$L^2(\mathcal{M})$ SPACE

by Gilbert MURAZ, Pawel SZEPTYCKI

Résumé. — Comme l'espace de fonctions sur un groupe localement compact et abélien $\ell^2(L^1)$, l'espace $\ell^2(\mathcal{M})$ est le plus grand espace solide de mesures admettant des mesures pour transformées de Fourier ; en fait pour qu'une mesure appartienne à $\ell^2(\mathcal{M})$, il suffit que pour chaque borélien la transformée de Fourier de la mesure induite soit une mesure.

ABSTRACT. — Similarly to the space $\ell^2(L^1)$ on a locally compact abelian group, the space $\ell^2(\mathcal{M})$ is the largest solid space of measures whose Fourier transforms are measures; in fact, in order for a measure to belong to $\ell^2(\mathcal{M})$ it suffices that the Fourier transforms of its restrictions to all Borel sets be measures.

1. S and S' on G.

A locally compact abelian group *G* can be represented as $G = G' \times \mathbb{R}^n$ where *G'* is locally compact and contains an open compact subgroup *H*-say. Then G'/H is discrete. Note that then $\hat{G} = \hat{G}' \times \mathbb{R}^n$ and that \hat{G}' has the same property as *G'*, *i.e.* contains an open compact subgroup.

Define the space $\mathcal{S}(G)$ of test functions as follows

$$\mathcal{S}(G) = L^2(G'; \mathcal{S}(\mathbb{R}^n))$$
,

where $S(\mathbb{R}^n)$ is the usual space of C^{∞} functions on \mathbb{R}^n which are of rapid decrease together with all derivatives. The topology on $S(\mathbb{R}^n)$ is defined by the sequence of norms:

$$\|arphi\|_{K_\ell} = \sup_x (1+|x|^k) \sum_{|lpha| \leq \ell} |D^lpha arphi(x)|$$

Accordingly, the topology on $\mathcal{S}(G)$ is defined by the sequence of norms

$$\|\Phi\|_{K_{\ell}} = \left(\int_{G'} \|\Phi(g)\|_{K_{\ell}}^2 dg\right)^{1/2}.$$

The space $\mathcal{S}(\widehat{G})$ is defined similarly by symmetry.

The usefulness of these spaces manifests itself in the following observation concerning the Fourier transform $\hat{}$:

$$\mathcal{S}(G) \xrightarrow{\sim} \mathcal{S}(\widehat{G})$$

is a topological isomorphism.

Mots-clés : Fourier transform, maximal domain, solid function spaces. Classification math. : 42A38, 43A30, 43A70.

¹

The Fourier transform on the topological dual S' of S can be defined by duality

$$\langle \widehat{T}, \pmb{arphi}
angle = \langle T, \widehat{\pmb{arphi}}
angle, \; \forall \pmb{arphi} \in \mathcal{S}$$
 .

Again $\mathcal{S}'(G) \longrightarrow \mathcal{S}'(\widehat{G})$ is a topological isomorphism. A less obnoxious (but more restrictive) way of extending $\widehat{}$ is to use instead of \mathcal{S} the space $\mathcal{K} = C_K(G)$ or the space $\ell^1(A)$. The definition $\langle \widehat{T}, \varphi \rangle = \langle T, \widehat{\varphi} \rangle$ for every φ with $\widehat{\varphi} \in \mathcal{K}$, *i.e.* for every $\varphi \in \widehat{\mathcal{K}}$ suffers of a lack of symmetry – this is not the case when $\ell^1(A)$ is used as a test space. \mathcal{S}' definitions appears to be more general than either of the two possibilities mentioned above, $\mathcal{S}' \cap \mathcal{K}$ being dense in both \mathcal{S}' and \mathcal{K} and $\mathcal{S}' \cap \ell^1(A)$ being also dense in both \mathcal{S}' and $\ell^1(A)$.

2. Definition of $\ell^p(L^q), \ell^1_p(\mathcal{M}), \ell^p(L^q), (1 \le p, q \le +\infty).$

We define $\ell^p(\mathcal{M})$ as the space of all Borel measures (or classes of functions) μ (or f) such that the function $t \to |\mu|(t+E) \in L^p(G)$, $(t \to \left(\int_{t+E} |f(s)|^q ds\right)^{1/q} \in L^p)$ with

(A)
$$\|\mu\|_{\ell^p(\mathcal{M})} = \|\,|\mu|(\cdot + E)\|_{L^p(G)}$$

(A')
$$||f||_{\ell^p(L^q)} = |||f||_{L^q(t+E)}||_{L^p(G)}$$

where *E* is a relatively compact neighborhood of the neutral element 0 in *G*. Different choices of *E* give rise to equivalent norms.

Recall that there are other equivalent ways of defining $\ell^2(\mathcal{M})$, $(\ell^p(L^q))$ notably:

(B)
$$\|\mu\|_{\ell^{p}(\mathcal{M})} \sim \sup\left\{\left\|\left(|\mu|(g+E)\right)\right\|_{\ell^{p}(\mathcal{G})}; \mathcal{P}\right\},\$$

$$(B') ||f||\ell^p(L^q) \simeq \sup\left\{ \left\| ||f||_{L^q(g+E)} \right\|_{\ell^p(\mathcal{G})}; \mathcal{P} \right\},$$

where $\mathcal{P} = (g + E)_{g \in \mathcal{G}}$ is a maximal paving of *G* by disjoint translates of *E* (here we need to assume that *E* is symmetric. "Maximal" means that \mathcal{P} cannot be enlarged to a paving of *G* by translates of *E*).

(C)
$$\|\mu\|_{\ell^p(\mathcal{M})} = \left\| \left(\|\chi_{\alpha}\mu\|_{\mathcal{M}_b} \right) \right\|_{\ell^p}$$

$$(C') ||f||_{\ell^p(L^q)} = || ||\chi_{\alpha}f||_{L^q}||_{\ell^p}$$

where χ_{α} is a partition of unity of the form $\chi_{\alpha}(x) = \chi(x + g_{\alpha})$, with $\chi \in \mathcal{K}$.

The least esthetically pleasing is the definition using the structural theorem and the definition of $\ell^p(M)$ on \mathbb{R}^n .

All properties of this space are developed in [BD1] and [BD3].

3. The maximality property of $L^2(\mathcal{M})$.

Let $\mu \in \mathcal{M} \cap \mathcal{S}'$. Denote by $L_{|\mu|}^{\infty 1}$ the closure of $L_{|\mu|}^1 \cap L_{|\mu|}^\infty$ in $L_{|\mu|}^\infty$. The following statements are equivalent:

- a) $\mu \in \ell^2(\mathcal{M})$,
- b) $(f d\mu)^{\wedge} \in \mathcal{M}, \forall f \in L^{\infty 1}_{|\mu|},$
- c) $(f d\mu)^{\wedge} \in \mathcal{M}, \forall f \in C_0(G),$
- d) $(\chi_E d\mu)^{\wedge} \in \mathcal{M}, \forall E \in \mathcal{B}(G).$

In the above statement $C_0(G)$ is the space of continuous functions vanishing at ∞ (the closure of \mathcal{K} in L^{∞}) and $\mathcal{B}(G)$ is the algebra of Borel subsets of G.

We precede the proof with a number of remarks.

1. The implication $c) \Rightarrow a$ includes the Bertrandias' version of Littlewood-Edwards' theorem (1984), also Demailly (1984) [B1], [De].

2. b) \Rightarrow a) includes the result of Dupuis (1982) [D] (see also [BD2], [S3] and [S4]).

3. *a*) implies the condition

b') $(f d\mu)^{\wedge} \in \ell^{\infty}(L^2) \subset \mathcal{M}$ for all $f \in L^{\infty}_{|\mu|}$

(see below) which a priori is stronger than b).

4. One could also consider the condition $(f d\mu)^{\wedge} \in \mathcal{M}$ for all unimodular f. If only real f - s are allowed then the condition is equivalent to c). If all complex f - s are allowed, then the condition is equivalent to b'

4. The local property of $(\widehat{\ell^2(\mathcal{M})})$.

We propose this generalisation of a result of J. J. Fournier [F]. Let $\sigma \in (S')^+$, ($\sigma \in M^+ \cap S$); the following statements are equivalent:

- *a*) there exists a neighborhood *V* of $0 \in \Gamma$ such that $\hat{\sigma}_{|V} \in L^2(V)$;
- b) $\widehat{\sigma} \in \ell^{\infty}(L^2);$
- c) $\sigma \in \ell^2(\mathcal{M}).$

A nonnegative distribution, by Schwartz is a nonnegative measure. By the fact $\widehat{\ell^2(\mathcal{M})} \subset \ell^{\infty}(L^2)$ it is sufficient to proof $a \Rightarrow c$). Let φ a test function with support in *V*, such that $\widehat{\varphi} > 0$. The condition *a*) implies $\varphi \cdot \widehat{\sigma} \in L^2$, *i.e.* $(\varphi \cdot \widehat{\sigma})^{\wedge} = \widehat{\varphi} * \sigma \ge 0$; the continuity of $\widehat{\varphi}$ assume the existence of an open set \mathcal{O} and a scalar $\lambda > 0$ such that $\lambda(\widehat{\varphi} * \sigma) \ge \chi_{\sigma} * \sigma$ *i.e.* $\sigma \in \ell^2(\mathcal{M})$.

For the space $\widehat{\ell^2(\mathcal{M})}$, $1 \le p \le +\infty$, look the Bertrandias' result [1984] [B1].

5. Integral operators.

We recall a few facts about domains of integral operators which will be used in the proof of the statement in **3** (see [S1], [S2], [S3]).

We consider two measure spaces $(T, d\lambda)$ an $(S, d\nu)$ and denote by $L^0(T)$ (or respectively $L^0(S)$) the space of measurable, finite a.e. complex valued functions, equipped with the topology of convergence in measure on all sets of finite measure. An integral operator from $L^0(S)$ to $L^0(T)$ is given by the formula

$$Kf(t) = \int_{s} K(t,s)f(x) \, ds, \ f \in D_{K},$$

where $K \in L^0(T \times S)$ and D_K -the proper domain of K consists of all functions $f \in L^0(S)$ for which the integral in question exists as a Lebesgue integral for almost all $t \in T$.

Besides the proper domain, we associate with *K* in a canonical way its extended (or maximal) domain \widetilde{D}_K . It is a solid complete topological vector subspace of $L^0(S)$ with the following properties:

i) $D_K \subset \widetilde{D}_K$ with dense inclusion;

ii) $K : D_K \subset \widetilde{D}_K \to L^0$ is continuous and thus can be extended by continuity to an operator $\widetilde{K} : \widetilde{D}_K \to L^0$.

iii) If $L \subset L^0(S)$ is a solid topological vector space to which K can be extended by continuity from the dense subset $D_K \cap L$, then $L \subset \widetilde{D}_K$ with continuous inclusion and the extension of K to L is the restriction of \widetilde{K} to L.

The extended domain of *K* is characterised by the following result:

 $f \in \widetilde{D}_K$ if and only if for every sequence $g_n \in D_K$ of functions with disjoint supports satisfying $|g_n| \le |f|$ a.e. we have $\sum |Kg_n(t)|^2 < \infty$ for a.e. $t \in T$.

The above result depends on properties of the Rademacker sequence, which appear in one form or another in various presentations of the results in **3**.

In the above condition it is sometime convenient to take g_n to be restrictions of the function f to disjoint subsets of S: this is possible if S and T are locally compact, v, λ are Radon measures and K is continuous. In this case $\widetilde{D}_K \subset D_K \log i.e.$ for every $f \in \widetilde{D}_K$ and E-a compact in S, $\chi_E f \in D_K$.

6. Application to the Fourier transform.

We apply the results of 5 to the case when S = X is a locally compact abelian group, $T = \hat{X} = \Xi$ is its group of characters.

We write the Fourier transform of the measure $f d\mu$ appearing in 3 in the form $\left(\frac{d\mu}{d|u|}(x)\right)$ denoting the Radon Nikodym derivative)

$$(f d\mu)^{\wedge}(\xi) = \int_{X} \xi(-x) f(x) d\mu(x) = \int_{X} \xi(-x) \frac{d\mu(x)}{d|\mu|} f(x) d|\mu|(x)$$

Accordingly, we consider the integral operator K_{μ} with the kernel $K(\xi, x) = \xi(-x) \frac{d\mu(x)}{d|\mu|}$, on the measure spaces $(X, d|\mu|) \times (\Xi; d\xi)$ where $d\xi$ is the Haar measure.

Since $\left|\frac{d\mu}{d|\mu|}(X)\right| = 1$, $|\mu|$ -almost everywhere, for the purpose of determining the domains of K_{μ} we may replace the factor $\frac{d\mu}{d|\mu|}$ by 1, and consider the operator, still denoted by K_{μ} :

$$K_{\mu}f(\xi) = \int_X \xi(-x)f(x)d|\mu|(x)$$

It is obvious that $D_{K_{\mu}} = L^1(X, d|\mu|) = L^1_{\mu}$. To determine the extended domain $\widetilde{D}_{K_{\mu}}$ we use the remarks in 4. Let *E* be a relatively compact neighborhood of 0 in *X* and $x_n + E$, $x_n \in X$ be disjoint. If $f \in \widetilde{D}_{K_{\mu}}$ then $\chi_{x_n+E}f \in D_K$ and $\sum |K_{\mu}(\chi_{x_n+E}f)|^2 = \sum |\int_{x_n+E} \xi(-x)f(x) d|\mu|(x)|^2 = \sum |\int_E \xi(-x)f(x_n+x) d|\mu|(x_n+x)|^2 < \infty$ for almost every ξ , in particular for almost every ξ in a neighborhood of 1 in Ξ , say *F* in which e.g. $|\xi(-x) - 1| < 1/2$ for all $x \in E$. Since $\widetilde{D}_{K_{\mu}}$ is solid, we may assume that $f \ge 0$. For $\xi \in F$ and $x \in E$ we have Re $\xi(-x) > 3/4$ and

$$\frac{9}{16}\sum \left(\int_E f(x_n+x)d|\mu|(x_n+x)\right)^2 \leq \sum \left(\int_E \xi(-x)f(x_n+x)d|\mu|(x_n+x)\right)^2 < \infty.$$

It follows that $f \in \ell^2(L^1_\mu)$ and that $\widetilde{D}_{K_\mu} \subset \ell^2(L^1_\mu)$.

Since $\ell^2(L^1_{\mu})$ is solid, the reverse inclusion also follows from remarks in **3**, once we observe that L^1_{μ} is dense in $\ell^2(L^1_{\mu})$ and that the mapping $K_{\mu} : L^1_{\mu} \subset \ell^2(L^1_{\mu}) \to L^0(\Xi)$ is continuous. The first observation is obvious; as concerns the second observation we actually have continuity of $K_{\mu} : L^1_{\mu} \subset \ell^2(L^1_{\mu}) \to \ell^\infty(L^2)(\Xi)$.

Even though this this result is well known, we give a proof which seems to be of some interest.

We derive an estimate of the form

$$\int_{\Xi} \varphi(\xi) |K_{\mu}f(\xi)|^2 d\xi \le C ||f||_{\ell^2(L^1_{\mu})}$$

for $f \in L^1_{\mu}$ and $\varphi \in \mathcal{K}(\Xi)$, $\varphi \ge 0$ such that $\widehat{\varphi} \in \ell^1(L^{\infty})(X)$; it is known that functions φ like this exist. We consider a partition of unity on G of the form $1 = \sum_{\alpha \in A} \psi(x + x_{\alpha})$ where $\psi \in \mathcal{K}_+$ and for every $x \# \{\alpha; \psi(x + x_{\alpha}) \neq 0\} \le m$. If $f \in \ell^2(L^1_{\mu})$ then $(\int_X \psi(x + x_{\alpha}) |f(x)| d|\mu|) \in \ell^2$, in particular the set $\{\alpha; \int_X \psi(x + x_{\alpha}) |f(x)| d|\mu| \neq 0\}$ is enumerable and $\|f\|_{\ell^2(L^1_{\mu})} = \left(\sum_{\alpha} \left(\int_X \psi(x + x_{\alpha}) |f(x)| d\mu\right)^2\right)^{1/2}$.

The integral $\int_{\Xi} \varphi(\xi) |K_{\mu} f(\xi)|^2 d\xi$ can be written in the form

$$\begin{split} \int_{\Xi} \varphi(\xi) |K_{\mu}f(\xi)|^2 d\xi &= \int_X \int_X \widehat{\varphi}(x-y) f(x) \overline{f(y)} d|\mu|(x) d|\mu|(y) \\ &\leq \sum \int_X \int_X \widehat{\varphi}(x-y+x_{\alpha}-x_{\beta}) \psi(x+x_{\alpha}) \psi(y+x_{\beta}) \\ &\quad \cdot f(x) \overline{f(y)} d|\mu|(x) d|\mu|(y) \\ &\leq \sum a_{\alpha\beta} \int_X \psi(x+x_{\alpha}) |f(x)| d|\mu|(x) \int_X \psi(y+x_{\beta}) f(y) d|\mu|(y) \end{split}$$

where $a_{\alpha\beta} = \max \{ |\widehat{\varphi}(z + x_{\alpha} - x_{\beta})|, z \in U - U \}$, where $U = \text{Supp } \psi$. Since for every α and $z \# \{\beta; z \in U - U + x_{\alpha} - x_{\beta}\} \leq \text{const, it follows that } \sum_{\alpha} a_{\alpha\beta}, \sum_{\beta} a_{\alpha\beta} \leq \text{const} \|\widehat{\varphi}\|_{\ell^{1}(L^{\infty})}$ and the matrix $(a_{\alpha\beta})$ defines a bounded operator in $\ell^{2}(A)$. This readily

implies the desired conclusion.

7. Proof of the maximality property of $\ell^2(\mathcal{M})$.

We proceed now to prove the statement made in 3.

If $\mu \in \ell^2(\mathcal{M})$ then by **6** $(f d\mu)^{\wedge} \in \ell^{\infty}(L^2)$, in particular $a) \Rightarrow b$, $a) \Rightarrow c$ and $a) \Rightarrow d$. We shall prove next that $b) \Rightarrow a$ and then that $c) \Rightarrow b$ and that $d) \Rightarrow b$.

Supposed that μ satisfies b) and c), F be a compact subset of \widehat{G} . Then for $f \in L^{\infty 1}_{\mu}$, $(f d\mu)^{\wedge} \in \mathcal{M}(F)$ and by closed graph theorem $\|(f d\mu)^{\wedge}\|_{\mathcal{M}(F)} \leq \operatorname{const} \|f\|_{\infty}$ for every $f \in L^{\infty 1}_{\mu}$. In particular, if $f \in L^{1}_{\mu} \cap L^{\infty}_{\mu}$, $(f d\mu)^{\wedge} \in C_{0} \subset L^{1}_{\operatorname{loc}}$ and $(f d\mu)^{\wedge})K_{\mu}f$. The last inequality implies that $K_{\mu} : L^{\infty}_{\mu} \cap L^{1}_{\mu} \subset L^{\infty 1}_{\mu} \to L^{1}_{\operatorname{loc}} \subset L^{0}$ is continuous and since $L^{\infty 1}_{\mu}$ is solid, the discussion in 5 implies that $L^{\infty 1}_{\mu} \subset \ell^{2}(L^{1}_{\mu})$ with continuous inclusion. In particular, if $\{x_{\alpha} + E\}$ is a paving in X, then every finite sum $\sum \chi_{x_{\alpha}+E}$ belongs to $L^{1}_{\mu} \cap L^{\infty}_{\mu}$ with $\|\sum \chi_{x_{\alpha}+E}\|_{L^{\infty}} \leq 1$ and therefore $\|\sum \chi_{x_{\alpha}+E}\|^{2}_{\ell^{2}(L^{1}_{\mu})} = \sum |\mu|(x_{\alpha} + E)^{2} \leq \operatorname{const}, i.e.$ $\mu \in \ell^{2}(\mathcal{M})$. We have shown that $b) \Rightarrow a$).

To prove that $c) \Rightarrow b$ we first note that c) implies (using the closed graph theorem) that $\|(f d\nu)^{\wedge}\|_{\mathcal{M}(F)} \leq C_F \|f\|_{\infty}$, $F \subset \subset \Xi$, for all $f \in C_0$. It suffices to show that the inequality persists for $f \in L^{\infty}_{\mu} \cap L^1_{\mu}$, in particular for $f \in L^{\infty}$ with compact support (the latter forming a dense subset in $L^{\infty^{-1}}_{\mu}$). For such f, using Lusin's theorem and regularity of (the topological space) X, we find a sequence $f_n \in \mathcal{K}$ such that $f_n \to f$ in measure, that $\|f_n\|_{\infty} \leq \|f\|_{\infty}$ and that supports of f_n remain in a fixed compact. Then $\|(f_n d\mu)^{\wedge}\|_{\mathcal{M}(F)} = \|(f_n d\mu)^{\wedge}\|_{L^1(F)} \leq \text{const} \|f_n\|_{\infty} \leq \text{const} \|f\|_{\infty}$ and one can pass to the limit in the left hand side using the dominated convergence theorem.

Proof that d \Rightarrow b).

The goal is to establish an inequality $\langle (f \ d\mu)^{\wedge}, g \rangle \leq C_F ||f||_{\infty} ||g||_{\infty}$ for all $g \in C(F)$ where $F \subset \subset \Xi$ is fixed but arbitrary and $f \in L^{\infty 1}_{\mu}$. By a density argument, it suffices to obtain the estimate for $f \geq 0$ and finite valued. We begin with the case when $f = \chi_E$ is the characteristic function of $E \subset X$.

If $\mu = \mu_1 + i\mu_2$ satisfies *d*) then also $\bar{\mu} = \mu_1 - i\mu_2$ satisfies *d*) because of the formula $(\chi_E d\bar{\mu})^{\wedge} = \overline{(\chi_E d\mu)^{\wedge}}^{\vee}$ where $\varphi^{\vee}(\xi) = \varphi(-\xi)$; $\bar{\nu}^{\vee}$ of a measure ν is a measure.

It follows that $\operatorname{Re} \mu$ and $\operatorname{Im} \mu$ satisfy d) and we may assume that μ is real. The Hahn decomposition allows us to assume that $\mu \geq 0$. In this case we write observe that is $\widehat{g} \in \widehat{C}(F)$ then $\widehat{g} \in \widehat{C}(-F)$ and $\widehat{g} = \widehat{g}_1 + ig_2$ where $g_i \in C(F \cup -F)$. Hence

$$\langle (\chi_E \ d\mu)^\wedge, g
angle = \langle \chi_E \ d\mu, \widehat{g}
angle = \langle \chi_E \ d\mu, \widehat{g_1}
angle + i \langle \chi_E \ d\mu, \widehat{g_2}
angle$$

and considering each term separately we may assume that \hat{g} is real we write then $\hat{g} = \chi_{E_1}\hat{g} + \chi_{E_2}\hat{g}$ where $\chi_{E_1}\hat{g} \ge 0$ and $\chi_{E_2}\hat{g} \le 0$.

$$egin{aligned} &|\langle \chi_E d\mu, \widehat{g}
angle| = |\langle \chi_E d\mu, \chi_{E_1} \widehat{g}
angle + \xi_E \, d\mu, \chi_{E_2} \widehat{g}| \ &\leq \langle d\mu, \chi_{E_1} \widehat{g}
angle + \langle d\mu, -\chi_{E_2} \widehat{g}
angle \ &= \langle (\chi_{E_1} d\mu)^\wedge, g
angle - \langle (\chi_{E_2} \, d\mu)^\wedge, g
angle \,. \end{aligned}$$

It follows that $|\langle (\chi_E d\mu)^{\wedge}, g \rangle|$ is bounded uniformly in $E \in \mathcal{B}(X)$ by a constant depending on g. By Banach Steinhauss theorem $|\langle (\chi_E d\mu)^{\wedge}, g \rangle| \leq M ||g||_{\infty}$ for all $E \in \mathcal{B}(X)$.

Suppose now that f is nonnegative and takes finitely many values. Such an f can be represented in the form

$$f(x) = \sum_{\ell=1}^n a_\ell \chi_{E_\ell}(x) ,$$

where $a_1, \ldots, a_n > 0$, $E_1 \supset E_2 \supset \cdots \supset E_n$, $|\mu|(E_\ell) > 0$ and \overline{E}_1 is compact. Clearly then $||f||_{\infty} = a_1 + \cdots + a_n$ and

$$\begin{split} |\langle (f \ d\mu)^{\wedge}, g \rangle| &= |a_1 \langle (\chi_{E_1} \ d\mu)^{\wedge}, g \rangle + \dots + a_n \langle (\chi_{E_n} \ d\mu)^{\wedge}, g \rangle| \\ &\leq a_1 |\langle (\chi_1 \ d\mu)^{\wedge}, g \rangle| + \dots + a_n |\langle (\chi_n \ d\mu)^{\wedge}, g \rangle| \\ &\leq M(a_1 + \dots + a_n) = M \|f\|_{\infty} \|g\|_{\infty} . \end{split}$$

Since in this case $\langle f \ d\mu \rangle^{\wedge}$ is a function in L^1_{loc} , the inequality can be extended, as in the proof of c) \Rightarrow b), to all $g \in L^{\infty}(F)$ and the proof of d) \Rightarrow b) is complete.

References

- [B 1] J.-P. BERTRANDIAS. Espaces $\ell^p(\hat{\ell}^{\alpha})$, Groupe de travail d'Analyse harmonique de l'Institut Fourier de Grenoble, Fascicule II (IV), 1984.
- [B 2] J.-P. BERTRANDIAS. Sur les théorèmes de Littlewood et d'Orlicz-Paley-Sidon, Groupe de travail d'Analyse harmonique de l'Institut Fourier de Grenoble, Fascicule II (III), 1984.
- [BD 1] J.-P. BERTRANDIAS, C. DUPUIS. Transformation de Fourier sur les espaces ℓ(L), Ann. Inst. Fourier (Grenoble) 29 (1979), 189–206.
- [BD 2] J.-P. BERTRANDIAS, C. DUPUIS. Extension maximale du domaine de la transformation de Fourier, C. R. Acad. Sci. Paris Sér. I Math. 285 (1977), 703–705.

- [BD 3] J.-P. BERTRANDIAS, C. DUPUIS. Analyse harmonique sur les espaces ℓ(L), C. R. Acad. Sci. Paris Sér. I Math. 285 (1977), 669–671.
- [D] C. DUPUIS. Quasimesures de type positif, Bull. Sci. Math., II, série 105 (1981), 169–180.
- [De] J.-P. DEMAILLY. Sur les transformées de Fourier de fonctions continues et le théorème de De Leeuw-Katznelson-Kahane, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 435–438 et Groupe de travail d'Analyse harmonique de l'Institut Fourier de Grenoble, Fascule III (II), 1984.
- [F] J.-J. FOURNIER. Local and global properties of functions and their Fourier transforms, Tôkohu Math. J. 49 (1997), 115–131.
- [S 1] P. SZEPTYCKI. Notes on integral transformations, Biss. Math. 231 (1984), 47.
- [S 2] P. SZEPTYCKI. On some properties of domains of integral operators, Rocky Mountain, J. Math. 14 (1984), 433–440.
- [S 3] P. SZEPTYCKI. On some problems related to the extended domain of the Fourier transforms, Rocky Mountain I. Math.
- [S 4] P. SZEPTYCKI. On functions and measures whose Fourier transforms are functions, Math. Ann. 179 (1968), 31–41.

- 🔷 -

Université de Grenoble I Institut Fourier UMR 5582 CNRS-UJF UFR de Mathématiques B.P. 74 38402 ST MARTIN D'HÈRES Cedex (France)

(12 octobre 1998)

8