3. The lemma should be viewed as a final (twistorial) version of the superrigidity

theorem ([Si]).

2. Proof of the Superrigidity Lemma (1)

(1) Since we are given a continuous map Y
f� 9 X 5 Γ � SU 0 m, n 2 /S 0 U 0 m 2 �

U 0 n 2 2 the map S of Proposition 1.1 is simply a holomorphic map Y 9 D/Γ, where D is

a Griffiths domain corresponding to the complex variation of Hodge structure, defined by

ρ 5 f � : π1
0 Y 2�9 SU 0 m, n 2 . Suppose the Higgs bundle looks like � Ep,q where Ep,q

have dimensionsm1, n1, m2, n2, . . . , ms , ks where ks is possibly missing. Then
�
mi
5 m,

�
ni
5 n. Now, the dimension of the horizontal distribution is

m1
� n1 � n1 � m2 � m2

� n2 � ����� � ms
� ks .

We notice that this number is strictly less thanm � n 5 dim X except for the cases:
I) s 5 1, i.e. E 5 E1,0 � E0,1
II) s 5 2, k2 5 0, i.e. E 5 E2,0 � E1,1 � E0,2.

In the first case,D is the symmetric space, andD/Γ 5 X so we arrive to a holomor-
phic map to. Y 9 X . In the second case the second order equation reads θ1

0 Z 2 θ2 0 W 2 �
θ1
0 W 2 θ2 0 Z 2 5 0 where θ1 : TY

� E0,2 9 E1,1 and θ2 : TY
� E1,1 9 E2,0 are the

components of the (horizontal) derivative DS. So the image of DS is strictly less than

Hom 0 E0,2, E1,1 2 � Hom 0 E1,1, E1,0 2 5 m � n 5 dim X . In other words, dim Y � < dim X

where Y � 5 S 0 Y 2 .
6



3. Variation of Hodge structure, corresponding to

rigid representations to SO(2, n)

Let ρ : π1
0 Y 2 9 SO 0 2, n 2 be a Zariski dense rigid representation. Complexifying,

we obtain a variation of Hodge structure E 5 � Ep,q . Since ρ is defined over reals, we deal

with real variation of Hodge structure ([Sim 1]) that is to say, Ep,q 5 Ep,q with respect to a
flat complex conjugation. For n � 3, this leaves exactly two possibilities:

I) E 5 E2,0 � E1,1 � E0,2, dim E1,1 5 n, dim E2,0 5 dim E0,2 5 1.
II) n is even, E 5 E2,0 � E1,1 � E0,2, dim E1,1 5 2, dim E2,0 5 dim E0,2 5 n/2.

In case I) the Griffits domain is the symmetric spaces SO 0 2, n 2 /S 0 O 0 2 2 � O 0 n 2 2 so
the harmonicmetric viewed as a harmonic section of the flat bundlewith fiber a symmetric

space, is holomorphic. In the second case the second order equation implies that the rank

of the derivativeDS of the ρ-equivariant holomorphic map 8Y 9 D is strictly less than n.

Proof of the Superrigidity Lemma (2). — This follows immediately from the previ-

ous discussion in the samemanner as in (1).

4. Variations of Hodge structure,

corresponding to rigid representation to S p(4)

Let ρ : π1
0 Y 2�9 Sp 0 2n 2 be a Zariski dense rigid representation. Complexifying,

we obtain a representationπ : π1
0 Y 2-9 SU 0 n, n 2 and a real variation of Hodge structure

E 5 

p � q � k E

p,q , Ep,q 5 Eq,p and k odd. For n 5 2 this leaves two possibilities:
(I) E 5 E1,0 � E0,1, and both E1,0 and E0,1, or rather V 1,0 and V 0,1 viewed as

C � -subbundles of the flat bundle V , are lagrangian with respect to the flat complex sym-
plectic structure. This means first, that the Griffiths domain D is the symmetric space

SU 0 2, 2 2 /S 0 U 0 2 2�� U 0 2 2 , second, that the image of the equivariant horizontal holomor-
phic map S : 8Y 9 D lies in the copy of the Siegel upper half-space Sp 0 4 2 /U 0 2 2 un-
der the Satake embedding ([Sa]). In other words, the unique ρ-equivariant harmonic map

8Y 9 Sp 0 4 2 /U 0 2 2 is holomorphic.
(II) E 5 E3,0 � E2,1 � E1,2 � E0,3 and dim Ep,q 5 1. The second order equation for

θ implies immediately that Ds has rank at most one everywhere on Y .

Proof of the Superrigidity Lemma (4). — Follows from the discussion above.

7



6. Variations of Hodge structure, corresponding to

rigid representation to S p(2n), and

proof of the Superrigidity Lemma (3)

In general, the Higgs bundle is E 5 

p � q � 2s � 1E

p,q , Ep,q 5 Ep,q . The dimension of

the horizontal distribution is

d 5��
p<s

dim Ep,q � dim Ep � 1,q  1 5 dim E s,s � 1 � 0 dim E s,s � 1 � 1 2
2

,

since θ : E s,s � 1 9 E s � 1,s viewed as bilinear form, should be symmetric. Moreover,
�

p � s dim E
p,q 5 n. An elementary exercise shows that if s > 1, d <

n � n � 1 �
2

. If s 5 1, we

get a holomorphic map to the Siegel upper half-plane.

7. Regulators, I: proof of the Main Theorem

The reader is supposed to be familiar with the geometric theory of regulators ([Re 1],

[Co]).

Let � be a complex Hilbert space. The constant Kähler form 0 dX , dX 2 is invariant
under the affine isometry group Iso 0 �<2 , and � is contractible, therefore there is a regulator
class in H 2 0 Isoδ 0 � 2 , 1 2 . In fact, there is a class ` in H 1 0 Isoδ 0 � 2 , ��2 defined by a cochain0 x �9 Ux � b 2�� � 9 b. The regulator class in simply 0 `, ` 2 .

If π1
0 Y 2 does not have property T , then there exist a representation

ρ : π1
0 Y 2 9 Iso 0 � 2 and a holomorphic nonconstant section S of the associated flat

holomorphic affine bundle with fiber � ([Ko-Sch]). It follows that the pull-back ρ � 0 0 `, ` 2 2
of the regulator class to H 2 0 π1

0 Y 2 , 132 restricts to a cohomology class in H 2 0 Y , 132 , given
by a non-zero semi-positive 0 1, 1 2 form. Multiplying by the ωn  1, where ω is a Kähler

form, and n 5 dim Y , and integrating over Y we get a positive number, therefore this

cohomology class is non-zero. ThereforeH 2 0 π1
0 Y 2 , 132�45 0.

Remark. — Historically, the first break through in this direction has beenmade in

[JR], under assumption of having a nontrivial variation of a unitary representation. Com-

pare Proposition 9.1 below.

Proof of the Corollary 0.2. — Since 8∆ 9 ∆ is surjective and∆ does not have prop-

erty T , neither does 8∆ ([HV]). SinceH1 0 ∆, :�2 is finite, the Lyndon-Serre-Hochschild spec-
tral sequence implies thatH 2 0 8∆, 132 5	� . So 8∆ is not a Kähler group.
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Remark. — Suppose π1
0 Y 2 does not have property T . Suppose moreover that

that π1
0 Y 2 has a permutation representation in `2 0 B 2 , where B is a countable set, and

H 1 0 π1
0 Y 2 , `2 0 B 2 2 45 0. Then we actually proved that H 2 0 π1

0 Y 2 , `1 0 B 2 2 45 0. That is

because the scalar product `2 0 B 2 � `2 0 B 2 9 �
factors through `1 0 B 2 . Moreover, the

canonical mapH 2 0 π1
0 Y 2 , `1 0 B 2 2 9 H 2 0 π1

0 Y 2 , � 2 is nonzero.

8. Regulators, II: proof of Theorems 0.1, 0.2

Let G be an isometry group of a classical symmetric bounded domain D. With the

exception of SO 0 2, 2 2 , H 1 0 G, :�2 5 : . This defines a central extension 1 9 : 9 8G 9
G 9 1 and an extension class e

�
H 2 0 Gδ, :�2 . On the other hand, the Bergman metric on

D is G-invariant, so it defines a regulator class r
�
H 2
cont
0 G, 132 . It is proved in [Re 2], [Re 3]

that, first, these classes coincide up to a factor, and second, lie in the image of the bounded

cohomology: H 2
b
0 Gδ, 132�9 H 2 0 Gδ, 132 .

If Y is a compact Kähler manifold, ρ : π1
0 Y 2<9 G a representation , s a holomor-

phic nonconstant section of the associated flat D-bundle, then one sees immediately that0 ρ � 0 r 2 ,ωn  1 2 > 0, so ρ � 0 r 2 , ρ � 0 e 2 45 0. Theorem 0.1 follows now from the analysis ofV HS
given in sections 3, 4. To prove Theorem 0.2 notice that the case when Y fibers over a curve

is obvious, otherwise Y admits a holomorphic map to a quotient of the Siegel half-plane

and the proof proceeds as before.

Remark. — By [CT], the result of Theorem 0.1 is true for lattices in SU 0 n, 1 2 .

9. Nonrigid representations

P 9.1. — Let Y be compact Kähler and let ρ : π1
0 Y 2 9 SL 0 n, � 2 be a

nonrigid irreducible representation. ThenH 2 0 π1
0 Y 2 , 1 2�45 0.

Proof. — Let � 5�� l 0 n, � 2 and let ρ̄ be the adjoint representation. We know that

H 1 0 π1
0 Y 2 , � 2 45 0. Therefore H 1 0 Y , � 2 45 0 where � is the local system. By the Simpson’s

hard Lefschetz ([Sim 1]), the multiplication by ωn  1 gives an isomorphism H 1 0 Y , � 2%9
H 2n  1 0 Y , � 2 , where ω is the polarization class and n 5 dim � Y . The Poincaré duality
implies that the Goldman’s pairing H 1 0 Y , � 2 � H 1 0 Y , � 2 9 �

is nondegenerate. Let z be

homology class in H2
0 Y 2 , dual to ωn  1, and z̄ its image in H2 0 π1

0 Y 2 2 . It follows that the
pairingH 1 0 π1

0 Y 2 , � 2 � H 1 0 π1
0 Y 2 , � 2 9 �

defined by f , g �9 � 0 f , g 2 , z̄ � is nondegenerate.
Here 0 f , g 2 � H 2 0 π1,

� 2 is the pairing defined by the Cartan-Killing form. In particular,
z̄ 45 0.
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C 10.1. — Let Y a compact Kählermanifold. Ifπ1
0 Y 2 has a Zariski dense

representation in either Sp 0 4 2 or SO 0 2, n 2 , n odd, thenH 2 0 π1
0 Y 2 , 1 2	45 0.

Proof. — For rigid representations, this is proved in Theorems 0.1, 0.2. For non-

rigid representations, this follows from Proposition 9.1.

C 9.2. — Let Γ be any overgroup of a Zariski dense countable subgroup

of Sp 0 4 2 or SO 0 2, n 2 , n odd. Suppose b1 0 Γ 2 5 0. Then the universal central extensions 8Γ is
not Kähler.

10. Three-manifolds groups are not Kähler

In this section, based on the previous development, we will present a strong evi-

dence in favour of the following:

C 10.1. — Let M 3 be irreducible closed 3-manifold with Γ 5 π1
0 M 2

infinite. Then Γ is not Kähler.

P 10.2 (Seifert fibration case). — A cocompact lattice in

�

SL 0 2, 132 is not
Kähler.

Proof. — Passing to a subgroup of finite index, we can assume that Γ is a central

extension of a surface group:

1 � 9 : � 9 Γ � 9 π1
0 S 2 � 9 1

with a nontrivial extension class. In particular, H 1 0 Γ, 6<2 �
H 1 0 π1

0 S 2 , 6<2 2 , so the multi-
plication inH 1 0 Γ, 672 is zero, which is impossible if Γ is Kähler.

Recall that “most” of closed three-manifolds admit a Zariski dense homomorphism

π1
0 M 2 ρ� 9 SL2

0 � 2 ([CGLS], [Re 1]).
T 10.3. — Let M 3 be atoroidal. Suppose there exists a Zariski dense ho-

momorphism ρ : π1
0 M 2-9 SL2

0 � 2 . Then Γ 5 π1
0 M 2 is not Kähler.

Proof. — By a theorem of [Zi] π1
0 M 2 does not have property T . By the Main The-

orem,H 2 0 Γ, 1 2�45 0, hence by [Th],M is hyperbolic, which is impossible by [CT].

Alternatively, ρ is not rigid by [Sim 1], soH 2 0 Γ, 132�45 0 by Proposition 9.1, and then
one procedes as before.
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Remark. — In view of [CGLS], [Re 1], we obtain a huge number of groups which

are not Kähler.

11. Central extensions of lattices in PSU 0 2, 1 2
We saw a general result, that, if Γ � SU 0 n, 1 2 a cocompact lattice and �ω � �

H 2 0 Γ, :�2 is given by any ample line bundle, then a central extension
0 � 9 : � 9 8Γ � 9 Γ � 9 1

with the extension class �ω � is not Kähler. For n 5 2 one can also prove:
T 11.1. — Letω

�
H 2 0 B2/Γ, :�2 � 0 H 2,0 � H 0,2 2 ,ω 45 0. Then an extension

0 � 9 : � 9 8Γω
� 9 Γ � 9 1

with the extension classω is not Kähler.

Remark. — H 2,0 becomes big on étale finite coverings of B2/Γ by Riemann-Roch.

Proof. — Suppose 8Γω
5 π1

0 Y 2 . The representation π1
0 M 2�9 Γ 9 SU 0 2, 1 2

is rigid by the Lyndon-Serre-Hochschild spectral sequence. It follows that there exists a

dominating holomorphic map Y 9 B2/Γ. But then the pullback map on H 2,0 is injective,

a contradiction.

12. Smooth hypersurfaces in ball

quotients which are not K (π, 1)

We saw that under various algebraic assumptions on Γ 5 π1
0 Y 2 , there is a class in

H 2 0 Y , 1 2 which vanishes on the Hurewitz image π2
0 Y 2�9 H2

0 Y , :�2 , therefore defining
a nontrivial element of H 2 0 Γ, 1 2 . On the contrary, we will show now that there are hy-
persurfaces Y in ball quotients Bn/Γ, n � 3 with a surjective map π1

0 Y 2$9 Γ such that

πi
0 Y 2�45 0 for some i. The proof is very indirect andwe don’t know the exact value of i. The

varieties Y were in fact introduced in [To] where it is proved that π1
0 Y 2 is not residually

finite. We will show that cd 0 π1
0 Y 2 2 � 2n � 1, therefore Y is not K 0 π, 1 2 .

Let X n be an arithmetic ball quotient and let X0 � X be a totally geodesic smooth

hypersurface. Let D 5 X � X0, then D is covered topologically by
�
n minus a countable

union of hyperplanes, so D is K 0 π, 1 2 . Let S be a boundary of a regular heighbourhood of
X0, so S is a circle bundle over X0, in particular S is K

0 π, 1 2 andπ1
0 S 2 is a central extension
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0 9 : 9 π1
0 S 2�9 π1

0 X0 2�9 1 with a nontrivial extension class (this is because the

normal bundle to X0 is negative). Let V be a finite dimensional module over π1
0 X 2 with

an invariant nondegenerate form V 9 V � . We have an exact sequence

H 2n  1 0 π1
0 X 2 , V 2 � 9 H 2n  1 0 π1

0 X0 2 , V 2 � H 2n  1 0 π1
0 D 2 , V 2

� 9 H 2n  1 0 π1
0 S 2 , V 2 � 9 H 2n 0 π1

0 X 2 , V 2 � 9 �����
Now, wemake a first assumption:

1)H 0 0 π1
0 X 2 , V 2 5 0.

It follows that H0
0 π1
0 X 2 , V 2 5 0, so H 2n 0 π1

0 X 2 , V 2 5 0; we make a second as-

sumption :

2)H 1 0 π1
0 X 2 , V 2 5 0.

It follows thatH 2n  1 0 π1
0 X 2 , V 2 5 0. Sowe have (remember that X0 has dimension

n � 1)
H 2n  1 0 π1

0 D 2 , V 2 �
H 2n  1 0 π1

0 S 2 , V 2 .
Now, in the E2 of the Lyndon-Serre-Hochschild spectral sequence for H � 0 π1

0 S 2 , V 2 the
term H 2n  2 0 π1

0 X0 2 , H 1 0 : , V 2 2 is not hit by any differential. Since : acts trivially, this is
justH 2n  2 0 π1

0 X0 2 , V 2 �
H0
0 π1
0 X0 2 , V 2 . We nowmake a third assumption:

3)H 0 0 π1
0 X0 2 , V 2 45 0.

Then we will haveH 2n  1 0 π1
0 D 2 , V 2 45 0. Let Y be a generic hyperplane section of

X/X0, constructed in [To], then [GM], π1
0 Y 2 5 π1

0 D 2 and we are done.
Now, we take forV the adjoint module. The assumption 2) follows fromWeil’s rigid-

ity. The assumption 3) is satisfied for standard examples of X0 ([To]).

Remark. — The construction of [To] is given for lattices in SO 0 2, n 2 , but it applies
verbatim here.
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