L?(M) SPACE
by Gilbert MURAZ, Pawel SZEPTYCKI

REsuME. — Comme l'espace de fonctions sur un groupe localement compact et abé-
lien€2(L1), 'espace £2(M ) est le plus grand espace solide de mesures admettant des mesures
pour transformées de Fourier ; en fait pour qu'une mesure appartienne a £ 2(/\/1), il suffit que
pour chaque borélien la transformée de Fourier de la mesure induite soit une mesure.

ABsTRACT . — Similarly to the space éz(Ll) on a locally compact abelian group, the
space £2 (M) is the largest solid space of measures whose Fourier transforms are measures;
in fact, in order for a measure to belong to £2 (M) it suffices that the Fourier transforms of its
restrictions to all Borel sets be measures.

1.Sand S’ on G.

A locally compact abelian group G can be represented as G = G’ x R" where G’
is locally compact and contains an open compact subgroup H-say. Then G'/H is discrete.
Note that then G = G' x R" and that G’ has the same property as G/, i.e. contains an open
compact subgroup.

Define the space S(G) of test functions as follows
S(G) = I*(G'; S(R")),

where S(R") is the usual space of C* functions on R” which are of rapid decrease toge-
ther with all derivatives. The topology on S(R") is defined by the sequence of norms:

lpllk, = sup(1 +[x]¥) Y D*p(x)].
X
| <e

Accordingly, the topology on S(G) is defined by the sequence of norms
) 1/2
¥ = ([ 1o, as)

The space S (@ is defined similarly by symmetry.

The usefulness of these spaces manifests itself in the following observation concer-
ning the Fourier transform ~:

is a topological isomorphism.
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The Fourier transform on the topological dual S’ of S can be defined by duality
(T, @) =(T,®), YVp € S.

Again 8'(G) = S'(G) is a topological isomorphism. A less obnoxious (but more restric-
tive) way of extending ~ is to use instead of S the space K = Cx(G) or the space £'(A).
The definition (ZI/‘\, @) = (T, ®) for every @ with @ € K, i.e. for every ¢ € K suffers of a
lack of symmetry — this is not the case when £!(A) is used as a test space. S’ definitions
appears to be more general than either of the two possibilities mentioned above, S’ N K
being dense in both &’ and K and S8’ N £ (A) being also dense in both &’ and £'(A).

2. Definition of £7(L9),£,(M),£P(L9), (1 < p,q < +00).
We define £P(M) as the space of all Borel measures (or classes of functions) y (or

1/q
f) such that the function ¢t — |u|(t + E) € LP(G), (t = (ft+E [f ()7 ds) € LP) with

(4) lllerirty = HHIC + B)llre) »

(4) 1/ llep(zay = M1£ o+ v (o)

where E is a relatively compact neighborhood of the neutral element 0 in G. Different
choices of E give rise to equivalent norms.

Recall that there are other equivalent ways of defining £%(M), (7 (L)) notably:

(B) llellerpay ~ SUP{ 1(IkI(s + B)) [l o) ‘P} ’

(B) Irller(2?) = sup { || 1 Loz L enigy i P}

where P = (g + E)gcg is a maximal paving of G by disjoint translates of E (here we need
to assume that E is symmetric. “Maximal” means that P cannot be enlarged to a paving of
G by translates of E).

(©) lillercan = Il (Ixatllag,) o -

(€ WS llepczay = [ Ixof [lzallr

where x is a partition of unity of the form x4 (x) = x(x + gx), with x € K.

The least esthetically pleasing is the definition using the structural theorem and the
definition of €7 (M) on R".

All properties of this space are developed in [BD1] and [BD3].
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3. The maximality property of L2(M).

Letpy € M NS’ Denote by Lml the closure of Lllul N Lp] in LS. The following
statements are equivalent:

a) p € L4(M),

b) (faw)" € M, Vf € L,
o (fam) € M,Vf € G(G),
a) (xgdu)"™ € M,VE € B(G).

In the above statement Cy(G) is the space of continuous functions vanishing at co
(the closure of K in L*) and B(G) is the algebra of Borel subsets of G.

We precede the proof with a number of remarks.

1. The implication ¢) = a) includes the Bertrandias’ version of Littlewood-
Edwards’ theorem (1984), also Demailly (1984) [B1], [De].

2.b) = a) includes the result of Dupuis (1982) [D] (see also [BD2], [S3] and [S4]).
3. a) implies the condition
b) (fdu)" € €*(L*) C Mforall f € L7

(see below) which a priori is stronger than b).

4. One could also consider the condition (f du)” € M for all unimodular f. If only
real f — s are allowed then the condition is equivalent to ¢). If all complex f — s are allowed,
then the condition is equivalent to b’)

4. The local property of (m)

We propose this generalisation of a result of J. J. Fournier [F]. Let o € (S")7, (o €
M™T N 8); the following statements are equivalent:

a) there exists a neighborhood V of 0 € T'such that o, € L*(V);
b) o € £>(1?);
¢ o€ L*(M).

A nonnegative distribution, by Schwartz is a nonnegative measure. By the fact
é/(_M) C £°°(L?) it is sufficient to proof a == c). Let @ a test function with support
in V, such that @ > 0. The condition @) implies @ - ¢ € I ie. (p-0)" = p*0o > 0;
the continuity of @ assume the existence of an open set O and a scalar A > 0 such that

AP x0) > xox0ie o€ L£2(M).

For the space 82/(/\\/[), 1 < p < +00, look the Bertrandias’ result [1984] [B1].
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5. Integral operators.

We recall a few facts about domains of integral operators which will be used in the
proof of the statement in 3 (see [S1], [S2], [S3]).

We consider two measure spaces (T, dA) an (S, dv) and denote by L°(T) (or respec-
tively L°(S)) the space of measurable, finite a.e. complex valued functions, equipped with
the topology of convergence in measure on all sets of finite measure. An integral operator
from L°(S) to L°(T) is given by the formula

Kf (1) = /K(t, Of(x)ds, f €D,

N

where K € L°(T x S) and Dg-the proper domain of K consists of all functions f € L°(S)
for which the integral in question exists as a Lebesgue integral for almostall t € T.

Besides the proper domain, we associate with K in a canonical way its extended (or
maximal) domain D. It is a solid complete topological vector subspace of L°(S) with the
following properties:

i) Dk C D~K with dense inclusion;

ii) K :Dgx C D~K — LY is continuous and thus can be extended by continuity to
an operator K : Dx — L.

iii) IfL C L°(S) is a solid topological vector space to which K can be extended by
continuity from the dense subset Dg N L, then L C Dk with continuous inclusion and the
extension of K to L is the restriction of K to L.

The extended domain of K is characterised by the following result:

f e D if and only if for every sequence g, € Dg of functions with disjoint sup-
ports satisfying |g,| < |f] a.e. we have 3 |[Kg,()|* < cofora.e.t € T.

The above result depends on properties of the Rademacker sequence, which appear
in one form or another in various presentations of the results in 3.

In the above condition it is sometime convenient to take g, to be restrictions of the
function f to disjoint subsets of S: this is possible if S and T are locally compact, v, A are
Radon measures and K is continuous. In this case ﬁK C Dkloc ie. forevery f € D~K and
E-acompactin S, xgf € Dg.

6. Application to the Fourier transform.

We apply the results of 5 to the case when S = X is alocally compact abelian group,
T = X = E isits group of characters.
We write the Fourier transform of the measure fdu appearing in 3 in the form

(ﬂ (x)) denoting the Radon Nikodym derivative)

dfu]
(fau)™(E) = /X E(—x)f (x) du(x) = /Xﬁ—") dﬂﬁ)

f(x) dlul(x) -
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Accordingly, we consider the integral operator K, with the kernel K(§,x) =

&(—x) d;ﬁ‘l) , on the measure spaces (X, d|u|) x (Z; d§) where d& is the Haar measure.

Since ‘ A (X)‘ = 1, |u|-almost everywhere for the purpose of determining the

domains of K, we may replace the factor dl I by 1, and consider the operator, still denoted
by Ky

Kof (€ / £(—x)f (x)dlu|(x)

It is obvious that Dx, = L'(X,d|u|) = L}. To determine the extended domain
Dk, we use the remarks in 4. Let E be a relatively compact neighborhood of 0 in X and
X, + E, x, € X be disjoint Iff € Dk, then xx,L+Ef € Dk and E |Ky(Xxn+Ef)|2 =

ol S 8(=2)f (%) dlu|(x ZUE £ (xn + x) d|u|(x, + x)|? < 0o for almost
every &, in particular for almost every&ina ne1ghborhood of 1in £, say F in which e.g.

|&(—x) — 1| < 1/2for all x € E. Since Dy, is solid, we may assume that f > 0. For £ € F
and x € E we have Re §(—x) > 3/4 and

(/) #6+ raulan + x))2 <3 ([ =2+ aluln + x))2

<.

It follows that f € €2(L}) and that D, C £2(L}).

Since £Z(L‘11) is solid, the reverse inclusion also follows from remarks in 3, once we
observe that L}, is dense in £%(L;) and that the mapping K, : L, C £*(L}) — L°(E) is
continuous. The first observation is obvious; as concerns the second observation we ac-
tually have continuity of K, : L}, C €*(L}) — €°°(L*)(E).

Even though this this result is well known, we give a proof which seems to be of
some interest.

We derive an estimate of the form

[ o@ls @F de < Clilleagy

for f € L, and ¢ € K(E), ® > 0such that p € £'(L>)(X); it is known that func-

tions @ like this exist. We consider a partition of unity on G of the form 1 = ) w(x +
aEA

Xo) where ¢ € K, and for every x# {o; ¢(x + x4) # 0} < m.If f € £*(L}) then

(fx w(x+ x4)|f (x)| d|u|) € €% in particular the set {o; [, w(x + xx)|f(x)| d|u| # 0}
1/2

is enumerable and||f||€z(L‘1l) = ( ([ w(x + xo)|f (x)| du)z)

The integral [- @(&)|K, f(€)|* d& can be written in the form
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[ o@lr@F de= / / &(x = )/ (P () dlul (<)l ()
<3 [ [ Byt = )l + )ty +3)
FOF0) dll (D) dlul )
<3 g [ wlx+ )l @ dlul(s) [ v+ 390 0) dlel)

where ayg = max{|P(z+ x4 — x3)|, 2 € U — U}, where U = Supp y. Since for
every o« and z #{B;z2 € U — U + x4 — xg} < const, it follows that Y axp, > aag <
« ;

const ||| ¢1 (1) and the matrix (axs) defines a bounded operator in £%(A). This readily
implies the desired conclusion.

7. Proof of the maximality property of £2(M).
We proceed now to prove the statement made in 3.

Ifu € €2(M) then by 6 (fdu)" € €°°(L?), in particular @) = b), a) = c) and
a) = d). We shall prove next that b) = a) and then that ¢) = b) and that d) = b).

Supposed that y satisfies b) and ¢), F be a compact subset of G. Then for f €
L®', (fdu)" € M(F) and by closed graph theorem ||(f du)"|| p(r) < const [|f]|oo for
every f € L°'. In particular, if f € L} N L®°, (fdu)" € G C L and (fdu)")K,f.
The last inequality implies that K, : L;° N L}l C LL’Ol — LlloC C L is continuous and since
L°! is solid, the discussion in 5 implies that L3°! C £*(L,,) with continuous inclusion. In
particular, if {x, + E} is a paving in X, then every finite sum ) X+ belongs to L} N L°
with || 3 xx,+£l|lz < 1 and therefore || Zan+E||iz(Lb) =Y |u|(x« + E)? < const, i.e.
u € £2(M). We have shown that b) = a).

To prove that ¢) = b) we first note that ¢) implies (using the closed graph theo-
rem) that [|(fdv)*|my < Cellflloo, F CC E, forall f € Cp. It suffices to show that
the inequality persists for f € L;° N Lb, in particular for f € L°° with compact sup-
port (the latter forming a dense subset in L“j"l). For such f, using Lusin’s theorem and
regularity of (the topological space) X, we find a sequence f,, € K such that f,, — f in
measure, that || fu||cc < ||f]]co @and that supports of f,, remain in a fixed compact. Then
1 ) Mlaacry = 1w dit) ey < const[fulloo < const]|f o and one can pass to
the limit in the left hand side using the dominated convergence theorem.

Proof that d) = b).

The goal is to establish an inequality ((f du)”,g) < Cr||f]loo ||8]loo forall g €
C(F) where F CC Z is fixed but arbitrary and f € Lﬁ"l. By a density argument, it suffices
to obtain the estimate for f > 0 and finite valued. We begin with the case when f = xp is
the characteristic function of E C X.



If u = py + iyp satisfies d) then also i = p; — i, satisfies d) because of the

— v
formula (xg dt)" = (xg du)™ where @ (§) = p(—&); vV ofameasure v is a measure.

It follows that Re 4 and Im p satisfy d) and we may assume that y is real. The Hahn
decomposition allows us to assume that g > 0. In this case we write observe that is § €
C(F)theng € C(—F)and § = & + ig where g; € C(F U —F). Hence

((xe dp)", g) = (xe du, 8) = (xe du, &) + i(xz du. &)
and considering each term separately we may assume that g is real we write then g§ =
X5 &+ XE& where x5 g>0 and xpg < 0.
|(xedu, 8)| = [(xedu, xe, &) + &k dp, Xk, 8]

<A{du, x5, 8) + (A1, —Xr,8)

= {(xzdu)", 8) = ((xe, aw)", g) -
It follows that |((xr du)”, g)| is bounded uniformly in E € B(X) by a constant depending
on g. By Banach Steinhauss theorem |[{(xg du)”, g)| < M||gl|co for all E € B(X).

Suppose now that f is nonnegative and takes finitely many values. Such an f can
be represented in the form

£ =Y aexe (),

where aj,...,a, > 0, F; D E, D --- D Ep, |u|(Ee) > 0 and E; is compact. Clearly then
[|flloc = @1 + -+ - + a, and

K(f an)™ )l = a{(xz dm)™, 8) + - - + an{(xz, dw)", &)
ar [{(xr d)™, g)| + -+ + an [{(Xn d)", )|

<
< M(ar+---an) = M||flloo [18lloo -

Since in this case (f du)” is a function in L} , the inequality can be extended, as in
the proof of ¢) = b), to all g € L°°(F) and the proof of d) = b) is complete.
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