LOCALLY CONSTANT ALMOST EVERYWHERE FOURIER TRANSFORM

by Alain BERNARD & Gilbert MURAZ

(Exposed by A. Bernard at the 3rd conference on functions spaces, Edwardsville (Illinois) May 1998)

1. Introduction.

Let \mathbb{T} be the torus $\mathbb{R}/2\pi\mathbb{Z}$, and $E_0(\mathbb{T})$ the space of these continuous functions v on \mathbb{T} such that there exists $K \subset \mathbb{T}$, compact, of zero Lebesgue measure, with v restricted to $\mathbb{T} \setminus K$ locally constant. More concisely:

$$E_0(\mathbb{T}) = \{ v \in C(\mathbb{T}) ; v \text{ locally constant almost everywhere } \}.$$

In this paper we are interested in the functions in $E_0(\mathbb{T})$ whose Fourier series are absolutely convergent, *i.e.* by the space

$$A_0(\mathbb{T}) = E_0(\mathbb{T}) \cap A(\mathbb{T})$$
,

where

$$A(\mathbb{T}) = \left\{ v \in C(\mathbb{T}) ; \sum_{-\infty}^{+\infty} |\hat{v}(n)| < +\infty \right\}.$$

 $A(\mathbb{T})$ is a Banach space for the norm $\|v\|_{A(\mathbb{T})} = \sum_{-\infty}^{+\infty} |\hat{v}(n)|$. $A_0(\mathbb{T})$ is a dense subspace of $A(\mathbb{T})$ (see § 2). We will prove in § 3 that $A_0(\mathbb{T})$, equipped with the norm of $A(\mathbb{T})$, is an ultrabornological space.

Let $U(\mathbb{T})$ be the space of uniformly convergent trigonometric series :

$$U(\mathbb{T}) = \big\{ u \in \mathit{C}(\mathbb{T}) \, ; \, \sum_{-N}^{+N} \hat{u}(n) e^{int} \underset{N \to \infty}{\longrightarrow} u \, , \, \, \text{uniformly on } \, \mathbb{T} \big\} \, .$$

It is a well known result of R. Salem that $U(\mathbb{T})$ is not an algebra and more precisely that there exists $u \in U(\mathbb{T})$ and $v \in A(\mathbb{T})$ with the product $uv \notin U(\mathbb{T})$ (see J. P. Kahane [2], page 6). The ultrabornological property allows us to deduce immediately from this result the fact there exists $u \in U(\mathbb{T})$ and $v \in A_0(\mathbb{T})$ with $uv \notin U(\mathbb{T})$: we do it in § 4.

We give some remarks in § 5.

Mots-clés: Fourier transform, bornological spaces. *Classification math.*: 42A16, 42A38, 46A09.

2. Density.

PROPOSITION 1. — $A_0(\mathbb{T})$ is dense in $A(\mathbb{T})$.

 $A_0(\mathbb{T})$ is obviously a subspace of $A(\mathbb{T})$, closed under multiplication. Moreover $A_0(\mathbb{T})$ is translations invariant, so its closure in $A(\mathbb{T})$ is an ideal of $A(\mathbb{T})$ for convolution. So the density announced is an easy consequence of the following lemma:

LEMMA 1. —
$$\forall n_0 \in Z, \exists v \in A_0(\mathbb{T}) \text{ s.t. } \hat{v}(n_0) \neq 0.$$

Proof. — As a consequence of the theorem of Ivasev-Musatov (see T.W. Körner [3]) there exists a compact $K \subset \mathbb{T}$, of Lebesgue measure 0, and a measure $\mu \neq 0$, supported by K, such that

$$|\hat{\mu}(n)| = \mathcal{O}(|n|^{-\frac{1}{2}})$$
 when $|n| \to +\infty$.

Multiplying μ by e^{int} if necessary, for a well chosen n, one can assume $\hat{\mu}(n_0) \neq 0$. Let h be the indicator function of the image in \mathbb{T} of the interval [-1,+1] and define $v=\mu*h$, the convolution of μ with the L^1 function h. One has $\hat{x}(n)=\hat{\mu}(n)\cdot\hat{h}(n)=\hat{\mu}(n)\times\frac{\sin(n)}{n}$ so $|\hat{v}(n)|=\mathcal{O}(|n|^{-\frac{3}{2}})$ which implies $v\in A(\mathbb{T})$, and $\hat{v}(n_0)\neq 0$. But v is locally constant on the complement of $(K-1)\cup (K+1)$. So v has all the desired properties.

3. Ultrabornology.

Define $\mathcal{J} = \{K \subset \mathbb{T}; K \text{ compact of zero Lebesgue measure}\}$, and for each $K \in \mathcal{J}$, $A_K(\mathbb{T}) = \{v \in A(\mathbb{T}); v \text{ is locally constant on the complement of } K\}$. One has $A_0(\mathbb{T}) = \bigcup \{A_K(\mathbb{T}); K \in \mathcal{J}\}$. $A_K(\mathbb{T})$ is a closed subspace of $A(\mathbb{T})$, so is Banach for the $A(\mathbb{T})$ norm. The following proposition is the announced result of ultrabornology:

PROPOSITION 2. — Let B be a normed space and $\ell: A_0(\mathbb{T}) \to B$ a linear mapping. If for each $K \in \mathcal{J}$, ℓ restricted to $A_K(\mathbb{T})$ is continuous, then ℓ is continuous (all spaces being equipped with the $A(\mathbb{T})$ norm).

The proof will use the following lemma:

LEMMA 2. —
$$\forall \varepsilon > 0, \exists w \in A_0(\mathbb{T}), w(0) \neq 0 \text{ and support } (w) \subset] - \varepsilon, +\varepsilon[.$$

Proof of lemma 2. — By lemma 1 there exists $v \in A_0(\mathbb{T})$, non constant. Let $V = \{t \in \mathbb{T}; v \text{ is locally constant on a neighborhood of } t\}$ and $K = \mathbb{T} \setminus V$. K is a perfect compact subset of \mathbb{T} , and so there exists $t \in K$ such that for each $\varepsilon > 0$, $]t - \varepsilon$, $t[\cap K \neq \emptyset]$ and $]t, t + \varepsilon[\cap K \neq \emptyset]$. Translating the function v one can assume t = 0. Now for each $\varepsilon > 0$ there exists a_{ε} and b_{ε} in \mathbb{T} , with $a_{\varepsilon} \in]-\varepsilon$, $[and b_{\varepsilon} \in]0, +\varepsilon[$, and $\eta > 0$, such that v is constant on $[a_{\varepsilon} - \eta, a_{\varepsilon} + \eta[$ and on $[b_{\varepsilon} - \eta, b_{\varepsilon} + \eta[$, and such that $v \in V(0)$ and $v(b_{\varepsilon}) \neq v(0)$. Take $v \in V(0)$ are instance $v \in V(0)$. Take $v \in V(0)$ are instance $v \in V(0)$.

and h=0 outside $]a_{\varepsilon}-\eta$, $b_{\varepsilon}+\eta[$. Then w defined by $w=h\cdot(v-v(a_{\varepsilon}))\cdot(v-v(b_{\varepsilon}))$ has the desired properties.

Proof of proposition 2. — By standard arguments (using the fact that $A_0(\mathbb{T})$ is a self adjoint function algebra, translations invariant, in which every element without zero is invertible) you get from lemma 2 the existence of partitions of unity. Precisely:

For each finite open covering $V_1 \cdots V_n$ of \mathbb{T} , the mapping $S: A_0(V_1) \times \cdots \times A_0(V_n) \to A_0(\mathbb{T})$ defined by $S(v_1, \ldots, v_n) = v_1 + \cdots + v_n$ is open (where $\forall V \subset \mathbb{T}$, $A_0(V) = \{v \in A_0(\mathbb{T}) \text{ ; support } v \subset V\}$, equipped with the $A(\mathbb{T})$ norm).

Now, if our linear mapping ℓ were not continuous, there would then exist $t_0 \in \mathbb{T}$ such that for each neighborhood V to t_0 , ℓ restricted to $A_0(V)$ would not be continuous (standard Borel-Lebesgue argument). Then one could construct a sequence $(u_n, n \in \mathbb{N})$ in $A_0(\mathbb{T})$ with $\|u_n\|_{A(\mathbb{T})} \leq \frac{1}{n}$, support $(u_n) \subset]t_0 - \frac{1}{n}$, $t_0 + \frac{1}{n}[$ and $\|\ell(u_n)\|_B \geq 1$. But for each n, $u_n \in A_{K_n}(\mathbb{T})$ for some $K_n \in \mathcal{J}$, which care be choosen included in $]t_0 - \frac{1}{n}$, $t_0 + \frac{1}{n}[$. Put $K = (\bigcup_{n \in \mathbb{N}} K_n) \cup \{t_0\}$. K is still in \mathcal{J} and for each n, $u_n \in A_K$. So ℓ restricted to $A_K(\mathbb{T})$ is not continuous. Contradiction.

4. Multipliers of $U(\mathbb{T})$.

 $U(\mathbb{T})$, as defined in the introduction, is a Banach space for the norm $\|u\|_{U(\mathbb{T})}=\sup \{\|\sum_{-N}^{+N}\hat{u}(n)e^{int}\|_{\infty};\ N=0,1,\dots\}$: see J. P. Kahane [2] where it is proven that if $(\varepsilon_n,\ n\in\mathbb{N})$ is a sequence decreasing to zero, then $\sum_{1}^{\infty}\varepsilon_n\frac{\sin nt}{n}$ defines an element u_0 of $U(\mathbb{T})$ such that there exists $v\in A(\mathbb{T})$ with the product $uv\not\in U(\mathbb{T})$. Due to the ultrabornological property of $A_0(\mathbb{T})$ we have the following:

PROPOSITION 3. — Let $u \in U(\mathbb{T})$ be such that for each $v \in A_0(\mathbb{T})$, $uv \in U(\mathbb{T})$. Then for each $v \in A(\mathbb{T})$, $uv \in U(\mathbb{T})$.

Proof. — $\ell: v \leadsto uv$ defines a linear mapping of $A_0(\mathbb{T})$ into $U(\mathbb{T})$. For each K, compact subset of \mathbb{T} of Lebesgue measure zero the restriction of ℓ to $A_K(\mathbb{T})$ has a closed graph (use the uniform convergence implied by the $A(\mathbb{T})$ convergence). $A_K(\mathbb{T})$ being Banach, this restriction is continuous, by the closed graph theorem. So ℓ is continuous by proposition 2. Now take $v \in A(\mathbb{T})$ and $\forall n, v_n \in A_0(\mathbb{T})$, with $v_n \xrightarrow[n \to \infty]{} v$ in the $A(\mathbb{T})$ norm (proposition 1): $(v_n, n \in \mathbb{N})$ is Cauchy in $A_0(\mathbb{T})$, so $(uv_n, n \in \mathbb{N})$ is Cauchy in $U(\mathbb{T})$, so $(uv_n, n \in \mathbb{N})$ converges in $U(\mathbb{T})$. But the limit has to be uv (by uniform convergence). So $uv \in U(\mathbb{T})$.

5. Remarks.

- 1. Spaces of continuous functions on a compact *X* locally constant on a dense subset of *X* appear in several papers: see [1] for a bibliography. In [1] the ultrabornological property of such spaces, in case *X* is metrisable, is proven. Our paper is inspired by [1].
- 2. It is easy to construct an $A(\mathbb{T})$ function locally constant on a dense subset of \mathbb{T} , and not constant: take K a nowhere dense compact subset of \mathbb{T} , of positive Lebesgue measure, denote by k its indicator function, and take v=k*h, where h is the indicator function of the interval [-1,+1]. The difficulties appear when one ask K to be of Lebesgue measure zero.
- 3. It is an exercise to prove that the Cantor "middle third" function, suitably periodicized and defining then an $E_0(\mathbb{T})$ function, does not define an $A_0(\mathbb{T})$ function.
- 4. There exist perfect subcompacts K of \mathbb{T} such that the only elements of $A_K(\mathbb{T})$ are the constants! See J. P. Kahane [2], page 21.
- 5. To produce a non constant $A_0(\mathbb{T})$ function we used a non zero measure μ , supported by a compact subset K of \mathbb{T} of Lebesgue measure zero, for which $\hat{\mu}(n) \underset{n \to \infty}{\longrightarrow} 0$ in a controlled way. The theorem of Ivasev-Musatov gives such a measure with $\hat{\mu} \in \mathcal{O}(|n|^{-\frac{1}{2}})$. In fact the existence of such a function (and such a measure, but only with $\hat{\mu} \in \mathcal{O}(|n|^{-\alpha})$ for some unspecified $\alpha > 0$) can be taken out from a 1936 paper of J. E. Littlewood [4].

Bibliography

- A. Bernard et S.J. Sidney. Some ultrabornological normed function spaces, Arch. Math. 69 (1997), 409–417.
- $\hbox{\cite[2]} \quad \hbox{\it J. P. Kahane.} \quad \hbox{\it S\'eries de Fourier absolument convergentes, Springer-Verlag, 1970.}$
- [3] T.W. KÖRNER. On the theorem of Ivasev-Musatov I, Ann. Inst. Fourier (Grenoble) 26,3 (1977), 97–115.
- [4] J. E. LITTLEWOOD. On the Fourier coefficients of functions of bounded variation, Quarter. J. Math. Oxford Ser. 7 (1936), 219–226.

Université de Grenoble I Institut Fourier UMR 5582 du CNRS et de l'UJF UFR de Mathématiques B.P. 74 38402 ST MARTIN D'HÈRES Cedex (France)

(29 octobre 1998)