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by Roland BACHER and Alina VDOVINA

0. Introduction

D 0.1. — A 1-vertex triangulation of an oriented compact surface S of

genus g is an embedded graph T / S having only one vertex such that all connected

components of S 0 T are adjacent to exactly 3 edges of T (i.e. are triangles).
A 1-vertex triangulation of an oriented compact surface S is hence a degenerate

triangulation of S: the triangles are glued together in a way which identifies all vertices of

all triangles.

Two 1-vertex triangulations T / S and T 12/ S 1 are isomorphic (or equivalent) if there
exists an orientation-preserving homeomorphism ϕ : S 3�4 S 1 such thatϕ 5 T 687 T 1 .

The aim of this paper is to give formulas for the number of such degenerate trian-

gulations (up to equivalence) on an oriented surface of given genus (such triangulations

exist in every genus g 9 1).
In section 2 we introduce the relevant tools (so-called oriented Wicks forms which

are cellular decompositions with only one face of oriented surfaces) used in our proof.

Section 3 is devoted to the proof of our main results using the combinatorics intro-

duced in the previous section.

Mots-clés : Cellular decompositions of oriented surfaces, genus of surface, Wicks forms, 1-vertex triangulation..
Classification math. : 57M25.
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1. Main results

Let T / S be a 1-vertex triangulation (1-VT for short) of an oriented surface of

genus g . Denote by e the number of edges and by v the number of triangles in T . The Euler

characteristic formula

χ 5 S 687 2 3 2g 7 1 3 e � v

and the obvious identity 2e 7 3v show that we have
e 7 3 5 2g 3 1 6 ,

v 7 2 5 2g 3 1 6
and all 1-vertex triangulations of genus g consist hence of exactly 2 5 2g 3 1 6 triangles.

Triangles of a 1-VT T are of two types. Indeed, let∆ be a triangle of T and let a, b, c

be the three edges of∆. The triangle∆ is a positive triangle if the cyclic word defined by the

labels of edges around the unique vertex of T is of the form

ab . . . bc . . . ca . . . or ac . . . cb . . . ba . . .

and ∆ is negative if this word is of the form

ab . . . ca . . . bc . . . or ac . . . ba . . . cb . . . .

It is shown in [M], that a 1-VT of genus g has 2g 3 2 positive and 2g negative triangles. (But
we will formulate and prove this fact in combinatorial terminology in Propositin 2.6.)

The automorphism group Aut 5 T 6 of a 1-VT T is the group vof all permutations of
oriented edges in T which are restrictions to the edge set of orientation-preserving home-

omorphisms which leave T invariant. Aut 5 T 6 is always isomorphic to a subgroup of the
cyclic group of order 2e 7 6 5 2g 3 1 6 what can be seen by considering an appropriate small
neighbourhood U / S of the unique vertex in T (the graph T � U / U has the form of a

star with 2e edges).

Let us introduce the sets

τ
g
1 : all 1-VT’s of genus g (up to equivalence),

τ
g
2 5 r 6 / τ

g
1 : all 1-VT’s having an automorphism of order 2 leaving r edges of T

invariant by reversing their orientation. (This automorphism is the half-turn with respect

to the “midpoints" of these edges and exchanges the two adjacent triangles of an invariant

edge.)

τ
g
3 5 s, t 6 / τ

g
1 : all 1-VT’s having an automorphism of order 3 leaving exactly s pos-

itive and t negative triangles invariant (this automorphism permutes cyclically the edges

incident to the invariant triangles).
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τ
g
6 5 3r ; 2s, 2t 687 τ

g
2 5 3r 6 � τ

g
3 5 2s, 2t 6 : all 1-VT’s having an automorphism γ of order

6 with γ3 leaving 3r edges invariant and γ2 leaving 2s positive and 2t negative triangles

invariant (it is useless to consider the set τ
g
6 5 r 1 ; s 1 , t 1 6 defined analogously since 3 divides

r 1 and 2 divides s 1 , t 1 if τ
g
6 5 r 1 ; s 1 , t 1 6 �7�� ).

We define now themasses of these sets as

m
g
1 7 �

T � τg
1

1�
Aut 5 T 6 � ,

m
g
2 5 r 6 7 �

T � τg
2 � r �

1�
Aut 5 T 6 � ,

m
g
3 5 s, t 6 7 �

T � τg
3 � s,t �

1�
Aut 5 T 6 � ,

m
g
6 5 3r ; 2s, 2t 6 7 �

T � τg
6 � 3r ;2s,2t �

1�
Aut 5 T 6 � .

T 1.1.

(i) Aut 5 T 6 is cyclic of order 1, 2, 3 or 6 for every 1-vertex triangulation T .
(ii) m

g
1 7 2

1

	
1

12 
 g 5 6g 3 5 6 !g ! 5 3g 3 3 6 ! .
(iii) m

g
2 5 r 6 > 0 (with r � N) if and only if f 7 2g � 1 
 r

4
��� 0, 1, 2, . . . � and we have

then

m
g
2 5 r 6 7 2

2

	
22

12 
 f 1r ! 5 6f � 2r 3 5 6 !
f ! 5 3f � r 3 3 6 ! .

(iv) m
g
3 5 s, t 6 > 0 if and only if f 7 g � 1 
 s 
 t

3
��� 0, 1, 2, . . . � , s � 2g � 1 5 mod 3 6

and t � 2g 5 mod 3 6 (which follows from the two previous conditions). We have then

m
g
3 5 s, t 687 2

3

	
32

12 
 f 1

s!t !

5 6f � 2s � 2t 3 5 6 !
f ! 5 3f � s � t 3 1 6 ! .

(v) m
g
6 5 3r ; 2s, 2t 6 > 0 if and only if f 7 2g � 5 
 3r 
 4s 
 4t

12
��� 0, 1, 2, . . . � , 2s � 2g � 1

5 mod 3 6 and 2t � 2g 5 mod 3 6 (follows in fact from the previous conditions). We have

then

m
g
6 5 3r ; 2s, 2t 6 7 2

6

	
62

12 
 f 1

r !s!t !

5 6f � 2r � 2s � 2t 3 5 6 !
f ! 5 3f � r � s � t 3 3 6 ! .

Set

m
g
2 7 � r � N, � 2g � 1 
 r � /4 � Nmg

2 5 r 6 ,

m
g
3 7 � s,t � N, � g � 1 
 s 
 t � /3 � N, s � 2g � 1 � mod 3 � mg

3 5 s, t 6 ,

m
g
6 7 � r,s,t � N, � 2g � 5 
 3r 
 4s 
 4t � /12 � N, 2s � 2g � 1 � mod 3 � mg

6 5 3r ; 2s, 2t 6
3



(all sums are finite) and denote byM
g
d the number of equivalence classes of 1-VT’s on an

oriented genus g surface having an automorphism of order d (i.e. an automorphism group

with order divisible by d).

T 1.2. — We have

M
g
1 7 mg

1 � m
g
2 � 2m

g
3 � 2m

g
6 ,

M
g
2 7 2mg

2 � 4m
g
6 ,

M
g
3 7 3mg

3 � 3m
g
6 ,

M
g
6 7 6mg

6

andM
g
d 7 0 if d is not a divisor of 6.
The numberM

g
1 of this Theorem is of course the number of inequivalent 1-vertex

triangulations on an oriented compact connected surface of genus g . See Table at the end

of this paper for the first 15 values ofM
g
1 .

The following is an immediate consequence of Theorem 1.2.

C 1.3. — There are exactly

M
g
6 inequivalent 1-VT’s with 6 automorphisms,

M
g
3 3 M g

6 inequivalent 1-VT’s with 3 automorphisms,

M
g
2 3 M g

6 inequivalent 1-VT’s with 2 automorphisms and

M
g
1 3 M g

2 3 M g
3 � M

g
6 inequivalent 1-VT’s without non-trivial automorphisms.

Let us note that the formula (ii) can be obtained from the paper [WL], by formula

(9) on page 207 and formula on the top of page 211, or from the Theorem 2.1 of [G Sch]

with λ 7 26g 
 3 and µ 7 34g 
 2. We will give our own proof of this fact. Let us note also,
that λg 5 6g 3 3 6 7 5 12g 3 6 6 mg

1 , where λg 5 n 6 is the number of ways to obtain an orientable
genus g surface from 2n-gon, which was defined in [HZ].

2. Oriented Wicks forms

The objects considered in this section are dual to 1-vertex triangulations. They are

slightly easier to handle since they carry some combinatorial structuresmore immediately.

D 2.1. — An oriented Wicks form is a cyclic word w 7 w1w2 . . . w2l

(where cyclic means that we consider equivalence classes of words under cyclic permu-
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tations) in some alphabet a � 11 , a � 12 , . . . of letters a1, a2, . . . and their inverses a

 1
1 , a 
 12 , . . .

such that

(i) if aε
i appears inw (for ε � � �

1 � ) then a 
 ε
i appears exactly once inw also,

(ii) the word w contains no cyclic factor (subword of cyclically consecutive letters

inw) of the form aia

 1
i or a 
 1i ai (no cancellation),

(iii) if aε
i a

δ
j is a cyclic factor of w then a


 δ
j a

 ε
i is not a cyclic factor of w (no substi-

tution of the form aε
i a

δ
j � 3,4 x, a 
 δ

j a 
 ε
i � 3,4 x 
 1 is possible).

An oriented Wicks form w 7 w1w2 . . . in an alphabet A is isomorphic to w 1�7
w 11w 12 in an alphabet A 1 if there exists a bijection ϕ : A 3,4 A 1 such that w 1 and ϕ 5 w 6 7
ϕ 5 w1 6 ϕ 5 w2 6 . . . define the same cyclic word.

An oriented Wicks form w is an element of the commutator subgroup when con-

sidered as an element in the free group G with free generators a1, a2, . . .. We define the

algebraic genus ga 5 w 6 of w as the least positive integer ga such that w is a product of ga

conjugates of commutators in G .

The topological genus gt 5 w 6 of an oriented Wicks form w 7 w1 . . . w2e is defined

as the topological genus of the oriented compact connected surface obtained by labelling

and orienting the edges of a 2e-gone (which we consider as a subset of the oriented plane)

according tow and by identifying the edges in the obvious way.

P 2.2. — The algebraic and the topological genus of an orientedWicks

form coincide ([C],[CE]).

We define thus the genus g 5 w 6 of an oriented Wicks form w by g 5 w 6�7 ga 5 w 6 7
gt 5 w 6 .

Consider the oriented compact surface S associated to an orientedWicks formw 7
w1 . . . w2e . This surface carries an immerged graph Γ / S such that S 0 Γ is an open poly-

gone with 2e sides (and hence connected and simply connected). Moreover, condition (ii)

and (iii) on Wicks form imply that Γ contains no vertices of degre 1 or 2 (or equivalently

that the dual graph of Γ / S contains no faces which are 1-gones or 2-gones). Also,this

construction works in the opposite direction: Given a graph Γ / S with e edges on an

oriented compact connected surface S of genus g such that S 0 Γ is connected and sim-

ply connected, we get an oriented Wicks form of genus g and length 2e by labelling and

orienting the edges of Γ and by cutting S open along the graph Γ. The associated oriented

Wicks form is definedas thewordwhich appears in this way on the contour of the resulting
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polygone with 2e sides. We identify henceforth oriented Wicks forms and the associated

immerged graphs Γ / S, speaking of vertices and edges of orientedWicks form.
The Euler characteristic formula

χ 5 S 687 2 3 2g 7 v 3 e � 1

(where v denotes the number of vertices and e the number of edges of Γ / S) shows that
an orientedWicks form of genus g has at least length 4g (the associated graph has a unique

vertex of degre 4g and 2g edges) and at most length 6 5 2g 3 1 6 (the associated graph has
2 5 2g 3 1 6 vertices of degree three and 3 5 2g 3 1 6 edges).

We call an oriented Wicks form of genus g maximal if it has length 6 5 2g 3 1 6 . Ori-
entedmaximal Wicks forms are dual to 1-vertex triangulations. This can be seen by cutting

the oriented surface S along Γ, hence obtaining a polygone P with 2e sides. We draw a star

T on P which joins an interior point of P with the midpoints of all its sides. Regluing P we

get back S which carries now a 1-vertex triangulation given by T and each 1-vertex triangu-

lation is of this form for some oriented maximal Wicks form (the immerged graphs T / S
and Γ / S are dual to each other: ie. faces of T correspond to vertices of Γ and vice-versa.
Two faces of T share a common edge if and only if the corresponding vertices of Γ are adja-

cent). This construction shows that we can work indifferently with 1-vertex triangulations

or oriented maximal Wicks forms.

Similarly, cellular decompositions of oriented surfaces with one vertex and one face

are the same as orientedminimal Wicks forms. Their number was found in [CM].

In this case there are two constructions which yield a bijection between these two

sets. Indeed, the dual of an oriented minimal Wicks form is again an oriented minimal

Wicks form (generally not equivalent to the former).

The following definitions are merely restatements in terms of oriented maximal

Wicks forms of the corresponding definitions for 1-vertex triangulations given in section 1.

A vertex V (with oriented edges a, b, c pointing toward V ) is positive if

w 7 ab 
 1 . . . bc 
 1 . . . ca 
 1 . . . or w 7 ac 
 1 . . . cb 
 1 . . . ba 
 1 . . .
and V is negative if

w 7 ab 
 1 . . . ca 
 1 . . . bc 
 1 . . . or w 7 ac 
 1 . . . ba 
 1 . . . ab 
 1 . . . .

The duality between orientedmaximalWicks forms and 1-vertex triangulations sets

up a bijection between vertices of given sign in forms and triangles of the same sign in

triangulations.

For any oriented Wicks form w 7 w1w2 . . . w2e of genus g and length 2e its

automorphism group Aut 5 w 6 is the group of cyclic permutations µ of the linear word
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w1w2 . . . w2e such that w and µ 5 w 6 are isomorphic as linear words (ie. µ 5 w 6 is obtained
from w by permuting the letters of the alphabet). The group Aut 5 w 6 is clearly a subgroup
of the group Z/2eZ of all cyclic permutations of words of length 2e.

The automorphism group Aut 5 w 6 of an oriented Wicks form can of course also

be described in terms of permutations on the oriented edge set induced by orientation-

preserving homeomorphisms of S leaving Γ invariant. In particular an oriented maximal

Wicks form and the associated dual 1-vertex triangulation have isomorphic automorphism

groups.

Given a finite setW of isomorphism classes of oriented Wicks forms with genus g

we define itsmass m 5 W 6 as
m 5 W 6 7 �

w � W
1�

Aut 5 w 6 � .
We define the setsW

g
1 , W

g
2 5 r 6 , W g

3 5 s, t 6 andW6 5 r ; s, t 6 in the obvious way: W g
d 5�� 6

is the set of equivalence classes with an automorphism of order d having perhaps parame-

ters * defined as in section 1 (replacing the word “triangle" by “vertex".) The masses of the

setsW
g
d 5�� 6 are given by the numbersmg

d 5�� 6 introduced in section 1.
LetV be a negative vertex of an orientedmaximal Wicks form of genus g > 1. There

are three possibilities for the local configuration around V . We call these configurations

type α, β and γ (see Figure 1).

a

b

d

e
c

a

b

c

d

a b c

Figure 1

Type α. The vertex V has only two neighbours which are adjacent to each other.

This implies thatw is of the form

w 7 x1abcdb 
 1ec 
 1d 
 1e 
 1a 
 1x2u1x 
 12 x 
 11 u2

(whereu1, u2 are subfactors ofw) and isw obtained from themaximal orientedWicks form

w 1 7 xu1x 
 1u2
of genus g 3 1 by the substitution x � 3 4 x1abcdb


 1ec 
 1d 
 1e 
 1a 
 1x2 and x 
 1 with
x 
 12 x 
 11 (this construction is called theα construction in [V]).
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Type β. The vertex V has two non-adjacent neighbours. The word w is then of the

form

w 7 x1abca 
 1x2u1y1db 
 1c 
 1d 
 1y2u2
(where perhaps x2 7 y1 or x1 7 y2 see [V] for all the details). The wordw is then obtained
by a β-construction from the wordw 1,7 xu1yu2 which is an orientedmaximal Wicks form
of genus g 3 1.

Type γ. The vertex V has three distinct neighbours. We have then

w 7 x1ab 
 1y2u1z1ca 
 1x2u2y1bc 
 1z2u3
(some identifications among xi , yj and zk may occur, see [V] for all the details) and the

wordw is obtained by a so-called γ-construction from the wordw 1,7 xũ2yũ1zũ3.
D 2.3. — We call the application which associates to an oriented maxi-

malWicks formw of genus g with a choosen negative vertexV the orientedmaximalWicks

formw 1 of genus g 3 1 definedas above the reduction ofw with respect to the negative ver-
tex V .

An inspection of figure 1 shows that reductions with respect to vertices ofα or β are

always paired since two doubly adjacent vertices are negative, of the same type (which isα

or β) and yield the same reduction.

The above constructions of type α, β and γ can be used to construct the list of all

maximal orientable Wicks forms of genus g > 1 recursively.

D 2.4. — Consider an orientedmaximal Wicks formsw 7 w1 . . . w12g 
 6
of genus g . To any edge x of w we associate a transformation of w called the IH transfor-

mation on the edge x.

We start by considering the two subfactors axb and cx 
 1d of the (cyclic) word w.
Geometric considerations and Definition 3.1 show that b

�7 a 
 1, c �7 b 
 1, d �7 a 
 1, d �7
c 
 1 and 5 c, d 6 �7 5 a 
 1, b 
 1 6 .

According to the remaining possibilities we consider now the following transforma-

tion:

Type 1. c
�7 a 
 1 and d �7 b 
 1. This implies that d 
 1a 
 1 and b 
 1c 
 1 appear as

subfactors in the cyclic word w. The IH transformation on the edge x is then defined by

the substitutions
axb � 3 4 ab

cx 
 1d � 3 4 cd

d 
 1a 
 1 � 3 4 d 
 1ya 
 1
b 
 1c 
 1 � 3 4 b 
 1y 
 1c 
 1
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in the cyclic wordw.

Type 2a. Suppose c 
 1 7 a. This implies that b 
 1axb and d 
 1a 
 1x 
 1d are subfac-
tors of the cyclic wordw. Define the IH transformation on the edge x by

b 
 1axb � 3,4 b 
 1yab
d 
 1a 
 1xd � 3,4 d 
 1y 
 1a 
 1 .

Type 2b. Suppose d 
 1 7 b. Then axba 
 1 and dx 
 1b 
 1d 
 1 are subfactors of the
cyclic wordw and we define the IH transformation on the edge x by

axba 
 1 � 3 4 abya 
 1
dx 
 1b 
 1d 
 1 � 3 4 db 
 1y 
 1d 
 1 .

L 2.5.

(i) IH transformations preserve orientedmaximal Wicks forms of genus g .

(ii) Two oriented maximal Wicks forms related by a IH transformation of type 2 are

equivalent.

Proof. — This results easily by considering the associated graph Γ / S. Indeed,

the IH transformation on the edge x amounts to the following: Contract first the edge x.

This produces a vertex of degree 4 which can be “opened" in a unique different way pre-

serving the cyclic order of the 4 incident edges.

Graphically this amounts to the replacement of a (deformed) letter I by a (not less

deformed) letter H. Assertions (i) and (ii) follow easily. QED

P 2.6. — An orientedmaximalWicks form of genus g has exactly 2 5 g 3
1 6 positive and 2g negative vertices.

L 2.7. — Anα or a β construction increases the number of positive and neg-

ative vertices by 2.

The proof is easy.

L 2.8. — The number of positive or negative vertices is constant under IH

transformations.

Proof of Lemma 2.8. — The Lemma holds for IH transformations of type 2 by

Lemma 2.5 (ii). Let hence w,w 1 be two oriented maximal Wicks forms related by an IH
9



transformation of type 1 with respect to the edge x of w respectively y of w 1 . This implies
thatw contains the four subfactors

axb , cx 
 1d , d 
 1a 
 1 , b 
 1c 
 1
andw 1 contains the subfactors

ab , cd , d 
 1ya 
 1 , b 
 1y 
 1c 
 1
in the same cyclic order and they agree everywhere else. It is hence enough to check the

lemma for the six possible cyclic orders of the above subfactors.

One case is

w 7 axbu . . . cx 
 1d . . . d 
 1a 
 1 . . . b 
 1c 
 1 . . . ,

w 1 7 abu . . . cd . . . d 
 1ya 
 1 . . . b 
 1y 
 1c 
 1 . . . , .

In this case the two vertices ofw incident in x and the two vertices ofw 1 incident in y have
opposite signs. All other vertices are not involved in the IH transformation and keep their

sign and the Lemma holds hence in this case.

The five remaining cases are similar and left to the reader. QED

Proof of Proposition 2.6. — The result is true in genus 1 by inspection (the cyclic

word a1a2a3a

 1
1 a 
 12 a 
 13 is the unique oriented maximal Wicks form of genus 1 and has

two negative vertices.)

Consider now an orientedmaximal Wicks form of genus g � 1. Choose an oriented

embedded loop λ of minimal (combinatorial) length in Γ.

First case. If λ is of length 2 there are two vertices related by a double edge in Γ. This

implies that they are negative and of type α or β. The assertion of Proposition 2.6 holds

hence forw by Lemma 2.7 and by induction on g .

Second case. We suppose now that λ is of length 9 3. The oriented loop λ turns ei-

ther left or right at each encountered vertex. If it turns on the same side at two consecutive

vertices Vi and Vi � 1 the IH transformation with respect to the edge joining Vi and Vi � 1 re-
latesw to a formw 1 of the same genus but containing a shorter loop. If λ does not contain

two consecutive vertices Vi and Vi � 1 with the above property (ie. if λ turns first left, then

right, then left etc.) choose any edge � Vi , Vi � 1 � in λ and make an IH transformation with

respect to this edge. This produces a form w 1 which contains a loop λ 1 of the same length
as λ but turning on the same side at the two consecutive vertices Vi 
 1, Vi or Vi � 1, Vi � 2. By
induction on the length of λ we can hence relatew by a sequence of IH transformation to

an oriented maximal Wicks form of genus g � 1 containing a loop of length 2. Hence, we

are reduced to the first case. QED
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3. Proof of Theorem 1.1

Proof of Theorem 1.1. — Weproof the corresponding assertions for orientedmax-

imal Wicks forms. The translation in terms of 1-vertex triangulations is immediate.

Letw be an oriented maximal Wicks form with an automorphism µ of order d. Let

p be a prime dividing d. The automorphism µ 1 7 µd/p is hence of order p. If p
�7 3 then

µ 1 acts without fixed vertices on w and proposition 3.6 shows that p divides the integers

2 5 g 3 1 6 and 2g which implies p 7 2. The order d of µ is hence of the form d 7 2a3b .

Repeating the above argument with the prime power p 7 4 shows that a �
1.

All orbits of µ2
a

on the set of positive (respectively negative) vertices have either 3b

or 3b 
 1 elements and this leads to a contradiction if b 9 2. This shows that d divides 6 and
proves (i).

Proof of (ii). — An element ofW
g � 1
1 (which designes the set of equivalence classes

of oriented minimal Wicks forms with genus g � 1) can be obtained by applying an α, β

or γ construction to an element inW
g
1 . There are respectively 2 � 6g 
 3

1 � , 4 � 6g 
 3
2 � � 4 � 6g 
 3

1 �
and 8 � 6g 
 3

3 � � 8 5 6g 3 3 6 5 6g 3 4 6 � 8 � 6g 
 3
1 � different possibilities for these constructions

starting with a given element inW
g
1 . On the other hand, Proposition 2.6 shows that we can

construct 2 5 g � 1 6 orientedmaximalWicks forms inW g
1 by applying reductionwith respect

to a negative vertex to a given element inW
g � 1
1 . The numbers of such “augmentations" and

“reductions" coincide after weighting with the correct coefficients. These weights have to

take care of automorphisms and the fact that type α and β constructions give rise to 2

negative vertices with the same “inverse". A carefull analysis shows that	
4 � 6g 3 3

1 � � 8 � 6g 3 3
2 � � 8 � 6g 3 3

1 � � 8 � 6g 3 3
3 � � 16 � 6g 3 3

2 �
� 8 � 6g 3 3

1 � 
 mg
1 7 2 5 g � 1 6 mg � 1

1

which proofs (ii) by induction since the function

g � 3 4 2
5 6g 3 5 6 !

12g g ! 5 3g 3 3 6 !
satisfies the same equation and we have equality for g 7 1 (sincemg

1 7 1
6
7 2 1!

12 1!0!
).

Proof of (iii). — First case: r < 2g � 1 and hence f 7 2g � 1 
 r
4

9 1. Let w be an

oriented maximal Wicks form of genus g with an automorphism µ of order 2 reversing the

orientation of exactly r edges. There are
6g 
 3 
 r

2
orbits of (unoriented) edges not invariant

under µ. Consider the graph obtained by removing all µ-invariant edges from the quo-

tient graph Γ/µ. After removing leaves and vertices of degree 2 we get an orientedmaximal
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Wicks form w̃ with
6g 
 3 
 r

2
3 r 7 3 � 2g 
 r 
 1 �

2
edges and hence of genus f 7 2g � 1 
 r

4
9 1 (re-

call that an orientedmaximal Wicks form of genus f has 3 5 2f 3 1 6 edges). More precisely,
let w be represented by the word w1w2 . . . w12g 
 6. The subword w1w2 . . . w6g 
 3 contains
exactly one representant of each orbit for the action of µ on oriented edges. Remove from

the word w1 . . . w6g 
 3 all letters wk with wk � 6g 
 3 7 w 
 1k ( they correspond to edges re-

versed by µ). The resulting word w 1 has length 6g 3 3 3 r and has the property that if
wk appears in w 1 then either w 
 1k or w 
 1k � 6g 
 3 appears exactly once in w 1 also. Replacing
w 
 1k � 6g 
 3 by w 
 1k we get a word which satisfies (i) of Definition 3.1. Removing from this

word (and of the resulting ones) all cyclic subfactors of the form wkw

 1
k we get a wordw 1 1

satisfying also condition (ii). Cancel wi and its inverse (or w j and its inverse) if wiwj and

w 
 1j w 
 1i both occur as cyclic subfactors. This produces ultimately an oriented maximal

Wicks form w̃ . A counting argument shows that it has genus f . (A good way to under-

stand what happens is to write the word w along two concentric circles related by radial

segments indexed by invariant edges).

An oriented maximal Wicks form w̃ obtained as above has an extra structure de-

fined as follows. Given an oriented edge ã of w̃ , choose a preimage a in w (recall that

we constructed w̃ starting from w by deleting letters and replacing other letters by ele-

ments in the same orbit under α). We have then w 7 au1a

 1u2. Since µ 5 a 6 �7 a 
 1, the

two subfactors u1 and u2 cannot have the same length. Denote by u the shorter one. Set

ϕ 5 a 6 � ϕ 5 a 
 1 6 � l 5 mod 2 6 if u contains l letters representing edges reversed under µ.

We get thus a functionϕwith values in Z/2Z. This function satisfies

ϕ 5 a 6 � ϕ 5 b 6 � ϕ 5 c 6 � 0 5 mod 2 6
whenever a, b, c are 3 edges incident in a common vertex of w̃ . Such function is called a

Z/2Z-flow on the graph Γ̃.

Conversely, for given an oriented maximal Wicks form w̃ of genus f 7 2g � 1 
 r
4

and

a Z/2Z-flowϕ on its graph Γ̃, we can construct

5 12f 3 6 6 5 12f 3 2 6������ 5 12f 3 10 � 4r 6
r !

oriented maximal Wicks forms of genus g having an automorphism µ of order 2 reversing

r edges associated to the pair 5 w̃,ϕ 6 . Indeed, we have 5 12f 3 6 6 possibilities to attach the
first edge reversed by µ, 5 12f 3 2 6 choices for the second edge and so on. Since there are
r ! possible orderings of the µ-invariant edges we have to divide by r !. Finally, the Z/2Z flow

shows how to glue together preimages of orbits under µ.

The set of Z/2Z-flows is a vector space over Z/2Z of dimension 2f . This implies that

we have

22f
5 12f 3 6 6 5 12f 3 2 6������ 5 12f 3 10 � 4r 6

r !
m
f
1 7 2mg

2 5 r 6
12



(the factor 2 on the right hand side comes from the fact that theWicks forms contributing to

m
f
1 are essentially weightedwith weight 1 while they haveweight

1
2
inm

g
2 ). This equation is

also satisfied by replacingm
f
1 with 2

� 6f 
 5 � !
12f f ! � 3f 
 3 � ! andmg

2 5 r 6 with � 6f � 2r 
 5 � !
3f r !f ! � 3f � r 
 3 � ! (recall that

g 7 4f � r 
 1
2

) and this proofs (iii) in the first case.

Second case: f 7 0 (the construction of w̃ as above shows that we cannot have

f < 0). The idea is the same as in the first case. Here we have to glue a first invariant edge

on an empty word (1 possibility) for the second and the third invariant edge we have 2

possibilities, for the forth there are 6 possibilities etc. Since there are no flows on an empty

graph we get

2m
g
2 5 2g � 1 6 7 22 � 6 ����� 5 4r 3 10 6

r !

which is readily checked.

Proof of (iv). — First case: t > 0. Letw be an orientedmaximal Wicks form having

an automorphism of order 3 fixing s positive and t > 0 negative vertices. The t fixed nega-

tive vertices give rise to t possible reductions producing orientedWicks formsw 1 of genus
g 3 1 invariant under an automorphism of order 3. The parameters ofw 1 are then 5 t 3 1, s 6 .
On the other hand, for given an oriented Wicks form w 1 of genus g 3 1 with an automor-
phism of order 3 and parameters 5 t 3 1, s 6 there are 2 5 2g 3 3 6 γ-constructions yielding a

Wicks form of genus g with an automorphism of order 3 and parameters 5 s, t 6 (choose the
midpoint of any of the 6 5 2g 3 3 6 oriented edges in w 1 and make the γ-construction with

respect to its orbit). We have hence

2 5 2g 3 3 6 mg 
 1
3 5 t 3 1, s 6 7 tmg

3 5 s, t 6
which is also satisfied by the righthand side of formula (iii) in Theorem 1.1.

Let us now consider the case t 7 0 (no invariant vertices of negative type). The

proof of this case is very similar to the proof of (iii) .

We can suppose g > 1 since there are only two vertices of negative type in genus 1 .

We consider hence an orientedmaximalWicks formw of genus g with an automorphism µ

of order 3 fixing s positive and no negative vertices. Since µ leaves no edge invariant, there

are
6g 
 3
3
7 2g 3 1 orbits of invariant edges. In genus g > 1, invariant vertices under an

automorphisme µ of order 3 are nether adjacent. There are hence s orbits of edges of w

incident in a vertex fixed under µ. Removing their orbits from the orbits of edges leaves us

with a graph on the orbit space which has s vertices of degree 2. Removing these vertices of

degree 2 yields an oriented maximal Wicks form w̃ of genus f 7 g � 1 
 s
3

(all vertices are of

degree 3, there is one face and there are 2g 3 1 3 2s 7 6f 3 3 edges). The construction of this
form is completely analogous to the construction in the proof of (ii). As in the proof of (ii)

this form has an extra structure. This extra structure is here a Z/3Z-flow, ie. an application

13



ϕ of the set of oriented edges of w̃ into Z/3Z such that ϕ 5 e 6 � 3 ϕ 5 3 e 6 5 mod 3 6 and
ϕ 5 a 6 � ϕ 5 b 6 � ϕ 5 c 6 � 0 5 mod 3 6 for three oriented edges a, b, c pointing toward a
common vertex of w̃ .

Conversely, given an oriented maximal Wicks form w̃ of genus f together with the

above extra structure (a Z/3Z-flow on its graph Γ̃) there are

5 12f 3 6 6 5 12f 3 2 6������ 5 12f 3 10 � 4s 6
s!

possibilities to “extend" it into an orientedmaximal Wicks formw of genus g which has an

automorphism µ of order 3 fixing exactly s positive and no negative vertices.

Since the set of Z/3Z-flows on Γ̃ is a Z/3Z-vector space of dimension 2f we get

32f
5 12f 3 6 6 5 12f 3 2 6 ������5 12f 3 10 � 4s 6

s!
m
f
1 7 3mg

3 5 s, 0 6 7 3m3f � s 
 1
3 5 s, 0 6 .

A routine calculation shows that this equation is also satisfied with m
f
1 replaced by

2 � 6f 
 5 � !
12f f ! � 3f 
 3 � ! and m3f � s 
 1

3 5 s, 0 6 replaced by 2
3

	
3
4 
 f � 6f � 2s 
 5 � !s! � 3f � s 
 1 � !f ! and this proofs (iv) in

the case f 9 1. The proof for f 7 0 is similar to the analogous proof of (iii).
Proof of (v). — We apply again the idea used in the proof of (iii). Let w be an ori-

ented maximal Wicks form with an automorphism µ of order 6. Considering the automor-

phism µ3 of order 2 and applying the reduction used in the proof of (iii) we get an oriented

maximal Wicks form w̃ of genus h 7 2g � 1 
 3r
4

together with a Z/2Z-flowϕ on Γ̃. This form

w̃ is however an element ofW h
3 5 s, t 6 and has hence an automorphism µ̃ of order 3 which

leaves ϕ invariant. Analogously to the proof of (iii) we use this data to produce elements

inW
g
6 5 3r ; 2s, 2t 6 by making all constructions µ̃-invariant. We must understand the vector

space of µ̃-invariant Z/2Z-flows:

L 3.1. — Let w̃ � W h
3 5 s, t 6 be an oriented maximal Wicks form with an au-

tomorphism µ̃ of order 3 (having parameters s, t ). The space of µ̃-invariant Z/2Z-flows on

Γ̃ is then of dimension h � 1 
 s 
 t
3

.

The lemma and a counting argument show then that

3 � h � 1 
 s 
 t � /3 5 4h 3 6 6 5 4h 3 2 6������ 5 4h 3 10 � 4r 6
r !

mh
3 5 s, t 6 7 2mg

6 5 3r ; 2s, 2t 6
and a routine calculation implies assertion (v).

Proof of Lemma 3.1. — Let ϕ̃ be a µ̃-invariant Z/2Z-flow on Γ̃. We remark that

ϕ̃ 5 a 6 � ϕ̃ 5 b 6 � ϕ̃ 5 c 6 � 0 5 mod 2 6 if a, b, c are three edges incident in a µ̃-fixed vertex.

This shows that all reductions used in the proof of (iv) can also be applied to the flow ϕ̃ and

these constructions are injective on µ̃-invariant Z/2Z-flows.

14



Theorem 1.1 is proved. QED

Table Number of 1-vertex triangulations or of oriented maximal Wicks forms in

genus 1 3 15:
1 1

2 9

3 1726

4 1349005

5 2169056374

6 5849686966988

7 23808202021448662

8 136415042681045401661

9 1047212810636411989605202

10 10378926166167927379808819918

11 129040245485216017874985276329588

12 1966895941808403901421322270340417352

13 36072568973390464496963227953956789552404

14 783676560946907841153290887110277871996495020

15 19903817294929565349602352185144632327980494486370
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