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Abstract

‘We describe a new formulation of quantum stochastic calculus which extends all the previous def-
initions, while preserving their most satisfactory components, and which identifies the maximal domain
of quantum stochastic integrals. This formulation is based on a complete redefinition of the notion of
operator adaptedness. We define adaptedness solely in terms of the orthogonal projections of the time
filtration of Fock space, and sections of an adapted gradient operator. This way, we get freed from
formulating adaptedness in terms of the coherent vectors and we can consider all sorts of domains in
the Fock space. This leads to natural definitions of quantum stochastic integrals with minimal domain
constraints. Coherent meaning is thereby given to operator products of quantum stochastic integrals,
and their representation as sums of such integrals through quantum Itd formulae. We show our defi-
nition to coincide with Hudson-Parthasarathy’s one on coherent vectors, with Belavkin-Lindsay’s one
on the domain of the Malliavin gradient. The most satisfactory application appears when one tries
to extend Attal-Meyer’s formulation. We, indeed, show that our formulation completely solves their
equations, proves uniqueness of the solution in any case and gives rise to the solution with maximal

domain.
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I. Introduction

In the original formulation of quantum stochastic calculus ([HP1]), the ho-
mogeneity of exponential vectors with respect to the continuous tensor prod-
uct structure of Fock space is a cornerstone. Thus, in the natural isomorphism
F & F, ® Ft, where F, F; and F! are respectively (symmetric) Fock space
over L?>(IRy), L*([0,t]) and L?([t,o0[), the coherent vector e(¢) corresponds to
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e(py) ® e(pp), where @ = @lljg 4 and @ = @l o[- Indeed, continuous linear
extension of this correspondence provides a simple way to define the isomorphism.
An operator H on F is t—adapted if its domain is a linear span of coherent vec-
tors and H C H; ® It for some operator H; on F;. Quantum stochastic integrals
are constructed from families of such operators, and are therefore necessarily de-
fined on coherent domains too. Operator multiplication of quantum stochastic
integrals is thus inadmissible, strictly speaking, within this coherent vector formu-
lation, since quantum stochastic integrals typically do not leave coherent domains
invariant. Only inner products of quantum stochastic integrals acting on coher-
ent vectors may be formed. Perhaps surprisingly, this limitation has not been
felt until recently — a rich stock of quantum stochastic processes has been con-
structed through an effective theory of quantum stochastic differential equations.
This limitation does make itself felt when one is interested in algebraic questions —
for example the structure of the collection of bounded—operator—valued quantum
semimartingales ([Att]).

One way in which quantum stochastic calculus has been extended beyond
the coherent vectors is by means of the Hitsuda—Skorohod integral of anticipative
processes ([Sko]), and the related gradient operator of Malliavin calculus (|G-T],
[N-Z]). In this noncausal formulation ([Bel], [Lin]), the action of each of the quan-
tum stochastic integrals is defined explicitly on vectors in Fock space, and the
essential quantum It6 formula (in inner product form) is seen in terms of the Sko-
rohod isometry. Neither coherent vector domains, nor adaptedness of the operator
integrals is required. Set against these advantages, the domains of both the anni-
hilation and number integrals in the noncausal formulation are still restricted to
parts of Dom+/N (where N is the number operator) — even when the resulting
operator is bounded. This unnatural domain limitation again precludes operator
composition of quantum stochastic integrals.

A second way in which the coherent vector formulation of quantum stochastic
calculus has been extended is by means of an Ito calculus on Fock space ([A-
M]). Specifically, this formulation allows all vectors of the Fock space to admit a
predictable representation:

f:E[f]+/() s dxs,

which is a generalization of the predictable representation property for the prob-
abilistic interpretations of Fock space (Brownian motion, Poisson process, Azéma
martingales,...). Once this is done, one obtains a formula, for the action of quan-
tum stochastic integrals, which makes sense for all vectors in F. For example,
if X; = [, HydA} and f; = [} €& dxs, then Xofy = [J(Xs& + Hyfs)dxs. This
leads to a definition of quantum stochastic integrals which agrees with the coher-
ent vector formulation when restricted to coherent vector domains. In this [to
calculus formulation, operator composition of quantum stochastic integrals is ad-
mitted. Under some conditions, the domain of quantum stochastic integrals may
be the whole of F. This fact plays an important role in the theory of quantum
semimartingale algebras, quantum square and angle brackets ([Att]). The main
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disadvantage of this formulation is that the defining equations for the quantum
stochastic integrals only give them implicitly. In fact the definitions amount to a
kind of classical stochastic differential equation and, in full generality, the existence
and uniqueness of solutions for these equations has not been known. Moreover,
the maximal domains of these quantum stochastic integrals have been far from
clear.

The purpose of this work is to unify and extend all these formulations. We
wish to understand the relationship between the noncausal and the Ito0 calculus
formulations. We seek definitions which preserve the advantages of each formula-
tion whilst removing its disadvantages. In other words, definitions which (a) give
the action of quantum stochastic integrals explicitly in terms of the process being
integrated, (b) contain no unnatural domain limitations, (c) settle the existence
and uniqueness question for the stochastic differential equations arising in the It6
calculus formulation, and (d) permit operator composition of quantum stochastic
integrals. In this article we develop a formulation of quantum stochastic calculus
which satisfies each of these criteria.

The main idea in this work is to base the calculus on a finely—tuned formula-
tion of operator adaptedness, which exploits an adapted gradient operator inspired
from classical stochastic calculus. Immediate advantages include a much clearer
picture of the relationship between quantum and classical It6 calculus, and an
explicitness of the criterion for adaptedness which imposes no unnecessary domain
constraints. For example, the domain of a t—adapted operator H should be all of
JF when H is bounded, and should not be limited to an algebraic tensor product
V; ® Vt when H is unbounded. The adapted gradient D is an operator from F
to L2(IR,; F) which is used in concert with the adapted projection on L(IR,; F).
The adapted projection is defined in terms of the orthogonal projections P; of F
onto F3, by (Pz); = P;xz¢. The adapted gradient may be defined in terms of the
gradient operator of Malliavin calculus V, by Df = PV f, except that whereas V
is an unbounded operator, D is bounded — so that D f is defined for each f € F.
If H is an operator on F which is s—adapted in the coherent vector formulation,
then it is easily verified that H satisfies P, H = HP; and D, H = HD, for (a.a.)
t > s, on its domain, where D, f denotes (Df);. We define an operator H on F to
be s—adapted if each f € Dom H satisfies: Psf € Dom H with HP;f = P; H f and
D;f € DomH with HD;f = D, Hf for a.a. t > s. On coherent vector domains
this coincides with the coherent vector formulation of s—adaptedness. The new def-
inition frees us from any prescribed domains; moreover it leads to a definition of
time s—conditional expectation for operators on F which satisfies all the algebraic
properties one could hope for, given the vagaries of unbounded operators.

The above refinement of operator adaptedness is also the point of departure
for new definitions of quantum stochastic integrals. In particular, the gradient
operator (used in the noncausal formulation) is replaced by the adapted gradient.
This overcomes the unnatural domain constraint while maintaining explicitness of
action of the quantum stochastic integrals. The connection with the It0 calcu-
lus formulation is then seen through commutation relations between the Skorohod
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integral and the adapted gradient. We are able to show that our quantum stochas-
tic integrals solve the stochastic differential equations arising in the It6 calculus
formulation, and that as solutions they are unique with maximal domains. By
uniqueness and maximality we mean that any process X which is, say, a creation
integral of a measurable adapted Fock operator process H in the Ito calculus for-
mulation must satisfy X, C AJ(H), where AJ(H) is the creation integral of H
in our formulation. Adapted operators and quantum stochastic integrals may be
freely composed, and a quantum It6 formula results.

In order best to illuminate the structure of quantum stochastic calculus we
have sought from the outset to impose only those domain constraints that appeared
to be essential for a workable theory. The result is a formulation of great gener-
ality, but we hope that its essential simplicity is manifest too. Our intention is to
unify and enrich the various formulations of the calculus, and to deepen its con-
nection with classical stochastic calculus. We work exclusively with Guichardet’s
version of Fock space (described in the next section). For this reason the formal
connection with the noncausal approach is most apparent. This is misleading,
since our approach results from a true synthesis of the noncausal and 1t6 calculus
formulations.

A brief preliminary account of this work has appeared in [A-L]. That paper
contains a section demonstrating how Fermion field operators, defined as quantum
stochastic integrals ([HP2]), achieve their natural domains — namely all of Fock
space — when considered from the viewpoint advocated here.

I1. Notations and conventions

Let I' denote the finite power set of IRy that is the set of finite subsets of
IR,. Let Ho be a fixed separable complex Hilbert space. Since, for n =1,2,...,
{s € R} : sy < -+ < s,} is in bijective correspondence with '™ the set of
n-elements subsets of IR, through the map s — {s1,..., s, } taking a point in the
Cartesian product to the collection of its coordinates, Lebesgue measure induces
a measure on I'™. By letting ) € T' be an atom of measure unity, we arrive
at a o-finite measure on I' = J,,~, '™ — the symmetric measure (or Guichardet
measure) associated with Lebesgue measure on IR, ([Gui]). Guichardet-Fock space
(or simply Fock space) is then the Hilbert space tensor product F = Ho ® L3(I),
which we may identify with the space of (classes of) square—integrable Ho—valued
maps on I' : L2(T;Hy), by continuous linear extension of the map v ® k — k(-)v.
Such vectors will be written simply vk. Elements of I' will always be denoted
by lower case greek letters o, 3, 0, T, w, ..., and integration with respect to the
symmetric measure on I' will be written simply fr f(o)do. The cardinal of an
element o of I' is denoted by #o.

The following elementary identity is fundamental — a proof may be found in
[L-P].

f-Lemma— Let g be a measurable nonnegative (resp. (Bochner) integrable) map
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from T x T to IR (resp. Ho). Let G be the function on T' defined by
G:0— Z 9(a, o).

aCo

Then G is measurable nonnegative (resp. integrable) and

/F G(o) do = /F /F g(a, B) davdg.

For any function ¢ : IR — C, let ¢(N) be the operator on F given by
e(N)f(0) = p(#0)f(0); Domp(N) = {f €F: /F lo(#0) 12 || £(0)|]? do < oo}.

In other words, (V) is the operator obtained by applying the functional calculus
to the number operator N on F. We define the subspaces:

F@) =Doma", fora>1, K= ﬂ Doma® (2.1a)
a>1
Fp= {f € F:supp (f) C U '™ for some m} (2.1d)
n<m

Here is a list of set—theoretic notation and measure—theoretic convention that
we shall adopt throughout. Let s,t € IRy and w,o,7 € I', then

wyy = w N [0,t], wy = wN[t,o0], etc...

vo =max{s:s€oc},o_ =o0\{vo}, .o =min{s: s € o}, for o # 0,
wUs=wU{s}, and for s € 0, o\s = o\{s},

“o < 71" means s<tforalls€o,ter,
Fs={wel:wcl0s[},I*={wel:wcC/|s o[},

“for a.a. 7 > s” means for almost all 7 € I'* (here s is fixed), whereas

“for a.a. (7 > s)” means for almost all elements of {(7,s) € T' x IR, : 7 > s},
Fs = Ho ® LA(Ts), F* = L?(I'®%).

Fock space has a continuous tensor product structure, in the following sense:
for each s > 0, the map

f®g— (w = f(ws))g(w[s))
extends uniquely to an isometric isomorphism from (the Hilbert space tensor prod-
uct) Fs ® F* onto F.

Associated with any function ¢ : IR, — (' is the corresponding product
function w(p) : I' = €, given by [7(p)](0) = [I;¢, ¢(s), with the usual convention
that an empty product gives 1. If ¢ is (Lebesgue) integrable then 7(¢p) is easily seen
to be integrable, with [[m(¢)](c) do = exp{[ ¢(s)ds}, moreover the f-identity
is easily verified when g(a,8) = [7(¢)](a) [7(¥)](8) with ¢ and ¢ integrable.
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When ¢ € L?(IR,) we write (y) for the measure equivalence class of m(¢), thus
e(p) € L3(T'). We also write dy for £(0), which maps () to 1, and all other o to 0.
These are called the coherent or exponential vectors of Fock space, partly due to
the relation: (e(y),e(v))) = exp(p, 1), and their normalized forms are known as
coherent states in quantum physics. Exponential vectors are part of the very fabric
of Fock space — indeed if H is a Hilbert space and j : L?(IR;) — H a mapping
whose image is total in ‘H and which satisfies (j(p), j(¢)) = exp(p, ¥), then H is
isometrically isomorphic to L?(I") under an isomorphism which maps each j(y)
to the corresponding exponential vector £(¢). Partly for this reason, Hudson
and Parthasarathy, in their original treatment of quantum stochastic calculus,
defined all operators only on (linear spans of) exponential vectors. The exponential
vectors are linearly independent, and form an overcomplete family: if M is a dense
subset of L2(IR,), then £(M) = lin{e(yp) : ¢ € M} is dense in L3(T"), if n > 1,
©1,---,¢n € L?(IRy) are distinct, and vy, . . ., v, € Ho, then Y, v; e(p;) # 0 unless
v; = --- = v, = 0 ([HP1]). Note that, along with F¢, the space & = £(L?(IR4)) is
contained in the subspace K. In the continuous tensor product structure of F, the
vector ve(p) € F arises as ve(ps)) ® (prs), where ¢ = T 59 and @, = N[5 oop-

Finally, except when explicitly stated otherwise, all tensor products will be
algebraic; thus if A is the Hilbert space tensor product of 1 and H,, and if U; is
a subspace of H; (i = 1,2) then U; ® U, is the linear span of {u; ® ug : u; € U;} in
‘H, moreover if R; is an operator on H;, then R, ® R is the operator on ‘H with
domain Dom R; ® Dom R5, and obvious action.

II1. Calculus in Fock space

Our aim in this section is twofold. Firstly we construct part of It6-calculus on
Fock space, describing familiar probabilistic concepts in this unfamiliar language
whilst emphasizing its universality. Secondly, we develop relationships between
the components of this calculus (derivative, projection, integral). These will be
applied later, once we have introduced noncommutative processes. In this section,
‘H will denote an arbitrary separable Hilbert space — in practice H will be either
IR or € or our initial space Hg, and F will denote H ® L*(T") = L*(T; H).

II1.1. Integration

The measurable structure on I' X IR is the completed product measure of the
Guichardet measure on I' and the Lebesgue measure on IR,. We need a spectrum
of integrability conditions for a Hilbert space valued map z from I' x IR .

Definition 3.1 - Let z be amap I' x IR, — H. We denote by z,(w) the quantity
z(s,w).

(ai) x is time-integrable if
e for a.a. w, the map z.(w) is integrable IRy — H.
e The a.e. defined map fooo Tsds:w — fooo zs(w) ds is square-integrable.
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(aii) = is absolutely time-integrable if
e 7 is measurable
e the map (w, s) — ||zs(w)| is time-integrable.
(aiii) = is Bochner-integrable if
e for a.a. s, the map z, is square-integrable I' — H
e the a.e. defined map s — z; is integrable IR, — F.

(bi) z is Skorohod-integrable if
e the map S(x) : 0 — > ., 7s(0\s) is square-integrable I' — H.

(bii) z belongs to Dom S if
e z is square-integrable I' x IR, — H
e r is Skorohod-integrable

(bii) z is absolutely Skorohod-integrable if
e z is measurable I' x IR, — H
e the map (w, s) — ||zs(w)|| is Skorohod-integrable I' x IR, — IR.

fooo zsds and S(x) are called the time integral of x, and Skorohod integral of x,
respectively. We emphasise here that, for the definitions of both time-integrability
and Skorohod-integrability, we assume neither the square-integrability of each zy,
nor the (joint) measurability of z. Note, however, that if z and z’ are maps
I'x IRy — H which agree a.e. then z’ is time-integrable if and only if z is, in which
case fooo xlds = fooo zsds — and similarly for the Skorohod integral. Therefore,
although [,° z, ds and S(z) are pointwise defined, we view both integrals as map-
pings from measurable equivalence classes (of not necessarily measurable maps)
into F. The definition of Bochner integrability is the standard one, rephrased here
for easy comparison with the pointwise integrability conditions. The space Dom &
is merely the domain of the Skorohod integral viewed as an unbounded Hilbert
space operator L2(T' x IR, ;Ho) — F.

Proposition 3.2~ Let x be a map I' x IRy — H.

(ai) If x is square-integrable, then x is locally Bochner-integrable, and

/0 el ds < Vi ( / t / s () 2 o ds) -

(aii) If x is Bochner-integrable then x is absolutely time-integrable, and

H/ SUstH g/ ||zs|| ds.
0 0

(bi) If = is measurable then

/Ooo/ooo/rnxs(wut)ll ||:Et(wUs)||dwdtd3§/0°°/F#w 2 () |2 du ds.

(bii) If x is square-integrable and the function (w,s,t) — (xs(w Ut),x4(w U s)) is
integrable, then z € Dom(S) and

||8($)||2:/0 ||$Es||2ds+/ / /xswut 5 (wUs)) dwdtds.  (3.1)
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(biii) If x is absolutely Skorohod-integrable, then x is square-integrable and the
function (w, s,t) — ||zs(wUt)|| ||zs(w U s)|| is integrable.

Proof

(ai) is an immediate consequence of the Cauchy-Schwarz inequality. If z is
Bochner-integrable then, by standard vector integration theory (e.g., [D-U]) z is
jointly measurable. Moreover, by a continuous version of Minkowski’s inequality

([Str]),

( L1 een] dsdw>1/2< I/ ||3:s(w)||2dwds>1/2: [,

which establishes (aii). (bi-iii) follows from straightforward applications of the
f-Lemma — see [Lin] for further details.
O

Identity (3.1) will be referred to as the Skorohod isometry. We shall exploit
the following polarized forms of the above.

Proposition 3.3 - Let f € F and let z and y be maps ' x IRy — H.
(ai) If x is absolutely time-integrable, then the function
(w,8) = (f(w), zs(w))
is integrable, and its integral is (f, fooo Zsds).
(aii) If  is absolutely Skorohod-integrable, then the function
(w,8) = (flwUs),z5(w))
is integrable, and its integral is (f,S(x)).
(bi) If z and y are absolutely time-integrable, then the function
(w,8,1) = (25(w), Tt (w))
is integrable, and its integral is ([ zyds, [J° ys ds).

(bii) If x is absolutely time-integrable and y is absolutely Skorohod-integrable, then
the function

(wa S, t) = <"L's(w U t)a yt(w»
is integrable, and its integral is ( fooo xsds,S(y)).

(bii) If x and y are absolutely Skorohod-integrable, then the functions
(W, 8) = (zs(w),ys(w)) and (w,s,t) = (xs(wUL),y(wUs))
are integrable, and the sum of their integrals is (S(x),S(y)).

Definition 3.4~ Let z be amap I' x IRy — H.
(a) z is adapted if z5(w) = 0 unless w € I';.
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(b) x is Ito-integrable if x is adapted and the map

] if o0 =0,
Z(@)](o) = {ac\,(,(a_) otherwise
is square-integrable in o.

Z(x) is then called the Ité-integral of z. Like fooo xsds and S(x), it will be
viewed as an element of F.

As with the time and Skorohod integrals, Ito-integrability depends only on
the measure equivalence class of x, and the Ito-integral lifts to a mapping from
measure equivalence classes into F. In contrast to time integrals and Skorohod
integrals, It0-integrable maps are necessarily measurable.

Definition 3.5 A vector process is a family x = (z,),5, in F. It is adapted if
xs € Fs for each s, and measurable if the map s — x4 is (strongly) measurable.

For a measurable vector process x, there is a measurable map z : ' x IRy — H
such that Z4(-) is a version of z for each s. If z is adapted, then Z may be chosen
to be adapted in the sense of Definition 3.4. The measure equivalence class of =
is unique, and we shall therefore abuse notation by using x for the process as well
as the map.

Proposition 3.6 — Let x be an adapted map I' x IR, — H. Then the following are
equivalent:

(a) z is Ité-integrable; (b) x is Skorohod-integrable; (c) x is square-integrable.

Moreover, in any of these cases we have I(z) = S(x) and

Iz = [ " Jal? ds. (3.2)

Proof
Since z is adapted,

S5@)(0) = Y a(0vs) = {

SEo
=Z(x)(0).
This gives the equivalence of (a) and (b). If = is It6-integrable then
rs(w) = Ip, (w) [Z(z)](w U s),

and since the map (w, s) — w U s is measurable, z is necessarily measurable. If z
is adapted and measurable, then the 5-Lemma gives the identities

7 [rsetasao= [ Slisooas= [ ovolo )l o,

SEo

so that (b) and (c) are equivalent, and (3.2) holds.

0 if o =0,
ZTyy(0_) otherwise
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We call the identity (3.2) Ité-isometry. Comparison with (3.1) shows that
Skorohod isometry extends Ito-isometry beyond adapted maps. Another way of
expressing Ito-integrability is in terms of

Fag ={(w,8) eI X Ry :w < s}. (3.3)
The collection of equivalence classes of It6-integrable maps may be identified with
L2(T.q;H). The adapted projection on L?(T' x IR ;H) is the orthogonal projection
onto the closed subspace L*(T, 4 ; H):

Pr=1p,,2: (w,s)— Ip, (w) zs(w). (3.4)
It is worth noticing that the Ito integral operator Z(-) actually corresponds

to an integration with respect to some curve in F. Indeed, for all ¢t € IR, define
the vector x; € F by

xt({s}) = Tpo,4(s)-
It is clear that x; belongs to F; for all ¢ € IR, but one can check that (x:);~
is furthermore an “independent increment” vector process that is, for s < ¢t the
increment x; — xs belongs to Fis y = {f € F : f(0) = 0 unless o C [s,t]}.
Let (2¢);~o be an Ito-integrable process. Suppose first that (z;),- is a step
process that is, there exists an increasing sequence (tn)pen 0 IRy converging to

+oo and such that z; =z, fort,, <t <t,41. Then define a mapping fooo T @dx
on P by

{xt(o) =0 if #o#£1,

[/000 Tr ® dXt} (o) = Z [z, ® (Xtnyr — Xtn)](0)

(recall that z;, belongs to F; ;and xi,_, — X¢, belongs to Fp; ). It can be easily
computed that

[/000 Tt ® dXt] (o) = [Z(z.)](o).

Thus, for step Ito integrable processes (z),, the vector fooo Ty @ dx; coincides
with the Ito integral Z(z.). By the It6-isometry formula (3.2) we get

oo 2 oo
|| ool =1z@P= [ o ar
0 0

Let n € IN be fixed. For all t € IR, define ¢, = E[2"t]2~", where E|-] denotes

the integer part function. Let z be an Ito-integrable process. Define z} (o) =
Ip, (0)(tps1 —tn)™" tt:+1 zs(0) ds for all ¢, all 0. The process " thus defined
is clearly Ito-integrable and ||Z(z) — Z(z™)|| converges to 0 when n tends to 4oo.
But z™ is a step process as above and Z(z") = fooo zy @ dx¢. This proves that the
integral [;° z; ® dx; extends to all Ito-integrable processes (z¢),, and coincides
with the Ito integral Z(z). From now on Z(z) is denoted [ z; dx:. Note that we

have dropped the ® symbol.

We end this subsection with some notations we shall employ later. For all
a <be RyU{+o0}, we denote by f: xy dxs (resp. f: x¢ dt, St(x)) the Itd-integral
(resp. time-integral, Skorohod integral) of the process z; = x1, ((t), t € IR
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Note that the Skorohod integrability of x does not imply the Skorohod inte-
grablity of Ny, p(-)x.. The same goes for time-integrability. This is an essential
feature of the integrals, however it does not arise for absolute time integrals, ab-
solute Skorohod integrals, or for It6 integrals.

I11.2. Differentiation and Projection

Definition 3.7 - For a map f with source space I', let Vf and Df be the maps
with source space I' x IR given by

Vf(w,s) = fwUs); Df(w,s)=1p,(w)f(wUs).
The target space will be either H, €' or IR,. We exploit this freedom as follows.
The operators V and D commute with || - || in the sense that if k(w) = ||f(w)||%,
where f : ' — H, then Vk(w,s) = ||V f(w,s)| (and the same for D).

Proposition 3.8—Let f be a measurable map I' — H. Then Vf and Df are
measurable maps and

/0 " / IV (@, 5)|? dw ds = / 4o|f (o)) do (3.50)
/0 h / D (w, )2 dw ds = / 1£(@) 2 do — |[F @) (3.50)

Proof

Straightforward application of the ¥-Lemma.

O

It follows that we may view V and D as (measure equivalence) class mappings.
When f € F, we call Vf and Df the stochastic gradient of f, and the adapted
gradient of f, respectively. Moreover, we write DomV for the domain of the
stochastic gradient as an unbounded Hilbert space operator F — L?(T' x IRy ;H).
Thus

DomV ={fe€F:VfeL*T x R,;H)}.

Definition 3.9 For o0 € I', s € IR, and a map f with source space I', let V, f,
D, f and P, f be the maps with source I', given by

Vof(w)=f(wUo); Dyf(w)=1p,, (w)flwUo); Psf=I1p,f.
Thus, writing D, f for Dy, f, we have
Dsf =Df(s); Dof =1
and
D,f =Ds,---Ds [ if oc={s1<--<sp}.
The following algebraic relations are evident for s < ¢:

Pof = f(0)op; PsPif = P,Psf = Psf; (3.60)
DD, f = DiPsf = 0; (36b)
D;Pf = PDsf = D f; (366)
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as is the reproducing relation D, f(o) = f(oc U T) for o < 7, with special cases:

f(w)=Duf)(0) = Dy f(w-) (3.6d)
when w # ().

II1.3. Integro-differential and Adjoint Relations

First we relate Skorohod integration with stochastic differentiation, and give
the adapted counterpart.

Proposition 3.10 - Let f € F and let z : I' x IRy — H be Skorohod-integrable:
(a) If the map (w,s) — (xs(w), f(wU s)) is integrable, then

/ /xs«u)w w)) duw ds.

(b) If z is Ité—integrable, then

</Oooxsdxs,f>=/ooo<xs,Dsf)ds

Proof

More straightforward application of the gf —Lemma.
|
Next we summarize the Hilbert space properties of the stochastic and adapted
gradients and the Skorohod and Ité-integrals. For further details see [Lin].

Theorem 3.11— Let /N ® I denote the (self-adjoint multiplication operator on
L?(T' x Ry;H) given by VN @ I x4(w) = /Fw x5(w).

(a) (§,Dom S) and (V,Dom V) are closed, densely defined operators.

(b) 8* =V (and V* = S).

(¢) DomS > Dom+/N ® I; DomV = Dom+/N.

(d) The Ito—integral is an isometric operator L2(Taq;H) — F with final space
[0g]", whose adjoint is the adapted gradient D:

DI =TI* =Ii.e. D, /OO rydxs =y forallz € L*(Taq;H), a.a. t € Ry;
KerD = (ImI)* = Céy; 0
ID =TI°¢ = Pg-i.e. f = Pof + /Oo D,fdx, forall f€F.
(e) The Skorohod integral is an e:ctensfon of the Ito integral:

2= 8|12 (rpyimy

(f) The adapted gradient is the closure of the product of the adapted projection and
the stochastic gradient:

D = PV.

12
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I11.4. Almost Everywhere Defined Operators

Our philosophy in this paper is to treat the maps D, like operators on F,
exploiting the fact that D is a bounded operator on F so that, unlike V., it is
defined on the whole of F. With each f € F, D,f is a well-defined element of F
for almost every s. Of course the null set depends on f, and for this reason D; is
not an operator on F in the usual sense — we shall speak of almost everywhere
defined operators on F. We take this viewpoint in order to exploit the relations
(3.6). On measure equivalence classes of maps such as elements of F, there are
the a.e. relations

DiD,f = DiPsf =0; Dy P f = P,D,f = D, f (37)
for a.a. (s < t), and the a.e. reproducing property
D, f(o) = floUT) (3.8)

for a.a. (o < 7).

I11.5. Commutation Relations

In this subsection we describe the effect of the operators P; and the a.e. defined
operators D; on Skorohod and time integrability. The relations we obtain will be
applied to quantum stochastic integrals in VI.2. Note the a.e. properties

feF=Pf,Dsf e Fy; feFs,s<t=D;f=0. (3.9)

Proposition 3.12 - Let x be a measurable map I' x IR, — H. If P, x; is square
integrable for almost every t > 0, then the following are equivalent:

(a) z is Skorohod-integrable.
(b) (i) Njo4((-) Dy x. is Skorohod-integrable for a.a. t.
(ii) the map t — S§(Dy x.) + Py x4 is Ité-integrable.

In this case,
for a.a. t.

Proof
In view of the identity
Ir, (o) S(z)(o Ut) =Y 1p,(0) g 4(s) 2s(o\s Ut) + p, (o) ze(0),
s€o

we have

D; S(z)(0) = S(To 41(-) D ) (o) + (Py ) (o). (3.11)
If x is Skorohod-integrable then, since P;z; is square-integrable, Lo 4(-) Dy . is
Skorohod-integrable and (3.10) holds for a.a. ¢; moreover, the a.e. defined map

13
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(0,t) = SE(Dyx.)(0) + Pyx¢)(0) is adapted and square integrable, and thus 1t6-
integrable. Conversely, if = satisfies (b) then, since z is measurable and

Awwwszlwawmeww,

z is Skorohod-integrable by (3.11).
O

Proposition 3.13 - Let z be a measurable map T x IR, — H. If the map z.())
is integrable then the following are equivalent:

(a) x is time integrable.
i) Dy x. is time integrable for a.a.
b) (i) D s time integrable f t
(ii) the map t — fooo D; x4 ds is square—integrable.

In this case we have the a.e. identity

Dt/ a:sd5:/ D; z ds. (3.12)
0 0

Proof

Let = be time integrable. Then, for a.a. (w,t), the map s — Ip, (w)zs(w U t)
is integrable and so, for a.a. t,

D, /Ooo 25 ds(w) = Tir, () /Ooo:cs(wut) ds=/0°° fip, (w)zs (w0 U ) ds
- [ @is)@as

for a.a. w. Hence, for a.a. t, D; x. is time-integrable and (3.12) holds — in particular,
the map t — [ (Dy z,)(w) ds is square-integrable.

Conversely, if (b) holds, then the map z.(w) is either z.(0)) or (Dyy z.)(w_)
and so is integrable for a.a. w. Moreover the map

ael\ {0} — /000 zs(a) ds (3.13)

is the composition of the measure isomorphism « — (a_, Va) from I'\ {(}} into ',q
and the square integrable map (w,t) — [;° (D¢ a;)(w) ds. Hence (3.13) is square
integrable, so that x is time integrable.

g

Proposition 3.14 - Let x be a measurable map I' x IRy — H, and let t > 0.

(a) If x is time integrable then Py x. is time integrable and

/Pt:vsds:Pt/ Teds.
0 0

(b) If = is Skorohod integrable then g, Pix. is Skorohod integrable, and

14
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Moreover, if also W oo[(-)P; w. is Ito—integrable, then Pix. is Skorohod inte-
grable, and

S(Pt.’L‘):PtS(ﬂ?)+/ Ptxsts-
t

Proof

Straightforward.
O

Notice that each of the supplementary conditions in Propositions 3.12, 3.13
and 3.14 — namely square-integrability of I, x; for a.a. ¢, integrability of z.(0)) and
Ito-integrability of Iy oof(+) P x. — is a condition on the IR -valued map (w,s) —
|zs(w)]|- In view of the fact that P, and D; “commute” with the norm || - ||
(see the remark following Definition 3.7) each of these results also holds if time
and Skorohod integrability are replaced by absolute time and absolute Skorohod
integrability respectively.

111.6 Probabilistic interpretations

In this subsection we describe explicitly the connection between the objects
we have introduced in Fock space (P, D¢, V;,S,Z) and their actual (classical)
probabilistic counterparts. While formally independent of the rest of the paper,
the ideas here underly the whole work.

By a probabilistic interpretation of the Fock space, we mean a quintuplet
(2, A, (At);>q, IP,m) where (2, A, (At),~q, P) is the canonical filtered space of
m = (m¢),>y, and m is a normal martingale — that is a martingale for which
(m? — t)t>0_is also a martingale — which has the chaotic representation prop-
erty. Examples of such martingales include Brownian motion, the compensated
Poisson process and some of the Azema martingales ([Eme]). The chaotic repre-
sentation of random variables leads to a natural isomorphism ¥ between F and
X = L*(Q, A, IP;Hy), which may suggestively be expressed f — [, f(o)dm,
([Me2]). Each of the operations P;, Dy, Vi, S, and £ have interpetations on X
as well-known probabilistic operations.

The orthogonal projection P; is =0, 0V, where IF; is the time ¢ conditional
expectation of the process: IE[-|A;]. Thus also F; = PF is U~1(X;) where X; =
L?(Q, Ay, IP; Hp). In particular, a square-integrable classical stochastic process
in X is adapted if and only if its image under ¥~! is adapted in the sense of
Definition 3.4. Since the martingale m has the chaotic representation property, it
also possesses the predictable representation property. Any random variable f in
X may therefore be expressed as f = IE[f] + fooo & (f) dmy, for some predictable
process (&:(f));>o in X. Viewing (&),», as a family of a.e. defined operators
on X we see it as a probabilistic interpretation of (Di)ysg : Dt = U710 0.
Similarly, V corresponds precisely to the gradient operator in Malliavin calculus,
and V, corresponds to the stochastic derivative, along the element f : s — sAt of
the Cameron-Martin space, on X' (see [N-Z], for example). By Theorem 3.11(b)
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S is the adjoint of V and therefore ([G-T]) corresponds to the Hitsuda-Skorohod
integral with respect to the process m. Of course this may alternatively be seen
directly. It also follows from Theorem 3.11(e) that Z, being the restriction of S
to adapted (Fock vector) processes, corresponds to the It6 integral with respect
to m. Theorem 3.11(d) includes an expression of the predictable representation
property of m, and the isometry of It6-integration with respect to m, on F. Finally,
Theorem 3.11(f) implies that D, = P;V; (in the sense of a.e. defined operators),
which corresponds to Clark’s formula ([Clal).

Thus each of the operations introduced in IT1.1-4 correspond to well-known op-
erations of classical stochastic calculus once Fock space is interpreted as the chaotic
space of some normal martingale. In fact one should rather think the other way
around. Probabilistic operations such as Skorohod integration, stochastic differ-
entiation, predictable representation and so on, may be expressed merely in terms
of the chaotic expansion of random variables. They use no specific property of the
particular martingale beyond chaotic representation and the form of 1t6 isometry.
The normality of the martingale implies that its angle bracket (m,m); equals ¢,
and so the formula for It0 isometry remains the same for each such martingale.
Fock space is thereby seen as an abstract chaos space which encodes the chaotic
representation property and the Ito isometry formula of normal martingales, and
which carries simple intrinsic operations which perform the L2-stochastic calculus
of the martingale.

IV. Operator adaptedness

In this section we extend the class of domains for the operators and processes
of quantum stochastic calculus beyond the exponential domains that have been
used so far. We give three characterizations of a notion of adaptedness for Fock
space operators. Hudson and Parthasarathy defined all operators and processes
on domains consisting of exponential vectors and, in their definition of operator
adaptedness, exploited the homogeneity of these vectors in the continuous tensor
product structure of Fock space:

e(¢) = elp) ®(pp,) for 5> 0.

In our approach both the allowable domains and the criteria for adaptedness are
described wholly in terms of the projection operators (P;) and sections of the
adapted gradient D. Fundamental for us are the a.e. relations:

Dsf = Pstf; DtPsf = 0; (41)
Dsptf :PtDsf:Dsf; (42)

for s < t, and the a.e. reproducing property
f(w) = DuJ(sf(ws))' (43)

These hold for any measure equivalence class of map f with source I' — in particular,
for f € F.
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The new condition for operator adaptedness is equivalent to the original one
on exponential domains. However, the new condition frees us from exponential
domains allowing us in particular to work on all of F for bounded operators,
and to multiply unbounded operators. We show that the collection of s—adapted
operators is closed under operator sums and products. Our definition gives a
procedure for manufacturing an adapted operator from any Fock space operator.
This is exploited in our discussion of conditional expectation in the next section;
it is also relevant to maximality questions, for operator domains, considered later.

IV.1. Definitions and basic properties

Definition 4.1 Let s > 0 be fixed. A subspace V of F is s-adapted if f € V
implies
P;f eV and D,;f € V for a.a. t > s.

Differential definition of adaptedness— An operator H on F is s-adapted if
1.1 Dom H is an s-adapted subspace
1.2 For all f € Dom H

(i) PsHf = PsHP; f;

(i) DiHf = HD. f for a.a. t > s.

We next give an equivalent definition.

Proposition 4.2 (Integral definition of adaptedness)— An operator H on F is
s-adapted if and only if it satisfies

II.1 Dom H is an s-adapted subspace
I11.2 For all f € Dom H,
(i) HP,f = P,HP,f
(i) HD.f € F; for a.a. t > s;
(11i) (HD: f)s>s defines an Ité-integrable process, and

H(f—Psf) <=H/ thdXt) =/ HDyf dx:.

Proof
Suppose that H is s-adapted. Then, by (4.1) and (4.3),
HP; f(w) = (Do, HP; f)(ws)) = (HDu(, Ps f)(ws)) = I, (w)(HP; f)(w)
= (PsHP;f)(w)
for a.e. w, so I1.2 (i) holds. Moreover, by (4.1), 1.2 (ii) implies I1.2 (ii). By 1.2 (ii)

we also have, for a.a. t > s
H.th - DtHf
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so (HD,f):>, is an adapted square integrable process, and is therefore It6-integra-
ble. Finally,

[ / T HD,f dXt] (@) = Ty o[ (v0) (Dyw HF) (w_) = Ty oo (v0) (H ) (w)
= [(I_Ps)Hf] (w) = [H(f_Psf)] (w)

for a.a. w, so that H is s-adapted in the integral sense.
Conversely, suppose that H is s-adapted in the integral sense. Then 1.2 (i)

holds since the Ité integral of a process on [s,oc[ is orthogonal to Fs. Thus
HP, = P;H on Dom H and we have

HD,f = D / HD,f dyu = D,H(f — P,f) = Dy(I — P)Hf = D, HJ,

so that H is s-adapted.
d
Note that, combining the above characterizations of adaptedness, we obtain
the following.

Corollary 4.3— An operator H on F is s-adapted if and only if it has an s-
adapted domain on which the commutation relations

HP,=P,H, and HD,= D H for a.a.t > s, (4.4)

are satisfied.
g
The above characterization of adaptedness is the most useful one, but it is
sometime good to keep in mind the the commutation condition with P can be
weakened.

Combining .2 (i) with I1.2 (i) and iterating 1.2 (ii) we also see that an operator
H on F is s-adapted if and only if it has an s-adapted domain on which the
commutation relations

HP,f =P,Hf, and HD,f=D,Hf foraa.7€Tl,7>s, (4.5)

are satisfied.
In view of the relations

Pi(g®h)=h(0)g®ds, and D,(g®h)=g® D,h for a.a. 7> s,

for g € F5; and h € F?, if V; is any subspace of F,, then the algebraic tensor
product V; ® F? is an s-adapted subspace. Moreover, if Hy is an operator on Fj,
then Hy ® I° with domain Dom H; ® F? is an s-adapted operator.

We now come to our main operational definition.

Proposition 4.4 (Projective definition of adaptedness) — An operator H on F is
s-adapted if and only if it satisfies:

II1.1 Dom H 1is an s-adapted subspace.
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1.2 For f € Dom H,
Hf(w) = (HP;Dy, [)(ws))-
for a.a. w.

Proof
If H is s-adapted then, by (4.3) and 1.2 (ii),
Hf(w) = (HDy Hf)(ws)) = (HDy(, f)(ws)) = (PsHDu(, f)(ws))

for a.a. w, so II1.2 follows from (4.4).
Conversely, suppose that H is s-adapted in the projective sense above. Then

(PeH f)(w) = 1p, (W)(HP; Doy, f)(ws)) = 1r, (w)(H Py f)(w) = (PsH P, f)(w)
for a.a. w, so that H satisfies 1.2 (i). For a.a. w and t > s we have
HD,f(w) = (HPsDu(,Dif)(ws))
= 1, (W) (HPsDuty, f)((wUt)s))
= I, (w)(H[)(wUt) = DH f(w),

so that H satisfies 1.2 (ii) also, and H is therefore s-adapted.
O

From the projective definition it is easy to see that s-adapted operators satisfy
HP,f=PHf

for t > s, whenever both sides are defined: f € Dom H N Dom HP;. Therefore
H is also t-adapted for each ¢ > s for which Dom H is a t-adapted subspace. It
also follows from the projective definition of adaptedness that if two s-adapted
operators H and H' agree on F;NDom H NDom H’, then they agree on Dom H N
Dom H'.

Furthermore, let D be a s-adapted domain. Let H be an operator defined on
D N F,, with values in F,. The operator H’, defined on D by

[H'f](0) = [HP; Dy, f|(0s))
is a s-adapted operator which coincides with H on DN F; ; it is unique with these
properties. H' is called the s-adapted extension of H.
Proposition 4.5— Let H be an s-adapted operator on F. Then for all f € F and
g € Dom H,

(f, Hy) = /P Ir-(8)(P.Dg f, HP,Dgg) db.

Proof

This follows easily from the a.e. reproducing property and the $-Lemma.
O

The adjoint of a densely defined s-adapted operator H may fail to be s-
adapted as it stands. However we shall see in the next section that conditioning

19



S. Attal and J.M. Lindsay

an operator which is adjoint to H yields an s-adapted operator adjoint to H. Let
A denote the collection of all s-adapted operators on F.

Proposition 4.6 - A, is a subset of the collection of all (not necessarily bounded)
operators on F which is closed under operator products and linear combinations.

Proof

Let H and H' be s-adapted operators on F, and let f € Dom(HH'). Then
P,f and D;f lie in Dom(H'), H'Psf = P;H'f and H'D;f = DH'f for a.a.
t > s, since f € Dom(H') and H' is s-adapted. But H'f € Dom H and H
is s-adapted, so PsH'f and D H'f lie in DomH, H(P;H'f) = PsHH'f and
H(D:H'f)= D :HH'f for a.e. t > s. This shows that 4, is closed under operator
multiplication. Since an intersection of s-adapted subspaces is s-adapted, A, is
also closed under addition. It is obviously closed under scalar multiplication.

O

A, fails to be an associative algebra only in the same sense in which the
collection of all unbounded operators on F does, namely that an element H whose
domain is not all of F fails to have an additive inverse, and scalar multiplication
by 0 yields not the zero operator, but its restriction to Dom H.

IV.2 Examples and previous definitions

We first show that when restricted to exponential domains our definition
coincides with that of Hudson and Parthasarthy (HP). Let us fix s > 0. Let
M be a subset of L2(IR,) and let V; be a subspace of Ho. The pair (Vo, M) is
s-admissible if

(i) Vo ® E(M) is dense in F;

(ii) @y € M whenever p € M and t > s.

An operator H on F is HP-s-adapted with respect to (Vo, M), if

1. (Vo, M) is an s-admissible pair, and Dom H = V @ £(M).

2. For each u € Vi and ¢ € M we have

(1) CUE[(IOS]] € Fs;

(if) Hue(p) = (Hue(ps)) @ (pps)-

Choices of M that have been found useful include L?(IR.) itself; dense sub-
spaces of L2(IR) such as L?*(IR;) N L§S (IR4); the set {¢ € (L* N L) (Ry) :
lell2 < 1 and ||¢]|lo < 1} and, in view of a result of Partharasathy and Sunder
([P-S]), one could also use the collection of indicator functions {lp : B C R4

Borel with finite Lebesgue measure}.

Proposition 4.7— Let V =V, ® E(M) where Vy is a subspace of Hy and M is
a subset of L>(IRy), such that V is dense in F, and let H be an operator on F
with domain V', then
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(a) V is an s-adapted subspace if and only if the pair (Vo, M) is s-admissible;

(b) H is an s-adapted operator if and only if H is HP-s-adapted with respect
to the pair (Vo, M).
Proof

(a) Since Pyve(p) = ve(py), and Dyve(p) = @(t)ve(py) for a.a. t, this is
immediate.

(b) In either case Hve(yp,)) € Fs, so that for a.a. T,

(Hve(py)) ® (pps)) (1) = (Hue(py)) () [] ot

tET[s

(HP ve ()Os/\T[s 7-s] H 90
teETs

= (HPs Dy, ve(9))(75)-
Therefore Hve(p) = Hve(py)) ® €(gys) if and only if

(Hve(p))(r) = (HPsDr,ve(¢))(7s))
for a.a. 7, so (b) holds.
O

Our definition thus specializes precisely to the usual one when restricted to
exponential domains. We next show that, as well as these, all domains used
previously for quantum stochastic calculus are (fully) adapted — that is they are
s-adapted for every s > 0. Recall the subspaces of F defined in (2.1).

(a) F itself is obviously adapted. This is useful as it is the natural domain for all
bounded-operator-valued processes.

(b) K is adapted In fact each F(®) is an adapted subspace, since P, leaves
Dom(y/a ) invariant and

//#w”Df I dwdt = o~ // #@UD|| £(w U t)||21p, (w) dw di

= a7 Y|DVa" fI? < a7 Y|Va" £

This is the natural domain for both non-causal (quantum) stochastic calculus and
for integral-sum kernel operators on F.

(c) Fy is adapted since if supp f C I'Vl =, . v ™), then supp P,f C '™ and
supp D, f ¢ TN-1.

(d) lin{®@™¢ : ¢ € M,n > 0}, the symmetric tensor algebra over a subspace M
of L%(IR, ), is adapted provided only that Ljo,41 € M whenever ¢ € M and t > 0,
since Dy(@™ ) = o(t) @ (ol 4)-

(e) Kp := {f € F:3T,C,K > 0s.t. suppf C I'r and ||f(w)|]] < CK#“},

is adapted since both the support and boundedness properties are clearly undis-
turbed by both P, and Dy: for example | Dy f(w)| < C'K#¥, where C' = CK.
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This is the original domain used by Maassen for expressing quantum stochastic
integrals as integral-sum kernel operators ([Maal).

V. Conditional expectation and operator processes

The projective definition of adaptedness leads to a natural way of defining
conditional expectation for Fock space operators. When applied to any operator
it yields an s-adapted operator; when applied to an operator which is already s-
adapted, it yields an extension of the operator to a natural domain for the purposes
of quantum stochastic calculus.

V.1. Conditioned spaces

The idea is to construct the domain of the conditioned operator so that it
is maximal given the domain constraint of the unconditioned operator. Thus, for
any subspace V of F, its time s-conditioned space is the subspace

D,V):={feF:PD,f €V for aa. 7> s}

Clearly ID4(V) is an s-adapted subspace. Here is a list of further properties of
this construction.

Proposition 5.1- Let V and V' be subspaces of F.

(0) Ds(F) = F, Ds(VNV') = IDy(V) N D (V).

(i) IDs(V') is a t-adapted subspace for all t > s.

(i) If V is s-adapted then IDs(V) D V.

(iii) For s < t, Dy(IDs(V)) = Dy (IDy(V)) = Dy(V).

(iv) IDs(V) D> (VNFs) @ F°.

(v) Let s < a <b. If (2t)te[ap] i85 @ IDs(V')-valued Ito-integrable vector process,
then f; zsdxs € Dy(V).

Proof
These are routine verifications. For example in (v), f: rsdxs € Fp © F, SO

that P,D, f: xsdxs = PsD;_xy, if 7 € Ty \ Ty, and 0 otherwise.
0

Thus the map ID; manufactures an s-adapted subspace from any subspace
V', which moreover contains V' if V is already s-adapted. (i) is a tower property
of the maps, and (v) is a technical property which will be useful later.

V.2. Conditional expectation of operators

We come now to a central definition of our approach. To define conditional ex-
pectations of operators, we take our cue from the projective definition of adapted-
ness. Thus if H is an operator on F and s > 0, let V be the subspace of F consisting
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of those f in IDs(Dom H) for which the a.e. defined map 7 +— lps(7)PsHPsD, f
is square integrable I' — F. For f € V there is a unique element of F, denoted
E [H]f, satisfying the a.e. identity

(ES[H]f)(w) = (HPsDw(s f)(ws)) (5'1)

The time s-conditional expectation of H is the resulting operator IE;[H]| with
domain V. Thus

Dom([Fs[H])={f € F: PsD,f € DomH for a.a. 7 > s;
T+ lps (1) Ps HP; D, f issquare — integrable}.

It is easily verified that IF[H| is an s-adapted operator. Our first result on
conditional expectation therefore includes an extension of Proposition 4.5.

Proposition 5.2 Let H be an operator on F, and let s > 0.
(a) B,[H] = E,[HP,) = E,[P,HP,].
(b) If g € Dom IE[H], then

PsIE [H]g = IEs[H]|P;g = PsHPyg.

(c) If g € IE;[H] and f € F, then

(f, IE,[H]g) = /F Ipe (8) (P, D3 f, HP,Dsg) db.

(d) If (H, H) is an adjoint pair of operators on F then (IE,[H], IE,[HT]) is also
an adjoint pair.

(e) If H and IEs[H| are densely defined, then
EH]* S E,[H"].

Proof

(a) and (b) are immediate consequences of the definition. (c) follows from (b)
and Proposition 4.5. (d) follows from (c), and (e) from (d).
O

Notice that if H is s-adapted then the subspaces Fs N Dom H and F5 N
Dom(Es[H]) coincide, and IE;[H]|g = Hg for g in this subspace. It follows that
E,|H|P,f = HP,f and IE,[H|D,f = HD,F,

whenever P;f (respectively D, f) belongs to Dom IE[H], equivalently belongs to
Dom H. We next give a list of the basic properties of time s-conditional expecta-
tion. A refinement of (d) of the above proposition is included.

Theorem 5.3 Let H and H' be operators on F.
(o) IEs[I|=1, IEs|[H + AH']| D IE;[H] + ME[H'] for A € C.
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(i) IE5[H] is t-adapted for every t > s.

(i) H is s-adapted if and only if Dom H is an s-adapted subspace and H C
E [H].

(ii3) For allt > s > 0, IE, o IEy[H| = IE; 0o IE,[H] = IE,[H].
(iv) IEs[H] D Hy @ I®, with domain (FsNDom H) ® F*, where Hyg = PsHyg.

(v) If H, IE,([H| and IE;[H]* are all densely defined, then IE;[H|* is an s-
adapted operator and IE;[H|* D IE,[H*|.

(vi) If H is bounded (with domain F) then IEs[H]| is bounded (with domain
F) too, with norm at most | H||.

(vii) If H is a non-negative operator, then so is IE [H].

(viii) If S is an s-adapted operator, then IE,[HS] D IE[H|S.

(iz) If B is an s-adapted and bounded operator, then IE;|BH]| D BIE [ H].

(x) If H= Hy, ® H®, where Hy is an operator on Fs and H® is an operator
on F*°, then IE;[H| = (dg, H?6g)Hs ® I°, provided only that 65 € Dom(H?).

Proof

Most of these properties follow from straightforward applications of the rela-
tions (4.1-4.3), the ¥-Lemma and Propositions 5.1 and 5.2, to the definitions. For
example (i) follows from Propositon 5.1(i) and the remark following 4.2. Parts
(iii) and (v) are a little more delicate.

(iii) For f € F, f € DomIE, o IE;[H] if and only if P;D,f € DomIE; | H|
for a.a. a > s, and the map « — 1ps () PsIE[H|Ps; D, f is square-integrable. By
Proposition 5.2, these hold if and only if

t sHa -d. .a. .

(a) PLDgP;D,f € DomH for a.a. § >t and a.a. & > s

(b) B+ lpe(B)P.HP,DgPsD,f is square-integrable for a.a. a > s.
(¢) @ lps(a)PsHP,D,, f is square-integrable.

But since ¢t > s, PLDgPsDyf = 0¢(8)PsDyf for a.a.  and (b) is vacuous, so
f € DomIE; o IE4[H] if and only if f € Dom IE;[H|, moreover

Es o Et[H]f(w) = (Et[H]PSDw(Sf)(ws)) = (HPsDw(sf)(ws)) = ES[H]f(w)

for a.a. w. Hence IFs o IE[H| = IE;[H].
There remains to prove that IE; o IEs[H| = IE4[H]. But f € DomIE; o IE4[H|
means

(a) PsDgP,D,f € DomH for a.a. > s and a.a. a > .

(b) B+ 1ps(B)PsHP;DgP,D, f is square-integrable for a.a. a > t.
(¢) o Ipe(a) PIES[H| P, D, f is square-integrable.

That is,

(a) PsDgf € Dom H for a.a. 8 > s.
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(b) B+ 1ps(B)Ps HPsDgf is square-integrable.
(¢) a— lrt(a) PDoIES[H]f is square-integrable.

The first two conditions exactely mean f € Dom IF[H]|; condition (c) is
trivial.

(v) From Proposition 5.2(d), all that remains to be proved is that IE[]* is
s-adapted under the assumption that, along with H and IF¢[H], it is densely
defined. Thus let f € V* := Dom IE,[H]* and let g € V := Dom IE;[H]. Then,
by Proposition 5.2(a)

(Psf, IEs[Hg) = (f, IEs[H|Psg) = (P, E[H]" f, g).
Thus Psf € V* and IE;[H|*Psf = P;IE;[H|* f. Next note that, for any k,h € F,
P.k is locally Ito-integrable, and (D.k,h) = (D.k, P.h) is locally integrable with
J2(Dik, hydt = (k, [° P;hdx;). Using this, together with Proposition 4.5 and the
fact that PIE[H|f = IEs[H|P;f for t > s, we obtain

b b
/ dH(D, f, I, [Hg) = (f, T (IE,[H)P.g)) = / 4t (DL I [H]" f, 9),

for b > s. Since b is arbitrary, there is a null subset Ny of [s,00[ such that
(Dif, IEs[H)g) = (DyEH|*f,g) for t ¢ Ng. Letting g run through a countable
family in V| whose linear span is a core for the closure of IF;[H], we see that for
aa. t>s, Dif € V*and IEGH|*D.f = DJE;[H]*f. Hence IE,[H]* is s-adapted.
g
In view of property (ii) above, one says that an operator H is mazimally
s-adapted if IE;[H| = H.
Property (v) expresses the sense in which conditional expectation commutes
with the adjoint operation. When applied to already s-adapted operators, or
maximally s-adapted operators, it gives us the following useful result.

Corollary 5.4— Let H be an operator on F which is densely defined and s—adapted.
If IE,[H] is closable, then

(a) ES[H*] = ES[‘H]*; (b) E, W] = ES[H]

In particular, the operators IE;[H|* and IE;[H| are mazimally s-adapted.

Proof

By (v) and (i), E,(E,[H]*) > E,H* > E,[H*. But H C E,[H], so
H* D I[E [HJ*, therefore IE;[H*| D IEs(IEs[H]*). Combining these we obtain
E H*] D IE;{[H|* D IE;[H*], which gives (a). Since IE;[H*| is closed we may
apply (a) to H*:

E[(H*)*] = E[H]" = (IEs[H]")",
to obtain (b).
O

Thus, if H is densely defined, closable and maximally s-adapted, then both
H* and H are maximally s-adapted too. Let A% denote the collection of closed,
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densely defined and maximally s-adapted operators on F. As complement to
Proposition 4.6 we have:

Proposition 5.5 The collection A¥ is closed under the Hilbert space adjoint
operation, and contains B(F) N As which is a strongly closed unital *-subalgebra
of B(F) isomorphic to B(Fy).

Proof

The first part is contained in Corollary 5.4. Let H € B(F) N A, then for
u € Fs, Hu® dy) = HP;(u ® dy) = PsH(u ® dy) = u' ® dy, for some u' €
Fs. Therefore, for v € F°, H(u ® v)(0) = HP;D, ,(u ® v)(0y)) = v(o@)H(u®
dp)(0s)) = (v ®v)(0). It follows that H = Hy; ® I* for an operator Hy on B(Fy).
Conversely, if Hy; € B(F;) then Hy ® I® is s-adapted by (x) of Theorem 5.3, and
H,® I, = IEs[Hs ® I] by the Corollary, so Hs; ® I* is s—adapted. Clearly the
map Hy, — Hg ® I is an isomorphism.
d

V.3. Fock operator processes

A Fock operator process is a family of operators H. = (H,)s>0 on F. The do-
main of a process H., denoted Dom H., is Ns>9 Dom H,. A Fock operator process
is measurable (respectively, continuous) if H.f is a measurable map (respectively,
continuous map) IR, — F for each f € Dom H., and H. is adapted if, for each
s > 0, H, is s-adapted. For a Fock operator process H., we define a process f{\.,

as follows: R
H, = F ,([H;], s>0. (5.1)

Thus H. is an adapted Fock operator process and when the original process H.
is adapted itself, H; D Hy for each s. Thus, when applied to adapted processes
this procedure systematically extends the domains of the constituent operators of
the process so that they become mazimally adapted. This is helpful for dealing
with unbounded-operator-valued processes — in particular for providing a robust
definition of Fock operator martingale.

A martingale is an adapted Fock operator process H. satisfying

IE,[H] C H, for t > s > 0. (5.2)

By the tower property of conditional expectations (5.2) may be written IE;[H;| C
IE [Hg]. A martingale H. is complete with closure Hy, if Hy, is an operator on F
such that R

E [H.] C Hy for s > 0. (5.3)
For any operator H on F, the process H. defined by Hy, = IE [H| is a complete
martingale (by the tower property again), with closure H. Martingales of this form
will be called exact. Note that closures are non-unique (every martingale has a
truly trivial closure). Finally an adjoint pair of (adapted) Fock operator processes
is a pair of (adapted) processes (H., H!) such that, for each s > 0, (H,, H]) is an
adjoint pair of (s-adapted) operators. As we have already remarked adaptedness
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of one of the pair does not entail adaptedness of the other. If H. is a Fock operator
process, and Dom H. is dense, then by Bessel’s equality H; f = > (Hgen, f)e,
for any Hilbert basis for F selected from Dom H., so H* is measurable if H. is.

Let A denote the collection of adapted Fock operator processes, let A# =
{H € A: Hy € A¥ for each s}, let A = {H. € A: H, € B(F) for each s}, and
let M be the collection of Fock operator martingales. From Propositions 4.4 and
5.5 we have:

Proposition 5.6~ A is closed under operator sums and products, A¥ is closed
under operator adjoints and A® is a unital x-algebra contained in A¥.
g
Due to the (unavoidable) inclusion relations involved in the definition of mar-
tingales there is a dirth of algebraic properties of M. However, the sum of two ex-
act martingales is a complete martingale, and the collection of bounded-operator-
valued martingales forms a linear space closed under the adjoint operation. More-
over the following *-subalgebra of A" has been investigated in [Att]:

A" = {H. € A®: 3 Radon measure u s.t. ||(H; — H,) f||> + ||(H} — HY) f||
+ 1(PsHe — Ho) fI| < p([s,2]), ¥t > s > 0, f € Fy st [[f]] = 1}

Elements of A" are shown to be expressible as sums of quantum stochasticintegrals
of processes in A?, and the resulting integrals are characterized.

VI. Quantum stochastic integrals

In this section we introduce new definitions of stochastic integrals, of adapted
Fock operator processes, with respect to the basic martingales of quantum stochas-
tic calculus. The technical core of the section is on commutation relations between
the noncommutative stochastic integrals and sections of the adapted gradient op-
erator. We verify that the integrals produce operator martingales, and that the
martingales are complete.

In order to unify the notations, the time integral fooo g; dt of a vectors process
(9¢);>0 will sometime be denoted £(g.).

VI.1. Definitions

Let H. be an adapted Fock operator process. For Q = P or D, let VQ(H)
denote the subspace of F consisting of those f which satisfy

e Q;D,f € DomHj; for a.a.(s < 7)

e the a.e. defined map (s,7) — lps (7) HsQs D, f is measurable Ry x ' — F.

If f € VQ(H.) then there is a measurable map Hef:T x R, — Ho, written
(w, s) = H? f(w), such that I, () H2 f(- UT) is a representative of H,Q,D, f for

a.a. (s < 7). The map H Q f is uniquely defined up to a set of measure zero, and
satisfies the defining a.e. identity

H2 f(w) = (HyQs Doy, f)(ws))- (6.1)
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We emphasize here that, for each s > 0, while H SQ f is a measurable map I' — H,,
it need not be square-integrable — in other words, in general H? f ¢ F. Thus H. Q f
should not be thought of as a Fock vector process — in general it isn’t.

However, the following result describes subspaces on which the maps H® f
simplify, and also gives conditions on H. for the spaces V¥?(H.) to have a sim-
ple description. Recall that the domain of the stochastic gradient V coincides
with that of VN (Theorem 3.11). For any Fock operator process H., define two
associated subspaces:

V(H)={f € DomH.: H f is measurable IR, — F},
VV(H) = {f e Dom VN : V,f € Dom H, for a.a. s; H.V.f is measurable}.

Proposition 6.1 - Let H. be a Fock operator process:
(a) If H. is adapted then

feV(H)= feVP(H),H f=H.f;
feVV(H)= feVPH),H’f=HV.f.

(b) If H. is measurable, then
(i) V(H.) = Dom H.
(ii) If H. is also adapted, then VF(H.) D Dom H..
(¢) If Dom H; is dense for each s, Dom H* is dense, and H* is measurable, then
(i) VV(H) = {f € DomV/N : V,f € Dom H, for a.a. s}.
(ii) If H. is also adapted, then VP (H.) = {f € F : DyD, f € Dom H; for a.a.
(s< 1)}
(d) If H. is measurable and if, for each s, Hy is bounded (and everywhere defined),
then

(i) VV(H)) = Domv/'N;
(ii) If H. is also adapted, then VP(H)=VFP(H) = F.

Proof

(ai) This follows easily from the a.e. reproducing property.
(aii) Let f € VV(H). Then f € Dom+/N, for aa. (s < 7) PyD,V,f =
P,ViD.f = D,D,f, and for a.a. s, Vgf € Dom H,;. Thus if H. is adapted,
DD, f € Dom Hy for a.a. (s < 7), and Ups(7)HsDsD,f = lps(1)Ps D H Vs f,
which is a measurable function of (s, 7). Hence f € VP(H.) and, for a.a. (s,w)
HP f(w) = H,V, f(w) by the a.e. reproducing property.
(b) This is immediate.
(c) Let H. satisfy the conditions of (c), and let (e, ) be a Hilbert basis for F selected
from Dom(H*).

(i) If f € Dom+/N and V,f € Dom H, for a.a. s then, by Bessel’s equality,

for a.a. s, HV,f = > (HYen,Vsf)e,. But this is manifestly a measurable
function of s, therefore f € VV(H.).
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(ii) If H. is adapted and f € F satisfies D;D, f € Dom H; for a.a. (s < 7),
then by another application of Bessel’s equality, for a.a. (s < 7),

lps (1)Hy Dy Dy f = 1+ (1) Y (Hfen, DsD- f)

n

which is a measurable function of (s, 7). Thus f € VP (H).
(d) This is a special case of (c).
O

The creation, number, annihilation and time integrals of an adapted Fock
operator process H. are given respectively by the actions:

ANH)f =S(HTf) 1w Y (H,PyDy, f)(ws))

SEw

N(H)f = S(HD,f) W Z(HSDSDOJ(Sf)(wS))

SEw

AH)f=LHPf) :w— /OOO(HSDSDW(Sf)(wS)) ds

T(H)f=LHf) :w— /0 Oo(HsPsDw(s f)(ws)) ds

with the following natural domains:
Dom AT(H.) = {f € VP (H.) : H” f is Skorohod-integrable};
Dom N(H) = {f € VP(H) : HP f is Skorohod-integrable};
Dom(A(H.)) = {f € VP(H))) : HP f is time-integrable};
Dom(T(H.)) = {f € VF(H.) : H” f is time-integrable};
Recall equation (5.1) defining the e>§c\ension of an adapted Fock operator pro-
cess H. to its maximally adapted form H.. From the remarks following Proposi-

tion 5.2, it follows that V¥ (H.) = VQ( .) and HQf H@f for f € VR(H.) and
@ = P or D. Therefore each of the quantum stochastic integrals is unaffected by
allowing the integrand to achieve its maximally adapted form:

A(H) = A(H)) (6.2)
for A=AT N, AorT.
The following linear relations are clear form the definitions:
VeH +K)DVOH)NVO(K.);VeAH) =VY(H); V9(0) = F;
AH +K)DAH.)+AK.);A(AH.) = AA(H.); A(0) = 0;
where H. and K. are adapted Fock operator processes, A € C \ {0}, @ = P or D
and A = AT, N, A or T. Multiplicative relations between the quantum stochastic
integrals constitute the quantum It6 product formulae, to be described in the final
section.
Notice that each of the quantum stochastic integrals is associated with either

an adapted derivative or a projection, and with either Skorohod or time integra-
tion. It will considerably simplify the development of the basic theory if we forge
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a unified notation to describe the integrals. Thus to each quantum stochastic in-
tegrator A we associate R* € {S, L} as well as Q™ € {P, D} as follows: (A, R, Q)
equals either

(A",S,P), (N,S,D), (A,L,D) or (T,L,P). (6.3)
Thus A is determined by the pair (R*, Q") and vice versa. The definitions of the
four quantum stochastic integrals are thereby unified:
Dom(A(H.)) = {f € V9(H.) : H? f is R-integrable}
A(H) = R(H?f)
where Q = Q*, R = RA and A = AT, N, A or T. They are frequently used in the

sequel.
The following identities are easily established.

Lemma 6.2 Let H. be an adapted Fock operator process, and let f € VQ(H.),
where Q@ = P or D. Then the following relations hold (a.e.):

D.f, P f € VQ(]l[o,t[H.)
DyHE f = N 4(s)HE D, f + Dy H,Q, f
PHZ f = o4 (s)HEPf + W o[ (s) PLH, Qs f
PHP f = HiQ.f.

In particular, T 4((s)(D:HE f)(w) gives a version of T 4(s)(HEDyf)(w) whic
is jointly measurable in (s,t,w).

>

VI.2. Commutation relations

We next apply the commutation relations defined in II1.5 to quantum stochas-
tic integrals. This allows us to deduce adaptedness and martingale properties in
the next subsection. It is also the first step towards solving the problems raised
by It6 calculus approach to quantum stochastic calculus (see VIIIL.3).

In the sequel, A;(H.) denotes A(K.) with K, = Tjg4(s)Hs.

Theorem 6.3 — Let H. be an adapted Fock operator process, and let f € VQ(H.),
where Q = Q™ and A = AT or N. Then the following are equivalent:

(a) f € DomA(H.)
(b) (i) Dif € DomAy(H.) for a.a. t;
(i) t — Ae(H.) Dy f + Hi Q1 f is Ito-integrable.
When these hold, we have the a.e. identity
DiA(H.)f = A(H.)Dif + Hi Q1 f- (6.8)

Proof
In view of (6.7), Proposition 3.12 applies to H?f. If f € Dom A(H.) then
H® f is Skorohod-integrable so ]l[o,t[(-)DtH.Q f is Skorohod-integrable for a.a. t,

and
D:S(HOf) = SY(D;H®f) + P,H? Y,
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which is square-integrable in ¢. By (6.5) and (6.7), f satisfies (b), and the a.e.
identity (6.8) holds. Conversely, if f satisfies (b) then, since (6.14) implies that

A(H)D, f(w) = S{HED, f) = S(D.H2 f),

Proposition 3.12 gives the Skorohod-integrability of H? f - in other words f €
DomA(H.).
O

Theorem 6.4 Let H. be an adapted Fock operator process, and let f € V2 (H))
be such that (H.Q.f)(D) is integrable, where Q = Q* and A = A or T. Then the

conditions (a) and (b) are equivalent:
(a) (i) f € DomA(H.); and (ii) H.Q.f is time-integrable.
(b) (i) Dif € DomA,(H.) for a.a. t;
(ii) D:H.Q.f is time-integrable for a.a. t;
(iii) the maps t — Ay(H.)Dif and t — L(DH.Q.f) are Ité-integrable.
When these hold we have the a.e. identity,
DA(H.)f = Ay(H)Dof + L(D.H.Q.f). (6.9)

Proof

In view of (6.7), H® f(0) is integrable and so Proposition 3.13 applies. If
f € DomA(H.) and H.Q.f is time-integrable then, by Proposition 3.13, both
DtH.Qf and D;H.Q).f are time-integrable for a.a. t, and

L(DH®f) = D,L(HPf) = D,A(H.)f; L(DH.Q.f) = D:L(H.Q.f);

both of which are square-integrable in t. By (6.5) therefore, D;f € Dom A;(H.),
(6.9) holds and both A¢(H.)D,f and L(D;H.Q.f) are square-integrable in t. Thus
f satisfies (b). Conversely, if f satisfies (b) then, by Proposition 3.13, H.Q.f
is time-integrable and, by (6.5) D,HCf = ﬂ[o,t[(-)H.Qth + DyH.Q.f, which is
time-integrable by (bi) and (bii), with time-integral A:(H.)D:f + L(D:H.Q.f),
which is It6-integrable by (biii). Hence, using Proposition 3.13 once more, H Qf
is time-integrable — in other words f € Dom(A(H.)), so that (a) holds.

[l
Proposition 6.5 Let H be an adapted Fock operator process, and let t > 0.
(a) If f € Dom A(H.), where A € AT or N, then P;f € Dom A;(H.) and

(b) If f € Dom A(H.), where A = A or T, then 2t is time-integrable and
L(Z") = P,A(H.)f (6.11)
where 2t = (ﬂ[o,t[(-)H.QPtf + o[ (1) P H.Q.f), and Q = QL.
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(c) If f € F and P,f € Dom(A(H.)), where A = AT, N or A, then Pif €
Dom(A(H.)) and
A(H.)P,f = P,A(H.)P,f. (6.12)
(d) If A = N or A, then the subspaces Fy N Dom A(H.) and F; N Dom A;(H.)
coincide, and
Ay(H)Pf = A(H)Pyf (6.13)
whenever P,f € Dom Ay (H.).

Proof

Each of these commutation relations follows easily from Proposition 3.14 by
using (6.6).
O

V1.3 Adaptedness and martingale properties

The next two results show that our definitions synchronize satisfactorily.

Proposition 6.6 —Let H. be an adapted Fock operator process, and let t > 0.
Then each of the operators Al(H.), Ny(H.), A¢(H.) and T,(H.) is u-adapted for
all u > t.

Proof

Let f € DomA;(H.) and let uw > t. First note that, by (6.4), P,f, Dy f €
VQ(]I[O’OO[()H) Since Au(]l[()’t[()H) = At(H) and ]l[u,oo[()Pu]l[O,t[()HQf =
0. Theorem 6.4 implies that P,f € DomA(H.) and P,A¢(H.)f = A¢(H.)P,f.
Since I 4f(u)HuQuf = 0, Theorem 6.3 implies that D,f € DomA(H.) and
A¢(H)Dyf = D Ay(H.)f for A = AT or N. For A = A or T, (6.5) implies that

D, HEf = H?D,f for s < t. Therefore, by Proposition 3.13, L ;(-)H?D, f is

time-integrable, so that D, f € Dom A;(H.), and

Ae(H)Dyf = Lo(HODyf) = Lo(DyHP f) = DuLe(HOf) = DyAy(H.) .

This completes the proof.
O

Theorem 6.7 - Let H. be an adapted Fock operator process. Then (Ay(H.))¢>o is
a complete martingale with closure A(H.), for A = AT, N or A.

Proof

Let ¢ > 0, let u € [t,00] and let f € Dom([E:[A,(H.)]). Then P.Dgf €
Dom(A,(H.)), the map 8 — lp:(B)P;Ay(H.)P,Dgf is square-integrable I' — F,
and Ei[Au(H)|f(w) = (PeAu(H.)PuD,, f)(wy)) for a.a. w. Thus, by Theorem
6.5(c), f € Dom(IE:[A¢(H.)]) and IE¢[A¢(H.)|f = IE¢[A,(H.)]f. This shows that

E[Ay(H)] C E[A(H ), ()
and so A.(H.) is a complete martingale, with closure A(H.).
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O

In view of Theorem 6.5(d), equality holds in the (complete) martingale inclu-
sion relations (x) in the cases A = N or A:

E(N(H.)| = IE(N(H.)]; IEJA(H.)] = IE[Ai(H.)].
In other words the martingales IE.[N.(H.)] and IE.[A.(H.)| are exact.

VII. Restricted domains and adjoint relations

In Section VIII we shall see and exploit maximality of the domains of definition
of the quantum stochastic integrals introduced above. In this section we introduce
restricted domains for quantum stochastic integrals, which lead to good adjoint
relations, and also It6 product relations to be proved in Section IX.

Let H. be an adapted Fock operator process and recall the definitions (6.1)
and (6.2). We define the restricted quantum stochastic-integrals ®A(H.) as follows:
Dom BA(H) = {f e VQ(H.) : H?f is absolutely R-integrable},
where Q = Q* and R = R” are as given by (6.3), and absolute R-integrability is

defined in Definition 3.1.

A simplifying feature of restricted quantum stochastic-integrals is the inclu-

sions:
Dom ®A,(H.) > Dom ®A(H)
for s < t. Another is that the processes t — £A;(H.) are continuous (see below).

Lemma 7.1 Let f € DomBA(H.) where H. is an adapted Fock operator process
and A is a quantum stochastic-integrator, and let Q = Q». Then H.Q.f is an
adapted Fock vector process, which is

e Ité-integrable if A = AT or N;

e absolutely time-integrable if A=A or T.

Proof
Since f € VR(H.), s = H,Q.f = lps(0)H,Q,Dyf is a measurable map
R, — F. Since H,Q,f = Ir, H? f, HQ.f is (absolutely) Skorohod-integrable if
A = Af or N, and is absolutely time-integrable if A = A or T. Since H.Q.f is an
adapted Fock vector process, the result follows.
O

Lemma 7.2 Let X = BA(H.) for some adapted Fock operator process H. and
quantum stochastic-integrator A. If f € Dom X then

(i) Pif € Dom X; for allt > 0; (i) Dyf € Dom X; for a.a. t.

Proof
Let z(w,s) = |[[H2f(w)|, so that x is R-integrable, where Q@ = Q* and
R = R" are given by (6.3). By Proposition 3.14, Ljo4;(-) Py. is R-integrable, and
by (6.5),
To,41(5) Prs(w) = Tpo 4q(s) [ HE Pef (w)]
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so that P.f € Dom ®A;(H.) for each t > 0. Using Proposition 3.13 and (6.6)
instead, the above argument yields (ii).
O

Reminder: We use the notations P; f and D, f for any maps f whose source space
is I,

Proposition 7.3 Let H. be an adapted Fock operator process, and let A be one
of the quantum stochastic-integrators. Then

(a) BAy(H.) is u-adapted for each u > t;
(b) if A = AT, N or A then BA.(H.) is a complete martingale with closure
RA(H).

Proof

Let X = ®A(H.)) — both as operator and as process — let (R, Q) be the pair
associated with A according to (6.3), and let ¢ > 0.

(a) In view of Proposition 6.6 it suffices to show that Dom(X}) is a u-adapted
subspace, for each u > a. Let f € Dom(X;), then the map k£ : (w,s) —
o 4((s)||HE f(w)|| is R-integrable. By (6.4), (6.5) and (6.6), if v > u > ¢ then
Puf3 va € VQ(]l[O,t[()H)a

Tio (8| HE Py f ()| = (Puks)(w) < ks(w), 1
Lo, ()(HE Do f) ()| = (Doks)(w), 2

for a.a. (w,v). By (1), P,f € Dom(X;), and by (2), together with Propositions
3.12 and 3.13, D, f € Dom(X;) for a.a. v. Thus Dom(X}) is u-adapted.

(b) By (a), (Xs)s>0 is an adapted Fock operator process so that, in view
of Proposition 6.7, it suffices to show that Dom(F;[X.]) C Dom(IE;[X,]). Let
f € Dom([E;[X.]), then P,D,f € DomX. C Dom(X;) and, since A.(H.) is a
complete martingale with closure A(H.),

PtXtPtDTf == PtAt(H)Pt-DTf = PtA(H)Pt_DTf = PtXPtDTf

for a.a. 7 > t. Therefore 7 — lr¢(7)P, X P; D, f is square-integrable — in other
words f € Dom IF;[X;]. This gives the required inclusion.
O

Proposition 7.4 Let H. be an adapted Fock operator process, and let A be a
quantum stochastic-integrator. Then the process BA.(H.) is continuous.

Proof
Let X. = BA(H), let R = R* and Q = Q* according to (6.3), and let
f € Dom X. Writing k for the map (w, s) — ||[H? f(w)||, we have

1Xuf = Xufll = [REHZ )| < R (k).
Thus, if A = AT or N,

1Xuf — Xof12 g/tu/dw{ks(w)}2ds+/tu/tu/rks(wut)kt(wUs)dwdtds,
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which is finite by Proposition 3.3. If A = A or T, then

||Xuf—th||g/r{/tuks(w)ds}zdw<oo.

Thus continuity follows in all four cases by Monotone Convergence.
O

Our next result is an extension of the First Fundamental Formula for quantum
stochastic calculus ([Par]) beyond exponential domains.

Proposition 7.5 -

(a) Let H. be an adapted Fock operator process. If f € Dom BA(H.)) then for
all g € F, the map

(S, ,8) — ]lps (,8) <HstDgf, Rlegg> (71)

1s integrable and
| [ e (B)QuDs . R Dpg) dids = (A1) 1), (7.2)

Here (Q,R) = (P,D),(D, D), (D, P) or (P, P), respectively, for A = AT, N, A
orT.

(b) Let (H.,H) be an adjoint pair of adapted Fock operator processes. If f €
Dom A(H.) and g € Dom AT(H') (with (A%agger)t = A,NT = N, (A)! = A" and
=T) and the map (7.1) is integrable, then

(M(H.)f,9) = (f,AT(HT)g). (7.3)

Proof
In case (a) straightforward calculation leads to the estimate

/ / Ir- (8)|(H,QuDpf, RuDpg)| dBds < / h(w)lg(@)]), dw

where

h(w) = Z ||(H5Q5Dw(sf)(ws))“

SEw

if A= Af or N, and

hew) = [ T HQuDa, £ ds

if A=A or T. Similar calculation also reveals the identity (7.2).
(b) If (7.1) is integrable then

(HsQs D, £)(ws)), (RsDu,9)(ws))) = ((QsDu, ) (ws)), (HIR; D, 9) (ws)))

is an identity of integrable functions of (w, s), which integrates up to (7.3).
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Corollary 7.6 — Let (H, H') be an adjoint pair of adapted Fock operator processes.
(a) (BA.(HY),BAT(H.)) is also an adjoint pair of adapted Fock operator pro-
cesses.
(b) If RA(H.) is densely defined, then
(BA(H.))* > AT(HD).

The next result is an Integration by Parts Lemma which contains the essential
part of one form of the quantum It6 product formula described in the final section.
It is an extension of the Second Fundamental Formula for quantum stochastic
calculus ([Par]), beyond exponential domains.

Theorem 7.7 Let F* be adapted Fock operator processes, let A* be quantum
stochastic-integrators, and let X' = BAY(F?), fori=1,2. If f* € Dom X?, then

w0 = [ [ @ {F Qi XD
0
+(X{R{Dgf', F{Q{Dsf?) + (R, R2)<Ft1QiDﬂfl, FfoDﬂf2>} dg dt,
where e equals 1 if A',A*> € {AT, N} (R' = R> = D), and equals 0 otherwise, and
the pair (R*, Q%) = (RA , QM) is given by (3 3)

Proof

First note that, since X°¢ is a restricted domain quantum stochastic-integral,
f € Dom X! for each u and, by Lemma 7.1, F!Q'f is Ito-integrable if A* = Af
or N and is absolutely time-integrable if A® = A or T. Moreover, successive
application of Theorems 6.3 and 6.4, together with Theorem 6.5 gives for R = P
or D,

D,f*€DomX. so Dgf'e DomX,"\ﬁ so R;Dgf" € Dom(X})

for a.a. wu, 3 and (¢t < ). Therefore, since also f* € V@i (F?), each of the
expressions in the integrand is a.e. well-defined.

Let R = S if A* = A" or N and £ otherwise. For the rest of the proof we
divide the possibilities into four cases, and it is convenient to remove the clutter
of superscripts from the argument by substituting as follows:

F=F.G=FX=XY=X%f=f'9=f%
Q=Q.,Q' =Q*R=R R =F,R=R"R =R
We therefore have to estblish the identities
(X1, Yg) / / 10 (){(F:Q: Dy, Y:R: Dpg)

XtR’Dgf, G:Q.Dgg) + E(R, R'){F:Q:Dsf,G:QiDgg)} d3 dt. =

We have ,
(X1, Yg) = (R(F9f),R'(G2 g)),
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in which F© f is absolutely R-integrable, and GQ'g is absolutely R’-integrable.

Case (a): A}, A% € {A,T}. Then R = R' = P, FOf and G? g are absolutely time-
integrable, and Fubini’s Theorem ensures both the integrability of the function
®: (w,t,u) — (F2f(w), G2 (w)), and that its integral is (X f,Yg). Integrating ®
first over the region {¢t < u} using the u-adaptedness of X, the a.e. reproducing
property (3.8), (6.5) and (6.7), gives

/ / (X (), 69 g(w)) dudw
- / N J A PuDo, )00 (PG Di ) ) o

- /O /F 1o (B)(X.R,Dp f, Go@,Dgg) df dt.

The integral of ® over the region {u < ¢t} may be obtained by the same argument
via complex conjugation, and the sum of the two agrees with (x).

Case (b): A' € {AT,N}, A2 € {A,T}. Then R = D and R’ = P; F9f is
absolutely Skorohod-integrable and G® g is absolutely time-integrable; moreover,
Fubini’s Theorem together with the f-Lemma ensure both the integrability of the

function ¥ : (w,t,u) — (F2 f(w), G (wUt)), and that the value of the integral is
(X f,Yg). Integrating ¥ over the region {¢t < u}, and arguing as in Case (a), gives

| [ tou@E2 £\ .62 (@) dadu

r tEx

-/ " [ Xar(@),69 (@) dadu

_ /0 /F Ipe (B)(X:R,Ds f, G:Q\Dgg) dB dt.

Integrating ¥ over the region {u < t} we have, since D;Dgg € Dom(Y;) for a.a.
(t < 0),

/Ooo/rdw/r H[O,t[(u)<Fth(w), (GngtDw(tg)(wt)»dﬂdw dt
= /O'OO /P<(PtFtQDW(tf)(wt)); (Y;DtDw(tg)(wt))> dw dt

- [ /F I« (8)(FiQ:Dp f, YiRe Dpg) dB dt.
0

Therefore the result holds in this case.

Case (c): A' € {A, T} and A% € {AT, N}. This is simply the complex conjugate
of Case (b).

Case (d): A',A? € {AT,N}. Then R = R! = D so that ¢ = 1, F?f and G.Q’g
are Skorohod integrable and the Skorohod isometry (3.1) ensures that both of the
maps ¢ : (w,t) — (Fth(w),G?’g(w)) and ¥ : (w,t,u) — (Fth(wUu),Gglg(wUt»
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are integrable, and also that the sum of their integrals is (X f,Yg). The integral
of ® is simply fooo Jr 10t (B)(FyQ¢Dg f, G1Q4Dgg) dB dt by the ¥-Lemma. Since
D,D,f € Dom X, for a.a. (u < ), the integral of ¥ over the region {¢t < u} is

| [ [ toatF DD 1)), QF g0 Ut) di du du
0 rJo

_ /000 /F > o ,uft){(FP DuDay, £) () \ t), (G Day, 9) () dax du

tEau)

= /O'Oo /1;<(XuDuDa(uf) (au))7 (Pqu?lDa(ug) (au))> dodu

0

Again the integral of ¥ over the region {u < t} is given by symmetry, and
yields the first term in (%). Thus the result holds in this final case too.
O

VIII. Relation to previous formulations

In this section we show that the integrals defined in the previous two sec-
tions are consistent with previous formulations. Specifically we prove that our
integrals extend the Hudson-Parthasarthy integrals beyond exponential domains,
while agreeing with them on these domains. We also show that the noncausal QS
integrals, defined in [Bel] and [Lin], yield restrictions of our integrals when applied
to adapted Fock operator processes. Specifically our use of the adapted gradi-
ent overcomes the domain constraint on annihilation and number integrals in the
noncausal formulation, namely that they are only defined on (part of) Dom VN —
even when the integrals yield bounded operators. The other aspect of the exten-
sion from the noncausal to our formulation is the use of more refined integrability
requirements in the definitions. Finally, and most importantly, we show that three
questions immediately arising from the approach to quantum stochastic calculus
through classical stochastic calculus ([A-M]) are all solved by the our formulation.
In the Ito calculus formulation, each quantum stochastic integral is defined only
implicitly via a system of abstract stochastic differential equations. The questions
begged are: is there a solution, if so is it unique, and what is the natural (maximal)
domain of the resulting operator? In [A-M], some sufficient conditions were given,
but the answers in full generalty were not know up to now. A consequence of
our solution to these problems is that the implicit definitions, which have already
proved useful in elucidating the structure of quantum semimartingales, now have
a far greater scope of applicability.

The exponential vector formulation of quantum stochastic integrals is sub-
sumed by each of the noncausal and the It6 calculus formulations. Nevertheless,
since the exponential vector formulation is still currently the one most used, we
begin by showing how it is covered by the our formulation.
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VIII.1. Exponential vector formulation

Let (Vo, M) be an admissible pair — that is s-admissible for each s > 0 (see
IV.2). An adapted (Vp, M)-process, in the sense of Hudson and Parthasarthy
([HP1], [Par]), is precisely an adapted Fock operator process H., in our sense, which
is measurable and has the domain of each of its constituent operators prescribed:
Dom H; =V ® E(M) for each s > 0. If F., G., H. and K. are four such processes
which satisfy the integrability conditions

t
/O {[Fsveoll® + lo(s) PlIGsve,|I” + lo(s)| | Hsvey || + | Ksvepl} ds < oo (8.1)

for all v € Vg, ¢ € M and t > 0, then there is a unique (Vp, M)-process X.,

denoted . . . .
Xt:/ FSdAS+/ Gsts+/ HsdAs+/ K,ds, (8.2)
0 0 0 0
satisfying

(e, Xyve,) = /0 (e, {BOS)Fs + () p(5)Gs + o(s) Hy + K }ve,) ds

for all u € Ho, ¥ € L2 (IRy), v € Vo, ¢ € M and t > 0. In particular,
(f(f K, ds)ve, and (fg H,dA,)ve, are the Bochner integrals fg Kgve,ds and

fot o(s)Hsve, ds, respectively.

Theorem 8.1 - Let F., G., H. and K. be adapted (Vy, M)-processes satisfying the
local integrability conditions (8.1), and let X. be the adapted (Vy, M)-process given
by (8.2). Then, for eacht >0,

Proof

Let f = ve,, where v € Vj and ¢ € M. By Proposition 6.1, any adapted
(Vo, M) process Y., satisfies Vo ® E(M) = V(Y)NVV(Y) Cc VEY)nVP(Y),
YPf =Y f and YP = YV.f = ¢()Y.f. Since Bochner-integrability implies
absolute time-integrability (Proposition 3.2), f € Dom ®T;(K.) N Dom £ A;(H.)),
and

(/tK ds|f /deS_EB(KPf) Ty(K) f;

/ H, dA / o(s)Hyfds = LE(HP f) = A,(H.)f.

If a > 1 then
[ X moa@lrs@ 91} @
seco
_/F 2#0#0211“[ WEf(o\ 8)|2 do

sE€o
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t
- /o /F(l +#w)a 2| F f ()| dw ds

t
<c, / |FL I ds
0

where C, = max, (1+n)a=20+") < oo, so that f € Dom BAt(a= VTV F). Putting
z(o) =a %7y o Tpoq(s)(Fof)(o\s) and y =a™N f(f Fs dA%f, we have x,y € F
and

(uey,y) = (ueq-1y, /Ot F,dAlf)
= [0 [ (gl Fos ) s
- / t / (e (w U s), a~CH#9) B, F(w)) do ds
= [ X hous) (o). a (B o\ 5)do

se€o
= <UE1/M >
for all u € Ho and ¢ € L?(IR,). Hence, by the density of Ho ® £ in F, z = y. It

follows that
! T
1 sdA!
> Tou(s)ED ) = ([ Fdair) o)

seo

for a.a. o. Therefore 1 7t[(-)FPf = Tjo4(-)F.f is Skorohod-integrable, which
means that f € DomAT( F), moreover

t
AJ(F)f = SKE.f) = /0 F,dAlf.

Replacing F. by ¢G in the above argument gives f € Dom N¢(G) and N¢(G.)f =
[T Gy dN,f too.

VIII.2 Noncausal formulation

The introduction of noncausal quantum stochastic integrals ([Bel], [Lin]) de-
monstrated the close connection between quantum stochastic calculus and the
classical stochastic calculus arising from extensions of It6 calculus to deal with
nonadapted processes ([Hit], [Sko|]), together with its relations to Malliavin calculus
([G-T]). When restricted to adapted Fock operator processes these integrals extend
the original quantum stochastic integrals beyond exponential domains. We show
that these restrictions are in turn extended by our integrals.

Let H. be a Fock operator process. Recall the notation at the beginning of
Section VI. The noncausal quantum stochastic integrals are defined as follows:

NCAVH)f =S(H.f); NYN(H)f = S(HV.f);
NCA(H.)f:/OOOHSVSfds; NCT(H.)f:/OOOHSfds;
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with respective domains,
Dom(NCAT(H))={f € V(H): H.f € DomS}
Dom(N’N(H.))={f € VV(H): HV.f € DomS}
Dom(NCA(H.)) = {f €e VV(H.) : HV.f is Bochner-integrable}
Dom(NYT(H.)) = {f € V(H) : H.f is Bochner-integrable}.
The relationship between these integrals, when applied to an adapted process

H., and our integrals, is the same as that for the original quantum stochastic
integrals (coherent vector-formulation).

Theorem 8.2 - Let H. be a Fock operator process. If H. is adapted, then
NCA(H) c A(H.) for A = AT or N;
NCAH) c BA(H.) for A=A or T.

Proof

Since, for a map z : I' x IR, — Hyp, = is Skorohod-integrable if z € Dom S,
and z is absolutely time-integrable if z is Bochner-integrable, the result follows
immediate from Proposition 6.1.

0

VII1.3. 1t6 calculus formulation

Let F., G., H. and K. be four adapted Fock operator processes which are
measurable and have common domain V| where V is a subspace of F containing
Vo ® £(M) for some admissible pair (Vp, M), and which also satisfy the local
integrability (and implied measurability) conditions:

t
/ (IEPAIP + |G Do fI2 + D fll + K Pofll} ds < 00, (8:3)
0

for all f € V, t > 0. In [A-M], an adapted Fock operator process X. with domain
V', is denoted by

t t t t
/FsdAl—i—/ Gsts—i—/ HsdAS—i-/sts
0 0 0 0

provided that, for each f €V, t > 0,
(i) Dsf € Dom(X;) for a.a. s; Tjg(-)X.D.f is square-integrable;

[e’e) t
(11) th :/ Xs/\tDsf dXs +/ {FsPsf + Gstf} dXs
0 0

+ /t{HSDSf + K P f} ds. (8.4)
0

When V = V5 ® £(M), this is equivalent to X; being the corresponding
Hudson-Parthasarthy quantum stochastic-integral, and under various conditions
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the representation (8.4) is valid on larger domains V. This is exploited, in partic-
ular, in the QS-integral representability of regular semimartingales ([Att]). How-
ever, since the Fock operator process X. appears on the right hand side, (8.4)
represents a king of Fock space-valued stochastic differential equations. In other
words, the Fock operator process X. is only defined implicitly through (8.4). It
was not known in general whether these equations had a solution; nor whether any
solution it might have is unique; and moreover, it is not known what the correct
(maximal) domain is for a Fock operator solution process. We shall see that our
integrals completely solve all three of these problems.

For A = AT,N, A or T, define Q; = P;, Dy, Dy, P; respectively (as in VIL.1)
and r; = X¢, Xt t,t respectively. If (H),, is an adapted process of operators on
F then equation (8.4) for the process X. = A.(H.) writes

oo t
X,f = /0 XoneDsf dys + /O H,Q.f dr.. (A(H))

We wish to give a meaning to the sentence “X. is a solution to equation (A(H.))”.
A workable solution X. would be such that

i) if any of the sides of equation (A(H.)) is well-defined for a f € F, then so
is the other side;

ii) if i) holds for a f then equality (A(H.)) holds for this f.
That is, a process X. is said to be a solution to A(H.) if
a) f € Dom X, if and only if i) Dsf € Dom Xp¢ for a.a.s > 0,
ii) Dsf € Dom Hy for a.a.s <,
iii) [ || XsneDsf||* ds < oo,
iv) [J||H,Qsf||* ds < oo for A = AT, N,
[T 1|1HsQs f|| ds < oo for A = A, T;
b) for all f € Dom X; equation (IN(H.)) holds true.

Lemma 8.3 If X. solves (N(H.)) then X. is an adapted process of operators.

Proof

Let f € Dom X;. Let g = P;f. We have D;g = 0 for a.a.s > tand Dy;g = D, f
for a.a.s < t; furthermore Psg = Psaif. It is thus clear that ¢ satisfies the
conditions a) i)-iv). That is, g € Dom X;. Now, let h = D, f for some u > t. We
have h € Dom X; by applying condition a)i) to f. we have proved that Dom X is
a t-adapted domain.

Furthermore, by equation (N(H.)) we have

t t
PXof = / X,D,f dx, + / H,Q,f dry = X,P,f
0 0

and
Duth = XtDuf
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for a.a.u > t. We have proved that X; is a t-adapted operator.
O
The following theorem proves equation (N (H.)) always admits a solution, that
the solution is always unique (up to domain restrictions) and that the maximal
(in terms of domain) solution is our A (H.).

Theorem 8.4 - For any adapted process H., any integrator A, the process BA (H.)
solves equation (N(H.)).

Any other solution X. of (N(H.)) is such that X; C BAy(H.) for all t.
Proof

Let us first prove that ®A.(H.) solves the equation (N(H.)). Let X; =
RA((H.), for all t € IR;. By Theorem 6.3, 6.4 and by Lemma 7.1 we have that
f € Dom X, if and only if it satisfies conditions a)i)-iv). Furthermore, integrating
equations (6.8) and (6.9) with respect to dx; show that X,f satisfies equation
(N(H.)). This proves that X. solves equation (N(H.)).

Conversly, suppose that X. is an adapted process of operators which solves
(N(H.)). Let f € Dom X;. We have

0 it A= AT, N
[(Xef1(0) = {fg[Hstf](@) ds if A=AT

and for a.a.o={t1 < ... <t} #0
(X f](0) =[XentDy, fl(t1y oo tn—1)
N { [ft]thtnf](tl,...,tn_l)]l[o,t](tn) if A=A, N
JUH Q) (s - - ) ds ifA=AT.
But, we can now apply the same formula to [X¢ atDy, fl(t1,. .., tn—1) :
[ Xe, AeDyt, 11,y -y tn_1) = [Xt,_satDe,_ De, fl(t1, -y tn_2)
[Ht, Qt, Dy, fl(t1, - tne2) Mo g(tn—1) if A= AT N
{ Jo " [HsQsDy, f(t1, ... tn_1)ds ifA=A,T.
And so on, we finally get, putting ¢,,4+1 = ¢ and to = 0,
[Xtf1(0) = [Xtyne Dy, - - - Dy, f1(0)
Ziztjz.t_n [Hy,Qu, D, - .- Dy, fl(t1, - . t;) if A=A N
{ SV H QoD - Dy, fl(try - ) ds i A= AT
3o (H,QuDs [1(0) it = AT N
{ Yo [ HQuDeyy - Dy, fl(t1, - ti)ds if A= AT
> see [HsQsDo, fl(04)) if A= AT, N
B { JUHQ,D,, f(00) ds it A= AT,
This proves that X, f = A¢(H.)f for all f € Dom X;.
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IX. Quantum It6 formula

In the previous section we saw how our quantum stochastic-integrals explic-
itly solve the problem of extending the domain of Hudson-Parthasarathy integrals,
by means of classical Ito6 integration and stochastic differentiation. We also saw
that the enlarged domains are maximal subject to a mild measurability condition.
In this section we shall show that on their restricted domains at least, our quan-
tum stochastic-integrals behave as we would wish under operator multiplication.
Products of quantum stochastic-integrals are given by integration by parts with a
“correction” term when Wick ordering of the integrators has been violated. We
give two forms for the quantum Itd formula — one for when there is a correction,
and another for the general case. The hypotheses are slightly different, moreover
we give a probabilistic proof of the first and an analytic proof of the second. In
fact we have already done the analysis.

Theorem 9.1 Let X = BAYF) and Y = ®A2%(G) where F and G are adapted
Fock operator processes, and the ordered pair (A*,A2) is either (N, A"), (N, N),
(A,N) or (A, AY). If W is the adapted Fock operator process given by

Wi = PALFY) + FAXXG) + PA(FG), (+)
where A is respectively AT, N, A or T, then Z = XY — W is a restriction of the

ZETO Process.

Proof
By Theorem 8.3 it suffices to show that the equation
t
th _/ Zstdes =0 (0)
0

is well-defined and valid for all f € F; N"Dom Z;. Therefore let f be such a vector;
let R denote time or Itd integration if respectively A = A or N; and let Q = P
or D if respectively, A2 = AT or N. By Corollary 8.6, W satisfies

t t
Wi f _/(; WsDs f dxs :A XsGsQs [ dxs +R(t')(FYDf) +R6(FGQf) (1)

Moreover, by Corollary 8.6 and Theorem 6.3 we have

t
XYif = /0 X.D,Y,f) + RY(F D Y,f)

t
_ /0 X {YiDof +GoQuf}dxs + RAFYDF+GQFY)  (2)

with all the implied domain conditions holding. But the It6-integrability of the
process X.G.Q).f and the R-integrability of F.G.Q.f on [0, ¢ imply that YsD,f €
Dom X for a.a. s € [0,t[, and that X.Y.D.f is Ito-integrable on [0, [, and allow
us to write X;Y;f as a sum of four integrals. Comparison of (1) and (2) therefore
reveals that the equation (0) is indeed well-defined and valid.

d
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th9.2Let X = BAY(F) and Y = BA2(G) where F and G are adapted Fock
operator processes and A' and A? are quantum stochastic-integrators, and let

W = BAYFY) + BA2(X Q) + ¢ BA(FQ).
Then, for all g € DomY NDom W,
g € Dom(XH* and (XT)*Yg=Wy,

provided that F has an adapted adjoint process F1 such that XT = BALT(FT)
is densely defined. Here e\ is AT, N, A or T if the ordered pair (A(l),A(2)) 18
respectively (N, A7), (N,N), (A,N) or (A, A"), and is zero otherwise.

Proof
If g € DomY NDomW then, by Theorem 7.7, Proposition 7.5 and Corollary
7.6,
(XTf,Yg)=(f,Wg) V fe&Dom(X").
Since XT is densely defined, this implies that Yg € Dom(XT)*, and
(XT)*Yg = (AY(FY) + A2(XG) + A(FQ))g.

The result follows.

As a consequence of this theorem we have the quantum Ito formula
EANF)RA?(G)g = (FAY(FY) + BAY(X.G) + e®A(FG))g,

where X; = BA}(F), Y; = BA2(GQ) and €A is the Itd-correcting quantum stocha-
stic integrator, whenever g lies in the domain of both left and right hand side
operators.
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