STRUCTURE OF KÄHLER GROUPS, I : SECOND COHOMOLOGY

by Alexander REZNIKOV

0. Introduction

Fundamental groups of complex projective varieties are very difficult to understand. There is a tremendous gap between few computed examples and few general theorems. The latter all deal with either linear finite dimensional representations ([Sim]) or actions on trees ([Gr-Sch]); besides, one knows almost nothing.

This paper presents a new general theorem, partially settling a well-known conjecture of Carlson-Toledo ([CT]).

MAIN THEOREM. — Let Γ be a fundamental group of a compact Kähler manifold. Assume Γ is not Kazhdan. Then $H^2(\Gamma, \mathbb{R}) \neq 0$.

COROLLARY. — Suppose Δ is not Kazhdan and $b_1(\Delta, \mathbb{Q}) = 0$. Let $\widetilde{\Delta}$ be the universal central extension $0 \to H_2(\Delta, \mathbb{Z}) \to \widetilde{\Delta} \to \Delta \to 1$. Then Γ is not a fundamental group of a compact Kähler manifold.

Examples.

1. Any torsion group Δ of an intermediate growth is amenable, therefore not Kazhdan, besides, $b_1(\Delta, \mathbb{Q}) = 0$.

2. Any lattice in SU(n, 1) is not Kazhdan; some of them have finite abelianization. However, in this case one can do better, see remark in section 8 below.

THEOREM 0.1. — Let Γ be a fundamental group of a complex projective variety. Suppose Γ has a Zariski dense rigid representation in SO(2, *n*), *n* odd. Then

(i) $H^2(\Gamma, \mathbb{R}) \neq 0$.

Mots-clés : Kähler groups, property *T*.

³

(ii) Moreover, $H_h^2(\Gamma, \mathbb{R}) \neq 0$ and the canonical map $H_h^2 \to H^2$ is not zero.

COROLLARY 0.1. — Let Δ be a lattice in SO(2, n), n odd, uniform or not. Let $\widetilde{\Delta}$ be a universal central extension of Δ . Then Δ is not a fundamental group of a complex projective variety.

THEOREM 0.2. — Let Γ be a fundamental group of a complex projective variety. Suppose Γ has a Zariski dense rigid representation in Sp(4). Then

(i) $H^2(\Gamma, \mathbb{R}) \neq 0$.

(ii) Moreover, $H_h^2(\Gamma, \mathbb{R}) \neq 0$ and the canonical map $H_h^2 \to H^2$ is not zero.

COROLLARY 0.2. — Let Δ be a lattice in Sp(4). Then $\widetilde{\Delta}$ is not a fundamental group of a complex projective variety.

COROLLARY 0.3. — Lattices in Spin(2, *n*), *n* odd, and $\widetilde{Sp(4)}$ are not fundamental groups of a complex projective variety.

1. A geometric picture for rigid representations

Let *Y* be a compact Kähler manifold. All rigid irreducible representations ρ : $\pi_1(Y) \to SL(N, \mathbb{C})$ are conjugate to representations landing in a $SU(m, n) \subset SL(N, \mathbb{C})$ with m + n = N ([Sim 1]) and have a structure of complex variation of Hodge structure ([Sim 1]). Moreover, we can always arrange that this conjugate representation is defined over $\overline{\mathbb{Q}}$ (see e.g. [Re 1]). Relabeling , we assume that ρ itself is defined over $\overline{\mathbb{Q}}$. We assume that moreover, ρ is defined over $\mathcal{O}(\overline{\mathbb{Q}})$; by a conjecture of Carlos Simpson ([Sim 1]) this is always the case. Let $\{\rho_i\}$ be all the Galois twists of ρ , then ρ_i are rigid therefore land in $SU(m_i, n_i)$. The image of $\pi_1(Y)$ in $\prod SU(m_i, n_i)$ is discrete; call it Γ .

Coming back to ρ , consider a corresponding θ -bundle E ([Sim 1]). It has the following structure: $E = \bigoplus_{p+q=k} L^{p,q}$ and θ maps $L^{p,q}$ to $L^{p-1,q+1} \otimes \Omega^1$. Any θ -invariant subbundle of E has negative degree; in particular, the degree of $L^{k,0}$ is positive. A harmonic metric K in E is the unique metric satisfying the equation ([Hit]) $F_K = [\theta, \theta^*]$. The hermitian connection ∇_K leaves all $E^{p,q}$ invariant. The connection $\nabla_K + \theta + \theta^*$ is flat with monodromy ρ . Let V be the corresponding flat holomorphic bundle. In V, we have a flag of holomorphic subbundles $F^p = V^{k,0} \oplus \cdots \oplus V^{p,k-p}$, where $V^{p,q}$ are $E^{p,q}$ thought as C^{∞} subbundles of V with its new holomorphic structure. We have therefore a ρ -equivariant

map $\widetilde{Y} \xrightarrow{s} D$, where *D* is a corresponding Griffiths domain ([G], ch. I–II). Changing the sign of *K* alternatively on $V^{p,q}$ we obtain a flat pseudo-hermitian metric in *V*.

So if $m = \bigoplus_{p \text{ even}} \dim V^{p,q}$, $n = \bigoplus_{p \text{ odd}} \dim V^{p,q}$, then ρ lands in SU(m, n). The Grif-

fiths domain *D* carries a horizontal distribution defined by the condition that the derivative of F_p lies in F_{p+1} . The developing map *s* is horizontal. Differentiating this condition we obtain a second order equation ([Sim 1]) $[\theta, \theta] = 0$, in other words for *Z*, $W \in T_x Y$, $\theta(Z)$ and $\theta(W)$ commute.

Since the image of $\pi_1(Y)$ in $\prod_i SU(m_i, n_i)$ is discrete, we obtain

PROPOSITION 1.1 (Geometric picture for rigid representations). — Let $\rho : \pi_1(Y) \rightarrow SL(N, \mathbb{C})$ be a rigid irreducible representation, defined over $\mathcal{O}(\overline{\mathbb{Q}})$. Then there exist Griffiths domains $D_i = SU(m_i, n_i)/K_i$, a discrete group Γ in $\prod SU(m_i, n_i)$ and a horizontal holomorphic map

$$S: Y \longrightarrow \prod D_i / \Gamma$$

which induces ρ and all its Galois twists.

Remark. — Though a Griffiths domain *D* is topologically a fibration over a hermitian symmetric space with fiber a flag variety, generally it does not have a SU(m, n)-invariant Kähler metric. So the complex manifold $\prod D_i/\Gamma$ is not Kähler.

Remark. — This proposition tells us that one cannot expect too many compact Kähler manifolds to have a nontrivial linear representation of their fundamental group, of finite dimension.

LEMMA 1.2 (Superrigidity).

(1) Let $X = \Gamma \setminus SU(m, n)/S(U(m) \times U(n))$ be a compact hermitian locally symmetric space of Siegel type I. Let Y be compact Kähler and let $f : Y \to X$ be continuous. If $f_* : \pi_1(Y) \to SU(n, m)$ is rigid and Zariski dense, e.g. $f_* : \pi_1(Y) \to \Gamma$ an isomorphism, then either f is homotopic to a holomorphic map, or there exists a compact complex analytic space Y', dim Y' < dim X, and a holomorphic map $\varphi : Y \to Y'$ such that f is homotopic to a composition $Y \xrightarrow{\varphi} Y' \xrightarrow{f_1} X$.

(2) Let $X = \Gamma \setminus SO(2, n)/S(O(2) \times O(n))$ be of Siegel type IV. Let Y be compact Kähler and let $f : Y \to X$ be continuous. If $f_* : \pi_1(Y) \to SO(2, n)$ is rigid and Zariski dense then either f is homotopic to a holomorphic map f_0 , or n is even and there exists a compact complex analytic space Y', dim Y' < dim X, and a holomorphic map $\varphi : Y \to Y'$ such that f is homotopic to a composition $Y \xrightarrow{\varphi} Y' \xrightarrow{f_1} X$.

(3) Let $X = \Gamma \setminus Sp(2n)/U(n)$ be of Siegel type III. Let *Y* be compact Kähler and let $f: Y \to X$ be continuous. If $f_*: \pi_1(Y) \to Sp(2n)$ is rigid and Zariski dense, then either *f* is homotopic to a holomorphic map f_0 , or there exists a compact complex analytic space *Y'*, dim *Y'* < dim *Y*, and a holomorphic map $\varphi: Y \to Y'$, such that *f* is homotopic to a composition $Y \xrightarrow{\varphi} Y' \xrightarrow{f_1} X$.

(4) Let $X = \Gamma \setminus Sp(4)/U(2)$ be a Shimura threefold. Let *Y* be compact Kähler and let $f : Y \to X$ be continuous. Then either *f* is homotopic to a holomorphic map f_0 , or there exists a (singular) proper curve *S*, and a holomorphic map $\varphi : Y \to S$, such that *f* is homotopic to a composition $Y \xrightarrow{\varphi} S \longrightarrow X$.

Remarks.

1. I leave the case of Siegel type II to the reader (the proof is similar).

2. If f_* is *not* rigid, one has strong consequences for $\pi_1(Y)$, see 9.1.

3. The lemma should be viewed as a final (twistorial) version of the superrigidity theorem ([Si]).

2. Proof of the Superrigidity Lemma (1)

(1) Since we are given a continuous map $Y \xrightarrow{f} X = \Gamma \setminus SU(m, n)/S(U(m) \times U(n))$ the map *S* of Proposition 1.1 is simply a holomorphic map $Y \to D/\Gamma$, where *D* is a Griffiths domain corresponding to the complex variation of Hodge structure, defined by $\rho = f_* : \pi_1(Y) \to SU(m, n)$. Suppose the Higgs bundle looks like $\oplus E^{p,q}$ where $E^{p,q}$ have dimensions $m_1, n_1, m_2, n_2, \ldots, m_s, k_s$ where k_s is possibly missing. Then $\sum m_i = m$, $\sum n_i = n$. Now, the dimension of the horizontal distribution is

$$m_1 \cdot n_1 + n_1 \cdot m_2 + m_2 \cdot n_2 + \cdots + m_s \cdot k_s$$

We notice that this number is strictly less than $m \cdot n = \dim X$ except for the cases:

I)
$$s = 1$$
, *i.e.* $E = E^{1,0} \oplus E^{0,1}$

II) $s = 2, k_2 = 0, i.e. E = E^{2,0} \oplus E^{1,1} \oplus E^{0,2}$.

In the first case, *D* is the symmetric space, and $D/\Gamma = X$ so we arrive to a holomorphic map to. $Y \to X$. In the second case the second order equation reads $\theta_1(Z)\theta_2(W) - \theta_1(W)\theta_2(Z) = 0$ where $\theta_1 : TY \otimes E^{0,2} \to E^{1,1}$ and $\theta_2 : TY \otimes E^{1,1} \to E^{2,0}$ are the components of the (horizontal) derivative *DS*. So the image of *DS* is strictly less than $\operatorname{Hom}(E^{0,2}, E^{1,1}) \oplus \operatorname{Hom}(E^{1,1}, E^{1,0}) = m \cdot n = \dim X$. In other words, $\dim Y' < \dim X$ where Y' = S(Y).

3. Variation of Hodge structure, corresponding to rigid representations to *SO*(2, *n*)

Let $\rho : \pi_1(Y) \to SO(2, n)$ be a Zariski dense rigid representation. Complexifying, we obtain a variation of Hodge structure $E = \bigoplus E^{p,q}$. Since ρ is defined over reals, we deal with real variation of Hodge structure ([Sim 1]) that is to say, $E^{p,q} = \overline{E^{p,q}}$ with respect to a flat complex conjugation. For $n \ge 3$, this leaves exactly two possibilities:

I)
$$E = E^{2,0} \oplus E^{1,1} \oplus E^{0,2}$$
, dim $E^{1,1} = n$, dim $E^{2,0} = \dim E^{0,2} = 1$

II) *n* is even, $E = E^{2,0} \oplus E^{1,1} \oplus E^{0,2}$, dim $E^{1,1} = 2$, dim $E^{2,0} = \dim E^{0,2} = n/2$.

In case I) the Griffits domain is the symmetric spaces $SO(2, n)/S(O(2) \times O(n))$ so the harmonic metric viewed as a harmonic section of the flat bundle with fiber a symmetric space, is holomorphic. In the second case the second order equation implies that the rank of the derivative *DS* of the ρ -equivariant holomorphic map $\widetilde{Y} \to D$ is strictly less than *n*.

Proof of the Superrigidity Lemma (2). — This follows immediately from the previous discussion in the same manner as in (1).

4. Variations of Hodge structure, corresponding to rigid representation to Sp(4)

Let $\rho : \pi_1(Y) \to Sp(2n)$ be a Zariski dense rigid representation. Complexifying, we obtain a representation $\pi : \pi_1(Y) \to SU(n, n)$ and a real variation of Hodge structure $E = \bigoplus_{p+q=k} E^{p,q}, E^{p,q} = \overline{E}^{q,p}$ and k odd. For n = 2 this leaves two possibilities:

(I) $E = E^{1,0} \oplus E^{0,1}$, and both $E^{1,0}$ and $E^{0,1}$, or rather $V^{1,0}$ and $V^{0,1}$ viewed as C^{∞} -subbundles of the flat bundle *V*, are lagrangian with respect to the flat complex symplectic structure. This means first, that the Griffiths domain *D* is the symmetric space $SU(2,2)/S(U(2) \times U(2))$, second, that the image of the equivariant horizontal holomorphic map $S : \tilde{Y} \to D$ lies in the copy of the Siegel upper half-space Sp(4)/U(2) under the Satake embedding ([Sa]). In other words, the unique ρ -equivariant harmonic map $\tilde{Y} \to Sp(4)/U(2)$ is holomorphic.

(II) $E = E^{3,0} \oplus E^{2,1} \oplus E^{1,2} \oplus E^{0,3}$ and dim $E^{p,q} = 1$. The second order equation for θ implies immediately that D_s has rank at most one everywhere on Y.

Proof of the Superrigidity Lemma (4). — Follows from the discussion above.

6. Variations of Hodge structure, corresponding to rigid representation to Sp(2n), and proof of the Superrigidity Lemma (3)

In general, the Higgs bundle is $E = \bigoplus_{p+q=2s+1} E^{p,q}$, $E^{p,q} = \overline{E^{p,q}}$. The dimension of the horizontal distribution is

$$d = \sum_{p < s} \dim E^{p,q} \cdot \dim E^{p+1,q-1} = \frac{\dim E^{s,s+1} \cdot (\dim E^{s,s+1} + 1)}{2},$$

since θ : $E^{s,s+1} \rightarrow E^{s+1,s}$ viewed as bilinear form, should be symmetric. Moreover, $\sum_{p \le s} \dim E^{p,q} = n$. An elementary exercise shows that if s > 1, $d < \frac{n(n+1)}{2}$. If s = 1, we get a holomorphic map to the Siegel upper half-plane.

7. Regulators, I: proof of the Main Theorem

The reader is supposed to be familiar with the geometric theory of regulators ([Re 1], [Co]).

Let \mathbb{H} be a complex Hilbert space. The constant Kähler form (dX, dX) is invariant under the affine isometry group Iso(\mathbb{H}), and \mathbb{H} is contractible, therefore there is a regulator class in $H^2(\text{Iso}^{\delta}(\mathbb{H}), \mathbb{R})$. In fact, there is a class ℓ in $H^1(\text{Iso}^{\delta}(\mathbb{H}), \mathbb{H})$ defined by a cochain $(x \mapsto Ux + b) \longmapsto b$. The regulator class in simply (ℓ, ℓ) .

If $\pi_1(Y)$ does not have property *T*, then there exist a representation $\rho : \pi_1(Y) \to \operatorname{Iso}(\mathbb{H})$ and a holomorphic nonconstant section *S* of the associated flat holomorphic affine bundle with fiber \mathbb{H} ([Ko-Sch]). It follows that the pull-back $\rho^*((\ell, \ell))$ of the regulator class to $H^2(\pi_1(Y), \mathbb{R})$ restricts to a cohomology class in $H^2(Y, \mathbb{R})$, given by a non-zero semi-positive (1, 1) form. Multiplying by the ω^{n-1} , where ω is a Kähler form, and $n = \dim Y$, and integrating over Y we get a positive number, therefore this cohomology class is non-zero. Therefore $H^2(\pi_1(Y), \mathbb{R}) \neq 0$.

Remark. — Historically, the first break through in this direction has been made in [JR], under assumption of having a nontrivial variation of a unitary representation. Compare Proposition 9.1 below.

Proof of the Corollary 0.2. — Since $\widetilde{\Delta} \to \Delta$ is surjective and Δ does not have property *T*, neither does $\widetilde{\Delta}$ ([HV]). Since $H_1(\Delta, \mathbb{Z})$ is finite, the Lyndon-Serre-Hochschild spectral sequence implies that $H^2(\widetilde{\Delta}, \mathbb{R}) = \emptyset$. So $\widetilde{\Delta}$ is not a Kähler group.

Remark. — Suppose $\pi_1(Y)$ does not have property *T*. Suppose moreover that that $\pi_1(Y)$ has a permutation representation in $\ell^2(B)$, where *B* is a countable set, and $H^1(\pi_1(Y), \ell^2(B)) \neq 0$. Then we actually proved that $H^2(\pi_1(Y), \ell^1(B)) \neq 0$. That is because the scalar product $\ell^2(B) \times \ell^2(B) \rightarrow \mathbb{C}$ factors through $\ell^1(B)$. Moreover, the canonical map $H^2(\pi_1(Y), \ell^1(B)) \rightarrow H^2(\pi_1(Y), \mathbb{C})$ is nonzero.

8. Regulators, II: proof of Theorems 0.1, 0.2

Let *G* be an isometry group of a classical symmetric bounded domain *D*. With the exception of SO(2, 2), $H^1(G, \mathbb{Z}) = \mathbb{Z}$. This defines a central extension $1 \to \mathbb{Z} \to \widetilde{G} \to G \to 1$ and an extension class $e \in H^2(G^{\delta}, \mathbb{Z})$. On the other hand, the Bergman metric on *D* is *G*-invariant, so it defines a regulator class $r \in H^2_{\text{cont}}(G, \mathbb{R})$. It is proved in [Re 2], [Re 3] that, first, these classes coincide up to a factor, and second, lie in the image of the bounded cohomology: $H^2_b(G^{\delta}, \mathbb{R}) \to H^2(G^{\delta}, \mathbb{R})$.

If *Y* is a compact Kähler manifold, $\rho : \pi_1(Y) \to G$ a representation, *s* a holomorphic nonconstant section of the associated flat *D*-bundle, then one sees immediately that $(\rho^*(r), \omega^{n-1}) > 0$, so $\rho^*(r), \rho^*(e) \neq 0$. Theorem 0.1 follows now from the analysis of *VHS* given in sections 3, 4. To prove Theorem 0.2 notice that the case when *Y* fibers over a curve is obvious, otherwise *Y* admits a holomorphic map to a quotient of the Siegel half-plane and the proof proceeds as before.

Remark. — By [CT], the result of Theorem 0.1 is true for lattices in SU(n, 1).

9. Nonrigid representations

PROPOSITION 9.1. — Let *Y* be compact Kähler and let $\rho : \pi_1(Y) \to SL(n, \mathbb{C})$ be a nonrigid irreducible representation. Then $H^2(\pi_1(Y), \mathbb{R}) \neq 0$.

Proof. — Let $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$ and let $\bar{\rho}$ be the adjoint representation. We know that $H^1(\pi_1(Y), \mathfrak{g}) \neq 0$. Therefore $H^1(Y, \mathfrak{g}) \neq 0$ where \mathfrak{g} is the local system. By the Simpson's hard Lefschetz ([Sim 1]), the multiplication by ω^{n-1} gives an isomorphism $H^1(Y, \mathfrak{g}) \rightarrow H^{2n-1}(Y, \mathfrak{g})$, where ω is the polarization class and $n = \dim_{\mathbb{C}} Y$. The Poincaré duality implies that the Goldman's pairing $H^1(Y, \mathfrak{g}) \times H^1(Y, \mathfrak{g}) \rightarrow \mathbb{C}$ is nondegenerate. Let z be homology class in $H_2(Y)$, dual to ω^{n-1} , and \bar{z} its image in $H_2(\pi_1(Y))$. It follows that the pairing $H^1(\pi_1(Y), \mathfrak{g}) \times H^1(\pi_1(Y), \mathfrak{g}) \rightarrow \mathbb{C}$ defined by $f, g \mapsto [(f, g), \bar{z}]$ is nondegenerate. Here $(f, g) \in H^2(\pi_1, \mathbb{C})$ is the pairing defined by the Cartan-Killing form. In particular, $\bar{z} \neq 0$.

COROLLARY 10.1. — Let *Y* a compact Kähler manifold. If $\pi_1(Y)$ has a Zariski dense representation in either Sp(4) or SO(2, n), *n* odd, then $H^2(\pi_1(Y), \mathbb{R}) \neq 0$.

Proof. — For rigid representations, this is proved in Theorems 0.1, 0.2. For non-rigid representations, this follows from Proposition 9.1.

COROLLARY 9.2. — Let Γ be any overgroup of a Zariski dense countable subgroup of Sp(4) or SO(2, n), n odd. Suppose $b_1(\Gamma) = 0$. Then the universal central extensions $\widetilde{\Gamma}$ is not Kähler.

10. Three-manifolds groups are not Kähler

In this section, based on the previous development, we will present a strong evidence in favour of the following:

Conjecture 10.1. — Let M^3 be irreducible closed 3-manifold with $\Gamma = \pi_1(M)$ infinite. Then Γ is not Kähler.

PROPOSITION 10.2 (Seifert fibration case). — A cocompact lattice in $SL(2, \mathbb{R})$ is not Kähler.

Proof. — Passing to a subgroup of finite index, we can assume that Γ is a central extension of a surface group:

$$1 \longrightarrow \mathbb{Z} \longrightarrow \Gamma \longrightarrow \pi_1(S) \longrightarrow 1$$

with a nontrivial extension class. In particular, $H^1(\Gamma, \mathbb{Q}) \simeq H^1(\pi_1(S), \mathbb{Q})$, so the multiplication in $H^1(\Gamma, \mathbb{Q})$ is zero, which is impossible if Γ is Kähler.

Recall that "most" of closed three-manifolds admit a Zariski dense homomorphism $\pi_1(M) \xrightarrow{\rho} SL_2(\mathbb{C})$ ([CGLS], [Re 1]).

THEOREM 10.3. — Let M^3 be atoroidal. Suppose there exists a Zariski dense homomorphism $\rho : \pi_1(M) \to SL_2(\mathbb{C})$. Then $\Gamma = \pi_1(M)$ is not Kähler.

Proof. — By a theorem of [Zi] $\pi_1(M)$ does not have property *T*. By the Main Theorem, $H^2(\Gamma, \mathbb{R}) \neq 0$, hence by [Th], *M* is hyperbolic, which is impossible by [CT].

Alternatively, ρ is not rigid by [Sim 1], so $H^2(\Gamma, \mathbb{R}) \neq 0$ by Proposition 9.1, and then one proceeds as before.

Remark. — In view of [CGLS], [Re 1], we obtain a huge number of groups which are not Kähler.

11. Central extensions of lattices in PSU(2, 1)

We saw a general result, that, if $\Gamma \subset SU(n, 1)$ a cocompact lattice and $[\omega] \in H^2(\Gamma, \mathbb{Z})$ is given by any ample line bundle, then a central extension

$$0 \longrightarrow \mathbb{Z} \longrightarrow \widetilde{\Gamma} \longrightarrow \Gamma \longrightarrow 1$$

with the extension class $[\omega]$ is not Kähler. For n = 2 one can also prove:

THEOREM 11.1. — Let
$$\omega \in H^2(B^2/\Gamma, \mathbb{Z}) \cap (H^{2,0} \oplus H^{0,2}), \omega \neq 0$$
. Then an extension
 $0 \longrightarrow \mathbb{Z} \longrightarrow \widetilde{\Gamma}_{\omega} \longrightarrow \Gamma \longrightarrow 1$

with the extension class ω is not Kähler.

Remark. — $H^{2,0}$ becomes big on étale finite coverings of B^2/Γ by Riemann-Roch.

Proof. — Suppose $\widetilde{\Gamma}_{\omega} = \pi_1(Y)$. The representation $\pi_1(M) \to \Gamma \to SU(2,1)$ is rigid by the Lyndon-Serre-Hochschild spectral sequence. It follows that there exists a dominating holomorphic map $Y \to B^2/\Gamma$. But then the pullback map on $H^{2,0}$ is injective, a contradiction.

12. Smooth hypersurfaces in ball quotients which are not $K(\pi, 1)$

We saw that under various algebraic assumptions on $\Gamma = \pi_1(Y)$, there is a class in $H^2(Y, \mathbb{R})$ which vanishes on the Hurewitz image $\pi_2(Y) \to H_2(Y, \mathbb{Z})$, therefore defining a nontrivial element of $H^2(\Gamma, \mathbb{R})$. On the contrary, we will show now that there are hypersurfaces *Y* in ball quotients B^n/Γ , $n \ge 3$ with a surjective map $\pi_1(Y) \to \Gamma$ such that $\pi_i(Y) \neq 0$ for some *i*. The proof is very indirect and we don't know the exact value of *i*. The varieties *Y* were in fact introduced in [To] where it is proved that $\pi_1(Y)$ is not residually finite. We will show that $cd(\pi_1(Y)) \ge 2n - 1$, therefore *Y* is not $K(\pi, 1)$.

Let X^n be an arithmetic ball quotient and let $X_0 \subset X$ be a totally geodesic smooth hypersurface. Let $D = X - X_0$, then D is covered topologically by \mathbb{C}^n minus a countable union of hyperplanes, so D is $K(\pi, 1)$. Let S be a boundary of a regular heighbourhood of X_0 , so S is a circle bundle over X_0 , in particular S is $K(\pi, 1)$ and $\pi_1(S)$ is a central extension

 $0 \to \mathbb{Z} \to \pi_1(S) \to \pi_1(X_0) \to 1$ with a nontrivial extension class (this is because the normal bundle to X_0 is negative). Let *V* be a finite dimensional module over $\pi_1(X)$ with an invariant nondegenerate form $V \to V'$. We have an exact sequence

$$H^{2n-1}(\pi_1(X), V) \longrightarrow H^{2n-1}(\pi_1(X_0), V) \oplus H^{2n-1}(\pi_1(D), V)$$
$$\longrightarrow H^{2n-1}(\pi_1(S), V) \longrightarrow H^{2n}(\pi_1(X), V) \longrightarrow \cdots$$

Now, we make a first assumption:

1) $H^0(\pi_1(X), V) = 0.$

It follows that $H_0(\pi_1(X), V) = 0$, so $H^{2n}(\pi_1(X), V) = 0$; we make a second assumption :

2)
$$H^1(\pi_1(X), V) = 0.$$

It follows that $H^{2n-1}(\pi_1(X), V) = 0$. So we have (remember that X_0 has dimension n-1)

$$H^{2n-1}(\pi_1(D), V) \simeq H^{2n-1}(\pi_1(S), V)$$
.

Now, in the E^2 of the Lyndon-Serre-Hochschild spectral sequence for $H^*(\pi_1(S), V)$ the term $H^{2n-2}(\pi_1(X_0), H^1(\mathbb{Z}, V))$ is not hit by any differential. Since \mathbb{Z} acts trivially, this is just $H^{2n-2}(\pi_1(X_0), V) \simeq H_0(\pi_1(X_0), V)$. We now make a third assumption:

3) $H^0(\pi_1(X_0), V) \neq 0.$

Then we will have $H^{2n-1}(\pi_1(D), V) \neq 0$. Let *Y* be a generic hyperplane section of *X*/*X*₀, constructed in [To], then [GM], $\pi_1(Y) = \pi_1(D)$ and we are done.

Now, we take for *V* the adjoint module. The assumption 2) follows from Weil's rigidity. The assumption 3) is satisfied for standard examples of X_0 ([To]).

Remark. — The construction of [To] is given for lattices in SO(2, n), but it applies verbatim here.

References

- [Co] K. CORLETTE. Rigid representations of Kählerian fundamental groups, J.D.G. 33 (1991), 239–252.
- [CT] J. CARLSON, D. TOLEDO. Harmonic maps of Kähler manifolds to locally symmetric spaces, Publ. IHES 69 (1989), 173–201.
- [CGLS] M. CULLER C. GORDON, J. LUECKE, P. SHALEN. Dehn surgery on knots, Annals of Math., 124.
- [G] PH. GRIFFITHS, ED.. Topics in transcendental algebraic geometry, Princeton UP, 1984.

- [Gr-Sch] M. GROMOV, R. SCHOEN. Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math. Inst. Hautes Étud. Sci. 76 (1992), 165–246.
- [GS] PH. GRIFFITHS, W. SCHMIDT. Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253–302.
- [HV] P. de la HARPE, A. VALETTE. La propriété (T) de Kazdhan pour les groupes localement compacts, Astérisque 175, (1989).
- [Hit] N. HITCHIN. The self-duality equation on a Riemann surfaces, Proc. London Math. Soc. 55 (3) (1987), 59–126.
- [JR] F.E.A. JOHNSON, E.G. REES. On the fundamental group of a complex algebraic manifold, Bull. Lond. Math. Soc. 19 (1987), 463–466.
- [Ko-Sch] N. KOREVAAR, R. SCHOEN. Global existence theorems for harmonic maps to non locally compact spaces, Commun. Anal. Geom. 5 (2) (1997), 333–387.
- [Pa] M. PAUN. Private communication,.
- [Re 1] A. REZNIKOV. Rationality of secondary classes, J. Differential Geom. 43 (1996), 674–692.
- [Re 2] A. REZNIKOV. Three-manifolds class field theory, Selecta Math. 3 (1997), 361–399.
- [Re 3] A. REZNIKOV. Subvarieties of locally symmetric hermitian spaces have positive simplicial volume, preprint, 1998.
- [Sa] I. SATAKE. Algebraic structures of symmetric domains, Princeton UP, 1980.
- [Sim 1] C. SIMPSON. Higgs bundles and local systems, Publ. IHES 75 (1992), 5–95.
- [Sim 2] C. SIMPSON. Moduli of representations of the fundamental group of smooth projective variety, Publ. IHES 79 (1994), 47–129, 80 (1994), 5–79.
- [Si] Y.-T. SIU. The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. Math. 112 (1980), 73–111.
- [Th] W. THURSTON. The geometry and topology of three manifolds, Lecture notes, Princeton University.
- [To] D. TOLEDO. Projective varieties with non-residually finite fundamental group, Publ. IHES 77 (1993), 103–119.
- [Zi] R. ZIMMER. Ergodic theory and semisimple groups, Monographs in Maths, vol. 81, Boston-Basel-Stuttgart, 1981.

 $-\Diamond -$

Department of Mathematical Sciences University of Durham Durham DH1 3LE (UK)

Current address : Université de Grenoble I Institut Fourier UMR 5582 UFR de Mathématiques B.P. 74 38402 St MARTIN D'HÈRES Cedex (France)

reznikov@daphne.polytechnique.fr reznikov@thetis.mpim-bonn.mpg.de