THE STRUCTURE OF THE QUANTUM
SEMIMARTINGALE ALGEBRAS

by Stéphane ATTAL

ABSTRACT. — In the theory of quantum stochastic calculus one dis-
poses of two quantum semimartingale algebras S and S’. The first one is an
algebra for the composition of operators and it allows a quantum functional cal-
culus for analytical functions. The second one is larger and is an algebra for the
operations of quantum square and angle brackets. In this article we study the al-
gebraic and analytic properties of these algebras. This study is mainly performed
through a remarkable transform of quantum processes which, surprisingly, estab-
lishes a bijection in between these two algebras. This bijection allows to give
norms on these algebras that equip them with Banach algebra structures.

INTRODUCTION

The quantum stochastic calculus on Fock space, defined by Hudson and
Parthasarathy ([H-P]) is a non-commutative extension of the usual stochastic cal-
culus. It deals with operators on the boson Fock space ® = I'(L?(R*)) and allows
to define quantum stochastic integrals

t
/ H; da
0

of adapted operator processes (H;)s>o with respect to the three basic quantum
noises (aj )i>0, (a; )i>0, (af)i>0 (creation, annihilation and conservation pro-
cesses) and with respect to the time process (a;)i>0. The resulting operator
f(f H; daf is only defined on a particular subspace of ®, the space £ of coherent
vectors. This domain constraint prevents quantum stochastic integrals from being
composed. A quantum Ito formula was nevertheless established in a weak sense.
It was actually a quantum Ito integration by part formula that is, for the “com-
position” of two quantum stochastic integrals 7; and S;. In their formulation all
operator compositions H K were replaced by expressions of the form

(H"e(v), Ke(u))
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where e(v),e(u) are arbitrary coherent vectors. Their formula admitted no exten-
sion to further functional calculus. For example, it is impossible to extract from
this formulation a formula for the third power of a quantum stochastic integral.

In [A-M], the definition of quantum stochastic integrals is extended to arbi-
trary domains in ®. As a consequence one may have bounded quantum stochastic
integrals defined on the whole of ®. This allows composition and a true quan-
tum Ito integration by part formula. In [Atl], a space S of quantum stochastic
processes of the form

t
T,=M+ Y /Hgdag,
0

e=+,0,—,X
defined on all ® is obtained, and it is proved that S forms an algebra under
operator composition (it is even a x-algebra through the adjoint mapping). This
algebra S thus allows polynomial functional calculus. In [ViS] it is proved that
the functional calculus on S can be extended to analytical function, and even to
C?* functions for the self-adjoint elements of S. The algebra S deserves its name:
the algebra of regular quantum semimartingales.

In [Atl] a theory of quantum square and angle brackets is also described.
These quantum brackets are the non-commutative extensions of the square and
angle brackets of classical stochastic calculus ([Mey]). The integration by part
formula on S then takes the following familiar form:

t t
STy = SaTo+ [ SudTy+ [ dS.T, +15,7 (1)
0 0

If (S¢)i>0 and (T)¢>0 are in S then so is (S¢T%)¢>0, but in general none of the
three processes appearing in the right hand side of (1) belongs to S. Indeed,
they satisfy the same kind of properties as the elements of S, but they are not in
general made of bounded operators. This remarks brought to define another space
S', which is larger than S and which always contains the processes ( fot SsdTs)e>0,
(Js dSsTy)i0, (S, Tle)eo for S,T € S.

The space S’ happens also to be a x-algebra but for the square bracket
product :
xS — 8
(S.,T.) — ([S., T]t)e>0-
In this article we give a deep study of S and &', their relations and their alge-
braic properties. We study some norms on them and prove that they are Banach
algebras.

The main point is the definition of a transform D which maps quantum
stochastic processes to quantum stochastic processes, which is invertible and which
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establishes a perfect bijection between S and S’. This result is surprising for the
following reasons:

— it is very simply described,
— it proves that the algebra S is large,

— the transform D has the property to make bounded operator processes which
were not.

[I. ELEMENTS OF QUANTUM STOCHASTIC CALCULUS

II.1. The Fock space

oo

The Fock space ® = I'(L*(R*")) is the direct sum € L?(RT)®" on the n-th
n=0

symmetric tensor products of L?(R*) (cf. [Par] for complements). A good way to

understand ® is to use Guichardet’s notations ([Gui]). Let P be the set of finite
subsets of RT, then P = U, P,, where Py = {0} and P, is the set of n-elements
subsets of Rt . Identifying P,, with the increasing simplex ¥, = {0 < t; < --- <
t,} one can equip P, with the Lebesgue measure structure. By putting the Dirac
mass dg on Py, this altogether gives a structure of o-finite measured space to P,
whose only atom is {§}. It is not difficult to see that L?(P) is naturally isomorphic
to ® by identifying n-variable symmetric functions on R* to functions on X,,. In
this article the Fock space ® will always be understood as L?(P). Elements of
P are denoted by small Greek letters o, 7, w,... and the corresponding volume
element is denoted by do, dr,dw, ...

Let us set some notations and recall some basic results in this context. For all
o € P, we denote by vo the maximum of ¢ (if o = @) and by o- the set o \ {vo}.
For all t € R* and all o € P let 0y = o N [0,t], 0 = oN]t, +oof, c Ut = o U {t}.
Let Py (resp. P(;) be the set of ¢ € P such that o C [0,t] (resp. o C [t,+00]).
The space L?(Py)) (resp. L?(P()) is identified with the subspace of f € L*(P)
such that f(o) = 0 whenever o ¢ [0,t] (resp. o ¢ [t,+00[). One also writes
@t] = L2(Pt)) and @[t = LQ(P(t).

For all u € L2(RT) let e(u) be the element of ® such that [e(u)](c) = [] u(s)

s€o

(with the empty product being equal to 1). The vectors £(u) are called coherent
vectors on ®. The space £ generated by the coherent vectors is dense in ®. The
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vaccum vector is the vector 1 = £(0) that is 1(o) = dg(o). Note that, for all
u € L2(R*) one has ||e(u)||> = ell“l’. For u € L2(R*) and ¢t € R one writes
ug = uljg g and uy = ullp 4 oo- The mapping

@ e ét] ® é[t
e(u) — e(uyg) ® e(up)

extends to an isomorphism between ® and ®; ® ®[;. This property is the so-called
continuous tensor product structure of ®.

I1.2. Calculus on &

We are now going to define some useful operators on ®. Let t € RT \ {0}. Let
P; be the orthogonal projection from & onto ®;. That is,

[P f](e0) = f(o)1p, ().
We define [Py f](0) = dp(0) f(0). The vector Py f is often seen as a scalar namely,
(D) instead of f(0)1.

For a f € ® and t € Rt define
[D:f)(0) = fle Ut)1p, (o)
for all ¢ € P. One can easily check the following (cf. [At2]).

LeEMMA 1. — For all f € ® one has
/ / D f)(0) Pdodt = | £I2 — | F D).
o Jp

Thus, for all f € §, almost all t € R, D, f is an element of ®.
A family (g¢)¢>0 of elements of ® is said to be an Ito integrable process if:
i) (t,0) = g¢(0o) is measurable on Rt x P,
ii) g; € ®y for all ¢,
i) [ [lgel|*dt < oo.

If (g9¢)¢>0 is an Ito integrable process define fooo gsdxs by

[/Ooo gsdxs] (o) = {2\/0(0—) i)ftgerzw?se.

See [At2] for the proof of the following.



LEMMA 2. — For all Ito integrable process (g;)i>o0 one has

/ H/Oo gsdxs] (")‘Qd" = /Oo llgslI*ds < oo.
P 'tJo o

Thus [;° gsdxs belongs to ®.

From all these definitions and lemmas, one easily deduces the following

THEOREM 3 (Fock space predictable representation property). — For all f €
®, the process (D f)¢>o is Ito integrable. One has the unique representation
oo
f=ni+ [ Dusi (2)
0
with
2 * 2
IR = Pof + [ D fIds 3)
and
_ oo
(9.1) = FagPof + | (D.g. D.f)ds @)
0
for all g € ®.

We denote by fab gsdxs the Ito integral [ gslljq p)(s)dXs-

[1.3. Adaptedness

An operator H on ® is said to be adapted at time t (or t-adapted) if H is of
the form H; ® I in the tensor product structure ® ~ &, ® ®[;, for some operator
H; on ®,. If the operator H is defined on the coherent vector domain £, the
t-adaptedness writes as follows:

i) He(uy) € By,
ii) He(u) = [He(ugy)] ® e(up)

for all uw € L?(R"). An adapted process of operators on ® is a family (Hy);>o of
operators defined on a domain D such that

i) t — H;f is measurable for all f € D,

ii) Hy is t-adapted, for all t € RT.



[I.4. Quantum stochastic integrals

Let us recall the generalized definition of quantum stochastic integrals as defined
in [A-M].

Let D be a domain on ® such that f € D implies P;f € D and D;f € D for a.a
t € RT. Such a domain D is called adapted domain.

Let (Hf)¢>0, € = +, —, 0, X, be four adapted processes of operators on D satis-
fying
t t t t
[ 1D gas+ [ s popase [ Daglds+ [ Rlds < oo 3
0 0 0 0
for all f e D, allt e R,

An adapted process of operators (T})¢>¢ is said to be the quantum stochastic
integral process

t
T, = Z /Hgda;i, t e Rt (6)
0

e=+,0,—,X
on the domain D if
i) D C DomTy,
ii) [)|ITDsf||?ds < oo for all f € D, all t € RF,
iii) for all t € RT, all f € D one has

t t t
T,Pf = / T,D, fdxs + / HOD, fdy, + / HY P, fdy,
0 0 0

t t
+/ H;Dsfds+/ H}P;fds. (7)
0 0

THEOREM 4 ([A-M]). — On the adapted domain £ and under the condition
(5), the equation (7) admits a unique solution (T})¢>0 on £ which is determined
by the identity

t
COTiew) = Y [ K <) Hisw) > ds
e=+,0,—,X 0
for all u,v € L?*(R*), all t € Rt and where
v(s)u(s) if e=

|
o

ey ) (s) if e=+
he(s) = u(s) if e=-—
1 if e =x.



THEOREM 5 ([A-M]) (Quantum Ito formula). — Let Ty = Y [i H da$ and
g

Sy = fg K¢ das, t € R, be quantum stochastic integrals on the whole of ®.
1>

Then (S¢T})¢>0 is a quantum stochastic integral process on the whole of ® and

t t t
ST =Y /0 SeHS dag + /0 K:Ty das + /0 K2H?dal
> >

t t t
+/ K; Hda; +/ K;”deaj+/ K;H}da}.
0 0 0

Ill. THE ALGEBRAS OF QUANTUM SEMIMARTINGALES

[ll.1. The algebra S

Let S be the space of quantum stochastic integral processes (T;);>0 made of
bounded operators and such that Ty = ) f(f H:da% on &, with all the operators

g

H¢ being bounded and ¢ — ||HE|| € L{O(f)(HRJF) with f(0) = +oo, f(+) = f(—) =2,
fx) = 1.

THEOREM 6 ([Atl]). — The stochastic integral representation of each element
(Tt)¢>0 of S can be extended to the whole of ®. The mapping t — ||T;|| belongs to
L (RT). The space S is a x-algebra for the adjoint mapping and the composition
of operators.

The algebra S admits another characterization which expresses only in terms
of (T})¢>0 (and not of its coefficients HZ). This characterization can be found in
[At1], but will not be used here.

The interesting point with S is that Theorem 6 allows to perform a polynomial
functional calculus on S and to derive associated quantum Ito formulae ([Atl]).
This functional calculus can even be extended to analytical functions (and to C?+
functions in the case of self-adjoint elements of S), cf. [ViS]. These results show
that S really behaves like a space of quantum semimartingales.



l1.2. Quantum brackets, the algebra S’

For T; = ) fg H:daZ and Sy = f(f K:da, elements of S define
t : t :
/ SedTs =) / SyHEdas
0 — Jo
t t
/ dS,T, =) / K:T,daS
0 - Jo
t t t t
[S, T :/ K2 H?dal +/ K; Hlda; +/ K H}da? +/ K; H}ds
0 0 0 0

t
(S, T); = / K, H; ds.
0
The last two expressions are respectively called quantum square bracket and quan-
tum angle bracket of S and T'.

The quantum Ito formula on S then writes

t t
ST, = / S.dT, + / dS,T, + [S,T],.
0 0

In general, none of the processes (f(;5 SsdTs)¢>0, (f(;5 dSsTs)e>0 and ([S, T]¢)e>0
is in S ; only their sum is. These three process actually belong to a larger space.
Let S’ be the space of adapted processes (T;);>o such that T; = }° f(f H:da on

€

&, with all the operators HE being bounded and ¢ — ||Hf|| € Lf;(f) (Rt) with
f0) =+o0, f(+) = f(=) =2, f(x) = 1.
The definition of &’ is exactly the same as the one of S excepted that one does

not ask the operators 7T; to be bounded.

Clearly S’ contains S. The inclusion is strict, for (af)t>0, (a; )e>0, (af)t0
belong to §’ and not to S.

THEOREM 7 ([Atl]). — The mapping (S,T) +— [S,T] is well-defined from
S'x 8" to S'. The space S’ is a x-algebra for the adjoint mapping and the product
(S,T) = [S,T].

The mapping (S,T) — (S, T) is well-defined from &' x §' to S.

The mappings (S,T) ~ [,dSsTs and (S,T) — [, TydS, are well-defined from
S'xStoS.

One has to keep in mind the different possible roles of S': it is a space which
extends S, but it is also an algebra for a product which is different from the one
of S. As spaces we have S C &', as algebras they have nothing to do together.
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We have set all the preliminaries about these algebras, we can start the study
of their algebraic and analytic structures.

IV. AREMARKABLE TRANSFORM OF QUANTUM PROCESSES

IV.1. Definition, characterization

Let (T})¢>0 be an adapted process of operators defined on £. Assume that for
all f €&, allt € RT we have

t
/0 ITsD, f|[2ds < oo. (8)

Define (Dy(T")),, to be the adapted process of operators defined by the following:

>0
t
DUT)P.f = T,P.f - /O T, D, fdys (9)

for f € £, and Dy(T) is extended t-adaptedly on £.

LEMMA 8. — If (T})s>0 satisfies (8) on €, then so does (Dy(T.)) s,
Proof. — We have, for all f € £, say f =¢e(v),
t t 8
/ |D,(T.)D, f||*ds =/ |T.D, f —/ TuD.D,fdx.|*ds
0 0 0
t t s
<2 / IT,D,f|Pds + 2 / / |T.DuD, f |2 duds
0 0 0
t t s
<2 / IT,D, f|Pds + 2 / / o) o) P | Tue (o) [P duds
0 0 0
t t t
<2 / IT.D, f|ds + 2( / (v(s))ds) ( / T Do fIPdu)
0 0 0

< 0. |

PROPOSITION 9. — The process (Dy(T.))
the equation

>0 is the unique solution (X¢)¢>o of

t
XtZTt—/ Xsd(lz on &. (10)
0
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Proof. — If X, = Dy(T)) for all t € R, then [} X,dal is well-defined on &, by
Lemma 8. Furthermore, we have

t
X,P.f = T,P,f — / T,D, fdys

=T,Pf — / s — Ts) D, fdxs — /XDfdxs

That is, the process (Y;)i>0 = (X¢ — Tt)¢>0 satisfies
Y;fptf:/ YD, fdxs _/ XsDsfdxs on &.
0 0

By Theorem 4 and equation (7) this exactly means

t
—/ Xsdas;.
0

If (X{)t>0 is another solution of (10) then the process (Z:)i>0 = (X; — X{)¢>0
satisfies

¢
Zy = —/ Zyda] on €.
0
By (7) this means that for all f € £

t t
ZiP.f = / Z,D, fdxs — / 2,D, fdxs
0 0
= 0. ]

IV.2. The inverse transform

Let (T;):>0 be an adapted process of operators defined on £. Suppose that, for
all f €&, allt € R* we have

t
/ ITsD, f|[2ds < oo.
0

That is, the same condition as (8). Define (D, '(T')),, to be the following adapted
process of operators on £: B

¢
D;YT) =T, +/ T,dal. (11)
0
By Theorem 4, one easily proves the following.
LEMMA 10. — If (T});30 satisfies (8) on &, then so does (D; '(T\)) -
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PROPOSITION 11. — (D[I(T.))DO is the only process (Xi);>0 on € such that

¢
XePf = TtPtf+/ XD, fdxs (12)
0

forall fe&.

Proof. — We have

t
DY (T)P.f = TtPtf+/ TsdalP; f
0
t 8 t
=TiPf +/ (/ TudaZDsf)dXs +/ T;D, fdxs
0 0 0
t t
—Tnf + [ (D;'(T) - T)Dufdv + [ T.D.fdx,
0 0

t
—T,Pf + / D7 Y(T)D, fdxs.
0

If X' is another process satisfying (12) then (Z;);>0 = (X¢ — X{)¢>0 satisfies

t
ZyPi f :/ ZsDsfdxs forall fec€.
0

Thus .
Zye(uy) :/ u(s)Zse(ug)dys for all u e L*(RT)
0
and .
| Zse (ug)|I* = /0 |u(s) (| Zse (ug))|*ds.
So by Gronwall’s lemma Ze(uy) = 0 for all u € L2(RT). []
PROPOSITION 12. — The transforms D and D~ 'are inverse of each other. That

is, if (T} )¢>0 is any adapted process of operators on £ such that f(f |75 Ds f|2ds<oo
for all f € £, allt € R, then

D(D7(T)) =D, '(D.(T)) =T; on &.

Proof. — We have
t
D; 1 (D.(T)) =Dy(T)) + | Ds(T)dal
0
t t
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We also have

D,(DY(T))Pif = D {(T)P.f - / DN (T)D, fdxs

—TtPtf+/ D, YT)D, fdx, — / D, (T)Dsfdxs
_TtPtf. | |

IV.3. The bijection

Note that D and D~! are well-defined on S and S'.

THEOREM 13. — D~1(8) C &' and D(S') C 8. That is, D and D! realize a
bijection between S and S’.

Proof. — Let (T})i>0 be an element of S. Recall that in particular ¢ — ||T3||

belongs to L{Y.. Suppose that the integral representation of (T})i>o is T =

Efo H¢daS. Then

t
DyYT) =T, +/0 T.dal

t t 1 t
:/ (H;+Ts)da:+/ deaj+/ H;da;-l—/ HXdaX.
0
Thus D; (T.) Efo K:das on &, with t — ||K2|| € LZ, t — ||KE| € L2
te ||[KX|| € LL... So (D (T ))t>0 belongs to S'.

loc? loc?

Conversely, let T; = 3 fo H:das, t € RT, be an element of §’. By equation (7)
g
we have, for all f € £

t
Dy(T)P,f =T, P,f — / TsDs fdxs
0

t t t t
- / HCD, fdy, + / HF P, fdy, + / H. D, fds + / HXP, fds.
0 0 0 0
Thus,

t t t
IDUT)Pf| < | / HOD, fdxs || + | / H Py fxs| + | / H, D, fds|
0 0 0
t
+ / H Py fds|
0
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/ |H: D, |ds)’ / i} Poiids) !

+ / | D, fllds + / IE P, fds

<sup |17 / 1D fI%ds)" / a3 17ds) 1)

/ \H; |Pds) / 1D |ds)’ / £ ds ) 122
< [tz + [ s ipas) / E s
+ / ] 1P . (13)

Thus Dy(T.) is a bounded operator on £ N ®;;. As Dy(T.) is adapted at time ¢,
it is bounded on £ with the same norm. It extends to a bounded operator on &.
Furthermore, the estimate (13) proves that ¢t — ||D¢(T)|| belongs to L2

loc*

Finally, by Proposition 11 we have

t t
:Z/ deai—/ Ds(T.)da
- Jo 0
t t t t
:/ (H;’—DS(T.))da§+/ deaj+/ H;da;+/ HXda}.
0

This integral representation, the boundedness of D;(T'), the estimate on ||D¢(T.)]|

altogether prove that (Dy(T.)),., is an element of S.

>0
Proposition 12 shows that D and D! thus realize a bijection between S and
S'. |

At this stage it is natural to wonder whether D is an algebra homomorphism
between S’ and S. The following formula proves that the answer is negative.

THEOREM 14. — IfT; = Zf(f H:da} and S; = Ef(f K:da are elements of
> 13
S’ then

t t
D, H(D.(T)D.(S)) = [T, S + / HD,(S)da} + / HXDy(S.)daX
0 0
t t
+/ Ds(T)K, da; +/ Ds(T)K)da). (14)

0 0
Proof. — Let Xy = Dy(T) and Y; = Dy(S.). We have
t t

XtZTt—/ Xsd(l:, Y;5=St—/ stag.
0 0
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Thus

t t
XY, = / X,dY, + / dX,Y, +[X,Y],
0 0

t t t t
= / X,dS, — / X,Y,dad + / dT,Y, — / X,Y,da2
0 0 0 0

. . t
[T, 8] - [/ X,da, 5], + [T.,/ stag]t+/ X,Yyda?
0 0 0
t t t t
=T, 9], + / X,dS, + / dT,Y, — / X, K°dal — / XK dat
0 0 0 0
t t t
—/ H;’sta:—/ H;Y,da; —/ X,Y,dag
0 0 0
t t i
= [T,S]t+/ XK, da; +/ XK} da} +/ H}Y,da}
0 0 0

t t
+/ H}Y,da} —/ XsYsda.
0 0
This means that

XtY;:Dt([T,S].-i- / X,K-da;+ / X,KXdaX+ / HFY,dat+ / H;y;da:).-
0 0 0 0

V. BANACH ALGEBRA STRUCTURES
V.1. Anormon S’

Actually it is false to claim that S and S’ admit Banach algebra structures.
They only admit locally convex algebra structure. The problem comes from the
fact that S and S’ deal with processes indexed by Rt and that the norm conditions
defining S and S’ are only local. In order to get true Banach algebras one has
to restrict to compact intervals of time. This restriction is not important for our
uses.

Let A be a fixed in RT. We denote by S4 and S/ the algebras of quantum
semimartingales obtained by restricting the elements of S and &', respectively, to
the time interval [0, A].

Let (T})¢>0 be an element of ', with representation
t
Tt = / H:ida:.
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One defines

. A 2 \ /2 A e \1/2 A N
T sy = sup 21+ ([ 1miPas) ™+ ([ naipas) ™ + [ g as.
s_

ProrosITION 15.
a) The mapping T. — ||T||s, defines a norm on S}.

b) If (A,)n is an increasing sequence in R such that lim A,, = +o0, then the
n

family (|| - |ls, )nen is a separating family of seminorms on §'.

Proof.
a) The mapping 7' — [|T'||s,, identifies Sy with
L*([0, A]; B(®)) @ L*([0, A]; B(®)) @ L*([0, A]; B(®)) ® L* ([0, A]; B(®))

as a normed vector space. The only point that needs to be developed is that
IT|ls7, = 0 if and only if (T%);e(0,4] is the null process.

This is a consequence of the uniqueness theorem for quantum stochastic integrals
([At3]).

b) It is clear that || - ||s, is a seminorm on &' and that ||T||s;, =0 if and only
if T, =0 for all ¢t € [0, A,]. It is thus clear that if lim 4,, = +o00 then the family
n
(Il lls;, Jnen will be separating for S'.

THEOREM 16.
a) Equipped with the norm || - [|s,, the space Sy is a Banach algebra.

b) Equipped with the family (|| - ||s: )nen of seminorms, the space S’ is a locally
convex closed algebra.

Proof. — Let us first check that [ - ||s;, is a *-algebra norm for 8. If Ty =
> fy Hidas, t € 0, 4], is an element of S, it is then clear that [|T*||s, = [|T:|s, -
>

Ifs, =5 fot K:daZ, t € [0, 4], is another element of S then
g

t t t t
[S,T]t:/ K§H§da§+/ K;H;’da;+/ K;’deaj+/ K; H}da}
0 0 0 0
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and

A

0 170 A — 170(12 1/2 orr+112 1/2
I1S. 7)1, = sup s sl + [ [, mzipas) ™+ [ [ o]
s>A 0 0

t
+ [ 1K as
0
o o o A — 12 1/2
< sup | sup 151+ sup 1 [ K Pds]
s<A s<A s<A 0

A 1/2 t 1/2r rt 1/2
wsup ] [ Pas] 4 [ [acsnas) ] [ e pas]
s>A 0 0 0
< 1S, I s,

Thus || - [|s;, is a *-algebra norm on S}.

We have already noticed that, as a normed vector space, S’y identifies with
L°°([0, Al; B(<I>)) ®L? ([0, Al; B(<I>)) ®L? ([(), Al; B(<I>)) e L! ([0, Al; B(<I>)).
Thus if T]* = Zf(f H™=daS, t € [0,A], is a Cauchy sequence in S'; then the

coefficient H™¢ will converge to a s-adapted operator HS € L/ (5)([0,A];B(<I>)),
with £(0) = 400, f(+) = f(=) = 2, f(x) = 1. The process T; = 3. [ HidaS is

>
thus an element of &', limit of (T™)pen in 8. Thus S is a Banach algebra.

Let us prove that S’ is closed for the family of seminorms || - [|s; . If (), in a
sequence in &’ which is Cauchy in each S),, m € N, then (T"),en admits a limit
(Tm,t)tecjo,m) in each S;,. But as S, C S, (as Banach algebras) for m < m/,
we clearly have Ty, = Ty for m < m' and ¢ € [0,m]. Thus there exists a
process (T)¢>0 such that Ty = Tp, ¢ for all ¢ € [0,m], all m € N. Furthermore, if
T, =Y Jy Hidas, t € RY, we know that

m 1/2 m 1/2 m
sup [[HC]| + [ / 1HF(Pds] 2 + | / E|2ds] 2 + / 1E|lds < oo
s<m 0 0 0

for all m € N. Thus (T})¢>0 € S'. ]

Note the following easy result.

PROPOSITION 17. — Equipped with || - ||s;, the space 84 is a Banach algebra
for the angle bracket product (S.,T.) — (S.,T.).
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V.2. Normson S

Now we aim to equip the algebra & with a norm that will give it a Banach
algebra structure, in the same way as in S’. We have seen that S’ admits such a
norm, namely || - ||s; we also know that S is a subspace (not a subalgebra !) of
S'. The first natural question one can ask is: what happens to || - ||ss when one
restricts it to S?

Let us see, with a counter-example that || - ||s is not an algebra norm for S.
(The author thanks A. Coquio from Institut Fourier, Grenoble, for finding this
nice counter-example).

For n € N, let II" be the orthogonal projection onto the n first chaoses of ®

n
that is, on @ L?(Py).
k=0

Let (II7):¢>0 be the operator martingale associated to II" that is,
M7e(u) = [PI"e(ug)] @ (ug)-
One can easily check that for f € ®;; and o € Py we have
[T} f1(0) = Lgo<n f(0)-

As each II} is a norm 1 operator, the quantum stochastic integral

t
Tt = / H?daz
0
is well defined, at least on &.

One can check (cf. [A-L]) that, for f € £, T} f is given by the following formula
(T3 f](0) = Z [H?DSDU(S f] (Us))

se€o
s<t

where D, = Dy, ...Dy, f w={t;1 < --- < tp}.

Thus
[T f(0) = Z ]1#03)571 [DSDU(S f] (Us))

s€o
s<t

= Z 140, <n f(0)

s€o
s<t

= (n+1) A (#oy) £(0).
Thus [, |[T3)(0)do < (n+ 1)? [, |£(0) do

That is, T; is a bounded operator (with norm n + 1). Clearly (T});>0 is an
element of S. We have [|T'[|s; = sup [|II7[| = 1, for all A.
s<A

17



We have .
T? = / (T,II" + I T, + I17)da?
0

and [|T?||s, = sup TSI + TITs + T |-
5_

Let us compute ||T;IT} + IPT; + II7||. We have, for f € ®4,0 € Py
(T} + YTy + 107) £](0) = Lgo<alTef](0) + M7 Tef(0) + Lgo<n f(0)
= Lyo<n#0f(0) + Lyo<n #0(0) + Lyo<nf(0)
= (2#0 + 1)1pe<n f(0).
Thus ||T}II2 + 12T, +117]| < 2n+1. It is even equal to 2n+1 by taking f € L*(Py,).

This finally gives [|T7||ls;, = 2n + 1 and clearly [|T?||s, > [|T||5, . This shows
A
that || - ||s+ is not an algebra norm for S.

Anyway it is possible to slightly modify || - ||s in order to produce an algebra
norm for S. This is performed through the transform D.

Let A € Rt be fixed. Let Ss be the restriction of S to processes indexed by
[0, A]. On Sy define the following norm:
IT\lp-» = ID~(T)) s, -

PROPOSITION 18. — || - ||p-1 is @ norm on S4 which makes it complete.

Proof. — The fact that ||-||p-1: is a norm on S4 comes easily from the linearity
and injectivity of D~1. Let us check the completeness property. If (T7),en is
a Cauchy sequence in (S4,|| - [|p-1) then (D7 (T"))nen is a Cauchy sequence
in (S84, - lls;,), thus it converges in S to a process (Tt);c(0,4]- The process
(Dy¢(T"))¢efo, 41 belongs to S and

IT* - DAT)lls, = ID7H(T") = Tlls, —> 0.

n—-+00
Thus (Dt(T-))te[O,A] is the limit in (SA, || . ||’D—1) of (T.n)neN. [ ]
Unfortunately, || - ||p-1 is not an algebra norm for S (this is not surprising as

D is not an algebra morphism). Let us see a counter-example again. Let A € Rt
be fixed. Let Ty = af,t € [0,4] and S; = a; ,t € [0,4]. Let X; = Dy(T),
Y; = Dy(S.). Let us compute ||X| and ||Yy|| first. By equation (9) we have
XyPif = [y Pyfdx, and Y;P,f = [; D, fds. Thus

t 2 1/2
1Pl = ([ IPAPas) < VAR
i t
WiPifll= [ 1Duflds < Vi( [ IDufIPds) " < VIR
0 0

18



Furthermore X, P, 1 = f(f 1dx,s = x¢ thus || X P1|| = vt = Vt||P1|| and Y; Pyx; =
[y Lds = t thus ||Y;Px:|| = ¢ = V||Pixel- This proves that | X¢|| = ||Vl = V7.
Furthermore [|X.[[p-1 = [|T[|s, = VA and ||Y.||p-1 = IS]ls, = VA.

By (14) we have
XYy = ’Dt(/. Yida! + / X,day )
0 0
thus
I1X.Y|lp-1 = ||/ y;daj+/ X,day ||

0 0 A
A 1/2 A 9 71/2

= ([ malFas) ([ 1xea

A 1/2

=2(/ sds) ? — \24.

0

We do not have || X.Y.||p-: < || X ||lp-1||Y||p-1-

We have to define another norm on S. Let A be fixed in R*. Let (T});¢[0,4] € Sa-
Recall that (T})¢c[o,4) also belongs to 8. Define

1T |ls, = sups<allTs|| + || 7|, -

THEOREM 19. — || - ||s, is a x-algebra norm on S4. It is equivalent to the
norm || - ||p-1 with:

ITllp-1 < T [lss < 3[IT[Ip-1, (15)

the constants being optimal.

Thus (Sa, || - ||s.) is a Banach algebra.

Proof. — || - ||s, is clearly a norm on S4. Let us look at its behaviour with
respect to the product in S4. Let T} = Efot Hedas and S; = Zfot K:&das be
g g

elements of S4. Then

t t
StTt = Z/ SsHssdaz + Z/ K;Tsdai + [S,T]t,
e V0 e 70
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|S.T|ls, = sup ||SsTs|| + sup ||SsHy + KJTs + HJ K] ||
s<A s<A
A 1/2
+ (/ ISsHY + K}T, + K HJ||ds)
0
A 1/2
+ (/ IS:H, + K, T, + K, HZ||ds)
0
A
+/ |ISsH + K Ts + K; HY ||ds
0
A 1/2
< sup [, [ sup T, + sup A+ ( [ 1A Pas)
s<A s<A s<A 0
A ) 1/2 A
(s [
4 1/2
+ sup K211 [sup [T+ sup 121+ ([ 1 Pds) ]
s<A s<A s<A 0
A 1/2
+ ([ 1 IPds) (sup 12
0 s<A
A 1/2 A 1/2
([ s Pas) 2 [sup 17+ sup el + ([ 12 1Ps) ]
0 s<A s<A 0
A
+ ([ IKzlds) (sup 17
0 s<A
< 18154 1T s,

Thus || - ||s, is an algebra norm for S4. It is clearly a x-algebra norm.

Furthermore, the estimate (13) proves that for 7. € &’
sup [|Ds(T)[| < IT ||, - (16)
s<A
Let T € S4. We have

A
_ o 1/2
I ks = 10T, = sup 22 + Tl + ([ Pas)

- A " A
([ 1y Pas) [ as

0 0

A 1/2

< sup [T]|+ sup |2 + ([ 17 Pds)
s<A s<A 0

A 12 A
T ( / 1H; [2ds) 2 + / |H s

=[ITlls.-
This gives the first inequality.
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Now, for T. € Sy we have

A
o 1/2
IDAT)llss = sup [|Ds(T)|| + sup ||HZ — Ds(T.)[| + (/ | H || ds)
s<A s<A 0

A 12 A
+ / 1H; |[2ds) 2 + / |H X ds
< 25up [Du(T)]| + |15,
s<A
<3ITlls, by (7).

Thus
IT|ls, = ID. o D7HT)ls, < 31D HT)lls, = 3[IT]lp-1-

This proves the second inequality and thus the equivalence of the norms. As a
consequence, S4 is complete for || - ||s, (Proposition 18).

Let us now check that the constants in the inequality (15) are optimal.

Let T; = a;,t € Rt; it is an element of S. we have T f = tf and thus ||T}|| = t,
IT.lls, = 2A. Furthermore D; *(T) = tI + [} s da? and ||D1(T)||s, = 2A.

This proves that the inequality ||T'||p-1 < ||T||s, is optimal.

Let Ty = af ,t € [0, A]. Then [|T.||s, = V'A. Let Xy = Dy(T.),t € [0, A] that is
X.Bf = fot P, fdx,. We know that || X;|| = v/¢. Thus

A
1/2
X, = sup | = X.ll+ ([ 11Pds) 7 = 2v/4

and finally [|X.|ls, = 3V/4, whereas || X.[lp-: = [P (X)lls, = ITlls, = VA.

This proves that the inequality ||T'||s, < 3||T'||p-: is optimal. N
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