On the general faces of the moment polytope

Michel BRION

1. Introduction

Let X be a projective algebraic variety endowed with an action of a connected reductive
group G, both defined over C. Let £ be an ample line bundle over X. Assume that L is
G-linearized, that is, G acts on the total space of £ compatibly with its action on X, and
linearly on fibers. Then the space I'(X, £) of global sections of L is a rational G-module.
Its decomposition into simple modules is described by its highest weight vectors, that is,
the set T'(X, £)(B) of eigenvectors of a fixed Borel subgroup B of G.

To study simultaneously the G-modules T'(X, £L®") for all positive integers n, let us
introduce a set Pg(X, L) as follows. Let X be the character group of B and set Xp :=
X ®z Q. For each dominant weight xy € X, let V(x) be a simple G-module with highest
weight y. Set

Ps(X, L) :={p € Xy | V(np) occurs in I'(X, LE™) for some positive integer n}.

In other words, Pg(X, L) is the set of all p € Xy which can be written as x/n for some
positive integer n and some weight x occuring in I'( X, E®”)(B). Then Pg(X, £) is a convex
polytope in Xy, see [B]. By definition, Pg(X, L) is contained in the Weyl chamber C of
dominant rational weights.

We shal call Pg(X, L) the moment polytope. It is indeed closely related to the image
of the moment map of symplectic geometers: Assume that X is a smooth closed G-stable
subvariety of projective space P(V') where V is a rational G-module. Assume furthermore
that £ is the restriction to X of the line bundle O(1) with its natural G-linearization. Let
K be a maximal compact subgroup of G and let (, ) be a K-invariant Hermitian inner
product on V. These data define a moment map

p:P(V) — Lie(K)*
(the dual over R of the Lie algebra of K) by the formula

u(fol)(€) = — &)

271 (v, )

where v € V and ¢ € Lie(K). The intersection of u(X) with a positive Weyl chamber
turns out to be a convex polytope with rational vertices, which identifies to the closure of
Pg (X, L£). See Mumford’s appendix to [N], and also [B].

Back to the algebraic setting, let Cx be the smallest face of the Weyl chamber which
contains Pg(X, L) (it turns out that Cx is independent of £). A face of Pg(X, L) which
meets the relative interior of Cx will be called general.
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In this article, we describe the general faces of the moment polytope in terms of fixed
points of certain subtori of G. When X is normal, we describe the corresponding sets
of highest weight vectors as well. As applications, we determine the general vertices of
polytopes associated with decompositions of tensor products of simple modules, and with
their Schur powers. In the former case, we obtain an inductive description of the facets of
the polytope.

Acknowledgments. This work arose from several discussions with Andrei Zelevinsky. 1
thank him warmly for his questions, comments and suggestions, especially concerning §3;
the formulation of Theorem 4 using admissible triples is due to him.

2. General results

If G fixes a point z of X, then G acts on the fiber £, by a character x, and Pg(X, L)
contains —y (indeed, there exists a positive integer n and a section o € I'(X, L®") such
that o(z) # 0; because G is reductive and fixes z, we may assume that o is an eigenvector
of G, then its weight is —n)). We shall see that fixed points of subtori of G contribute to
Pg(X, L) as well. For this, we need more notation.

Fix a maximal torus T of B. Let T” be a subtorus of T, with fixed point subset X T' in
X. Let G’ be the centralizer of T’ in G. Then G’ is a connected reductive group; it acts
on XT' and stabilizes each irreducible component X’ of that space. Set B’ := BNG’; then
B’ is a Borel subgroup of G’ containing T. The character group of B’ identifies with X,
and the corresponding Weyl chamber C’ contains C. Furthermore, £ restricts to an ample
G'-linearized line bundle over X', which defines a convex polytope Pg/ (X', L) contained
inC’.

Recall that the subtori of T' correspond bijectively to the linear subspaces of Xy, by
assigning to a subtorus 7" the span of the characters of T' which restrict trivially to 7”.
For a face F' of Pg(X, L), with direction lin(F'), let Tr C T be the subtorus associated
with lin(F).

Theorem 1. (i) For any subtorus T' of T with centralizer G' and for any irreducible
component X' of XT', the set Pg/(X', L) NC is contained in Pg(X, L).

(ii)) Any general face F' of Pg(X, L) is the intersection Pg,(Xr, L) NC for a unique irre-
ducible component X of X'F,

(iii) In particular, if z € X is a T-fixed point such that T acts on the fiber L, via the
opposite of a dominant weight, then this weight is in Pg(X, L). Furthermore, all general
vertices of Pg(X, L) are obtained in this way; in particular, all such vertices are integral.

Remark. Statements (i) and (iii) do not extend to arbitrary faces of Pg(X, L). Consider
indeed the G-variety X = P(V)) where V is a rational G-module, and the line bundle
L = O(1) with its natural G-linearization. Then the G-module T'(X, £®™") is the dual of
the n-th symmetric power S™V. Thus, Pg(X, £) contains 0 iff there exists a non constant
G-invariant polynomial function on V. If moreover G is semisimple, then 0 is a vertex of
Pg(X, L); the corresponding subtorus is 7. The irreducible components X’ of X7 are the
projective spaces of the T-weight subspaces of V; the corresponding polytopes Pg/ (X', L)
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consist of the opposites of the weights. Thus, if 0 is not a T-weight in V', but V admits
non constant G-invariant polynomial functions, then (ii) does not hold for X.

There are many examples of pairs (G, V) satisfying these assumptions, e.g. (SL,., S2C")
for r > 3. In this case, using the explicit description of the SL,-modules S™(S2C"), one
sees that P (X, L) is the convex hull of 0 and the points 2m;/(r — j) for 1 < j <r —1,
where 7, ..., m._1 are the fundamental weights of SL,. In particular, Pg(X, £) has non
integral vertices as well if r > 4.

In the setting of symplectic geometry, statement (iii) is known, and (i), (ii) can be
deduced from the “local cross-section theorem” [G-S]. But our algebraic approach gives a
characterization of all general faces, as follows.

For a face F' of Pg(X,L), choose a point f € F° (the relative interior of F') and
define the tangent cone to Pg(X, L) at F' as the convex cone generated by —f + Pg(X, L).
This cone depends only on F'; and describes the shape of Pg(X, L) along that face. The
direction of F' is the largest linear subspace contained in its tangent cone.

Theorem 2. For a subtorus T' C T and an irreducible component X' C X' such that
Pg/ (X', L) meets C%, the following conditions are equivalent:

(i) Pa: (X', L)NC is a face F of Pg(X, L).

(ii) For generic x € X', all nonzero weights of T' in T,(X)/T,(Uz) are contained in an
open half space.

(Here T,,(X) denotes the Zariski tangent space to X at x; U is the unipotent part of B, and
Uz is the U-orbit through z). Then the convex cone generated by these weights identifies
with the opposite of the tangent cone to Pg(X, L) at F.

If Cx = C, we shall see in the proof that the isotropy group U, is trivial for z as in
(ii), so that Uz is isomorphic to U. If moreover X is smooth, then condition (ii) can be
formulated in more combinatorial terms. Indeed, as a component of the fixed point set
of a torus, X’ is smooth as well. It follows that the structure of the T'-module T, (X) is
independent of z € X'. In other words, the multiset of weights of 77 in T,,(X) (with their
multiplicity) is independent of z. Thus, (ii) is equivalent to:

(i)’ For some x € X'T', the multiset of nonzero weights of T' in T,,(X), minus the multiset
of restrictions to T' of roots of (B, T), consists of weights in an open half space.

The polytope Pg(X, L) only entails information on the asymptotic behaviour of the

sets I'(X, £®”),(£) of eigenvectors of B of weight np, for rational weights p. Our next
result gives a more precise description of these sets.

Theorem 3. Assume that X is normal. Let F' be a general face of Pg(X, L); let Ty and
Xp be as above. Then, for any positive integer n and for any p € F N C%, the restriction
map

I'(X, L®"),<£> - P(XF,£®"),<£F)
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is bijective. In particular, for any general vertex p of Pg(X, L), with corresponding irre-
ducible component X,, of X7, the restriction map

(X, £9M)55) — T(Xyp, £°7)
is bijective.

As a consequence of Theorem 3, we see that for normal X such that X7 is finite, all
general vertices of Pg(X, L) are weights of elements of I'(X, £)(5),

3. The polytope associated with decomposition of tensor products

Let B~ be the Borel subgroup of G such that B~ N B = T. Consider the projective

variety
X=G/B” xG/B~

with diagonal action of G. Any character x of T' defines a homogeneous line bundle £, on
G/B~. Recall that £, is generated by its global sections (resp. ample) if and only if —x is
dominant (resp. regular dominant); the G-module I'(G/B~, L,,) is isomorphic to V(—x).

Let A, u be regular dominant weights. Then
L:=L_\xL_,
is an ample G-linearized line bundle on X, and
NX,L)=V(A)®V(u).
Thus, Pg(X, £) is the rational polytope
Po(A\ p) :={p € Xy | V(np) occurs in V(nA) @ V(nu) for some positive integer n}.

Remark. The real points of Pg (A, i) are the intersection in Lie(K)* of the subset KA+ Ku
with the positive Weyl chamber; here K is a maximal compact subgroup of G such that
KNT is the maximal compact subgroup of 7', and we identify A, p to elements of Lie(T)* C
Lie(K)*.

Indeed, the K-variety X identifies to KA x Kp C Lie(K)* x Lie(K)*, and the moment

map associated with £ is inclusion followed by projection to the diagonal Lie(K)*.

In the case where G = GL,, with its standard torus 7" of diagonal invertible matrices,
we take K to be the unitary group. Then Lie(K)* identifies with the space of Hermitian
matrices, and the positive Weyl chamber consists of diagonal matrices with real entries
in decreasing order. Thus, the K-orbits in Lie(K)* are the sets of Hermitian matrices
with a prescribed spectrum; and Pg (A, 1) consists of all spectra of sums of two Hermitian
matrices with spectra A, p.

Clearly, P (A, 1) contains A + p, a regular dominant weight. It follows that Cx = C:
the general faces of Pg(A, 1) are those which contain regular (rational) weights.

4



In order to describe the general vertices of Pg(A, 1), we introduce the following notation.
Let W be the Weyl group of (G,T) and let ® C X be the corresponding root system with
the subset ®* of positive roots associated with B, and the subset A of simple roots. For
we W, let

Inv(w) ;== w(®T)N &~

be the corresponding “inversion set”.

Definition. A pair (u,v) € W x W will be called admissible if there exists w € W such
that Inv(w) is the disjoint union of Inv(u) and Inv(v). Then w is uniquely determined by
(u,v); we shall call (u,v,w) an admissible triple.

For a subset I of A, let W; be the subgroup of W generated by the s, for a € I, and
let wy be the longest element of W;. Then examples of admissible triples are (u, wru, wy)
and (u,wrwa,u) where u is an arbitrary element of W7y.

Theorem 4. With notation as above, the general vertices of Pg(\, 1) are the regular
dominant weights of the form u(\) + v(p) where (u,v,w) is an admissible triple. Under
this assumption, V (u(A) + v(u)) occurs in V(X)) @ V(u) with multiplicity one, and the
tangent cone to Pg(\, 1) at u(\) + v(u) is generated by —w(A).

In particular, the direction of the affine space generated by Pg (A, i) is the span of @,
so that the dimension of that polytope is the semisimple rank ¢ of G. And all general
vertices of Pg(A, 1) are contained in precisely £ edges.

The fact that V(u(X) +v(p)) occurs in V() @ V() is a special case of the former PRV
conjecture, proved by Kumar and Mathieu [Ku], [Mat].

We now turn to the description of the general facets of Pg(\, ). Let Z be the connected
center of G. Because G is the almost direct product of Z with a connected semisimple
group, any p € Xp decomposes uniquely as

p=pz+ Z Do
a€EA

where pz is a rational weight of Z, and the p,’s are in Q. For a subset S of Xy, we denote
by S, the multiset consisting of all coordinates p, (p € S) with their multiplicities.

Definition. For o € A, a triple (u,v,w) in W x W x W will be called a-compatible if
w( @) g Uo(®1)g = O Uw(®h)y or u(®)y Uv(®T)y = @, Uw(®T),
where U denotes union as multisets. We then set 4 (u, v, w) = +1 in the former case, and

€a(u,v,w) = —1 in the latter case.

The relation between a-compatible and admissible triples is discussed briefly in Remark
(ii) below. Finally, we denote by ®“ the sub-root system of ® with basis A \ {a}, and by
G the corrresponding connected reductive subgroup of G' containing 7. For a weight w
of T, we denote by V(w) the simple G*-module with highest weight w.
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Theorem 5. With notation as above, Pg (A, ) is the set of all dominant rational weights
v satisfying the inequalities

Ea(t, v, W) W(V)a < UN)a +v(1t)a (*)

for all « € A and all a-compatible triples (u, v, w) such that Pga (u()\),v(u)) meets w(C?).
Equality holds in (%) if and only if w(v) € Pga(u(\),v()), and this defines a general
facet F of Pg(\, ). For v € F and a positive integer n, the multiplicity of V(nv) in
V(nA) ® V(nu) is equal to the multiplicity of V*(nw(v)) in V¥(nu(X)) ® V*(nv(y)).
Finally, all general facets of Pg(\, i) are obtained in this way.

This inductive description of Pg (A, 1) is in the spirit of a theorem of Klyachko, but both
results are not equivalent. Specifically, let Cg be the cone of all triples (A, u, ) of rational
dominant weights such that V(nv) occurs in V(nA) ® V(nu) for some positive integer n.
In the case where G is the special linear group, Klyachko obtained an inductive description
of Cg by linear inequalities (see [Kl] and also [F], [KT] for relevant recent work). Because
Pq(A, p) is the intersection of Cq with the affine space (A, p) x Xq, any facet F' of Pg(A, i)
is the intersection of this affine space with some facet of C. But only those facets of Cg
which intersect transversally the affine space contribute to facets of Pg(A, p).

Examples. (i) In the case where G = GLg, there is a unique simple root «, and W is equal
to {1, —1}. The a-compatible triples are all triples except for (1,1,—1) and (—1,—1,1).
The set of inequalities deduced from Theorem 5 is equivalent to

‘Aa_,u'a| Sya S)\a+lf'a-

Of course, this is also a direct consequence of the Clebsch-Gordan decomposition.

(ii) More generally, consider G = GL,, with the maximal torus T of diagonal invertible
matrices, and the Borel subgroup B of upper triangular invertible matrices. Then W is the
symmetric group Sy, and we can see ® as the set of all pairs (j, k) such that 1 < j, k <n
and j # k. The simple roots are the pairs (r,7 + 1) =: o, for < r < n — 1; the dominant
weights are the decreasing sequences of n integers. For two such sequences A, u, we denote
by P, (A, 1) the corresponding polytope.

Foru € W and 1 <r < n—1, denote by [;} (u) (resp. I,;-(u)) the numbers of pairs (4, k)
of integers such 1 < j < k <n and u(k) <7 < u(j) (resp. u(j) < r < u(k)). Then the
multiset u(®),, consists of: 1 with multiplicity I, (u), —1 with multiplicity I (u), and 0
with multiplicity “"%-1)
sign =+ if and only if:

—r(n —r). It follows that a triple (u,v,w) is a,-admissible with

i (u) + 1 (v) = 17 (w).

With obvious notation, the inequality (*) translates into:

iz Vy—1(k) < Z )\ufl(z’) + Z Ho=1(5)
k=1 =1 j=1

which matches with Klyachko’s result.



Observe that this inequality and a,-admissibility are unchanged when (u,v,w) is re-
placed by (v'u,v'v, w'w) for v/, v" and w’ in the subgroup S, x S,,_,. of S,,. Thus, we may
assume that «=1(1) > --- > u 1(r) and u=*(r+1) > --- > u~!(n), and similarly for v, w.

Finally, G*» = GL,. x GL,,_,. and

Pgar (u()‘)7 U(:u')) =P (u()‘)Sra 'U(//')Sr) X Pn—r(u(/\)>ra U(/j')>r)

where ’u,()\)sr = ()\u—l(]_), ceey )\u—l(r)) and u()\)>r = (Au—l(T+1), ceey )\u—l(n)) It would be
interesting to obtain a more tractable form of the condition: Pga. (u(\),v(1)) meets w(C?).
The latter consists of all (t1,...,t,) € Q" such that t,,(1) > -+ > tym)-

Remarks. (i) For arbitrary connected reductive G, the facet of Pg(, 1) associated with an
a-compatible triple (u,v, w) depends only on the left cosets of u, v and w modulo Wa\{a}-
This follows from the formula

w(v)a = (v, w " (Ta))

where 7, is the fundamental weight corresponding to «, and from the fact that Wa\ (o} is
the isotropy group of 7, in W.

(ii) Let (u,v,w) be an admissible triple such that w(A) + v() is regular dominant. Then,
by Theorem 4, the cone generated by the w™tu(\) + w™tv(p) —w™(v) (v € Pg(A, p)) is
generated by A as well. Thus, (w™tu,w v, w™?!) is a-compatible for all o € A, and the
corresponding sign is +1 (of course, this can be checked directly). By Theorem 4 again,
all facets of Pg(A, ;) which contain a general vertex arise in this way; but there may be
other general faces.

(iii) If (u,v,w) is a-compatible, then (uwa,vwa,wwa) is a-compatible as well, with op-
posite sign. This reflects the fact that

v € Pg(A p) & —wa(v) € Pa(—wa(A), —wa(p))

because the dual of V(v) is V(—wa (v)).

4. The general vertices of a polytope associated with plethysm

Let 7 be a partition, that is, a finite decreasing sequence of positive integers. Denote by
S™ the Schur functor associated with 7 (a construction of this functor is recalled below).
Let A be a dominant weight, then S™V(A) is a rational G-module. To study its decom-
position into simple modules, a generalization of the operation of plethysm, consider the
set

Pg(m, A) :={p € Xg | V(np) occurs in S""V(A) for some positive integer n}.

This set was introduced by Manivel [Man]|; he interpreted it as a moment polytope, as
follows. Write
m=(n{t, ..., mer)
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where (my,...,m,) is a strictly decreasing sequence, and each a; is the multiplicity of =;
in 7. For a finite dimensional vector space V', denote by F, (V') the variety of partial flags

f:(V:VODV]‘D...DVT)

where dim(V7~1/V7) = a; for all indices j. We have quotient bundles Q; on F,(V), whose
fiber at f is V/=1/V7 and we have an ample line bundle

Ln:= ®(/J\ Qj)®7rj

j=1
which is homogeneous for the transitive action of GL(V') on F, (V). Furthermore, we have
DNF-(V),Ly) =S"V.

It follows that
Pg(m,\) = Pa(X, L)

where X = F,;(V()\)) and G acts on X via its linear action on V().

Some vertices of Pg(m, A) were constructed by Manivel, as components of S™V () asso-
ciated with fixed points of B in F,(V(\)) which satisfy a certain condition [Man; 2.3]; for
vertices which are regular dominant weights, it is equivalent to condition (ii)’ in Theorem
2. In the case where G is the general linear group GLg and V() is a symmetric power of
C?, Manivel conjectured that his construction gives all general vertices, see Conjecture 2
in [Man|. The following result answers partially this hope, in a more general setting.

Theorem 6. Ifp is a general vertex of Pg(m, ), then V(p) occurs in S™V (). If moreover
all weights of T in V() have multiplicity one, then the multiplicity of V (p) in S™V () is
one, too.

5. Proof of Theorem 1.

Let p € C. Let ng be the smallest positive integer such that ngp is in X'. Let P be the
largest subgroup of G' containing B such that ngp extends to a character of P. For any
positive multiple n of ng, we have an ample homogeneous line bundle £,,, on G/P, and

I'(G/P, Lyp) =V (np)*.

By definition, p is in Pg(X, L) if and only if the G-module I'(X, L®") ® I'(G/P, Ly;)
contains nonzero G-invariants for some positive multiple n of ng; that is, X x G/ P contains
semistable points for the ample G-linearized line bundle £®" x L,, ,,. Equivalently, there
exists € X such that (z,ep) is semistable for this line bundle, where e, is the base point
of G/P.

Let now p € Pgi(X’,£) NC. Observe that G'/(G’ N P) embeds into (G/P)T" as the
G’-orbit of e,. By assumption, we can find 2’ € X’ and a positive multiple n of ny such
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that (2, ep,) is a semistable point of X’ x G’e, for the action of G’ and the line bundle
LE" x L. Then it follows from [L] Corollaire 2 that (2, e,) is semistable for G as well.
Thus, p € Pg(X, L), and (i) is proved.

Let F be a general face of Pg(X,L) and let p € F? in particular, p € C%, so that
the parabolic subgroup P depends only on Cx. Let ng be as above. Then there exists
a positive multiple n of ng, and a section o € I'(X, £®"),(£). This section generates a
G-submodule of I'(X, £®") isomorphic to V (np); it defines a G-equivariant rational map

p: X— =PV (np)*).

Let X, be the complement in X of the zero set of o; then X, is the preimage under ¢
of the open subset of P(V (np)*) where the coordinate of weight np is nonzero. Because £
is ample, X, is affine; let C[X, ] be its coordinate ring. Then, for any non negative integer
m and for any s € T'(X, £L®"™), the quotient s/¢™ is in C[X,]. Moreover, because L is
ample, C[X, ] is the increasing union of its subspaces

(X, L8"™) /g™

where T'(X, £2"™) is mapped to I'(X, £®"(™+1)) by multiplication by o € T'\(X, L®").
Each of these subspaces is P-stable.

Let L be the Levi subgroup of P which contains T'; then the roots of L are those roots
which are orthogonal to p. We have the Levi decomposition P = P*L where P* denotes
the unipotent radical of P. By the local structure theorem [BLV;1.2], there exists a closed
L-stable subset Z, of X, such that the map

PUxZ, — X,
(9,2) — gz

is an isomorphism. Thus, Z, is affine, and there is a L-equivariant isomorphism of C[Z,]
onto the subalgebra C[X,]F" of regular functions on X,, invariant under P*. Tt follows
that C[Z,] is isomorphic to the increasing union of the spaces

r(X, £Lon™)P" jgm,

Write B = P*(BN L), then BN L is a Borel subgroup of L. Let C be the convex cone
of Xy generated by all weights of C[Z,](B"L). The latter being the increasing union of
the spaces I'(X, £L&7™)(B) /g™ the cone C is generated by —p + Pg(X, £). But Pg(X, L)
is contained in Cx, the smallest face of C containing p. It follows that any simple root
orthogonal to p is orthogonal to C' as well. In other words, any root of L is orthogonal to
all weights of C[Z,](B"L). So the derived subgroup [L, L] acts trivially on C[Z,], and on
Z, as well (because that variety is affine). Thus, C[Z,]|B") = C[Z,](TD.

Because p € FO, the largest linear subspace contained in C is equal to lin(F). Let Tr
be the corresponding subtorus of T. By Lemma 1 below, the set ZZ¥ is non empty and
irreducible. Thus,

XIr = (p)Ir x 7Tr = (G N PY) x Z1F
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is non empty and irreducible as well, where Gz denotes the centralizer of Ty in G. Let
Xr be the closure of X1 in X, then X is an irreducible component of XZ*. Moreover,
restriction of o to X is a section of £L®", eigenvector of weight np of the group Br =
Grp N B. Thus, pisin Pg, (X, L).

We now check that X is independent of the choice of p in F°. Indeed, if p’ is another
point in F'¥, we can construct as above a global section ¢’ of a positive power L™ | which is
an eigenvector of B of weight n/p’. Then oo’ is a section of £L&(*™) with weight np+n'p’,
and

n 1,7
NP po
n+n'
Furthermore, arguing as above with o replaced by oo’, we see that Xff, is not empy, that,

is, XI* meets XZ,F . Thus, the irreducible component Xz of X”F is uniquely determined
by F. Furthermore, p € Pg,.(XF, L) so that F is contained in Pg,(Xp,L)NC.

Conversely, let ¢ € Pg,.(Xg, L)NC%. Then the Gp-variety X g x (Gr/GrNP) contains
semistable points for £L&™ x L,,, where m is some positive integer. On the other hand,
because T acts trivially on the irreducible variety Xz, it acts on the fiber of £ at any
point of Xz via a character x. Then the character my +mgq|r, must be trivial (otherwise,
there are no semistable points). This holds for ¢ replaced with p; thus, ¢ —p € lin(F'), and
q is in the affine space aff (F') spanned by F. So we have

F°C Pg,.(Xp,L£)NC° C Pg(X,L)Naff(F).
Because F' is a face of Pg(X, L), we conclude that
F = PGF(XF,,C) NCx = PGF(XF,,C) NC.

This proves (ii).
If F consists of a vertex, then Tr = T. Let x be as above; then Pg, (XF, L) consists

of the point —y. Conversely, if Pg, (XF, L) is a general vertex of Pg(X, L), then Tp =T
by (ii). Together with (i), this proves (iii).

Remark. Let p € Pg(X,L£)°. Then we saw that X contains a nonempty open subset,
stable by P and isomorphic to P* x Z where Z is stable by L and fixed pointwise by
[L, L]. Tt follows that P is the stabilizer of a general B-orbit in X [Kn;§2]. In particular,
P, and hence Cx, is independent of L.

Lemma 1. Let Z be an affine variety with an action of a torus T. Let X be the character
group of T', let C' be the convex cone of Xg generated by all weights of T' in C[Z], let lin(C)
be the largest linear subspace contained in C, and let T’ be the subtorus of T' associated
with lin(C). Then ZT' is non empty, irreducible and contains all closed T-orbits in Z.
Moreover, for all z € Z T’, the nonzero weights of T" in the space T,(Z) are contained in an
open half space, and the convex cone generated by these weights identifies with the image
of —C' in the quotient Xp/lin(C).

10



6. Proofs of Lemma 1, Theorem 2 and Theorem 3

Proof of Lemma 1. We can choose a one parameter subgroup A of T such that A is positive
on all points of C'\ lin(C'). Then A vanishes on lin(C) and thus, the image of X is contained
in T'. Moreover, for each z € Z, the limit of A(¢)z as t — oo exists and defines a surjective
morphism Z — Z*. In particular, Z* is irreducible and contains all closed T-orbits in Z.

Because the linear part of C is the space of characters of T' which vanish on T”, we
can find X as above, such that Z* = ZT'. So ZT" is non empty and irreducible. Let I be
the ideal of z in (C[Z]. Then I is T'-stable and the T'-module I/I? is the dual T,(Z)*.
Thus, all weights of 77 in T,(Z)* are in C/lin(C). Conversely, let x be the weight of an
eigenvector f of 77 in C[Z]. If x ¢ lin(C) then f(z) = 0 (because z is fixed by T”), that is,
f € 1. Let n be the integer such that f € I™\ I"*. Then Y is a weight of 7" in I™/I™*1.
Thus, x is a sum of n weights of T” in I/I?. Tt follows that the convex cone C/lin(C) is
generated by the weights of 7”7 in T,(Z)*.

Proof of Theorem 2. Set F := Pg/(X',£) NC. Choose p € FY and define ng, P, o, X,
Zs and C as in the proof of Theorem 1. Then, as observed in this proof, the cone C is

generated by —p + Pg(X, £). Furthermore, X, is isomorphic to P* x Z, and Z, is fixed
pointwise by [L, L]. Thus

Ty(X)/Ty(Uz) = Ty(X)/Ty(Pz) = Ty(Z,)

for all z € Z,. Together with Lemma 1, this shows that (i) implies (ii), and that C is
generated by the opposite of the weights of 7" in T,(X)/T,(Ux).

Conversely, assume (ii). Then, as in the beginning of the proof of Theorem 1, we can
choose o such that X! is not empty. Thus, X’ contains contains (G’ N P*) x ZI" as a
dense open subset, and we conclude by Lemma 1 again.

Proof of Theorem 3. Set -
- @ rexee

Because £ is ample and G-linearized, R is a finitely generated graded algebra, where G
acts by automorphisms; because X is normal, R is normal as well.

By [Kr], it follows that the graded subalgebra RU is finitely generated and normal. Set

oo oo

@ X £®n (B) @ (RU)gTT)Lp

n=0 n=0

Then A is a graded, finitely generated normal algebra as well (to see this, consider the
algebra RY[t] graded by the group Xg x Z, where t is an indeterminate of degree (—p, —1);
then A is the subalgebra of RU[t] consisting of all elements of degree 0).

Similarly, the space

o0
Ap =@ T(Xp, L&) 5r)
n=0

11



is a finitely generated graded domain. Restriction to X defines an algebra homomorphism
r:A— A F-

For any homogeneous element ¢ of positive degree in A, we check that r is an isomorphism
after inverting o. By a classical argument (see Lemma 2 below), it will follow that 7 is an
isomorphism.

Let o0 € I'(X, £®”)££) be a homogeneous element of A, with n > 0. Then

Rll/o]= P T(X,,L®™)
whence -
Allfol= @ T(X,, L))

Let Z, be as in the proof of Theorem 1. Then we have

Alljo]= @ T(Z, ™5
and -
Apll/ol= @@ T(ZI", L™

because XIF = (Gp N P*) x ZXF, and ZIF is fixed by [Gr N L,Gr N L]. We claim that
the restriction map
T 2 D(Zy, L2™)D) — T(217, £&™)T)

is an isomorphism for all m.

Indeed, this map is surjective, because ZX* is a closed T-stable subvariety of the affine

T-variety Z,. For injectivity, consider first the case where p € F°. Let s € I'(Z,, £®m)$ff,2
such that 7, (s) vanishes everywhere on ZI . Then s"/c™ is a regular T-invariant function
on Z,; by Lemma 1, this function vanishes on all closed T-orbits. Thus, s = 0.

In the general case where p € F NC%, let F(p) be the smallest face of Pg(X, £) which

contains p. Then p € F(p)° C F, whence Tp(,) D Tr and X2rw XTr. By the argument

Tr(p)

above, restriction to X, is injective; thus, restriction to XI¥ is injective as well.

If moreover p is a vertex of Pg(X, L), then Tp =T = Gp = Bp. Let x € Xp, then T
acts on the fiber £, via a character which depends only on Xz, and which must be equal
to —p. It follows that T acts on I'(X, L&) via the character np.

Lemma 2. Let r : A — A’ be a homomorphism between finitely generated graded
domains. Assume that A is normal and that the localization v : A[l/o] — A’[1/0] is an
isomorphism for any homogeneous o € A of positive degree. Then r is an isomorphism.

12



Proof. The assumptions imply that r is injective; we shall treat it as an inclusion, and
identify the fraction fields of A and A’. If dim(A) = 1 then A is a polynomial ring in a
homogeneous variable and the assertion is clear. If dim(A) > 1, let P be a prime ideal of
A of height one. Then A\ P contains a homogeneous element of positive degree; thus, A’
is contained in the localization Ap. Because A is normal, it follows that A = A'.

7. Proofs of Theorems 4, 5 and 6

Proof of Theorem 4. Let eg- be the base point of G/B~. Then the T-fixed points in X
are the
z(u,v) := (uep-,vep-)

where (u,v) € W x W. Observe that T acts on L, ) via the character —u()) — v(p).
Moreover, the multiset of weights of T' in Ty, ,)(X) is the union (with multiplicities) of
u(®T) and v(PT).

Let (u,v) € W x W such that u()\) + v(p) is dominant regular. Then, for o € ®T, we
must have (u(A), &) > 0 or (v(5), &) > 0. It follows that

Ot Cu(®@T)uv(dH).
Taking complements in ® and then opposites, we obtain
uw(®t)No(dT) C 7.

Thus, all weights of T in Ty, 0)(X)/Ty(u,w)(Uz(u, v)) have multiplicity one, and there are
as many such weights as positive roots. So condition (ii)’ in Theorem 2 is equivalent to:
there exists w € W such that

w(@T) Uv(@1) = ¢t Uw(®') and u(®) Nv(@1) = & Nw(d™).

This implies in turn that (u,v) is admissible. Conversely, for admissible (u,v), we have
u(®T) Nwv(®T) C & and the multiset of weights of T' in Ty (y,0)(X)/Ty(u.w) (Uz(u,v)) is
w(®T) (with all multiplicities equal to one). Thus, condition (ii)’ holds, and u(\) +v () is
a general vertex of Pg (A, ). By Theorem 2, the tangent cone at that vertex is generated
by —w(®*). Moreover, by Theorem 3 and the fact that z(u,v) is an isolated fixed point,

the space (V(A) ® V(u))%)w(u)

Proof of Theorem 5. Because Pg(A, p1) is contained in C and has the same dimension, this
polytope is the set of all ¥ € C which satisfy the inequalities corresponding to all general
facets. Let F' be such a facet, with associated subtorus Tr C T. Let G be the centralizer
of Tr in G, then the irreducible components of X7 are the spaces

is one dimensional.

(Gr x Gp)z(u,v)
for (u,v) € W x W; each of them is isomorphic to Gr/Br X Gr/Bg.
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Choose (u,v) such that Xp = (Gr X Gr)z(u,v). Because F = Pg,.(Xp,L)NC is of
dimension £ — 1, the same holds for Pg, (Xp,L). It follows that the semisimple rank of
Gr is £ — 1. Thus, TF is the center of G, and is the image of a one parameter subgroup
6 of T. Furthermore, there exists w € W and a € A such that the root system of (Gp,T)
has a basis consisting of the w(3) where 8 € A and  # «. Then 0 is a positive multiple
of w(m,) where m, is the fundamental weight associated with «.

By condition (ii)’ of Theorem 2, there exists a multiset F consisting of integers of the
same sign together with 0, such that

O(u(@T)Uub(v(@T)) =0(@T)UE
(union as multisets). Taking opposites and then unions, we obtain
0(®) = B U (—E),

that is, F = ®} or E = ®_ (because §(®) = ®,). In the former (resp. latter) case, we
obtain

wu(@T)y Uw to(@1)y = w1 (@T), U DT (resp. w1 (@), U D)),
that is, (w™lu,w™lv,w™!) is a-compatible with sign +1 (resp. —1). Furthermore, by
Theorem 2, Pg, (X, L) meets C°; it follows that Pga (w™ u(A), w1 v(\)) meets w='(C?).
Thus, the triple (w™lu, w™lv, w™!) satisfies the conditions of Theorem 5. Set ¢ = +1 in
the former case, and —1 in the latter case. As u(\) +v(u) € Pg,(XF, L), we have by
Theorem 2:

e(0,v) > (0, u(X) + v(n))
for all v € Pg(A, i), with equality on F. Equivalently,

ew H(V)a > wu(N)g + w (N g

with equality on F'. Finally, the assertion on multiplicities of tensor products follows from
Theorem 3.

Proof of Theorem 6. Set X := Fr(V(A)) and £ := L,. Let p be a general vertex of
Pg(m, A\) and let X, be the corresponding irreducible component of XZ. Then X, is an
orbit of the centralizer of T' in GL(V(X)). As a consequence, X, is a product of partial
flag varieties.

By Theorem 3, the restriction map

P rx, P - @ (X, £°7)
n=0 n=0

is an isomorphism. Because £ is an ample line bundle on a product of partial flag varieties,
the graded algebra in the right hand side is generated by its elements of degree one. It
follows that I'(X, £) contains eigenvectors of B of weight p.

14



If moreover all weights of T in V() have multiplicity one, then T fixes only finitely
many linear subspaces of V' ()). It follows that X7 is finite, and that X, is a point. Thus,
the multiplicity of V(p) in S™V()) is one.
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