STRUCTURE OF KAHLER GROUPS,
| : SECOND COHOMOLOGY

by Alexander REZNIKOV

0. Introduction

Fundamental groups of complex projective varieties are very difficult to under-
stand. There is a tremendous gap between few computed examples and few general
theorems. The latter all deal with either linear finite dimensional representations ([Sim])
or actions on trees ([Gr-Sch]); besides, one knows almost nothing.

This paper presents a new general theorem, partially settling a well-known conjec-
ture of Carlson-Toledo ([CT]).

MaiN THEOREM. — Let T be a fundamental group of a compact Kdhler manifold.
AssumeT is not Kazhdan. Then H*(T, R) # 0.

COROLLARY. — Suppose A is not Kazhdan and by (A, Q) = 0. Let A be the univer-
sal central extension 0 — Hy(A,Z) — A — A — 1. ThenT is not a fundamental group of
a compact Kédhler manifold.

Examples.

1. Any torsion group A of an intermediate growth is amenable, therefore not
Kazhdan, besides, b; (A, Q) = 0.

2. Any lattice in SU(n, 1) is not Kazhdan; some of them have finite abelianization.
However, in this case one can do better, see remark in section 8 below.

THEOREM 0.1. — Let ' be a fundamental group of a complex projective variety.
Suppose T has a Zariski dense rigid representation in SO(2, n), n odd. Then

() H?(T,R) # 0.

Mots-clés : Kdhler groups, property 7.



(i) Moreover, H2(T, R) # 0 and the canonical map H: — H? is not zero.

COROLLARY 0.1. — Let A be a lattice in SO(2, n), n odd, uniform or not. Let A
be a universal central extension of A. Then A is not a fundamental group of a complex
projective variety.

THEOREM 0.2. — Let ' be a fundamental group of a complex projective variety.
SupposeT has a Zariski dense rigid representation in Sp(4). Then

(i) H*(T,R) # 0.

(ii) Moreover, H:(T,R) # 0 and the canonical map H; — H? is not zero.

COROLLARY 0.2. — Let A be a lattice in Sp(4). Then A is not a fundamental group
of a complex projective variety.

—

CoroLLARY 0.3. — Lattices in Spin(2, n), n odd, and Sp(4) are not fundamental
groups of a complex projective variety.

1. A geometric picture for rigid representations

Let Y be a compact Kdhler manifold. All rigid irreducible representations p :
m (Y) — SL(N,C) are conjugate to representations landing in a SU(m, n) C SL(N,C)
with m + n = N ([Sim 1]) and have a structure of complex variation of Hodge structure
([Sim 1]). Moreover, we can always arrange that this conjugate representation is defined
over Q (see e.g. [Re 1]). Relabeling , we assume that p itself is defined over Q. We assume
that moreover, p is defined over O(Q); by a conjecture of Carlos Simpson ([Sim 1]) this is
always the case. Let {p;} be all the Galois twists of p, then p; are rigid therefore land in

SU(m;, n;). The image of 11 (V) in [[ SU(my, n;) is discrete; call it I

1

Coming back to p, consider a corresponding 6-bundle E ([Sim 1]). It has the follow-

ing structure: E = @ LP9and 6 maps LP9 to LP~ 197! @ Q. Any 6-invariant subbun-
p+q=k

dle of E has negative degree; in particular, the degree of L*? is positive. A harmonic metric
K in E is the unique metric satisfying the equation ([Hit]) Fx = [6, 6*]. The hermitian
connection Vg leaves all EP7 invariant. The connection Vx + 8 + 6* is flat with mon-
odromy p. Let V be the corresponding flat holomorphic bundle. In V, we have a flag of
holomorphic subbundles FP = VKO @y ... @ VPk—P where VP9 are EP1 thought as C*°-
subbundles of V with its new holomorphic structure. We have therefore a p-equivariant
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map Y — D, where Disa corresponding Griffiths domain ([G], ch. I-II). Changing the
sign of K alternatively on V"9 we obtain a flat pseudo-hermitian metric in V.
Soifm= € dimVP9, n= @ dim VP9, thenp landsin SU(m, n). The Grif-

p even p odd
fiths domain D carries a horizontal distribution defined by the condition that the derivative

of Fy lies in Fj41. The developing map s is horizontal. Differentiating this condition we ob-
tain a second order equation ([Sim 1]) [6, 6] = 0, in other words for Z, W € T, Y, 6(Z) and
0(W) commute.

Since the image of 71, (Y) in [[ SU(m;, n;) is discrete, we obtain
i

ProposITION 1.1 (Geometric picture for rigid representations). — Letp : (YY) —
SL(N, C) be a rigid irreducible representation, defined over O(Q). Then there exist Grif-
fiths domains D; = SU(m;, n;)/K;, a discrete group T in [[ SU(m;, n;) and a horizontal
holomorphic map

S:Y—)HDi/F

which induces p and all its Galois twists.

Remark. — Though a Griffiths domain D is topologically a fibration over a her-
mitian symmetric space with fiber a flag variety, generally it does not have a SU(m, n)-
invariant Kdhler metric. So the complex manifold H D;/T is not Kdhler.

Remark. — This proposition tells us that one cannot expect too many compact
Kdhler manifolds to have a nontrivial linear representation of their fundamental group, of

finite dimension.

LemmaA 1.2 (Superrigidity).

(1) Let X =T\ SU(m, n)/S(U(m) x U(n) be a compact hermitian locally sym-
metric space of Siegel type I. Let Y be compact Kédhler andlet f : Y — X be continuous. If
fw : T (Y) = SU(n, m) is rigid and Zariski dense, e.g. fi : 1(Y) — T an isomorphism,
then either f is homotopic to a holomorphic map, or there exists a compact complex an-
alytic space Y', dim Y’ < dim X, and a holomorphic map ¢ : Y — Y' such that f is

homotopic to a composition Y 2y i) X.

2) Let X = T \ SO(2,n)/S(0(2) x O(n)) be of Siegel type IV. Let Y be compact
Kéhler and let f : Y — X be continuous. If f,, : m(Y) — SO(2, n) is rigid and Zariski
dense then either f is homotopic to a holomorphic map fy, or n is even and there exists a
compact complex analytic space Y', dim Y’ < dim X, and a holomorphicmapg : Y — Y’

such that f is homotopic to a composition Y 25y i) X.
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(3) Let X = T'\ Sp(2n)/U(n) be of Siegel type I1I. Let Y be compact Kahler and let
f : Y — X be continuous. If f, : m1(Y) — Sp(2n) is rigid and Zariski dense, then either
f is homotopic to a holomorphic map fy, or there exists a compact complex analytic space
Y', dim Y’ < dim Y, and a holomorphic map ¢ : Y — Y', such that f is homotopic to a

composition Y 25 v’ RINS'S

(4) Let X =T \ Sp(4)/U(2) be a Shimura threefold. Let Y be compact Kahler and
let f : Y — X be continuous. Then either f is homotopic to a holomorphic map f, or
there exists a (singular) proper curve S, and a holomorphic map @ : Y — S, such that f is
homotopic to a composition Y 2y s — X.

Remarks.
1. Ileave the case of Siegel type II to the reader (the proof is similar).
2.1f f, is not rigid, one has strong consequences for 11 (Y), see 9.1.

3. The lemma should be viewed as a final (twistorial) version of the superrigidity
theorem ([Si]).

2. Proof of the Superrigidity Lemma (1)

(1) Since we are given a continuous map Y Iix=r~ SU(m, n)/S(U(m) x

U(n)) the map S of Proposition 1.1 is simply a holomorphic map Y — D/T, where D is
a Griffiths domain corresponding to the complex variation of Hodge structure, defined by
p = f« : m(Y) — SU(m, n). Suppose the Higgs bundle looks like ®EP9 where EP7
have dimensions my, ny, my, ny, .. ., ms, ks where k; is possibly missing. Then ) m; = m,
>~ n; = n. Now, the dimension of the horizontal distribution is

my-ny + np- My + My Ny + -+ - + Mg ks .
We notice that this number is strictly less than m- n = dim X except for the cases:
D) s=1ieE=EYq®E"
I s=2k =0ieE=E*®E" ¢ E"

In the first case, D is the symmetric space, and D/I" = X so we arrive to a holomor-
phic map to. Y — X. In the second case the second order equation reads 0;(Z)6,(W) —
01(W)0,(Z) = Owhere 0; : TY ® E% — EYand 0, : TY ® E'!1 — E?? are the
components of the (horizontal) derivative DS. So the image of DS is strictly less than
Hom(E?, E') @ Hom(E"!, E*®) = m-n = dimX. In other words, dim ¥’ < dim X
where Y' = (V).



3. Variation of Hodge structure, corresponding to
rigid representations to SO(2, n)

Letp : m(Y) — SO(2, n) be a Zariski dense rigid representation. Complexifying,
we obtain a variation of Hodge structure E = @EP9. Since p is defined over reals, we deal
with real variation of Hodge structure ([Sim 1]) that is to say, E”9 = EP4 with respect to a
flat complex conjugation. For n > 3, this leaves exactly two possibilities:

) E=E*9E"'®E", dim EM' = n, dim E*° = dim E** = 1.
I) niseven, E=E*°@EY®EY?, dim EV! =2, dim E?>° =dim E*? = n/2.

In case I) the Griffits domain is the symmetric spaces SO(2, n)/S(0(2) x O(n)) so
the harmonic metric viewed as a harmonic section of the flat bundle with fiber a symmetric
space, is holomorphic. In the second case the second order equation implies that the rank
of the derivative DS of the p-equivariant holomorphic map Y = Dis strictly less than n.

Proof of the Superrigidity Lemma (2). — This follows immediately from the previ-
ous discussion in the same manner as in (1).

4. Variations of Hodge structure,
corresponding to rigid representation to Sp(4)

Letp : m(Y) — Sp(2n) be a Zariski dense rigid representation. Complexifying,
we obtain a representation 17 : 711(Y) — SU(n, n) and a real variation of Hodge structure

E= @ EP9,EP7 =E" and k odd. For n = 2 this leaves two possibilities:
p+q=k

(O E = EY @ E®, and both E'° and E®!, or rather V¥ and V°! viewed as
C®°-subbundles of the flat bundle V, are lagrangian with respect to the flat complex sym-
plectic structure. This means first, that the Griffiths domain D is the symmetric space
SU(2,2)/S(U(2) x U(2), second, that the image of the equivariant horizontal holomor-
phic map S : Y — D lies in the copy of the Siegel upper half-space Sp(4)/U(2) un-
der the Satake embedding ([Sa]). In other words, the unique p-equivariant harmonic map
Y — Sp(4)/U(2) is holomorphic.

() E = E**® E*>' ® E? ® E%3 and dim EP = 1. The second order equation for
0 implies immediately that D has rank at most one everywhere on Y.

Proof of the Superrigidity Lemma (4). — Follows from the discussion above.



6. Variations of Hodge structure, corresponding to
rigid representation to Sp(2n), and
proof of the Superrigidity Lemma (3)

In general, the Higgs bundleis E = €  EPY, EP9 = EP4. The dimension of
p+qg=2s+1
the horizontal distribution is

dim E>**!- (dim E**! 4 1)

d =) dim EP4. dim EPT197! = : ,

p<s

since 6 : ESSt! — EStLS yiewed as bilinear form, should be symmetric. Moreover,

>~ dim EPY = n. An elementary exercise shows thatif s > 1, d < @ Ifs =1, we
p<s
get a holomorphic map to the Siegel upper half-plane.

7. Regulators, I: proof of the Main Theorem

The reader is supposed to be familiar with the geometric theory of regulators ([Re 1],
[Co)).

Let H be a complex Hilbert space. The constant Kihler form (dX, dX) is invariant
under the affine isometry group Iso(H), and H is contractible, therefore there is a regulator
class in H?(Iso® (H), R). In fact, there is a class £ in H' (Iso® (H), H) defined by a cochain
(x = Ux + b) —> b. The regulator class in simply (£,£).

If m(Y) does not have property T, then there exist a representation
p : m(Y) — Iso(H) and a holomorphic nonconstant section S of the associated flat
holomorphic affine bundle with fiber H ([Ko-Sch]). It follows that the pull-back p*((£,£))
of the regulator class to H?(1r;(Y), R) restricts to a cohomology class in H?(Y,R), given
by a non-zero semi-positive (1,1) form. Multiplying by the w” !, where w is a Kdhler
form, and n = dim Y, and integrating over Y we get a positive number, therefore this
cohomology class is non-zero. Therefore H*(m; (Y ), R) # 0.

Remark. — Historically, the first break through in this direction has been made in
[JR], under assumption of having a nontrivial variation of a unitary representation. Com-

pare Proposition 9.1 below.

Proof of the Corollary 0.2. — Since A= Als surjective and A does not have prop-
erty T, neither does A ([HV]). Since H; (A, Z) is finite, the Lyndon-Serre-Hochschild spec-
tral sequence implies that H' 2(5, R) = 0. So A is not a Kahler group.
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Remark. — Suppose 1;(Y) does not have property T. Suppose moreover that
that 71, (Y) has a permutation representation in £2(B), where B is a countable set, and
H'(m(Y),£%(B)) # 0. Then we actually proved that H>(rr;(Y),£(B)) # 0. That is
because the scalar product £%(B) x £2(B) — C factors through £€!(B). Moreover, the
canonical map H?(m;(Y),€(B)) — H?(m;(Y), C) is nonzero.

8. Regulators, Il: proof of Theorems 0.1, 0.2

Let G be an isometry group of a classical symmetric bounded domain D. With the
exception of SO(2,2), H'(G,Z) = Z. This defines a central extension1 — Z — G —
G — 1and an extension class e € H2(G%, 7). On the other hand, the Bergman metric on
Dis G-invariant, so it defines a regulator class r € H2 (G, R). It is proved in [Re 2], [Re 3]
that, first, these classes coincide up to a factor, and second, lie in the image of the bounded
cohomology: H2(G?, R) — H?(G®, R).

If Y is a compact Kihler manifold, p : ;(Y) — G a representation , s a holomor-
phic nonconstant section of the associated flat D-bundle, then one sees immediately that
(p*(r), " 1) > 0,50 p*(r), p*(e) # 0. Theorem 0.1 follows now from the analysis of VHS
given in sections 3, 4. To prove Theorem 0.2 notice that the case when Y fibers over a curve
is obvious, otherwise Y admits a holomorphic map to a quotient of the Siegel half-plane
and the proof proceeds as before.

Remark. — By [CT], the result of Theorem 0.1 is true for lattices in SU(n, 1).

9. Nonrigid representations

PrROPOSITION 9.1. — Let Y be compact Kéhler and letp : m(Y) — SL(n,C) bea
nonrigid irreducible representation. Then H?(t;(Y), R) # 0.

Proof. — Letg = sl(n, C) and let p be the adjoint representation. We know that
H'(m(Y),g) # 0. Therefore H' (Y, g) # 0 where g is the local system. By the Simpson’s
hard Lefschetz ([Sim 1]), the multiplication by w”~! gives an isomorphism H'(Y,g) —
H*"~1(Y,g), where w is the polarization class and n = dim¢ Y. The Poincaré duality
implies that the Goldman’s pairing H! (Y, g) x H!(Y,g) — C is nondegenerate. Let z be
homology class in H(Y), dual to w”~1, and Z its image in H,(m;(Y)). It follows that the
pairing H' (11, (Y), g) x H' (11, (Y), g) — Cdefined by f, g — [(f, g), 2] is nondegenerate.
Here (f,g) € H?(m;,C) is the pairing defined by the Cartan-Killing form. In particular,

z#0.



CoroLLARY 10.1. — Let Y a compact Kdhler manifold. Ifr, (Y) has a Zariski dense
representation in either Sp(4) or SO(2, n), n odd, then H?(;(Y), R) # 0.

Proof. — For rigid representations, this is proved in Theorems 0.1, 0.2. For non-
rigid representations, this follows from Proposition 9.1.

CoroLLARY 9.2. — LetT be any overgroup of a Zariski dense countable subgroup
of Sp(4) or SO(2, n), n odd. Suppose by (T) = 0. Then the universal central extensionsT is
not Kéhler.

10. Three-manifolds groups are not Kahler

In this section, based on the previous development, we will present a strong evi-
dence in favour of the following:

CoNJECTURE 10.1. — Let M be irreducible closed 3-manifold with T = (M)
infinite. ThenT is not Kéhler.

——

ProposITION 10.2 (Seifert fibration case). — A cocompact lattice in SL(2, R) is not
Kéhler.

Proof. — Passing to a subgroup of finite index, we can assume that I' is a central
extension of a surface group:

1 —Z—T—m(S) —1

with a nontrivial extension class. In particular, H!(I', Q) ~ H!(m(S),Q)), so the multi-
plication in H'(T, Q) is zero, which is impossible if I is Kahler.

Recall that “most” of closed three-manifolds admit a Zariski dense homomorphism
m (M) £ SL,(C) (ICGLS], [Re 1]).

THEOREM 10.3. — Let M® be atoroidal. Suppose there exists a Zariski dense ho-
momorphism p : (M) — SL,(C). ThenT = (M) is not Kéhler.

Proof. — By a theorem of [Zi] 111 (M) does not have property T. By the Main The-
orem, H2(T,R) # 0, hence by [Th], M is hyperbolic, which is impossible by [CT].

Alternatively, p is not rigid by [Sim 1], so H?(T, R) # 0 by Proposition 9.1, and then
one procedes as before.
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Remark. — In view of [CGLS], [Re 1], we obtain a huge number of groups which
are not Kdhler.

11. Central extensions of lattices in Psu(2,1)

We saw a general result, that, if [ C SU(n,1) a cocompact lattice and [w] €
H?(T, Z) is given by any ample line bundle, then a central extension

0—7Z—T—T—1

with the extension class [w] is not Kéhler. For n = 2 one can also prove:

TueoREM 11.1. — Letw € H?(B?/T,Z)N(H*°®H"?), w # 0. Then an extension
0—7 —3Tp —T—51

with the extension class w is not Kahler.
Remark. — H?° becomes big on étale finite coverings of B?/T by Riemann-Roch.

Proof. — Suppose T, = m(Y). The representation r;(M) — I — SU(2,1)
is rigid by the Lyndon-Serre-Hochschild spectral sequence. It follows that there exists a
dominating holomorphic map ¥ — B?/T. But then the pullback map on H?? is injective,
a contradiction.

12. Smooth hypersurfaces in ball
quotients which are not K (m, 1)

We saw that under various algebraic assumptions on I = 11;(Y), there is a class in
H?(Y,R) which vanishes on the Hurewitz image m,(Y) — Hx(Y,Z), therefore defining
a nontrivial element of H?(I', R). On the contrary, we will show now that there are hy-
persurfaces Y in ball quotients B"/T, n > 3 with a surjective map 11;(Y) — I such that
11;(Y) # 0 for some i. The proofis very indirect and we don’t know the exact value of i. The
varieties Y were in fact introduced in [To] where it is proved that 71 (Y) is not residually
finite. We will show that cd(m;(Y)) > 2n — 1, therefore Y is not K(, 1).

Let X" be an arithmetic ball quotient and let X, C X be a totally geodesic smooth
hypersurface. Let D = X — Xy, then D is covered topologically by C* minus a countable
union of hyperplanes, so D is K(1r,1). Let S be a boundary of a regular heighbourhood of
Xo, so S is a circle bundle over Xy, in particular Sis K(, 1) and 771 (S) is a central extension
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0 - Z — m(S) = m(X) — 1 with a nontrivial extension class (this is because the
normal bundle to X, is negative). Let V be a finite dimensional module over 1 (X) with
an invariant nondegenerate form V — V'. We have an exact sequence

H" Y (m(X), V) — H*" " Y(m,(X), V) @ H*" ' (m,(D), V)
— BN (m(S), V) — H*"(my(X), V) — -~

Now, we make a first assumption:

1) H(m(X), V) = 0.

It follows that Hy(m, (X), V) = 0, so H?"(1r,(X), V) = 0; we make a second as-
sumption :

2) H'(m (X), V) = 0.

It follows that H2"~! (11, (X), V) = 0. So we have (remember that X, has dimension
n—1)
H*""!(my(D), V) =~ H*""(m1(8), V) .

Now, in the E? of the Lyndon-Serre-Hochschild spectral sequence for H*(mr;(S), V) the
term H?"~2(mr,(Xp), H'(Z, V)) is not hit by any differential. Since 7 acts trivially, this is
just H*"~2(111(Xp), V) ~ Hyp(111(Xp), V). We now make a third assumption:

3) HO(11(Xo), V) # 0.

Then we will have H*"~1(1r;(D), V) # 0. Let Y be a generic hyperplane section of
X /Xy, constructed in [To], then [GM], 11 (Y) = (D) and we are done.

Now, we take for V the adjoint module. The assumption 2) follows from Weil’s rigid-
ity. The assumption 3) is satisfied for standard examples of X ([To]).

Remark. — The construction of [To] is given for lattices in SO(2, n), but it applies

verbatim here.
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