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Introduction

Let GG be a connected reductive group over an algebraically closed field k; let
B C G be a Borel subgroup and K C G a closed subgroup. Assume that
K is a spherical subgroup of GG, that is, the number of K-orbits in the flag
variety G/B is finite; equivalently, the set K\G/B of (K, B)-double cosets
in G is finite. Then the following problems arise naturally.

1) Parametrize the set K\G/B and, more generally, K\G/P where P O B
is a parabolic subgroup of G.

2) Decompose any (K, P)-double coset into (K, B)-double cosets.

3) For connected K, describe the singularities of closures of double cosets or,
equivalently, of K-orbit closures in G/B. Are these closures normal ?

4) For such an orbit closure X and a homogeneous line bundle £ on G/B
having non-zero global sections, describe the K-module H°(X, £) and the
image of the restriction map resx : H(G/B, L) — H*(X, L).

In the case where K = B, the answers to Problem 1 and 2 are well known:
by the Bruhat decomposition, each (B, P)-double coset intersects the Weyl
group W into a unique coset of Wp, the parabolic subgroup of W associated
with P. And for w € W, the double coset BwP is the disjoint union of the
BwrB where 7 € Wp. Much is known concerning Problems 3 and 4: the
B-orbit closures in G/B are the Schubert varieties; they are normal, with
rational singularities [9]. The spaces H°(X, L) are the Demazure modules;
their character is given by the Demazure character formula, and the maps
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resy are surjective. Moreover, the higher cohomology groups H*(X, £) van-
ish for ¢ > 1. Similar results hold for the diagonal action of G on G/B x G/B
8]

For general spherical subgroups, no explicit solution of Problem 1 seems
to be known; but work of Springer [13] and Richardson-Springer [10], [11]
gives detailed information on K\G/B in the case of a symmetric subgroup
K, that is, K consists of all fixed points of an involutive automorphism 6 of
G. In this setting, the K-orbit closures in G/B may be more complicated
than Schubert varieties: they need not be normal (an example is given in [1]
p. 281), and the maps resx need not be surjective (this is mentioned in [1];
see 4.3 below for more detailed examples).

In the present paper, we give a solution of Problem 2 for a symmetric
subgroup K = G (1.4), and we describe the isotropy subgroups of G?-orbits
in G/P (2.2). As a consequence, we characterize the affine (resp. closed)
orbits (2.3, 3.2), in relation to #-split (resp. 6#-stable) parabolic subgroups.
Then we solve Problem 4 for certain G®-orbit closures X C G/B which we
call induced flag varieties. They are the pull-backs under the projection
G/B — G/P of closed G’-orbits in G/P, where B C P and both are 6-
stable. Of course, each such X is smooth; we show that resx is surjective,
and that the G%-module H°(X, £) is obtained from H°(P/B, L) by parabolic
induction. Furthermore, we obtain vanishing of H*(X, £) for s > 1 (4.1). As
a consequence, X is projectively normal in the embedding given by any ample
line bundle on G/B.

Our proof of these results concerning Problem 4 is only valid in char-
acteristic zero. In positive characteristics, it would be useful to know that
the G%-module H°(G/B, L) admits a good filtration (this was conjectured
by Brundan [5] Conjecture 4.4 (ii)). Our analysis of restriction maps gives
information on the decomposition of the simple G-module H°(G/B, L) as a
G%module: all isotypical components which are extremal in a precise sense
arise from the quotient H°(X, £) for some induced flag variety X (4.2).

This is related to work of Sepanski [12| on boundaries of K-types of
a (g, K)-module M. He considered the cohomology of u with coefficients
in M, where u is the nilradical of the Lie algebra of a f-stable parabolic
subgroup P of GG, and he studied a “restriction of cohomology” map 7 :
H*(u, M) — H*(u?, M) [12] §3. Let X be the pull-back in G/B of the closed
orbit G/P% C G/P; then the map resy can be seen as a geometric version
of 7.

The simplest situation for decomposing G-modules into G?-modules is the
“multiplicity-free” case, considered in detail in [12] §4. In this case, it turns
out that all G%-orbit closures in G/B are induced flag varieties; in particular,



all orbit closures are smooth (4.2). In the general case, most orbit closures
are not induced flag varieties, but the latter can be used to construct “short”
desingularizations of the former; this will be developed elsewhere.
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Notation

Throughout the paper, G denotes a connected reductive group, B a Borel
subgroup of G, and T a maximal torus of B. The unipotent part of B is
denoted by U. We denote by P a parabolic subgroup of G containing B, and
by L the Levi subgroup of P which contains 7.

Let N be the normalizer of T in G, and let W = N/T be the Weyl group.
Let @ (resp. ®T; &) be the set of roots of (G,T) (resp. of positive roots,
that is, roots of (B, T); of negative roots). The set of simple roots is denoted
by A.

Let g, b, t, ... be the Lie algebras of G, B, T, .... We have the decom-
position g = t ® P 4 Fa; for each a € @, we choose a non-zero root vector
X4 € ga-

Let # be an automorphism of order 2 of G; let G C G be the fixed
point subgroup. Then G? is reductive by [14] §8; let G*° be its connected
component containing 1. For the #-action on g, the fixed point subspace g’
is the Lie algebra of GY by [2] Corollary 9.2. Let 7 : G — G be the map
g+~ g7 '0(g); observe that 0(x) = z~! for all z € 7(G).

1 First results on double cosets

1.1 Preliminaries

We begin by collecting several lemmas on involutions of reductive groups, to
be used later. Although these results are known (see [13] and [6]), we give
complete proofs because they are very short, or simpler than existing ones.

Lemma 1. Let I' C G be a 0-stable connected unipotent subgroup. Then:
(i) The product map T'° x 7(I') — T is an isomorphism.

(ii) T is connected.

(iii) T(T) ={g €T | 0(9) = g7 '}.

(iv) For any subgroup I'" C G containing T', the map G — G/T" sends I'? onto
(r'/r)°.



Proof. (i) follows from [2] Proposition 9.3, and it implies (ii). For (iii), let
g € U such that 0(g) = g~'. By (i), we can write g = zy~'0(y) for a unique
z € T'% and some y € . Then

w0(y) ly=0(y) tyz ' =1 Oy ) Tya?
whence z = 27! by (i) again. Because I' is unipotent and connected, it
follows that 2 = 1. For (iv), let g € I such that gI is in (G/T')’. Then
g '0(g) € T. By (iii), we can find v € T such that g~'0(g) = v'6(~); then
gy~ 'isin I'. O
Lemma 2. Any Borel subgroup B C G contains a 0-stable mazximal torus of
G, and any two such tori are conjugate in U°.

Proof. Because 0(B) is a Borel subgroup of G, the group B N §(B) is con-
nected, solvable and contains a maximal torus of G. Thus, it contains a
f-stable maximal torus, by [14]| 7.6. Let T, T" be two such tori. There ex-
ists g € U such that 7" = gTg~'. Because T and T" are f-stable, g~'0(g)
normalizes T. But g7'6(g) is in U; it follows that g~'6(g) = 1, that is,
geUl. 0O

Lemma 3. The following conditions are equivalent:
(i) B is 0-stable.
(i) B%Y is a Borel subgroup of G°.

Proof. By Lemma 2, we can choose a #-stable maximal torus T of B.

(i)=(ii) Because B and T are #-stable, the same holds for U. Let B~ be
the Borel subgroup of G such that B~ N B = T; then B~ and its unipotent
part U~ are f-stable as well. Because g =u@® t® u~, we have

gd=vote )
It follows that b’ and (b~)? are opposite Borel subalgebras of g°.

(ii))=(i) Observe that 0 acts on ®; if moreover B is not #-stable, then we
can find o € H(®T)NP~. Now X,+6(X,) and X_,+60(X_,) are eigenvectors
of T? in g% of opposite weights. Because b’ is a Borel subalgebra of the Lie
algebra of the reductive group G?, it follows that one of these vectors is in

b?, in particular in b. This contradicts the assumption that o € ®~ and
f(a) € O O

Lemma 4. For a 0-stable mazimal torus T of G, the following conditions
are equivalent:

(i) T is contained in a 0-stable Borel subgroup of G.

(ii) T?° is a regular subtorus of G.

All -stable mazimal tori T satisfying (i) or (ii) are conjugate under G®°. If
moreover G? is connected, then T? is connected as well.
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Proof. (i) =(ii) We may assume that B is f-stable. If there exists o € &%
which vanishes identically on 7?9, then, for all t € T, we have a(tf(t)) = 1,
because t0(t) € T%%. Thus, o + 6(a) = 0, which contradicts the fact that
f(a) € OF.

(ii)=-(i) Observe that T%° is a maximal subtorus of G’. Let T be a Borel
subgroup of G? containing 7%°, and let B be a Borel subgroup of G containing
. Then B; = B%°, whence B is f-stable by Lemma 3. Furthermore, B
contains T, because B contains the regular subtorus 7.

If morever GY is connected, then B? is connected (because it is contained
in the normalizer in G? of the Borel subgroup I'). Because B? = U’T?, it
follows that 7 is connected.

Let T" be another #-stable maximal torus of G satisfying (ii). Then T%°
and T"° are maximal subtori of G%°, so that they are conjugate in this
group. Taking centralizers in G, we see that T and T" are conjugate in G%?°,
too. U

1.2 Parametrization of orbits

Let B(G) be the flag variety of G. Recall that the set of G-orbits in B(G)
is in bijection with the set of G%-conjugacy classes of pairs (B,T) where
B C G is a Borel subgroup, and 7" C B is a f#-stable maximal torus; the
inverse bijection maps the G?-conjugacy class of (B, T) to that of B. As a
consequence, B(G) contains only finitely many G%-orbits (see [11] 1.2 and 1.3
for simple proofs of these results).

We begin by generalizing this to the variety P(G) of all parabolic sub-
groups of G.

Proposition 1. There is a bijection from the set of G°-orbits in P(G) onto
the set of G°-conjugacy classes of triples (P, B,T) where

(i) P is a parabolic subgroup of G,

(ii) B is a Borel subgroup of P such that the product P?B is open in P, and
(15i) T is a O-stable mazimal torus of B.

The inverse bijection maps the G°-conjugacy class of (P, B,T) to that of P.

Proof. Let P be a parabolic subgroup of G. For a Borel subgroup B of P,
the product GYP is a union of finitely many (GY, B)-double cosets. Because
the quotient G®\G?P is a P-orbit, it is irreducible; thus, G’P contains a
unique open (GY, B)-double coset. Replacing B by a conjugate in P, we may
assume that GYB is open in G?P. It follows that P’ B = (G°B) N P is open
in P. Furthermore, B contains a #-stable maximal torus by Lemma 2. Thus,
there exists a pair (B, T) satisfying (ii) and (iii).



To complete the proof, it suffices to check that all such pairs are conjugate
in P?, the G%-isotropy group of the point P of P(G). Let (B',7") be another
such pair. We can write B’ = pBp~! for some p € P. Then P’B and P’pB
are open (P? B)-double cosets in the irreducible variety P. Thus, they are
equal, and p is in P?B: we may assume that p € P?. Now T and p~'T"p
are f-stable maximal subtori of B: by Lemma 2 again, there exists b € B?
such that p~'T"p = bTb~t. Then T' = pbT (pb)~! and B’ = pbB(pb)~! with
pb € PY. O

From now on we assume that 7" is a f-stable maximal torus of GG; then
its normalizer N is f#-stable, too. Set

V:i={ge€G|g'0(g9) € N}.

Then V is the set of all g € G such that the maximal torus g7'¢g~! is f-stable.
Clearly, V is stable under left multiplication by G and right multiplication
by N. In fact, by [13] and [6], any (G?, B)-double coset in G' meets V, along a
unique (GY, T)-double coset. As an easy consequence of this result, we shall
obtain a similar parametrization of the (GY, P)-double cosets in G.

For g € G, define an involution v, of G by

1y = Int(g~") 0 6 o Int(g) = Int(g~'6(g)) o 6.

Then G¥ = g7'G%g. Observe also that
V={geG|Tisy, —stable}.

Set finally
VP .= {g eV | G%B is open in GY¢P}.

Proposition 2. Any (GY, P)-double coset in G meets VE, along a unique
(G, T)-double coset. Furthermore, V¥ is the set of all g € V such that P¥s B
1s open in P.

Proof. Let O be a (GY, P)-double coset in G. Then O contains a unique open
(G?, B)-double coset OF. The latter meets V along a unique (GY, T')-double
coset OF. Let g € OF, then G%gB is open in G%gP. This is equivalent
to: GY9B is open in G¥P, and also to: P¥sB is open in P. Indeed, the
G¥s-variety G¥s P is the quotient of G¥s x P by the action of P¥s defined as
follows: x - (g,p) = (92", xp). Thus, a subset E of P is open if and only if
G¥9F is open in G¥sP. O



1.3 Fixed points in parabolic subgroups

For a parabolic subgroup P D B, we describe the subgroup P?, and its image
in the quotient of P by its unipotent radical R,(P). Recall that P is the
semidirect product of R, (P) with its Levi subgroup L D T'; we shall identify
P/R,(P) with L.

Theorem 1. With notation as above, R,(P)? is a connected unipotent nor-
mal subgroup of P°. Furthermore, the quotient P°/R,(P)? (the image of
P in L) is the semidirect product of L N O(R,(P)) (the unipotent radical of
LN O(P), a parabolic subgroup of L) with L® (a reductive group).

Proof. Set Q := 6(P), a parabolic subgroup of G containing 7, and set
M := 0(L), the Levi subgroup of @} containing 7. Then P N Q is §-stable
and contains P? as its fixed point subgroup.

We claim that P N (@ is the semidirect product of its unipotent radical
R,(PN Q) with the f-stable connected reductive subgroup L N M. Further-
more, R,(P N Q) contains R,(P) N R,(Q) as a O-stable connected normal
subgroup, and the quotient

Ry(PNQ)/Ru(P) N Ry(Q)

is the direct product of LNR, (Q) with R, (P)NM, where 6 acts by exchanging
both factors.

Indeed, both R,(P)NQ and PNR,(Q) are unipotent normal subgroups of
P N @Q; because they are normalized by T, they are connected. Furthermore,
we have isomorphisms

(PNQ)/(R(P)NQ)(PNRy(Q)) = (LNQ)/(LNR.(Q)) = LNM

and the latter is a connected reductive group. Thus, the unipotent radical
of PNQ is

(Ru(P) N Q)(P N R(Q)) = (Ru(P) N Ru(Q))(Ru(P) N M)(L N RW(Q)),

a product of three subgroups with trivial pairwise intersections. And R, (P)N
R,(Q) is a normal subgroup of R,(PNQ), and contains all commutators [g, h]
where g € LN R,(Q) and h € R,(P) N M. This proves the claim.

By that claim and Lemma 1 (iv), R,(P)? = (R.(P) N R,(Q))? is con-
nected, and the quotient

P’/R,(P)" = (PN Q/(Ru(P)N Ru(Q))’

is the semidirect product of the set of all pairs (g, 6(g)) where g € LN R,(Q),
with (LN M)? = L?. 1t follows that the image of PY in L is the semidirect
product of L N R,(Q) with LY. Furthermore, L N Q is a parabolic subgroup
of L, with unipotent radical L N R,(Q) and Levi subgroup L N M. O



1.4 Decomposition of double cosets

With notation as in 1.2, let ¢ € V. We shall decompose G’gP into (G, B)-
double cosets.

Set Ly := LN1,(L), then L, is a 1),-stable Levi subgroup of the parabolic
subgroup L N t¢y4(P) of L, and T is a 1),-stable maximal torus of L, with
normalizer N N L,. Furthermore, L¥s = LZ"’. Set

V,={z €L, |z Y,(x) € NN L,}.

By the results recalled in 1.2, the map L¥\V,/T — L¥\L,/BN L, is bijec-
tive.

Finally, denote by N, the set of all n € N N L such that BN L, is
contained in n(B N L)n~'. Then, by the Bruhat decomposition, the map
N,/T — LN,(P)\L/BN L is bijective.

Proposition 3. With notation as above, we have

G%gP = U G%gInB.

lGVg,nENg

Furthermore, G?gIlnB = G?gl'n' B if and only if: LYsIT = LYI'T and nT =
n'T. This defines a bijection

V, x N, — G*\G?gP/B.
Proof. Observe that
G\GgP/B = g7'G\g~'G’¢P/B = G¥s\G¥* P/B.

Now any (G¥s, B)-double coset in G¥7 P meets P, along a unique (P¥s, B)-
double coset. Thus, we have

G¥\G¥P/B = P¥s\P/B = Im(P¥)\L/BN L

where Im(P¥s) is the image of P¥s in L. But Im(P¥s) = (LN, (R,(P))LY
by Theorem 1. For simplicity, set @ := 9,(P), Q1 = Q N L (a parabolic
subgroup of L, with Levi subgroup L,) and By, := BN L (a Borel subgroup
of L); then LN, (R, (P)) = R,(Qr). Each (R,(Qr)L¥s, Br)-double coset in
L is contained in a unique (Qr, Br)-double coset. The latter meets N, along
a unique T-coset. This defines a surjective map

Im(PY)\L/BNL = R,(Q.)LY\L/Br, — Q.\L/B, = N,/T.



For n € N, the fiber of this map over nT is

R(Qr)L¥\QnBL/Br, = Ru(Qr)L¥\Q1/Qr NnByn™ = LY\L,/BN L,

Indeed, as nBrn~! contains B N L,, the image of Qr, N nByn™" in L, =

Qr/R.(Qr) is BN L,. Finally, each (L%, BN L,)-double coset in L, meets
YV, into a unique (L¥s,T)-double coset. Tracing through all identifications
completes the proof. O

2 Combinatorics and geometry of orbits

2.1 Parabolic subgroups associated with double cosets

Any double coset G?gB defines two parabolic subgroups containing B: its
right stabilizer, that is, the set of all z € G such that G’gBz = G%¢B, and
the right stabilizer of its closure G?gB. We shall describe both parabolic
subgroups in terms of the combinatorics of root systems and involutions,
which we recall below; as an application, we shall characterize the set V¥
introduced in 1.2.

For each a € ®, let U, C G be the corresponding root subgroup. Each
simple root o € A defines a parabolic subgroup P, of semisimple rank one,
generated by B and U_,. We denote by L, the Levi subgroup of P, which
contains 7', and by GG, the quotient of L, by its center; then (G, is isomorphic
to PSL(2). We shall identify U, and U_, with their images in G,, and we
denote by T, the image of 7.

Recall that any parabolic subgroup P O B is generated by the P,’s that
it contains. We write P = P;; where II is the set of all @« € A such that
P, C P. The corresponding parabolic subgroup of W is denoted by Wy, and
we also denote V¥ by VI

Because T is f-stable, 6 acts on ® by an involution, still denoted by 6.
Recall from [13] that a € ® is called real if f(a)) = —a, imaginary if 0(a) = «
and complex if («) # +a. For real or imaginary «, the group L, is f-stable,
and 6 acts on G; recall that « is compact if 6 fixes G, pointwise (then «
is imaginary). Observe that « is compact (resp. non-compact imaginary) if
and only if 8(X,) = X, (resp. 0(X,) = —X,).

The following result is an easy consequence of [10] §4 or of Theorem 1.

Lemma 5. The image of P2° in G, is

e GG, if a is compact,

e T, if a is non-compact imaginary,

e a copy of the multiplicative group, distinct from T,, if a is real,



e U, if a is complex and in 6(®T),
o U_, if a is complex and in 0(P7).

As a consequence, « is compact (resp. o € (®7); a € 6(PT)) if and only
if PB is equal to P, (resp. is a proper open subset of P,; is closed in P,).

For g € V, the involution 9, = Int(g7'0(g)) o # acts on @ as well; if w,
denotes the image in W of g '6(g) € N, then 9,(a) = w,0(c) for all a € P.
Thus, we can distinguish between ,-real, imaginary, complex,... roots. Let
A, be the set of all 1,-compact simple roots.

Proposition 4. Let g € V.

(i) The right stabilizer of G?gB is generated by the P, where o € A,.

(i1) The right stabilizer of GPgB is generated by the P, where « is in A, or
in ANy (P7).

(iii) G°gB is open in G?gP (that is, g € VYY) if and only if I1 is contained
in Ay Uty (@),

(iv) GgB is closed in GgP if and only if Il is contained in 1, (®F).

Proof. As in 1.4, we may reduce to the case where g = 1; then v, = 0.

(i) The right stabilizer of GYB is generated by the P, (a € A) such that
GB = G’P,. This amounts to: PaaB = P,, that is, «a is f-compact by
Lemma 5. L

(ii) Similarly, the right stabilizer of G?B is generated by the P, (o € A)
such that G'B = GYBP, = GP,, that is, G’B is open in G’P,. This
amounts to: P?B is open in P,, or to: « is either f-compact or in (™).

(iii) is a direct consequence of (ii).

(iv) Observe that G?B is closed in G?P if and only if P?B is closed in
P. 1If this holds, then, intersecting with P, for a € TI, we have that P/B is
closed in P,. By the Lemma, we then have o € 6(®™).

Conversely, if IT C §(®*), we claim that B N #(B) is a Borel subgroup
of PN A(P). Indeed, the assumption implies that BN #(B) = BN O(P) =
PN é(B). Thus, BN H(B) contains both R,(P)NH(P) and P N O(R,(P)).
By the proof of Theorem 1, it follows that B N §(B) contains the unipotent
radical of PN @(P). Furthermore, BN #(B) contains BN LNA(L); the latter
is a Borel subgroup of the Levi subgroup L N6#(L) of P N #(P). This proves
the claim.

This claim and Lemma 3 imply that B%° is a Borel subgroup of P’. This
implies in turn that P?/B? is complete, hence closed in P/B. It follows that
P’B is closed in P. O

In the case where P = B, we obtain the following result, which is also a
consequence of [6] Proposition 9.2 and Lemma 1.7.
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Corollary 1. With notation as above, G’gB is open (resp. closed) in G if
and only if each simple root is either g-compact or in P, (®~) (resp. each
simple root is in 1y (®T), that is, B is 1,-stable).

2.2 Isotropy groups

Let g € V. The G-isotropy group of the point gP of G/Pis G*NgPg~! =
gP%sg='. To describe this group, or, equivalently, P¥s, we need more nota-
tion. Set

[, :={a eIl | ¢Y,(a) € Pp}.

Then I, contains II, (the set of all ¥ -compact roots of II); we denote by
@y, @p, the corresponding sub-root systems of ®. Let ®. (resp. ®¢) be the
set of all ¥,-compact (resp. complex) roots.

Finally, recall that a parabolic subgroup ) of G is split with respect to
an involution ¢ if the parabolic subgroup ¥ (@) is opposite to Q.

Proposition 5. (i) The group Ly := LN4)4(L) is equal to Ly, ; in particular,
Oy, is g-stable. Furthermore,

%(‘I’ﬁg - (I)—fn_c) = q)ﬁg - CI)I_L'

Thus, @, 1s the set of all 1g-compact roots of ®i,, and Pn,N Ly is a minimal
Yg-split parabolic subgroup of L.

(ii) The group PYs is the semi-direct product of a connected unipotent normal
subgroup of dimension

1
O |+ 510500y ()] + [0 — @

with the reductive subgroup ng .
Proof. (i) By Proposition 4 (iii), we have IT C t,(®~ U II) whence
O C )y (P U D).

It follows that B N L is contained in 1,(P~) N L. The latter is a parabolic
subgroup of L, with L N,(L) as its Levi subgroup containing 7. Thus,
there exists a subset II' C II such that LN y(L) = L. Then we must have
I =11,

Let a € Il — II.. Then ¢y(a) € &y — P, by Proposition 4 (ii) again.
Thus, the coefficients of 1,(«) on all elements of II, — II, are non-positive,
one of them being negative. It follows that %(@ﬁg — &1 ) consists of negative

roots.
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(i) By Theorem 1, the group L% = L} is a maximal reductive subgroup
of P¥, and R,(P%s) is an extension of L N ¢,(R,(P)) by R,(P)¥. Fur-
thermore, L N,(R,(P)) is the unipotent radical of L N 1),(P), a parabolic
subgroup of L with Levi subgroup L,. Thus, we have

dim L N 4, (R.(P)) = |f; — &3 |.

To compute the dimension of R,(P)%s, we use the notation of the proof
of Lemma 3. The X, (@« € ®t — ®y) are a basis of the Lie algebra of
R,(P). Thus, a basis of the Lie algebra of R,(P)¥) consists of the X,
(where o € @ — ®py) together with the X, + 1,(X,) (where « is complex
and both «, 1,(a) are in & — &yy).

Observe that

(I): - @H = (I): - ((I)H N wg(q)ﬂ)) = (Dj - q)ng = ij - (I)HC-

Finally, we check that the set of all complex roots oo € ®* — & such that
Yy(a) € &t — @y is BF N Y, (P). Indeed, there is no complex o € Of
such that 1,(a) € @ (otherwise, 9(c) € ®ff whence a € @y, ; but @,
contains no complex roots by (i)). And for @ € & — ®p, the condition:
Yy(a) € @ — &y is equivalent to: ,(a) € OF. O

As an application, we describe the isotropy groups for the G?-action on
G/ B; this sharpens [13] Proposition 4.8. Let g € V, then the G’-isotropy
group of gB/B is

(9Bg™")? = gBYg".

By Proposition 4 (i), the parabolic subgroup Pa, is the right stabilizer of
G%gB, and moreover g € V2. Clearly, La, is 9),-stable, and its derived
subgroup consists of 1),-fixed points. It then follows from Theorem 1 that

PR? = Ry (Pa,)" LY.
Intersecting with B, we obtain the following

Corollary 2. With notation as above, BYs is the semi-direct product of the
connected unipotent normal subgroup

RU(PAC)’lpg (U N LAC)

with the diagonalizable subgroup T%¢, and we have

) 1
dim Ry (Pa, )" = 585 01,(1)].
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2.3 Affine orbits

Let g € VE. We give a criterion for the orbit G?gP/P C G/P to be affine.
As GY is reductive and the isotropy group GY N gPg~' is equal to gP%s¢g~ !,
this is equivalent to: PY¥s is reductive.

This condition holds if P is ¢),-split: then P%s = (P N, (P))¥s = LYs.
Another example of an affine orbit occurs when the symmetric space G/G?
is Hermitian, that is, there exists a parabolic subgroup 2 C G and a Levi
subgroup M C @ such that G = M. Then Q° = M is reductive; the
corresponding orbit G’Q/Q = G?/G%? is finite. In the general case, we shall
see that affine orbits arise from a combination of both examples.

Let A, be the set of all non-compact imaginary simple roots for 1),. Write
P = Py and consider the Dynkin diagram of IIU A,,. Let A, be the union
of all connected components of this diagram which meet A,, — I, and let IT°
be the union of the other components. Then ®pa, is the disjoint union of
(I>H0 and @Zn'

Proposition 6. With notation as above, P¥s is reductive if and only if g
satisfies the following three conditions:

a) @11 is 1)4-stable and contains all Y,-compact roots of ®.

b) Prua, is g-split.

¢) A, is contained in A, UTI,.

Then P¥s0 = LﬁijAn, both Lyo and Lz are v -stable, and the symmetric
space Lz, /L%"n is Hermitian with Levi subgroup Ly %, -

Proof. We use the notation of 2.2. If P¥s is reductive, then [&y — & [ =0

whence @y is ¢),-stable. Furthermore, |®} — &} | = 0 whence $y contains
all 1),-compact roots, and a) holds. Finally, |®f N 1,(®T)| = 0 whence

¢g((b+ _— (I)z) = (I)_ — (b,

where ®; C ® denotes the subset of 1,-imaginary roots. It follows that
®; = O, where A; = AN ;. Because Py contains all 1g-compact roots, we
have ITU A; =ITU A,,. Furthermore, ®ya, is 14-stable and

hy(®t — Ppua,) =~ — Pryua,

whence b) holds.

Let I be a connected component of the Dynkin diagram of I[TU A,,, which
meets II and A, — II. Let J be a connected component of I N II, and let
« be the sum of all simple roots of J. Then a € ®; and we can find
B € (A, —II) NI which is connected to a. Thus, a+ § € ®*. It follows that
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Yy(a+ ) = hy(a)+ 6 € @, whence o+ € ®; and « is imaginary. Because
a € &y = Py, Proposition 5 implies that oo € ®yy,. Thus, I NII C II.. This
implies c).

Conversely, assume that a), b) and c¢) hold. By b), we have P¥s C Lya,,,
and the latter is ¢g-stable. Thus, we may assume that A = ITU A,,. Let
G4, be the connected adjoint semisimple group with root system @5 ; then
1, induces an involution of Gz , and we have a 1) -equivariant quotient map
q: G — Gg, . Because v, fixes A,, pointwise, it acts on G, by conjugation
by an element of ¢(7"). Thus, G%" contains ¢(7), and its roots are the 1,-
compact roots of @5 . By a) and c), this set of roots is @1 x . In other
words,

0
G%}n = q(LHCnZn)-

Because ¢ 'q¢(Ly x,) = Lm, it follows that G¥° C Ly, that is, P¥s =
GYs . O

Corollary 3. The parabolic subgroup P is 0-split if and only if the orbit
G°P/P is an open affine subset of G/P. Then this orbit consists of all 0-
split G-conjugates of P.

Proof. Choose B C P such that G’B is open in G’ P. Then, by Proposition
4 (iii), each « € II is either A-fixed or in 6(P™).

If P is #-split, then #(®*T — &) = &~ — &py. Thus, each « € A — 1T is
in §(®~). Now Corollary 1 implies that G?B is open in G. Then G’P/P =~
G°/P? = GY/L? is an open affine subset of G/P.

Conversely, if GP/P is an open affine subset of G/ P, then G’B is open
in G. It follows that all imaginary roots are compact, e.g. by Proposition 5
(i). Applying Proposition 6 with A, = (), we see that P is #-split. Let now
Q be a #-split conjugate of P. Write Q = gPg~!, then G%¢P is open in G,
whence G?gP = G°P and g € GP. Thus, Q is conjugate to P in G?. O

2.4 Examples

1) (see [10] 10.1.) Let G be a connected reductive group, B C G a Borel
subgroup, and T C B a maximal torus. Consider G = G x G with involution
6 defined by 0(g1,92) = (go2,91). Then G? is the diagonal diag(G). The
maximal torus 7"= T x T and the Borel subgroup B = B x B are f#-stable.

The map (g1, g2) — g7 ' g2 induces a bijection GY\G /B — B\G/B. More
generally, let P be a parabolic subgroup of G' containing B; then P = P; X
P, where P; and P, are parabolic subgroups of G containing B, and we
have a bijection G?\G/P — P;\G/P; which is compatible with the partial
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orderings given by inclusion of closures. Thus, our results in this case can be
derived more directly from the Bruhat decomposition.

The root system of (G,T) is the disjoint union of two copies of the root
system ® of (G, T); we shall denote these copies by ® x 0 and 0 x ®. Let N
be the normalizer of T in G; then

V={(g1,9) | 9 > € N} = diag(G)(1 x N).

For g = (g1,92) € V, let w be the image of g, 'g, in W = N/T. Then
Y, acts on G by ,(x1,22) = (nzan,n 'x1n), and on roots by ¢,(a,0) =
(0,w (), ¥y(0, ) = (w(w),0). In particular, there are no 1,-imaginary
roots.

Let IT = (II; x 0) U (0 x IIy) be a subset of the set of simple roots, and
let g € V. By Proposition 4, g € V! if and only if w(II;) and w~!(II;) are
contained in ®~. This amounts to: w is the element of maximal length in its
(W, , Wp, )-double coset. Furthermore, we have Py = P; x Py and

Pﬁpg = {(z1,20) € Py x Py | 21 = nwyn™ '} =~ Py NwPow ™.

And Py is ¢,-split if and only if the parabolic subgroups Py, w(Ps) are oppo-
site. This is also equivalent to: Pff“’ is reductive (this can be seen directly, or
deduced from Proposition 6 together with non-existence of imaginary roots.)

2) (see |RS1] 10.2.) Let G = GL,, with involution # defined by 6(g) =
(g71)%; then GY is the orthogonal group O,. Let B be the Borel subgroup of
G consisting of upper triangular matrices, and let 7" be the maximal torus of
diagonal matrices. Then T is f-stable, and B is 6-split; we have 0(a) = —«
for all o € .

For g € V, we have wz = 1, and the map g — w, induces a bijection
from GP\G/B = G%\V/T onto the set of elements of W of order < 2, see
[10] 10.2. We identify W with the symmetric group S, and ® with the set
of pairs (i,7) of distinct integers between 1 and n; then A consists of the
pairs a; = (5,0 + 1), 1 < i < n—1. We have 9,(%,7) = (wy(j), wy(?)); as a
consequence, the 1,-imaginary roots are the pairs (z, wgy(7)).

We claim that there are no v,-compact roots. To see this, let I' be the
copy of GL, in G associated with the the pair (¢, w,(7)). Then v, stabilizes I',
and acts there by inverse transpose followed with conjugation by a symmetric
monomial matrix. A matrix computation shows that 1 (E;w,@)) = —Euw, )i
where E;; denotes the elementary n x n matrix; this proves the claim. As
a consequence, the imaginary simple roots are the pairs (7,7 + 1) such that
wy (%) = i+ 1; because wg =1, these simple roots are pairwise orthogonal.
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Let II be a subset of A and let ¢ € V. By the claim, ¢ € V' if and only if
wy(7) < wy(i+1 for any (i,i+1) € II. Then it follows easily that II, consists
of those pairs in II that are fixed by w,. In particular, ®p is 14-stable if and
only if w, fixes II pointwise.

For any subset II' of A, the parabolic subgroup Py is 9,-split if and only
if w, stabilizes ®* U @y (because 1, acts on roots by —w,). This amounts
to: wy € Wir. Using these remarks, Proposition 6 simplifies as follows: for
I1 C A and g € VY, the group Pﬁpg is reductive if and only if w, fixes II and
is a product of simple transpositions with disjoint supports.

3) (see [10] 10.5.) Let G = GL, with involution  such that 8(g) = zgz~!
where 2z = diag(1,...,1,—1); then GY = GL,, | x k*. Let B and T be as in
the previous example; then T is f-fixed, and B is -stable. One checks that
a system of representatives of G?\V/T consists of the

Gij - (ela s 7611.) = (ela cee 5 €i—1,6 T €n, g1, ... y€j—1,€n, €5, - . . 7en—1)
(1<i<j<n)
together with the

Gig:(€1,--.,en) = (€1,...,€i_1,€n,€i,€i11,... ,€n_1) (1 <i<n).

Furthermore, for 7 < j, the corresponding involution %y, ; is conjugation by
the permutation matrix associated with the transposition (ij); and )y, ; is
conjugation by diag(1,...,1,—1,1,...,1) where —1 occurs at the i-th place.
As a consequence, for a subset IT of A, we have: g; ; € V! if and only if a;_,
and «; are not in II.

We sketch a geometric interpretation of this result. Consider G/B as the
variety of complete flags

V=WcWc...CV,.i CV,=k")

where each V; is a linear subspace of dimension i. Observe that G? is the
isotropy group in G of the pair (¢, H) where / is the line spanned by e,, and
H is the hyperplane spanned by ey,...,e, 1. For 1 <i < j <n, set

X;,;={VeG/B|tCV;and Vi, C H}.

Then one checks that the X;; are the G’-orbit closures in G/B. More pre-
cisely, denoting by O; ; the G’-orbit of g; ;B in G/B, we have

Xij=0i;=0i;UXit1;UX; 1

where X, , is empty if @ > b. In particular, the closed orbits are the X;; = O, ;
(1 <i<n).

16



The right stabilizer of G%; ;B is the largest parabolic subgroup P™/ =
P D B such that X;; is the pull-back of a subvariety of G/P under the
projection G/B — G/P. As a consequence, we see that P% is generated by
the P,’s with o ¢ {1, 0}

3 Closed orbits

3.1 Parametrization of closed orbits

For simplicity, we assume from now on that G? is connected; by [14], this
holds if G is semisimple and simply connected. In order to describe closed
G’-orbits in G/ P, it will be convenient to choose a standard pair (B, T), that
is, B C G is a f-stable Borel subgroup, and 7' C B is a f#-stable maximal
torus (such pairs exist by [14] Theorem 7.5.) Then T? is a regular subtorus
of G by Lemma 4, and hence a maximal subtorus of G’. Furthermore, B? is
a Borel subgroup of G by Lemma 3.

With notation as in 2.1, the f-action on ® stabilizes ®* and hence A.
Let P = Py be a parabolic subgroup of G' containing B; then §(P) = Py.
Finally, for g € V, recall that w, denotes the image in W of g~'60(g).

Proposition 7. For g € V, the following conditions are equivalent:
(i) G°qP is closed in G.
(ZZ) Wq € WHWQ(H).

In particular, G’ B is closed in G if and only if w, = 1, that is, g~'6(g) €
T (this follows also from Corollary 2.1).

Proof. (i)=-(ii) Observe that G¥s P is closed in G, whence G¥s /P¥s is closed
in G/P. Thus, P%s contains a Borel subgroup B’ of G¥. In turn, B’ is
contained in a Borel subgroup B"” of P. Then B" is 1),-stable by Lemma 3.
Thus, P Nyy(P) O B" is a parabolic subgroup of G. Because P N 1,(P)
contains T, it contains a Borel subgroup xBz~! for some z € W. Then
z € Wy (because Bz ! C P) and z(®T) C 1, (®T U Py) (because zBx ' C
1y(P)). But ¢, = w,0 and &7 is §-stable. Thus,

fw,'z0(®") C &+ U py.

Because 6w, 'zf € W, we must have fw,'zf € Wi, that is, w, 'z € Wy
We conclude that w, € WyWy).
(i1)=-(i) is checked by reversing the previous arguments. O
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To parametrize the closed double cosets, we need more notation. Let
g:N—>N/T=W

be the quotient map; then g(N?) is a subgroup of W?. Because T? is a regular
subtorus of T, we have

Ngo(T%) = Ngo (T) = N°.

It follows that g(N?) is isomorphic to the Weyl group W (G?, T?).
Finally, let
Q:PHO(P) :PHOQ(H)

be the largest #-stable parabolic subgroup contained in P. Then 6 acts on

G/Q.

Proposition 8. (i) Any closed (GY, P)-double coset in G meets ¢~ (W?),
along a unique (N°, q=1(W))-double coset. This defines a bijection from the
set of closed G®-orbits in G/P, onto q(N°)\W?/W§.

(ii) The union of all closed G®-orbits in G/Q is the subset of all 0-fized points;
under the projection G/Q — G/P, this subset is mapped isomorphically to
the union of all closed G?-orbits in G/P.

Proof. Let G°gP C G be a closed double coset. As it contains a closed
(G?, B)-double coset, we may assume that G?¢gB is closed in G, too. Then
the G%-orbit G’gB/B is closed in G/B; thus, it contains a fixed point of
BY. So we may assume further that B C gBg~'. Then gBg ! is f-stable
by Lemma 3. Furthermore, gBg~' contains the regular torus T, whence it
contains 7. It follows that ¢ € NB; we may assume further that g € N.
Now, because gBg~! is f-stable, we have 0(g) € gB. Thus, g € ¢~ }{(W?).
Conversely, if g € ¢71(W?) then GPgP is closed in G by Proposition 7.

Let now ¢' € G’gP N ¢ ' (W?. Then ¢’ normalizes 7% and hence ¢’ P/P
is a T%-fixed point in G?gP/P. The latter is a complete homogeneous space
under GY. Thus, ¢’ € Ngo(T?)gP = N%gP. Because g and ¢’ are in ¢~1(W?),
it follows that ¢’ is in N%g(P N N?) = N%gq~1(W). This proves (i).

For the first assertion of (ii), we may assume that P is f-stable. If g €
g 1 (W?) then g~'0(g) € T whence §(gP) = gP, so that any closed G’-orbit
in G/P consists of f-fixed points. Conversely, let g € G such that gP € G/P
is #-fixed; we may assume that ¢ € V. Then gPg~! is #-stable, whence
g~'0(g) € P. But g7'0(g) € N so that g~'0(g) € NN L, and w, € Wy. By
Proposition 7, G?gP is closed in G.

For the second assertion of (ii), observe that

Wi = (Wn N 0(Wn))’ = Wrama(n)-
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Thus, the map G/Q — G/P induces a bijection on the subsets of closed
orbits. Furthermore, for g € ¢~'(W?), we have:

G’9Q/Q ~G°/(9Qg™")’ =G’/(gPg ' NB(gPg™"))’
=G’/(gPg™")’ =~ G’gP/P

because 0(gPg™') = gf(P)g~'. So the map G%gQ/Q — G%gP/P is an
isomorphism. O

3.2 Standard representatives

We begin by constructing a set of representatives for closed (G?, P)-double
cosets in G or, equivalently, for (¢(N?), Wf)-double cosets in W?. An element,
w € W will be called standard if (wBw™!)? = BY.

Proposition 9. For any w € WY, the double coset q(N®)wW} contains a
unique standard uw € W9 such that u(1l) C ®7.

Proof. By Proposition 7, G%wB is closed in G. Thus, G®wB/B is a closed G*-
orbit in G/B, with wB/B as a T?-fixed point. It follows that there exists z €
N? such that zwB/B is fixed by BY. In other words, B? = (zwBw'z71)".
Replacing w by ¢(z)w, we may assume that w is standard. Then there exist
unique u, v in W such that: u(I) C ®*, v € Wy and w = uv. Because 6
stabilizes IT and ®7, it follows that u and v are in W?.

We claim that (wUw 1)? = (uUu !)?; then u will be a standard represen-
tative of w. For this, observe that (wUpw ')’ C U. But wUqw ' C uLyu !,
and uLpu ' NU = uUpu~! because u(Il) C &*+. Thus,

(wUpw™)? C (ulUgu™t)?.

Furthermore,
wRy(Pn)w ' = uR, (Py)u "

because v € Wy. As wUw™! is the semi-direct product of the #-stable normal
subgroup wR,(Py)w™" with the f-stable subgroup wUpw™!, it follows that

(wUw™? C (uUu™)°.

But (wUw™)? = U? is a maximal unipotent subgroup of G, which implies
our claim.

Let u' be another standard representative of w such that u'(II) C ®*.
Then u'B/B is a B?-fixed point in G4 Py/B. Under the map G/B — G/ Px,
the latter is mapped to G’uPy/ Py, a complete G%-orbit with a unique B°-
fixed point uPy/Py. Thus, v'B/B is in the fiber uPy/B, that is, v’ € uPy.
Because u and v’ are in W, we have u' € uWy. It follows that v’ = u, as
both u(IT) and u/'(IT) are contained in ®. O

19



We now give two characterizations of standard elements. Asin 2.2, denote
by ®. (resp. ®¢) the set of all compact (resp. complex) roots for #; there
are no real roots because ®* is f-stable. Let A; C A be the subset of all
imaginary simple roots; then 6 acts trivially on ®x,.

Proposition 10. For w € W?, the following conditions are equivalent:
(i) w is standard.

(i) ®F U DL C w(dT).

(iii) w € Wa, and @5 NP, C w(P} ).

Proof. (i)<(ii) As in the proof of Proposition 7, observe that w is standard
if and only if U? C wUw™!, that is, u’ C wuw~'. Furthermore, a basis of
u? consists of the X, (o € ®F) together with the X, + 0(X,) (o € ®f).
This basis is contained in wuw™" if and only if ®F U®} C w(®™), because 0
stabilizes ®} and commutes with w.

(ii)=>(iii) We argue by induction on the length [(w). The case where
w = 1 is trivial. Otherwise, we can find @ € A and 7 € W such that
w = $47 and l(w) = I(7) + 1 where [ is the length function on W. Then
w™H(a) € ®7; thus, o ¢ ®F U DL, that is, o is non-compact imaginary. In
particular, o € A;; as a consequence, 7 € W?. Furthermore,

&+ N w(@) = (8 N 7(31)) — {a).

Thus, &} U®/ is contained in 7(®T). By the induction hypothesis, 7 € Wa,
whence w € Wy, as well. It follows that

@3, Cw(@F) N Pa, = w(PF).

(ili)=>(ii) If w € W, then w stabilizes @+ — ®,,. The latter contains all
positive complex roots. O

Examples. We determine the standard elements in the cases considered in
Section 2.4.

1) The pair (B,T) is standard. As there are no imaginary roots, the
identity is the unique standard element. This agrees with the fact that the
unique closed orbit of diag(G) in G/P; x G/Pj is the orbit of the base point,
isomorphic to G/P; N Ps.

2)’ We modify slightly Example 2, because the pair (B, T) is not standard
there, and G? is not always connected. As in [10] 10.3, consider G = SL,
with involution 6 given by 6(g) = Int(dp)(g™")?, where dy € GL,, maps each
e; t0 entr1—i- Then GY is the special orthogonal group for the quadratic form
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q(z1, ... ,xp) = Y iy Ti%pp1—. The pair (B,T) is standard, and 6 acts
on roots by 0(c;) = an_;. If n is odd, then the set A; is empty, and the
unique standard element is the identity. If n = 2n’ is even, then A; consists
of the non-compact root a,y; thus, the standard elements are 1 and the
transposition (n',n' +1). This agrees with the fact that SOy, has two closed
orbits in the Grassmanian of n/-dimensional subspaces of k2", associated
with two types of null subspaces.

3) The pair (B, T) is standard, and all roots are imaginary; the compact
roots are the pairs (7,7) with 1 <4,j < n —2. Thus, w € S, is standard if
and only if w™!(1) < w™'(2) < ... < w™'(n — 1), that is, w is the image in
Sy, of g;; for some 7, 1 <7 < n; denote this image by w;.

If IT is the complement of {a; 1, ;} in A, then the standard elements w
such that w(Il) C ®* are 1, w;_; and w;. They represent the three closed
GP-orbits in G/Pq = G/P%, consisting of all pairs (V; 1 C V;) such that
V; C H (resp. £ C Vi_1; Vioiy C Hand £ C V)

Let m;; : G/B — G/P% be the projection. Geometrically, 7; ; maps each
complete flag V to (Vi—1 C Vj). Thus, the orbit closure X; ; is the pull-back
via ;. ; of the closed orbit Gw;P"//P%. The latter identifies, via the map
(Vi1 € V;) — (Viei C V; N H), to the variety of partial flags of dimensions
t—1,7—1in H. And each fiber of

T Xz',j — Gg’iji’j/Pi’j

is isomorphic to the complete flag variety for GL;_1 x GL;_;;1 x GL,_;, a
Levi subgroup of P%.
Thus, each orbit closure of GL,_; in GL, /B is an “induced flag variety”.

3.3 0-stable parabolic subgroups

As an application of the results in 3.1 and 3.2, we describe the G’-conjugacy
classes of f-stable parabolic subgroups, and their relation to parabolic sub-
groups of G?.

Theorem 2. Let () C G be a 0-stable parabolic subgroup; let I1 be the subset
of A such that Q is G-conjugate to Py. Then II is 0-stable, and Q is G-
conjugate to wPqw™! for a unique standard w € W such that w(Il) C ®*.

As a consequence, Q° C G° is a parabolic subgroup, G°-conjugate to
(wPrw™")?. Conversely, any parabolic subgroup of G° is G°-conjugate to
(wPrw™)? for some T and w as above.

Proof. Let g € G such that Q = gPrg'. Moving g in its (G?, B)-double
coset, we may assume that g € V. As @ is -stable, we have (w,0)(Pn) = Pr.
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In terms of roots, this means that (wy6)(®* U @) = &+ U ®py. Thus,
Owyh(21) C O U Dyqyy.

Because fw,6 € W, it follows that fw,0 € Wyry and that w, € Wy, whence
0(Pu) = w, ' (Pn) = Pu.

Thus, II is #-stable.

Now the #-stable G-conjugates of Py are the f-fixed points in G/Py. By
Propositions 8 and 9, there exists h € G? and a unique standard w € W*?
such that w(IT) C ®* and that Q = hwPrw~'h~'. Then

Q° = h(wPqw 1)?h' D hB?h!

so that QY is a parabolic subgroup of G? (this follows also from Lemma 3).
Conversely, let I' C GY be a parabolic subgroup. For a multiplicative
one-parameter subgroup A : G,, — G, set

G\ ={ge G| li_r)%)\(t)g/\(t_l) exists}.

Then G()) is a parabolic subgroup of G; moreover, all parabolic subgroups of
(G are obtained in this way. Applying this to the connected reductive group
G®, we obtain \ : G,, — G’ such that I' = G%()\). Then Q := G()) is a
§-stable parabolic subgroup of G, and Q% =T. O

Remark. Given a parabolic subgroup I of G? containing BY, there may exist
several f-stable parabolic subgroups @ such that Q° =T (e.g. if ' = BY and
theere are several standard elements). And there may exist no parabolic
subgroup P of G containing B such that P? =T.

Consider for example G = Sp,, the group which preserves the symplectic
form (, ) on k* such that (e1,es) = (e2,e3) =1 and (e;,¢;) =0 if i + j # 4,
Let B (resp. T) be the standard Borel subgroup (resp. maximal torus) of G.
Let # be the conjugation by diag(1,—1,—1,1), then G = SL, x SL, contains
T, and the pair (B, T) is standard. Let a, 8 be the simple roots of (G, T)
where « is short; then the roots of (GY,T) are +3, +(2a:+ 3). Let T be the
parabolic subgroup of G? containing T', with roots 3 and +(2a + 3); then T’
contains B? but is not contained in a proper parabolic subgroup P D B.
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4 Orbit closures and restriction of representa-
tions

4.1 Induced flag varieties

From now on, we assume that the characteristic of the ground field £ is
zero. As in Section 3, we also assume that G? is connected, and we choose a
standard pair (B,T). Let P be a 6-stable parabolic subgroup containing B;
let

m:G/B — G/P
be the projection. The pull-back under 7 of a closed G’-orbit will be called
an induced flag variety.

Recall that any closed G?-orbit in G/P can be written as G?wP/P for a
unique standard w € W such that w(IT) C ®*. Because w € W?, the group

Q :=wPw™*
is a f-stable parabolic subgroup of GG, with
M :=wLw™"

as a f-stable Levi subgroup containing 7. Furthermore, Q° contains B’
(because w is standard), and BN M = w(B N L)w™! (because w(Il) C V).
It follows that (B N M)? is a Borel subgroup of M?.
Set
X =17 4GwP/P) = G’wP/B.

Then the image of X under 7 is the homogeneous space G?wP/P ~ G°/Q°,
and the fiber 7=!(wP/P) is isomorphic to wP/B = wL/B N L. This iso-
morphism is Q-equivariant, where @) acts on wL/B N L through the quotient
map @ — Q/R,(Q) ~ M. It follows that

X ~G% xgo (WL/BNL)~G® xg (M/BnN M)

where QY acts on the flag variety M/B N M through M?. This explains the
terminology of “induced flag variety”.

Let A be a character of T'; then it extends uniquely to a character of B,
also denoted by A. Let £, be the associated line bundle on G/B. Then

H°(G/B, L) = Ind$(\)

(the induced module from B to G of the one-dimensional B-module with
weight A). This is a simple G-module with lowest weight —\, if A is dominant;
otherwise, H*(G/B, L)) = 0.
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Theorem 3. Let X be as above and let A\ be a dominant character of T
(i) The restriction map

resx : H'(G/B, L)) — H°(X, L))

is surjective, and H'(X, L) =0 for all i > 1.
(ii) We have an isomorphism of G®-modules

H°(X, L) 2= IndSo H(M/B N\ M, Lyy(ny)

where Q° acts on H'(M/B N M, Lwn)) via the quotient map Q' — M? .
(iii) The M°-module H*(M/B N M, L) is a direct sum of simple modules
with GY-antidominant lowest weights.

(iv) The kernel of resx is a direct sum of simple G®-modules with lowest
weights of the form p + v where p is the lowest weight of a simple M-
submodule of H'(M/B N M, L)), and v is the restriction to T® of a non-
trivial sum of non-compact roots in w(®T — ).

Proof. Under the isomorphism X ~ G’ x s (M/B N M), the restriction of
Ly to X identifies with G Xgo Lun)- This implies (ii).
Composing resx with the restriction map

't H(X, £y) = H(wP/B, L)) = H*(M/B N M, L),
we obtain the restriction map
" HY(G/B, L)) — HY(M/B N M, L))

Observe that H°(M /BN M, L) is a simple M-module with lowest weight
—w(A). Furthermore, r” is non-zero (because L, is generated by its global
sections) whence r” is surjective. Thus, the same holds for 7. Decompose
the M’-module H°(M/BNM, L)) into a direct sum of simple submodules;
each of them is of the form

[
Ind{h a0 (w) = Ind %, (w).

By (ii), the G%-module H°(X, L)) decomposes into the direct sum of the
corresponding induced modules

InngIndgz (w) = Indgz (w).

Because r' is surjective, all these induced modules are non-zero. Thus, their
lowest weight vectors y = —w are G’-antidominant, which proves (iii). Fur-
thermore, by surjectivity of r”, the image of resx meets all these induced
modules. Because the latter are simple, resx is surjective.
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To prove vanishing of H*(X, L)) for 7 > 1, observe that Rim, Ly = 0 for
all 5 > 1, because A is dominant. Thus, we obtain isomorphisms

HY(X, L)) ~ H(G°wP/P,m,Ly) = H(G?/Q° , n.L)).

The restriction of m,L, to the G%-orbit Ga/Qa is the homogeneous vec-
tor bundle associated with the @%-module H(M/B N M, L,)). By (iii),
this module is semisimple and its lowest weights are G’-antidominant. So
H(G%/Q° m,Ly) = 0 for i > 1, by Bott’s theorem.

Let Z C Og/p be the ideal sheaf of X in G/B, then the kernel of resy is
H°(G/B,I® L)). To study the lowest weight vectors of this G’-module, we
embed it into a larger module, as follows. Let P~ be the parabolic subgroup
of G such that P~ NP = L; set Q= := wP~w™'. Then G/B contains

Q" wP/B=wP~P/B
as an open affine subset, stable under ()~. Thus, the restriction map
H(G/B,I® L)) = H(Q wP/B,IQ L))

is injective, and equivariant for the action of (Q)?. The latter is a parabolic
subgroup of G?, with unipotent radical R,(Q )’ and Levi subgroup M’
(because @~ is a f-stable parabolic subgroup of G). Furthermore, (Q~)?
meets Q7 along MY, their common Levi subgroup containing 7. Thus, Q°
and (Q™)? are opposite parabolic subgroups of GY.

Let B~ be the Borel subgroup of G such that B~ N B =T. Then B~ is
f-stable, and (B~)? is the Borel subgroup of GY such that (B~) N BY = T?,
Because B? is contained in @Y, it follows that (B~)? is contained in (Q~)°.
Thus, (B~)? is the semidirect product of R,(Q~)? with

(B-n M) = (B nwLw™)? = (w(B~ N L)w™")’

(indeed, B- NwLw ! = w(B~ N L)w ! because w(Il) C ®7).
By the Bruhat decomposition, the product map

R,(Q ) xwP/B — @ wP/B

is an isomorphism. Combining this with Lemma 1 (i), we obtain a (Q™)%-

equivariant isomorphism
R,(Q7) x1(R,(Q7)) xwL/BNL ~ Q wP/B
which restricts to an equivariant isomorphism

R,(Q7) x {1} xwL/BNL ~ (G°wPNQ wP)/B.
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Let po : Q@ wP/B — 7(R,(Q7)) and p3 : Q wP/B — wL/B N L be the
corresponding projection maps. Let I be the ideal of k[R,(Q~)] (the algebra
of regular functions on R,(Q~)) consisting of functions that vanish at 1.
Then the isomorphism above identifies Z|g-,p/p with p;I, and L)|g-wr/s
with p3Ly. Thus, we obtain a (Q~)’-equivariant isomorphism

H°(Q wP/B,I® L)) ~k[R,(Q )" ®I® H(wL/BNL,L)).

It identifies the subset of (B~)%eigenvectors in the left hand side (that is, the
subset of lowest weight vectors), with the subset of (B~ N M)’-eigenvectors
in

I® H (wL/BNL,Ly)=1® H(M/BNM,Lyu).
The latter being the tensor product of two M?-modules, each of its lowest
weights is the sum of a weight of 7% in Z with a lowest weight of H°(M /BN
M, L))

To complete the proof, we check that the weights of 7% in T are non-
trivial sums of non-compact roots in w(®* — ®y;). Indeed, the T-variety
R,(Q™) is isomorphic to a module with set of weights w(®~ — ®p). Thus,
the T?-variety 7(R,(Q™)) is isomorphic to a module with weights a|zs where
« is a non-compact element of w(®~ — ®p). Furthermore, the weights of 7%
in I are non-trivial sums of opposites of weights in 7(R,(Q7))- O

For A as above, let V) be the dual of the G-module H°(G/B, L) and let
Cx C V) be the G-orbit closure of a highest weight vector. If X is regular,
then C, is the affine cone over G/B for its projective embedding associated
with L£y; this cone is smooth outside the origin.

Recall that C, is normal, with a rational singularity at the origin (see |9]
for a proof in arbitrary characterlstlcs) We shall see that the same holds for
the affine cone X, C Cy over X C G/ B; because X is smooth, X, is smooth
outside the origin.

Corollary 4. Let X be as above and let A be a regular dominant weight.
Then X is normal, with a rational singularity at the origin.

Proof. Let

o0

R= @ H(X, L§™) = @) HO(X, L.

n=0
Because X is smooth, the algebra R is normal. The algebra S of regular
functions over X, is the subalgebra of R generated by H°(X, L,). But

resx : HO(G/B,EH)\) — HO(X, L))
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is surjective, and the graded algebra

é H°(G/B, L)

n=0

is generated by its elements of degree 1. It follows that S = R, that is, Xy
is normal.

Let p : Z — X, be the blow-up of the origin. Then Z is the total space
of the line bundle over X, dual of the restriction of L. It follows that Z is
smooth, and that

HZ(Z, Oz) = é Hz(Xa »Cn)\)

n=0
for all i > 0. By Theorem 3, we thus have H'(Z,0z) = 0 for i > 1. This
means that X, has rational singularities. O

4.2 Restriction of representations

We begin by applying Theorem 3 to the decomposition of simple G-modules
into G?-modules.

The map T — T? : t — t0(t) is surjective, and its restriction to 77 is the
map ¢ — t2. Using this map, we shall identify the character group of T with
the set of all x + 6(x) where x is a character of T

Corollary 5. Let w be a G?-dominant character of T? and let )\ be a domi-
nant character of T. Then we have for multiplicities:

[Ind§(A) : IndGe ()] > [Indyhy, (w(N) : IndP e ()]

with equality if A+ 0()\) — 2w~ (w) is a sum of positive roots in ®y. Further-
more, if Indgz (w) occurs in the G?-module Ind%()), then A+ 0()\) — 2w ' (w)
s a sum of positive roots.

Proof. The inequality follows from surjectivity of resx and the structure of
H°(X, L)) (Theorem 3 (i) and (ii).)

Assume moreover that A+6(\)—2w ! (w) is a sum of positive roots in ®y;.
To prove equality, it is enough to check that Indgz (w) does not occur in the

kernel of resy. Otherwise, we can write w = —u— v where Indgz (—pu) occurs
in HY(M/B N M, L), and v is a sum of roots in w(®* — ®y;) (Theorem
3 (iv).) In particular, u is a weight of 7% in H%(M/B N M, Ly y))- But each
weight of 7" in that module can be written as —w()\) + x where x is a sum
of elements of w(®;;). It follows that

w(A) + 0(w(A)) +2p =wA+60(N)) + 24
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is a sum of elements of w(®;}). Thus,
A+0A) — 2wt (w) = A+ 0(A) + 2w () + 2w (V)

is a sum of positive roots, not all in ®y;, a contradiction.
The proof of the latter assertion is similar. O

Define a polytope C(G,0,)\) as the convex hull of the set of all G’-
dominant weights w such that Indgz (w) occurs in the G?-module Ind$ ().
Applying Corollary 5 with IT = ), we see that w()) is a vertex of C(G, 0, \)
and that the corresponding multiplicity is 1. More generally, for a subset
II C A such that w(IT) C ®*, we see that C(wLpw ', 0,w()\)) is a face of
C(G,0,\) and that the multiplicity functions agree on that face. This will
be developed elsewhere, in relation to “moment polytopes” [3].

For a reductive subgroup K of G, the pair (G, K) is multiplicity-free if
the multiplicity of any simple K-module in any simple G-module is at most
1. Equivalently, a Borel subgroup By C K has a dense orbit in G/B.

By [7] or [4], any multiplicity-free pair with G semisimple and simply
connected is a product of (the simply connected cover of) one of the following
indecomposable pairs:

(SLu, GLa-1), (SO, SO0,_1), (SOs, Spin,).

In particular, multiplicity-free pairs are symmetric; their associated polytopes
are described in [12]. We check that the corresponding orbit closures in flag
varieties have a very nice structure.

Proposition 11. If (G, G?) is multiplicity-free, then any G°-orbit closure
X C G/B is an induced flag variety; writing X = G xgo (M/B N M), the
pair (M, M®) is multiplicity-free as well. In particular, all G®-orbit closures
in G/B are smooth.

Proof. We may assume that the pair (G, G?) is indecomposable. In the case
of (SL,, GL,, 1), our assertion has been checked in Example 3 in 3.2. Consider
the case of (SO,,SO,_1) where n = 2n’ is even. Then G/B is the set of all
flags

V=WcWVicC--CVy)

of null subspaces of k%" of dimensions 0,1,...,n' — 1. Let H C k?" be the
unique hyperplane stabilized by SO,,,_1. One checks that the SOg,_1- orbit
closures of SOq,/_1 in SOy, /B are the

Xi :{K“/Z,1CH}
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for 1 < i < n'. In particular, X, is the closed orbit, isomorphic to the flag
variety of SOq,_1. More generally, one checks that the map

Wilzl—)(%c‘/lC"‘Cv;;l)

makes X; an induced flag variety with M/M?% = SO _2;/SOgpn—2i—1.
The case of (SO,,, SO,_1) where n = 2n’ +1 is odd, is similar: the variety
G/B is now the set of all flags

V=WcWhc--CVy)

of null subspaces of dimensions 0,1,...,n'. The orbit closures of SO, in
SOy, 41/ B are the varieties Xy, ... , X,y_1 defined as above, plus two varieties
X1, X2 defined by: V,y C H (the unique hyperplane of k%! stabilized by

SOg,), and V, belongs to a fixed orbit under SOy, of n'-dimensional null
subspaces of £ (there are two such orbits). Then X!, and X2, are the closed
orbits, isomorphic to the flag variety of SO, ; the other X;’s are induced flag
varieties as above.

Finally, the analysis of (SOs, Spin;) follows from that of (SOg, SO7) by

applying a triality automorphism. O

4.3 An example where resx is not surjective

As in Example 2 in 3.2, consider G = SL,, with involution # defined by
6(g9) = (g71)t. The standard Borel subgroup B of G is the isotropy group of
the flag

E'Cck*C---Ck"

where each k' is the span of the i first basis vectors of k. And G/B is the
variety of complete flags

V=WVCViC--CVpy CVp=k")

where each V; is a linear subspace of dimension i.

For 1 < i < n—1,let X; C G/B be the subset of flags V such that
restriction of ¢ to V; is degenerate (where g denotes the standard quadratic
form on £".) Then the pull-back of X; in G is the subset of all g such that
restriction of g7lq to k' is degenerate, that is, the discriminant of g='q;:
is zero. This discriminant is invariant for the action of SO, by left multi-
plication, and is an eigenvector of weight 27; for the action of B by right
multiplication; here 7; denotes the highest weight of the simple GL,-module
A'k™. Thus, X; is the divisor of a SO,-invariant section of Ly;,. Observe
that each Xj is irreducible if n > 3 (which we will assume from now on.)
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Let A be a weight, then we have an exact sequence of sheaves on G/B:
0= La_on, = Ly — L ®(9G/B Ox, — 0.

If moreover A is dominant, then H'(G/B, L)) = 0 and we obtain an exact
sequence

H°(G/B, L) — HY(X:, L) — HY(G/B, Lo_or,) — 0.

Now choose

/\:z.i?jﬂ'j

J#i
where the z; are integers such that z; > 0 if [j — ¢ > 2, and z; > 1
if |j —i] = 1. Let aq,...,a,_1 be the simple roots and si,...,s,_1 the

corresponding simple reflections; let p be the half sum of positive roots.
Then
siA=2m+p)—p=A=-2m+a; = A — Z M,
Jli—il=1
is dominant, and hence H'(G/B, L_a,) is non-zero by Bott’s theorem. In
other words, the restriction map

resx, : H'(G/B, L)) — H°(X;, L))

is not surjective.

Let P C G be the stabilizer of the line k'. Then G/P is the projective
space of lines in k™; it contains a unique closed SO, -orbit Q, the quadric
(¢ = 0). Let 7 : G/B — G/P be the projection, then X; = 771(Q); in
particular, X; is smooth. Thus, Theorem 3 does not extend to all parabolic
subgroups (here P is not conjugate to a #-stable parabolic subgroup !)

Observe finally that resy, is surjective for all X; as above, and all regular
dominant weights A. In fact, we do not know any example of a symmetric
subgroup G C G, a G%-orbit closure X C G/B and a regular dominant
weight \ such that resx : H*(G/B, L)) — H°(X, L)) fails to be surjective.
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