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Abstract

In this paper, we give general curvature estimates for constant mean
curvature surfaces immersed into a simply-connected 3-dimensional space
form. We obtain bounds on the norm of the traceless second fundamental
form and on the Gaussian curvature at the center of a relatively compact
stable geodesic ball (and, more generally, of a relatively compact geodesic
ball with stability operator bounded from below). As a by-product, we
show that the notions of weak and strong Morse indices coincide for com-
plete non-compact constant mean curvature surfaces. We also derive a
geometric proof of the fact that a complete stable surface with constant
mean curvature 1 in the usual hyperbolic space must be a horosphere.
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1 Introduction

In 1983, R. Schoen [16] proved a curvature estimate for stable minimal surfaces
in IR?. The Gauss curvature K of a stable minimal surface M, with boundary
OM, immersed in IR?, satisfies the estimate

1) K (20)| < Cd(z0,0M) 2,

where C' is a universal constant and d(zo, 0M) the distance of the point zg to the
boundary. This estimate is very useful to study minimal surfaces. For instance,
when M is a complete stable minimal surface immersed in IR?, letting R tend to
infinity, estimate (1) implies that M is a plane (a result proved independently
by do Carmo — Peng and Fischer-Colbrie — Schoen).

Previously, Heinz [10], Osserman [13] had proved similar estimates in some
particular cases and Schoen, Simon, Yau [18] other curvature type estimates in
higher dimensions.



The purpose of the present paper is to prove similar estimates for stable sur-
faces M with constant mean curvature H immersed in a 3-manifold M (c) with
constant curvature ¢. The methods are very much inspired by those of [16].
Denoting by A° the traceless second fundamental form of the immersion, we
shall prove estimates of the form

|A%2(z9) < C(A)R™2 and |K,(z0)| < C(A)R2.

provided that the ball B(zg, R) C M is relatively compact and that R satisfies
one of the following conditions

(A) c+H? <0 and 4R*(c+ H?)_ <A,
or
(B) c+H? >0, and 4(c+ H*)R? < 77,

where A is a free parameter.

Note that F. Sauvigny [15] obtained an estimate of the form |K(zo)| < CR2,
with a constant which depends on the product HR for surfaces immersed in
IR3. Let us also point out that the estimate of Heinz and Osserman has been
generalized to the constant mean curvature case by Spruck [21] and that Ecker
and Huisken [6] obtained similar curvature estimates for graphs with prescribed
mean curvature in the Euclidean n-space.

When ¢ + H? = 0, there are no restrictions on the size of R in our estimate.
This is not very surprising in view of Schoen’s result [16] and of the Lawson
correspondance between minimal surfaces in IR® and surfaces with constant
mean curvature 1 in TH? (see [2, 12] and Section 6.3). We are then able to give a
different proof of Silveira’s result [19] which states that a complete stable surface
with constant mean curvature 1 in IH? is a horosphere. We refer to Section 4
for more details.

When ¢+ H? > 0, one can show (see Section 6.5), following an argument of H.
Rosenberg and A.Ros in the Euclidean case and of Ronaldo Freire de Lima in
the general case that the limitation on the radius R is necessary.

We shall in fact give stronger results and consider the case in which the im-
mersion is only assumed to have finite index (see Theorem 4.2 for a precise
statement).

As is well-known, there are two different notions of stability for complete con-
stant mean curvature surfaces. Both involve the stability operator L of the
immersion (see Section 6.2.2). For strong stability, one considers the operator
L acting on all smooth functions with compact support in M, while for weak
stability, one considers the operator L acting on smooth functions with compact
support having mean-value equal to zero on M. Using our curvature estimates
and [1], one can show that these notions coincide for complete non-compact
surfaces.

Notations: Let i : (M,g) — (HS(C),y) be an isometric immersion of an
oriented Riemann surface into a simply-connected 3-manifold with constant
curvature c. We choose a unit normal field v along the immersion. Let A :
TpM — T, M be the shape operator associated to the second fundamental form



and let kq, ko be the eigenvalues of A. The mean curvature H of the immersion
is given by 2H = k; + ky. We assume H = C't and we note A° = A — HId the
operator associated with the traceless second fundamental form. Both tensors
A, A° satisfy the Codazzi equation. The stability operator L, is given by

Ly = Ay + {|A°F +2(c + H?)}
where A, is the non-positive Laplacian.

We assume furthermore that the immersion ¢ is (strongly) stable i.e. that the
second variation of the area is non-negative for all deformations with compact
support:

—/ ¢Lgpdvg > 0
M

for all smooth functions ¢ with compact support in M, with ¢ vanishing on M
if M has a boundary. Here dv, is the Riemannian measure associated with the
metric g.

The stability assumption implies that the inequality

(2) /M COLypdv, < /M 1P dv,

holds for any C* function ¢ and for any Lipschitz function with compact sup-
port ¢ on M (Lemma 6.2 in the Appendix). We have denoted by |d({|, the norm
of the differential of the function ¢ in the metric g.

As in [16], the proof of our curvature estimates consists in applying (2) to
different well chosen functions. The paper is organized as follows.

In Section 2, we recall the well-known iteration method of de Giorgi, Moser and
Nash; it will be used repeatedly in the paper.

Section 3 is devoted to studying conformal isometric immersions of the unit
disk. Similar results, in the stable case, were obtained in [16] (Theorem 1) and
in [5] (in a more general setting). Our result (Theorem 3.2) is more precise and
applies in the finite index case as well.

In Section 4, we state our curvature estimates and we give some applications (in
particular to the equivalence between weak and strong stability in the complete
case).

Section 5 is devoted to the proof of Theorem 4.2.

Several results, which we use throughout the text are gathered in the Appen-
dices.

The authors are grateful to Manfredo do Carmo, Pascal Collin, Geraldo de
Oliveira Filho, Harold Rosenberg and Walcy Santos for stimulating discussions
during the preparation of this paper.

2 The de Giorgi—Moser—Nash iteration method

In this paper, we will apply the de Giorgi-Moser—Nash iteration method re-
peatedly, with slight variations, in order to obtain our curvature estimates. The
purpose of this section is to recall the main lines of this method for the conve-
nience of the reader. The iteration method is based on Sobolev inequalities.



2.1 Sobolev inequalities

Let (M,g) be a Riemannian surface. The main assumption we need is that
(M, g) satisfies a Sobolev inequality of the form

3) / Pog) " < Aue( /Mldflgdvg+ /MBM|f|dvg)

for all real valued, C'-functions with compact support in M, f € C}(M,R).
Here |df|, denotes the pointwise norm of the differential of f (or equivalently
of its gradient) with respect to the Riemannian metric g and dv, denotes the
Riemannian measure. This Sobolev inequality involves a constant Ajs and a
non-negative function By which a priori depend on the geometry of (M, g).

Such an inequality, with Ay; = A(n), a constant which only depends on the
dimension n, and with By; = 0, holds when (M, g) is the Euclidean space
(IR?,e) or when M is a minimal surface immersed in Euclidean 3-space.

A similar inequality, with Ayy = A(n) and By = |H|, holds when (M, g)
is isometrically immersed with mean curvature H into a simply-connected Rie-
mannian manifold (M, g) with non-positive sectional curvatures (see [11], where
a more general situation is described and [4], where it is shown that one can
choose Ay; = A(n,h) and By = 0 when M has constant sectional curvatures
equal to —1 and |H| < h < 1). Note that no completeness assumption is made
on (M,g).

Given p > 1 and u € C}(M,IR) we apply inequality (3) to f = |u|? and we
obtain

/ [P dvg) % < pAn / (P~ |dul, dv, + / Barlul? dv,).
M
Holder’s inequality with % + % =1 gives

+

a » P+l
([t o) ® < pane{ ([ 100l dog)® ([ Burlul) P aog) ).

Holder’s inequality with =1 gives

p+1 + p+1

1 1

(/M ul?? dv,) spAM(/S ( )dvg)%{(/M du? dvg)t + / B u? dvy)¥)
upp (u

and

(4)(/ |u|2pdvg)rl'7 < 2p2Aﬁ,I(/ dvg)%{/ |dul? dv, +/ Biu® dvg},
M Supp (u) M M

for any u € C}(M,R) and any p > 1.



2.2 The de Giorgi—Moser-Nash lemma

Lemma 2.1 Assume that the Riemannian manifold (M, g) satisfies the Sobolev
inequality (8). Let B(R) be some relatively compact geodesic ball in (M,g),
centered at some point o and assume that it satisfies the volume estimate

(a) there exists some constant Cy such that fB(R) dvy, < C1R?.

Let f,h be real valued C* functions on B(R) such that h > 0 and Agh+ fh >0
pointwise in B(R), where A, is the non-positive Laplacian on (M,g). Assume
furthermore that

(b) there exist some number ¢ > 6 and some constant Co such that

(/ h*1 dv,) Ha < CyR™2/1,
B(3R/4)
(c) there exists some constant Cy such that for all a € [0,1/2],
[ By, < Car
B(3R/4)

Then there exists a constant C := C(Apr, C1,Co,C3) such that

sup h? < ¢*CR™2.
B(R/2)

Proof. The proof of this lemma uses Sobolev inequality (4) and the de Giorgi—
Nash—Moser iteration method. In the proof, we will denote by ¢; constants
which only depend on Ay, Cy, Cs, Cs.

e Step 1 : integration by parts.

Let ¢ be a non-negative Lipschitz function with compact support in B(R). Let
k € IR, with k£ > 1. Then

|d(Ch*)I2 = h**|dC] + K*¢h** 2| R} + 2k¢h* " (dh, dC),

and
(d(CR**),dh)y = 2CH** 1 (dh, dC)y + (2k — 1)¢*h** 2 |dR|?.

Since k > 1, we obtain
|d(Ch®)[5 < B2*[dCL + K(d(CPh* 1), dh),.

Multiplying the inequality (A, + f)h > 0 by ¢(>h**~! and integrating by parts,
we find

- / Ch* A hdv, = / (d(C*h*1), dh), dv, < / fEh?* du,
B(R) B(R) B(R)

and finally

(5) / |d(¢hF) 2 dvy < / h**|dC|? dv, + k/ fFCR* du,.
B(R) B(R) B(R)

Now given a € [1/2,3/4] and r € [0,3/4 — a], we define

B, := B(aR) C Boyr := B((a+7)R) C B(3R/4),



and we choose a family of Lipschitz functions { = 6 o p depending on a,r, R,
where p is the geodesic distance to the given point zg in (M, g) and where 6 is
a smooth function such that 0 <0 <1, =1 on [0,aR],§ = 0 on [(a + r)R, 00[
and |¢'| < 2/(rR).

e Step 2 : using the Sobolev inequality.

Plugging u := (hF into the Sobolev inequality (4), with ¢ as above and p = g,
we obtain

(/B G < q%l(/B ORI

B(R)

+/ B3, (¢h*)? dvy }
B(R)

which gives, using formula (5)

(6) (/ H2*9 )3 < qucl(/ ) { [ Bl dv,
a B(R) Bagr

+/ (f + Bip)+h** dvy }.
Batr

e Step 3 : applying Hélder’s inequality.
We now apply Holder’s inequality with % + % = 1. Since ¢ > 6, we have
/(¢ —2) <3/2and

_2q_

™ ([ wran)t <wfa(| o) {([ 1acian)
B, B(R) Bayr

R

a+r

Applying assumption (a) and the fact that |§'| < 2/(rR) we get

q—2

_2q_ q—=2 q—2 4
(8) (/ |d¢|g~" dug) © < czr_zR_Q(/ dvg) @ <ezr ?R7a.
Bayr B(R)

Using assumption (¢) we obtain

q—2

o) ([ +B0Ta0)T <ant,

We can now plug inequalities (8) and (9) into (7) to obtain

(10) (/ h20% dy,) @ < cyq?hR™E (r? +1)(/ hit dv,) &
B, Bayr
for all k£ > 1.
e Step 4 : the iteration.
We now define k; = 2, r; = 2773 a9 = 3/4,a;41 = a; — i, for i > 0, ie. a; =
% + 3z, and



I(i) = (/B 1202 g, ) =

Rewriting the formula (10) with k;11,a;1 and r;, we obtain

I(Z + 1)2i+1 S q2662i+1R—2/Q(22i+6 + 1)I(i)2i+1.

Then:

it+1 . i i
(11) Ii+1) < (6626q2)1/2 (23(z+1))1/2 ' p-2/q2 +1I(i).

Tterating (11), we obtain

I(i +1) < C(i + 1)R™24+1/91(0)

i1 i+1 .
where di+1 = Z 2—] and C(’L + 1) = (q20626)di+1 H (8-7)1/2 .
j=1 j=1

Assumption (b) gives the initial estimate for I(0):
1(0) = ( / B2 dvy) " < Co R,
B(3R/4)
Thus we get:

(12) I(i+1) < C(i + 1)CoR™2T2/a-2dix1/a
Letting ¢ tend to infinity in (12), we obtain

(13) lim I(i +1) = sup h*<¢*CR™?
1—00 B(R/?)
where the constant C' only depends on Ay, Cy, Cs, Cs. n

3 On conformal disks

Let i: (Dy,9) = (M3(C),§) be a conformal isometric immersion of the disk of
radius r in IR? into a 3-manifold with constant sectional curvatures ¢ (we do not
need M to be simply-connected in this section). Assume furthermore that the
immersion has constant mean curvature H. Write the metric g as

g= z*g = A26 = h_26
where e = |dz|* is the Euclidean metric in D, and 2)* = |di|? (where |di|? :=
di(Z |2+ |di(Z|2). The purpose of this section is to give a lower bound on the
oz g oylg &

function A (or equivalently an upper bound on the function h) under a stability
assumption on the immersion ¢. Theorem 3.1 below generalizes Theorem 1 in
[16]. The method of proof is similar.

Theorem 3.1 Leti: (D,,g) — (Hs(c),y) be a conformal isometric immersion
of the disk of radius r in IR® into Hg(c). Assume that i has constant mean
curvature H. Let B(R) denote the geodesic g-ball of radius R with center at
0 and assume that B(R) is relatively compact in D,. Assume finally that the



immersion i is stable on B(R), i.e. that the stability operator —L, is non-
negative on the space C3°(B(R)).

Then there exists a universal constant Cy > 0 such that

-1

. -2> —2 D2 2 2_
B(IE%)W”Q—COT R*(1+ R*(c+ H?)-)

We shall in fact prove the following stronger result.

Theorem 3.2 Leti: (D,,g) — (H3(c),g_}) be a conformal isometric immersion

of the disk of radius r in IR® into MS(C). Assume that i has constant mean
curvature H. Let B(R) denote the geodesic g-ball of radius R with center at
0 and assume that B(R) is relatively compact in D,. Assume finally that the
the stability operator Ly of the immersion i is bounded from above by some
non-negative number 2¢ on the space C§°(B(R)).

Then there exists a universal constant Cy > 0 such that

. . 9 —1
88, il > Cor 2R {1+ B2 (e H)- 4 )}

Remarks. The assumption that L, is bounded from above on C§°(B(R))
is equivalent to saying that the least eigenvalue of L, on B(R), with Dirichlet
boundary condition, is bounded from below by —2¢. Such an assumption is
verified for a complete immersion with finite Morse index in the sense of [7].

Proof of Theorem 3.2. In the following, ¢; > 0,5 = 1,2..., will denote
universal constants.

Step 0: Rescaling.

Let i, : (Dy,g) — (M °(c), ) as above, let m, (D, §) — (Dy,g) be the r-dilation
and let i = i, o m,. The equality i*g = m}g = g implies that g = \e and
g = A2e with A(2) = rA(r2).

By rescaling, we may therefore assume that » = 1 and we will denote by D the
unit disk D;.

Recall the general formula which relates the curvatures K, Ky, of two conformal
metrics g = €>“gg in dimension 2:

Kg=e "{Kg — Agou} = e 2Ky — A

(with non-positive Laplacians).
Since the metric g is conformal to the Euclidean metric e = |dz|?, the (intrin-

sic) Gauss curvature of the metric g is given by K, = —AgjlnX = Ajlnh,
where A, = A72 (33—:2 + %) is the Laplacian for the metric g. Since A,Ilnh =

h='Agh — h~?|dh|?, it follows that

(14) Agh = Kgh+ h™tdh|} > Kyh.

The Gauss equation of the immersion can be written as

(15) 2K, = —|A%? +2(c + H?)



(see (80) in the Appendix and recall that A° is the traceless second fundamental
form of the immersion) so that inequality (14) gives

1
(16) Agh+{5|A0|2 —(c+ H*)}h > 0.

Let a:= (c+ H?)_ = max{0, —(c + H?)} denote the negative part of (c + H?)
and let f denote the function f := %|A°|2 + a. With these notations, inequality
(16) implies that

(17) Ah+ fh>0.

We will apply a variant of the de Giorgi-Moser-Nash lemma to this inequality in
order to bound A from above. For this purpose, we need some initial estimates
(compare with Lemma 2.1). As in [16], they will be given by the stability
assumption (more precisely, by the following lemma applied to suitable functions
¢ and ¢). We will repeatedly use the fact that the metric g is conformal to the
Euclidean metric e.

In the sequel, we denote by |dy|, and |dy|. the norm of the differential of a
function ¢ respectively in the metrics g and e. Recall that ¢ = h~2e and
observe that |dp|2 = h?|dy|? and that the Riemannian measures are related by
dvg = h™?dv. (notice that |dg|? = @2 + @2 on D).

Lemma 3.3 Under the assumptions of Theorem 3.2, the stability inequality

(18) /DC2¢Lg¢dvg < /D(p2|dg|§ dv, +2€/D¢2C2 dv,
holds for all $ € C*(D) and aoll { € C§*(B(R)).

This lemma follows from Lemma 6.2 in the Appendix, applied to the operator
L=L,-2(. n

Step 1: Initial estimates.

As in Lemma 2.1, we need estimates of fB(3R/4) h?? dv,, for some p € [6, +oo,
and of fB(3R/4) f*dve, for all 1 < a < 3/2. Using the expression of the stability

operator L, = A, + {|A°? + 2(c + H?)} (see formula (83) in the Appendix),
equation (14) and the stability condition (18) with ¢ = h, we obtain

/<2{|dh|§+(Kg+2(c+H2)+|A°|2)h2}dug 5/ h2|d<|§dvg+2£/ h*¢* du,
D D D

for any function ¢ € C§°(B(R),R) and, more generally, for any Lipschitz func-
tion with compact support in B(R). Using (15), taking into account the relations
between the metrics g and e and using the conformal invariance of the Dirichlet
integral, we obtain

(19) /DCZ{|dh|§+(%|A°|2+3(c+H2)—2£)}dveS/Dh2|d§|§dve.

o Estimate of / 2P du, :
B(3R/4)



Let us denote by a' the number a' := (¢+ H?)_+£ = a+/{. Using equation (19)
and the relationship between the metrics g and e, we obtain the inequalities

/ d(Ch) dv, < 2 / C2ldh[2 dv, + 2 / B2|d([2 do,
D D D

—~
[\]
(=]

=
AN

4/ h2|dC|§dve+6a’/ 2 dv,
D D

4/ |d§|§dve+6a'/ ¢ dve.
D D

Let ¢ be a cut-off function of the geodesic distance in the g-metric, with { = 1 on
B(3R/4),¢ = 0 outside B(7TR/8), and |d(|? < ¢; R~ for some universal constant
¢1 > 0 independent of R. The Euclidean Sobolev inequality, i.e. inequality (4)
with Bps = 0, applied to the function u = Ch gives

(/D(Ch)z” dv.) """ SP202(/dee)1/p/D|d(Ch)|gdfue.

Taking (20) into account, with the above choice of ¢, we obtain our first initial
estimate (to be compared with assumption (b) in Lemma 2.1)

IN

( / WP dv,)? < ApPes(4 / \d¢|2 dv, + 6a’ / ¢ dv,)
B(3R/4) D D

(21)
< ples(R7? +d)
for any p € [1,+oo[, where ¢3 is a universal constant.
o Estimate of [pyp 4 f* dve :
From the definitions of a and f, we have 2f = |4°|2 + 2a. Choosing a suitable

cut-off function ¢, with compact support in B(R) and such that { = 1 on
B(7R/8), we obtain from (19)

(22)/ (|A°)? + 2a) dv, < 2/ |d¢|? dve + 8a'/ Cdve < ca(R2+4).
B(TR/8) D D
Lemma 3.4 Let ¢ := h(|A°]> + 2a)®, for 0 < a < 1. Then
B9 > F Dy Ing > —(5 + 2 (AP +20) 42
Proof of the lemma. Using moving frame techniques as in [22] or J. Simons’

equation (Proposition 6.7), we have A,In|A°?> = 4K, which implies (using
Lemma 6.1 in the Appendix) that

A 4K, | A0
A,In(|A%? +2a) > —L———.
g I'l(l | + a) el |A0|2 +2a

Since K, < 0 when a # 0, if follows that AyIn(JA%? + 2a) > 4K,. One can
now write

10



1
Aglng > (1+40)K, > ~(5 +20)(|4°F +2a),

and the lemma follows. nm
By applying the stability condition (18), with ¢ = h(]A°|? + 2a)® and with a
suitable cut-off function {, we obtain

1
& —2a)/ R4+ 2a)+2 dy, 5/ B2 (AP + 20)*|dC 2 dv,
2 B(3R/4) D
(23)

+ (da+20) / B2C2 (| A2 + 20)2° dv,.

D

Choosing « small enough, for example a = 1/8, and taking the relationship
between the metrics g and e into account, we obtain

1
! / (4P + 20)"*dv, < / (149 + 20)/4|d(]2 do,
4 /B(3R/4) D

(24)
+ 4a'/ (A + 2a)Y* dv,
D

since a’ = a+£. Using (22), Holder’s inequality and the fact that the Euclidean
volume is controled we have

/ (AP + 20)/* dv, < 05(/ (1A% + 2a) dv,)*
B(TR/S) B(TR/S)

(25)
< C@(R_2+al)1/4

for some universal constants ¢s,cg. With a suitable choice of ¢ in (24), we get
/ (JA°P2 +2a) 4 dv. < e (R2+4d) / (|A°% + 2a)'/* dv,
B(3R/4) B(7TR/8)
< cg(R™2+4a)%4

Finally, we obtain our second initial estimate
(26) ( / (A% + 20)/ dve) " < co(R™ + ).

B(3R/4)
Step 2: The iteration.

With estimates (21) and (26) at hand, we can apply the de Giorgi—-Moser—Nash
iteration method to (17), Agh + fh > 0. Formula (5) is still valid

[ @ < [ iR o,k [,
B(R) B(R) B(R)

11



and gives, by conformal invariance and using the relation h%dv, = dv,,

(27) / |d(Ch®)|? dv, < / R =21dC|2 dve + k / FCER2R2 du,.
B(R) B(R) B(R)

Now given t € [1/2,3/4[ and r € [0,3/4 — t], we define
B; := B(tR) C B;yr :== B((t + r)R) C B(3R/4)

and we choose a family of Lipschitz functions { = 6 o p depending on t,r, R,
where p is the geodesic distance to the point 0 in (D,g) and where 6 is a
smooth function such that 0 < 6 < 1,60 =1 on [0,tR],6 = 0 on [(t + r)R, 00[
and |¢'| < 2/(rR).

We apply the Euclidean Sobolev inequality to the function (h* and, using (27),
we get

28) /B h** dv ) < p’keo /B {h?*=2|d¢)? + FC2h*2) dv,.
t t4r

k k
Z(Ti)l) and ps := k(p—7}27)+2 and choose p > 10 so that py < 5/4.
We can apply Holder’s inequality, with p% + p% =1, to inequality (28) and we

obtain the analog of inequality (6)

Let p1i=

( hzkpd’l)e)% < p2k‘011{(/ |dc|§p2 dve)l/pz
B, Bitr

(29)
+ f”2dve)1/p2}(/ WPk do, ) 2D

Bt+'r Bt+r

Since B4, C D, we have
(/ |dC|§p2 dve)l/p2 <ciar?R7?
Biy,
and, applying Holder’s inequality and using (26),
(/ fP2 d'l]e)l/p2 S 613(/ f5/4 dUe)4/5 S 014(R_2 +al)
Bt+'r~ Bt+1-

since ps < 5/4. Plugging these inequalities into (29) we obtain

GO [ 1 d0)! " < press(R + @)+ 1)( [ 1*aw )
B, B

t+r

We now perform the iteration (as in the proof of Lemma 2.1, Step 4). We choose
g > 1 and we define k; = q2¢,r; = 2773 tg = 3/4 and t;41 = t; — 7y, for i > 0,
and

I(i,q) == (/B 2Pk dve)l/pk".

12



We can rewrite (30) with k;11,%;41 and r; as
I(i +1, q)k"+1 < p2015ki+1 (R_2 + a')(rﬁ + l)I(i, q)ki+1_1.
From which we obtain

(81) I(i+1,q) < (pPershiy122+9) 5 (R2 4 @) V/hisn I (3, g) 1= /i,

Define the sequence

{(1—%)(1—;9.1 ) (=)L ifg<i
Sij = ! o ?

1 T i
i ifj=1

Iterating inequality (31), we obtain

(32) I(i+1,q) < C(i + 1,q)(R™2 + a/)*(H19 [(0, g) P10
with

i
a(i,q) =) si;
j=1

1 1 1

B0 = (1= (1= ) (= )
Cli,q) = (Pe152)°00 [ (@hy)s.

Applying inequality (21), we have

I1(0,q) = (/ h2pa dve)l/pq <p*¢Pcs(R72 +ad').
B(3R/4)
Since B(i +1,9) =1 — a(i + 1, q), we have

I(i+1,q9) < C(i +1,q)(P*¢%c3)P (R + ).

Let us define 8(g) = lim; o B(i+1,¢) and a(q) = lim; o0 a(i+1,q) = 1-5(q)-
A straightforward computation gives

1 1 4
S <+
q @ q 3¢
which implies that 8(q) = 1 — ; + O(z) and a(g) = § + O(>) when q goes to
infinity. We also have, lim (p?¢;525)20+10 = (p?¢;526)*(@,
71— 00
Moreover
i+1 i+l
; Tl \Sit1,0 — 1 J\Sit+1,5 — i a(i+1,9)Ingq ,v(i+1,9)In8
zl—l>noloj_1—[1(4 ) zllglo j_l_Il(qs ) i1—1>noloe €
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i+1
where v(i + 1,q) = stz'_’_l’]‘. Then jsit1,; < q%j implies that y(i+1,¢) < d/q

j=1
— Jj
where § = Z TR
7j=1
Thus
i+1
: J I \Si+1.i a(q)gd/q
b fim [[@ kT <78
7j=1
This gives
sup h? < eirp?dt TP O(R2 4+ d)).
B(R/2)
and

inf A\ > Co(R™>+ad)"' =CoR*(1+ R%)™".

sl A2 o(R™" +ad) oR*(1+ R°a’)

once we have fixed some p > 10 and some ¢ > 1. This is the estimate we wanted
to prove. B

4 Curvature Estimates

The purpose of this section is to prove the following theorem which generalizes
Theorem 3 in [16].

Theorem 4.1 Let (M, g) be an oriented Riemannian surface. Leti: (M,g) —

(Mg(c),y) be an isometric immersion with constant mean curvature H of (M, g)
into a simply-connected 3-manifold with constant curvature c. Assume there are
positive numbers R' > R such that the geodesic g-ball B(R') centered at some
Zo in M, with radius R', is relatively compact in (M,g) and that the stability
operator Ly, with Dirichlet boundary conditions, is non-positive on B(R'). Let
A and K, denote respectively the traceless second fundamental form and the
Gaussian curvature of the immersion i.

Given A > 0, there exists a constant C(A), which only depends on A, such that

|A%2(z0) < C(A)R™ and |K,(z0)| < C(A)R™2.

under one of the following conditions

(A) c+ H?> <0 and 4R*(c+ H?)_ <A,
or
(B) c+H?>>0, and 4(c+ H*)R? < 7°.

We shall in fact prove the following, more general theorem.
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Theorem 4.2 Let (M, g) be an oriented Riemannian surface. Leti: (M,g) —

(M3(c),§) be an isometric immersion with constant mean curvature H of (M, g)
into a simply-connected 3-manifold with constant curvature c. Assume there are
positive numbers R' > R such that the geodesic g-ball B(R') centered at some
2o in M, with radius R', is relatively compact in (M,g) and that the stability
operator Ly, with Dirichlet boundary conditions, is bounded from above by some
number 2¢ > 0 on B(R'). Let A° and K, denote respectively the traceless second
fundamental form and the Gaussian curvature of the immersion 1.

Given A > 0, there exist positive constants C(A), c(A), which only depends on
A, such that

|A°?*(z) < C(A)R™? and |K,(z| <C(A)R™2
for all x € B(c(A)R), provided one of the following conditions holds,

(A) c+H?><0 and 4R*((c+ H?)_ +() <A,
or
(B) c+H?>0, 4(c+ H*)R? < 72,

and 4¢R? < A.

Remarks. Notice that when ¢ + H? = 0, the condition 4R?(c + H?)_ < A
in Theorem 4.1 is empty. Theorem 4.2 implies Theorem 4.1 by taking ¢ = 0.
The assumption that L, is bounded from above by 2¢ in Theorem 4.2 means
that the least eigenvalue of the operator L, in B(R'), with Dirichlet boundary
condition, is bounded from below by —2¢. Such an assumption is verified when
i is an immersion of a complete surface (M, g), with finite Morse index in the
sense of [7].

We postpone the proof of Theorem 4.2 to Section 5 and we now give two appli-
cations.

Let (M, g) — (H3(c), g) be a complete immersion with constant mean curvature
H. Once ¢, H are fixed, choosing some A > 0, we obtain from Theorem 4.2
uniform estimates for |A°| and for K, over M. Recall that one can introduce
two indices for the stability operator L,, namely the strong index Inds(Lg),
resp. the weak index Ind,,(L,), defined as the maximal dimension of a subspace
E of C§°(M), resp. as the maximal dimension of a subspace E of C§°(M) N
{f | [i fdvy =0}, such that [,, ¢Lgpdv, >0 for all ¢ € E (see [7]). These
indices satisfy the inequality

(33) Indy (L,) < Indy(L,) < Indy(L,) + 1.

Application 1. It follows from inequality (33) that weak stability implies
that the strong index is at most 1. On the other-hand, Theorem 4.1 implies
a uniform estimate for the Gauss curvature of a weakly stable surface M and
hence, according to [1], that the surface is strongly stable provided it is complete
and non-compact.

Application 2. Let M be a weakly stable complete immersion with constant
mean curvature 1 in TH?. Tt follows from the preceding application that the
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immersion is in fact strongly stable. We can then apply Theorem 4.1 with no
restriction on R because ¢ + H? = 0. This implies that A° = 0 and hence that
the immersion is totally umbilic. We have therefore obtained a new proof of
Silveira’s theorem [19].

5 Proof of Theorem 4.2

Proof of Theorem 4.2. The proof will take the remainder of this section.
For the sake of clarity, and although some arguments will be repeated, we will
give two separate proofs, one for each condition (A) and (B). Notice that we
may slightly restrict R in the arguments if necessary.

In the course of the proof, we will use the following notations :

(34) S':=S—( and a' = a+".

Recall that the Gauss equation of the immersion 4 can be written as

{ S:=c+H? and a:=S_ = (c+ H?)_,

1
(35) K, = —§|A°|2 + 8.

5.1 Proof of Theorem 4.2 under Condition (A)

e Step 1. Since S < 0, we have K, < 0 and the exponential map exp, is a

local diffeomorphism. Let us consider the ball By(R') C (T, M,exp} g).

We need the following lemma which appears in [8].

Lemma 5.1 Let (M,g) be a Riemannian manifold. Let ¢ : M — IR be a
continuous function and let L be the operator L := A, +q.

(i) If Q cC M is a smooth relatively compact domain in M, then L < 0 on
C§°(Q) if and only if there exists a function u : Q — IR, with u > 0 and u Z 0
on §, such that Lu < 0 in ;

(i) If M is complete non-compact, L <0 on C§°(M) if and only if there exists
a function u: M — IR, withu >0 and u Z 0 in M, such that Lu =0 in M.

Proof. We shall in fact only use Assertion (i) which follows by applying
Green’s formula and the fact that the first eigenfunction of L does not vanish
in the interior of Q. We refer to [8] for Assertion (ii). "

Applying Assertion (i) of the above Lemma to @ = B(R'), gives us a non-
negative function u on 2, such that (L, — 2¢)u < 0. We now consider the ball

Q := By(R') C (Ty, M, §), where §j = expy g- The function & = u o exp,  is
non-negative in . Since exp,, is a local isometry, we have (L — 2{)ii < 0.
Assertion (i) of the Lemma implies that the operator Lz — 2¢ is non-positive on
By(R').

Step 0. Since the immersion i o exp, : (Bo(R'),exp} g) — (Hs(c),y) is also
an isometric immersion with constant mean curvature H, it follows from the
preceding argument that we can from now on assume that M is diffeomorphic

to a disk.
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Since the ball By(R') is simply-connected, there exists some R", with R’ > R" >
R, such that (Bo(R"),exp}, g) is conformally equivalent to the unit disk (D, e),
i.e. there exists a diffeomorphism ¢ : D — By(R") such that ¢(0) = Or, » and
©*(exp},g) = A?e for some function \. We may also assume that R" < 2R.
Since exp,, is a local isometry, curvature estimates in Bo(R') imply curvature
estimates in B(R). We are then reduced to proving the following result.

Proposition 5.2 Let D be the unit disk in €, equiped with a Riemannian me-
tricg. Leti: (D,g) — (HS(C),@ be a conformal isometric immersion (i.e. g =
i*g = M2e, where e is the Euclidean metric), with constant mean curvature
H, such that the geodesic g-ball B(R) := B9(0, R) is relatively compact in D.
Assume furthermore that c+H? < 0 and 4R?((c+H?)_+£) < A for some A >0
and that the stability operator L, of the immersion, with Dirichlet boundary
condition, is bounded from above by 2¢ on B(R). Then, there exists a constant
C(A) such that

A% (@0) < C(A)R™ and |K, (z0)| < C(A)R.

e Step 2. We shall now continue with the proof of Proposition 5.2.

Let p denote the Riemannian distance to the point 0 € D with respect to the
metric g. Since K, < 0 by (35), Bishop’s theorem gives

(36) Ay p*>2

where A, is the non-positive Laplacian for the metric g. It follows from Lemma
3.3 that the following stability inequality holds

(37) /D CCoLypdv, < /D ¢?|dC|? dvg + 20 /D #*C? dv,

for any C'* function ¢ and any Lipschitz function ¢ with compact support in
B(R). Recall that the stability operator L, is given by

(38) Ly =A,+|A% +28S.

A recurrent idea in the proof is to get estimates by plugging well chosen functions
¢ and ( into (37). In the sequel, we shall denote by ¢; universal constants, by
¢i(A) constants which only depend on A, etc. . We shall also denote by D(1/2)
the Euclidean disk of radius 1/2.

We begin by choosing ¢ = ehr?/ RZ, where A is the positive number given in

the assumptions of Theorem 4.2. Since we may assume R < 2R in the above
construction, it follows that

1<¢<e*™ in D.

Using (36) a direct computation gives

¢Lyp = (AR 0" + A’R™4dp?|2 + |A% +25)¢”
(2AR™2 + 25 + |A")?) 47

Vv
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Using this inequality, the stability condition (37) and the conformal invariance
of the Dirichlet integral, we obtain

/D (2AR™? — 2a + |A°)?)¢*(* du,

IN

/¢2|dg|‘;’dug+23/ ¢*¢? dv,
D D
/ ¢2|dg|5dve+2e/ ¢*¢* du,
D D

where a := (¢ + H?)_, see (34). Using a suitable function ¢ of the Euclidean
distance to 0 € D, we obtain the following important estimate

(39) / (2AR 2 — 2a' +|A°?) dv, < c1(A)
D(1/2)

where a' = a+/, see (34). This estimate is meaningfull only when the integrand
in the left-hand side is positive. This is why we have to assume that 4a'R? < A
(unless a' =0 ie. ¢+ H? = 0 and £ = 0), see Condition (A) in the statement of
Theorem 4.2.

e Step 3. The above estimate involves the Euclidean disk D(1/2); in order to
be able to take the metric g = A\%e into account, we make use of Theorem 3.2
which gives the estimate

(40) M > CoR*(1+d'R*)™! on B(R/2).

We then have the following lemma.

Lemma 5.3 Under the assumptions of Proposition 5.2, define

~1vVCo
2
where Cy is the universal constant given by Theorem 3.2. We then have,

(41) b(A) = min{%, (1+A) } and Ry :=b(A)R,

(42) B(Ry) := B(Rp) C D(1/2)

and

(43) / (AR +|A%?) dv, < c1(A).
B(RA)

In particular

fB(RA) |AO|2 dvg < ¢ (A),
(44)

Vol(B(Ra)) < c2(A)R3.

Proof. We have g = A2, with A2 > CoR?(1 + a'R?)~! on the ball B(R/2).
Let ¢ be a geodesic issued from 0 and parametrized by arc-length in the metric
g- The inequality fORA |é(t)]edt < 1/2 impies that ¢(Ry) € D(1/2). To achieve
the inequality, it suffices to have fORA A7Heé(t)|dt < 1/2 ie. , if Ry < R/2,
RACy'R™Y(1+ a'R?)'/?2 < 1/2 and 4a’'R? < A. These conditions are satisfied
if 2Ry /R < C3/*(1 + A)~1/2, X
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e Step 4.
It follows from Lemma 6.1 [for m > 0,Ajlnu = f => A, (u+m)P > Bfulu +
m)P~1] and Proposition 6.7 [A, In|A°|? = 4K ] that the function f := (]4°|? +
m)'/?, with m > 0, satisfies the inequality

fl/2Agfl/2 > ng|A0|2f72

where K, is the Gaussian curvature of the metric g. It follows that

(45) F(Lg =20 f12 = F1RA V2 + | AP f +28'f > Ff

where F := |A%? + 28" + K,|A°>f 2 (recall formula (38) and the notation
S':=c+ H?-1Y).

We now define the function
(46) hi=(AR™? 428"+ |A°>)'/2 = (AR™? — 2a' + |A°?)'/2
where S’ := S — {,a' :== a+ ¢, see (34). Using the assumption 4a’R? < A, we
see that h actually exists and that
1
(47) §(AR_2 + A2 < (ART2 4| A%/,

We can deduce from Lemma 5.3 the estimate
(48) / 1 dv, < cs(A).
B(Ra)

Choose 0 <t <t+7r <1 and let § be a C'*® function with compact support on
IR such that 0 <6 <1, 0|[O,tRA] = 1,0|[(t+r)RA, oo[=0and |§'| < ca(rRy) 1.
Applying the stability inequality (37) with ¢ = h'/2 and ¢ = fop and inequality
(45) with f = h, we obtain

/ Fhdv, < / C2hM?(L, — 20)h'? du,
B(tRyp) B(Ra)
< / hld(|? dvg < cﬁ(rRA)—Q/ hdv,
B(Ra) B(Ra)
<

cwha) ([ ) ([ iaw)
B(Ra) B(Ra)

where F := K,|A%?h=2 + |A°|? 4+ 25’, and it follows from Lemma 5.3 and (48)
that

(49) / Fhdv, < cr(A)r—?Ry".
B(tRa)

Since K, <0, we have

F =K, |A°Ph 2 +|A°2 428 -2 > K, + |A°]> + 25 — 2¢ = %|A°|2 +35—2¢
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and finally (recall that S" := S —£,£ > 0)

1
(50) F> §|A°|2 +39'".

One can then write

/ v, = / (AR 2 + 25" + |A°P?) dv,
B(tRa) B(tRa)
- / (65" + |A°]?) hdv, + (AR — 45) / hdv,
B(tRa) B(tRa)
< 2 / Fhdv, +2AR™ hdv,
B(tRa) B(tRa)

where we have used the inequality (50) and the assumption 4a’R? < A. Finally,
using Cauchy-Schwarz, Lemma 5.3 and inequalities (48) and (49), we obtain

(51) / B dvy < 2¢7(A)r >Ry + cs(A) Ry
B(tRxA)
Choosing t = 7/8 and r = 1/16, we obtain

Lemma 5.4 Recall the notations (34). Define h := (AR_2-|—2S’-+—|AO|2)1/2 and
[ = —2K,|A°|>h=2. Under the assumptions S := c+ H? <0 and 4a'R* < A,
we have

() Agh+ fh>0.

There exists a constant c1g(A), which only depend on A, such that:

(i) [ W <),
B(7Ra /8)

(id) / h? dvy < c10(A)R},
B(7RA/8)

and, for all a € [0,1/2],

(iv) / B2 dy < o (A) R
B(7RA/8)
Furthermore,
(v) f < h? and hence / fit®dvg < c1o(A)Ry*™.
B(7TR4A/8)
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Proof. Assertion (i) follows from Lemma 6.1. We have already proved Asser-
tions (ii) and (iii) and Assertion (iv) follows by interpolation. Furthermore, since
K,<0,f=f4 <—2K,=|A%?-25 =h?—-45+20—AR™2 < h?+4a'—AR™2
The assumption 4a’ R? < A implies that f < h? which proves Assertion (v). m
This lemma says that Assumptions (a) and (c) of Lemma 2.1 are satisfied (in-
deed, (a) follows from Lemma 5.3, control of the volume of the ball, and (c)
follows from Lemma 5.4 if we can prove that By = 0). In order to be able
to apply Lemma 2.1 to the present situation, it therefore remains to show that
Assumption (b) in that lemma is satisfies as well.

e Step 5. Let us prove

Lemma 5.5 Given q > 1, there exists a constant c11(q, A) such that

(/ h? dvy)l/q < Cll(lI;A)RJH/q
B(3Ra /4)

provided that 4a' R? < A, see notation (34).

In order to prove this result, we need another lemma.

Lemma 5.6 Under the assumption of Proposition 5.2, the surface (D,g) sat-
isfies a Sobolev inequality of Euclidean type (i.e. an inequality of the form (3),
with By =0)

Vo € C°(D), (/D¢2dvg)1/2§AD/D|d¢|gdvg.

Proof. To prove this lemma, we use the Lawson correspondence. Recall that

i:(D,g) — (HS(C),g) is an isometric immersion with constant mean curvature
H and that ¢+ H? < 0. Let W be the shape operator associated with i. This
operator satisfies

Det W + ¢ = K, (Gauss equation),
(DSW)(Y) = (DY W)(X) (Codazzi equation),
for all vector fields X,Y. The operator W9 := W — HId satisfies the equations
Det W9 + ¢+ H? = K,,
(DEWO)(Y) = (DY) (X),

for all vector fields X,Y, because H is constant. Since D is simply-connected,
it follows from [17] (Volume IV, Theorem 19, p. 71 ff) that there exists an
isometric immersion j : (D,g) — (Hs(c + H?),37) whose shape operator is
precisely W0. Since Trace W° = 0, this immersion is a minimal immersion of
(D, g) into a simply-connected space form with non-positive curvature ¢ + H?2.
We may therefore apply the Sobolev inequality given by Hoffman-Spruck [11]:
there exists a universal constant Ap such that

(52) Vé € C°(D), (/Dczﬁzdvg)l/2§AD/D|d¢|gdvg. .

From inequality (52), we deduce that
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(53) ([ 167 du)' v < pa( [

Supp ¢

dvg)l/”/D |d¢|2 dvg,

for all ¢ € C§°(D) and for all p > 1.

In order to prove Lemma 5.5, we apply inequality (53) to the function ¢ = (h,
with h as in Lemma 5.4 and ¢ € C§°(B(Ry)) (recall that B(R) is relatively
compact in D). Assuming that C|B(3RA/4) =1, we get

(54) (/ h? dvy)l/p < 015(10)(/ dvg)l/p/ |d(Ch)|2 dv,.
B(3RaA/4) B(Rx) B(Rx)

Using
|d(Ch)y = h?|dC[; + ¢P|dhly + 2¢h{dC, dh),

and

(d(¢*h), dh)y = 2Ch{dC, dh), + ¢*|dhl]
integration by parts and the inequality Ajh + fh > 0, we obtain

[ wicRdn,+ [ @y, dn, i,
B(Ra)

B(Ra)

[ laen v,
B(Ra)

< / h2|d¢|’;’dvg+/ fCh? dv,
B(Ra)

B(Ra)

Using Lemma 5.3, one can rewrite inequality (54) as

(/ W2 dv,)" " < erlp, A)RYP{ h2|d¢ ]2 dug
B(3Ra/4) B(7RA/8)

+ / Fh2 dv, )
B(7RA/8)

provided that Supp ¢ C B(7R4/8). Using the inequality f < h? of Lemma 5.4,
one finally deduces that

(/ thdvg)l/” < c1g(p, ARY? h2|d¢|? dv,
B(3Ra/4) B(7RA/8)

(55)

+ / ht dvg}.
B(7R4/8)

Choosing ¢ such that {|B(3Rj/4) = 1,Supp( C B(TRx/8) and ld¢? < cirRy?
and applying Lemma 5.3, we obtain

/ R2|d¢[2 dvg < c1s(p, A)Ry? / h? dvy < c19(p, AR, 2.
B(7RA/8) B(7RA/8)
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We now need an analogous control of [’ B(TRa/8) h*dv,. For this purpose, we

apply the Sobolev inequality (52) to the function (h? and we choose ¢ such that
¢|B(7RA/8) = 1,Supp( C B(15R,/16) and we obtain

([ W) <en [ e, du,
B(7RA/8) B(Ra)

We also have
/ ()], dv, 5/ h2|d§|gdvg+/ ¢|dR?], dv,
B(Ra) B(RA) B(Ra)

/ d(CH)] dvy < e (M)RF" + / (dh?|, du,,
B(Ra) B(15RA/16)

and,

Lo gaw o, =a [ wan a,
B(tRa) B(tRxa)

A([ ) ([ (a2 dw,)
B(tRy) B(tRaA)

en WAL ( [ o A0
A

[ e,
B(tRa)

IN

IN

where we have used Lemma 5.4 in the last inequality.
From the definition of the function h := (AR™2 + 25" +|A°|?)!/? and from the
equation Ay ln|A°? = 4K, (Proposition 6.7), we deduce the equality

1

AgInh'7? = Ky AR + 7 |d|A°P " (AR + 28")| A°| >R~

and, since AR™2 + 25" > 0,
A,Inh'/? > K,|A°2h 2
and
h1/2Agh1/2 > |dh1/2|j + hE,|A°2h 2.

According to (45) with f = h, one also has

WLy — 20)hM? > AR 2] 4+ h(K,[A°*h72 + 28" + | A°?).

With an appropriate choice of ¢, with Supp{ C B((t+7)Ra),(|B(tRp) = 1, we
can write

/ CrA(L, — 20)hYdv, > / RY2(L, — 20)h'/? dv,
B(Ra) B(tRa)
> [ (AR AP 28" AP o,
B(tRa)
On the other-hand, using the stability inequality (37), we have
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/ CGr (L, — 20n%dv, = / C2h'2 (L, — 20)h'? du,
B(Ra) B((t+7) Ra)

VAN

/ hld(|? dvy < caa(A,7)Ry? / hdv,
B((t+7)Ra) B((t+r)Ra)

IA

C25 (A,T‘)Rxl
using Cauchy-Schwarz, Lemma 5.3 and Lemma 5.4. On the other-hand, since

K, <0, we have Ky|A°?h =2 425" + |A°|> > K, + 25" + |A%)2 > 1|A%]2 + 39",
which implies that

/ h(E,|A°2h2 4 28" + |A°]%) dv, > —3a'/ h dv,
B(tRy) B(tRa)

and

_/ h(K,|APh™2 + 28" + |A°P) dv, < 3a'/ hdo,
B(tRa) B(tRa)

and hence, using Lemma 5.3, (47) and the assumption 4a'R? < A,

_/ h(K,|A°Ph2 125" + |A°) dv, < 3a'Ra < cas(A) R,
B(tRa)
Finally,
/ |dh/?[2 dvg < cor(A)Ry"
B(tRa)
which implies

/ AR, dv, < cag(A)Ry:
B(tRA)

and, choosing t,r appropriately,

/ h* dv, < cag(A)Ry?
B(TR4/8)

Plugging this inequality into (55), we conclude that

Vp>1, (/ 2P dvy) "' < cso(p, A)RF TP,
B(3Ra/4)
We can now apply Lemma 2.1 to obtain the estimate

(56) sup h* < e31(A)Ry2.
B(Ra/2)

Recalling that h := (AR™2 + 25" + |A0|2)1/2, that [K,| < 1|A%? + a and the
assumption 4a’R? < A, we obtain the estimates
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|A°? < e32(A)Ry? on B(Rp/2),

|K,| < c33(A)Ry? on B(Ra/2).
This finishes the proof of Theorem 4.2 under Condition (A).

5.2 Proof of Theorem 4.2 under Condition (B)

We assume that there exist two positive numbers R}, Ry, with 2R; > R} > Ry,
such that B(R}) := B(zo, R}) CC (M,g), i.e. B(R}) is relatively compact in
M. Recall that S :=c+ H? > 0.

We also assume that the stability operator L, := A, + |A°? 4+ 2S is bounded
from above by some number 2¢ > 0 on C§°(B(R1)). Then, according to Lemma
3.3, we have the stability condition

(57) /M CoLypdv, < /M ¢2|dC|Z dvg + 20 /M #*¢* dv,

for all ¢ € C*°(B(R;)) and for all { € C§°(B(R;)) (or more generally for any
Lipschitz function ¢ with compact support in B(Ry)).

Note. We shall in fact work in smaller balls, namely in balls B(R) with
R < min{Ri,n/2v/c+ H?,\/A/4L}. Since we reduce the size of the domain,
(57) is still valid in such balls.

According to (35), K, < S and hence the exponential map exp,  is a local

diffeomorphism on B(0, Ry) C Ty, M where R} := min{R},x/+/S}.

First reduction.

Applying Assertion (i) of Lemma 5.1 to Q = B(R}), gives us a non-negative
function u on €, such that (L, — 2¢)u < 0. We now consider the ball Q=
B(0,Ry) C (Tp,M,g), where g = exp} g. The function & = u o exp,  is non-
negative in 2. Since exp,, is a local isometry, we have (L; —2£)@ < 0. Assertion
(i) of the same lemma implies that the operator Lz — 2¢ is non-positive on
B(0, R)).

By reducing R} if necessary, we may assume that 2Ry > R, > R», where
Ry := min{Ry,n/+/S}, and that B(0, R}) is conformally equivalent to the unit
disk D CC, i.e. that there exists a diffeomorphism ® : D — By(R)) such that
®(0) = Or,,m and ®* (exp}, 9) = A2e, where e is the Euclidean metric in D.
This is our first reduction: we shall now work in a ball B(R) such that 2R >
R' > R, with B(R') conformally equivalent to the unit disk D. We shall also
assume that

(58) {(i) 4SR? i 2,

(id)  4LR? A
Condition (i) in (58) is a strong restriction. Condition (ii) depends on the free

parameter A, a positive constant which can be chosen appropriately. Note that
condition (ii) is empty if £ = 0.

Second reduction. In order to make the second reduction, we make use of
the Lawson correspondence back and forth.
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e Assume we are given an isometric immersion iy : (D, g) = (M(c1),g) with
constant mean curvature H; (with H; = H,c¢; = ¢) such that ¢; < 0 and
0 < c¢; + H? < —c;. Let W, denote its shape operator.

Consider the operator Wy := Wy — (Hy —\/c1 + Hf) Id. The Lawson correspon-
dence gives us an isometric immersion i, : (D, g) = (IR®,e), with constant mean
curvature Hy = y/c; + H? and with the same metric g on D, hence with the
same Gauss curvature K. It follows that the corresponding stability operators
Ly and Ls coincide.

e Define p := Hy/\/—¢1 €]0,1] and make a dilation in IR® to obtain an iso-
metric immersion i3 : (D, g3) — (IR®,e) with constant mean curvature Hs =
p~1Hy = /—ci, metric g3 = ug and shape operator W3. It follows that the
Gauss curvature is K3 = p=2K,.

Define Wy := W3 + (=H3 + v/—2¢;)Id. The Lawson correspondence gives us
an immersion iy : (D, g4) — (M(c4),g) with metric g4 = g3, constant mean
curvature Hy = \/=2¢;, ¢4 = c1,¢4 + Hy = —cy.

Since g4 = p’g, we have Ky = p~*Ky, [A}|* = p?|A°*, B9 (uR) = BY(R) C
C (D, g4). The corresponding stability operator satisfies Ly = p~2L, which
impliese that Ly < 2¢u~2 on C§°(B%(uR)) and we have: Sy := ¢y + H; =
—ca, (20p2)(uR)? < A,4S4(uR)? = —4c1HZ /(—c1)R? = 451 R? < 7.

We are therefore reduced to studying an immersion satisfying

(59) either ¢ > 0,
or ¢<0 and S=c+H?>—c>0.

Assuming the estimates are proved under the assumptions (59), we obtain for the
immersion i4 the estimates |Ky|,|A$|?> < C(A)(uR) 2 in the ball B%(c(A)uR).
Using the relations between the invariants in the g4 and in the g metric, we
obtain the desired estimates for the immersion i;

|K1],| A2 < C(A)R™? in B%(c(A)R).

In order to prove Assertion B of Theorem 4.1, we are now reduced to proving
the following proposition.

Proposition 5.7 Let D C € be the unit disk and let g be a Riemannian metric
on D. Fix some positive constant A. Make the following assumptions:

1. There exists a conformal isometric immersion i : (D,g) — (H3(c),§),
i*g = g = \%e, with constant mean curvature H, with S :=c+ H? > 0 if
c>0and S:=c+H?> —cifc<0;

2. There exists R > 0 such that the ball B(R) is relatively compact in (D, g),
where B(R) := B9(0,R) C D, and such that D C B(2R);

3. The stability operator Ly of the immersion, Ly := Ay + |A°|? + 285, is
bounded from above by 2¢ on C3°(B(R)), for some £ > 0;

4. The number R satisfies (58),

{(i) 4SR?
(ii)  4R?

INIA
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Then, there exist positive constants C(A),c(A), which only depend on A, such
that

{ 4% < C(A)R™ on B(c(A)R).

|K,| < C()R?

Proof. The remainder of this section will be devoted to the proof of Proposition
5.7. In the course of the proof, we will denote by ¢;, ¢;(A),. .. constants which
depend on the indicated arguments.

e Step 1.
Let p denote the Riemannian distance to the point 0 € D with respect to the
metric g. Since K, < S by (35), using (58) (i), Bishop’s theorem gives

(60) Ay p*>2

where A, is the non-positive Laplacian for the metric g.

We define ¢ = eA?’/R* € (D), where A is the positive number given in the
assumptions of Theorem 4.2. Then, we have 1 < ¢ < e** because D C B(2R)
and

¢Lyp = (AR 2Agp°+ A’R4dp?|2 + |A° +25) ¢
(2AR™2 4+ 28 + |A")?)4°.

\Y

It follows from (57) that

/ (2AR 2+ 25 + |A°?) ¢° ¢ du, g/ ¢°|d¢[2 dvg +2£/ $*¢? dv,.
D D D
Using the conformal invariance of the Dirichlet integral and (58ii), we obtain

/ (AR2 + 28 + |A"?) ¢ (® du, g/ ¢%|d¢)? dw..
D D

Using a suitable function ( of the Euclidean distance to 0 € D and the inequality
1< ¢ < e*), we obtain the following important estimate

(61) / (AR 2+ 25 + |A%)?) dvy < e1(A).
D(1/2)

e Step 2. The above estimate involves the Euclidean disk D(1/2); in order to
be able to take the metric g into account, we make use of Theorem 3.2 which
gives the estimate

(62) A > CoR*(1+£R*)™" on B(R/2).
We obtain the analogue of Lemma 5.3.
Lemma 5.8 Under the assumptions of Proposition 5.7, define

(63) A=AA) :==min{l,/Co(1+A)"'}/2 and R4 := AR

where Cy is given by Theorem 3.2. Then
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(64) B(R4) C D(1/2),

(65) / (AR? +2S + |A°?) dv, < e1(A).
B(R4)
In particular,

(66) Vol(B(R4)) < c2(A)R%.

Remarks. Note that A(A) does not depend on A when £ = 0. By Gauss
equation (35), and since S > 0, we have

1
K| < max{s, 5| 4°}.

|? or any function of

In order to control K| it therefore suffices to control |A°
the form (m + |A°|?), for some m > 0. From now on, let

(67) h:= (AR™2 + 25 + |A°12)"/*.

As in Step 4 of the proof of Theorem 4.2 under Condition (A), we have

B2 02 > h(|A%? + 28 + K, |A°|*h2)
and it follows easily, looking at the cases K, < 0 and K, > 0, that

1
(68) R\/2L,n'? > h(§|A°|2 +285).
We then have the following lemma.

Lemma 5.9 Define h := (AR™2+2S + |AO|2)1/2 and f := —2K,|A°|?h=? and
let

(f+c+H?), if ¢>0.

Under the assumptions of Proposition 5.7, we have
(i) Agh+ fh>0.
There exists a constant cio(A), which only depends on A, such that

() Jparas P dvg < c10(A),

(i13) IB(7RA/8) h? dvg < cro (A)R;\l;

(iv) Va€[0,1/2], fB(7RA/8) h2(1%2) dy, < c19(A)R L2,

(v) fi < h? and hence, Va € [0,1/2], fB(7RA/8) fiT*dv, < ero(A)R™.

fi ::{ (f+H2)+ if ¢<0,

Proof. Assertion (i) follows from Lemma 6.1 and Proposition 6.7. Assertion
(ii) directly from the definition of h and from inequality (65). Take 0 < a <
a+7r <1 (to be chosen later) and choose a smooth function 6 such that § =1
on [0,aR4], 0 =0 on [(a+7)Ra, Ra] and |0'| < cs(rR4)~". Plugging ¢ = h'/?
and ¢ = 6 o p into (57), using the inequality h'/2L,h'/? > hF, with F :=
(|4°% + 25 + K 4|A°|?h~?), we obtain
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/ Fhdv, < / C2h2 L h' 2 dv,
B(aRy) B(R4)

/ h|dC|§ dv, +2¢ C2hdvg.
B(Ra) B(Ra4)

IN

Using (65) and (66), we have

(69) / hdv, < (/ b2 dvg)1/2(/ dv,)'* < er(A)Ry
B(R4) B(R4) B(Ra4)

and hence, using (58ii),

(70) / hF dv, < cs(A)r—>R;".
B(aR4)

Since

(71) P> %|A°|2 +25

by (68), we can finally write

fB(aRA) h? dvg fB(aRA) h(AR™? 428 + |A°|?) dv,

< AR™2 fB(aRA) hdv, +2fB(aRA) hF dv,.
Using (69) and (70) this leads to

(72) / h® dv, < co(A)r 2R,
B(aR4)

Finally, using interpolation, the values a := 7/8 and r := 1/16, (ii) and (72)
give Assertion (iv).

In order to prove Assertion (v), it suffices to show that f; < h2.

Claim: f; < h2. Indeed, using the definition of f,h, f; and (58), we have:
elfc>0and K, >0, then f<Oand f+c+ H?<c+ H?=S<h?
elfc>0and K, <0, then f < —2K, and f+c+ H?> < -2K,+c+ H? <
|A%]2 — S < A2

eIf ¢ < 0and K, <0, then f < —2K,, since H> < 2(H? + ¢) under the
assumptions of Proposition 5.7. We obtain 0 < f + H? < |A%|2 < b2
eIfc<0and K, >0, then f + H> < H?> < 2(c + H?) < h%.

This finishes the proof of Lemma 5.9. g

Note. With the above notations (in partcular under the additionnal condition
—cR? < A), we claim that f; < h? provided that 4(c + H?>)R? < 7? and
—cR? < A, under the sole assumption ¢+ H? > 0 (this avoids using the Lawson
correspondence to reduce to the case ¢ + H2 > 0if ¢ > 0, or ¢+ H? > —c if
¢ < 0). Indeed,

o If c > 0and K, > 0, as above.

o If c > 0 and K, <0, as above.

eIfc < 0and K, <0, then f < —2K, = |4°? — 2S. Furthermore, 0 <
4+ H? <A — (c+ H2) — ¢ < |AO]2 — ¢ < |A°]2 + AR2 < b2,
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elIf c<0and K, >0, then f <0 and hence f+ H> < H> =c+ H?—c <
S+ ARZ < h2

e Step 3. Let us prove

Lemma 5.10 Under the assumption of Proposition 5.7, given q > 1, there
exists a constant c11(q, A) such that

(/13(3R /4) e dvg)l/q <eci(g, A)Rl_%iJrQ/q'
A

In order to prove this result, we need another lemma.

Lemma 5.11 Under the assumptions of Proposition 5.7 (in particular c+H? >
0), the surface (D, g) satisfies the Sobolev inequality

(/D ¢? dv, )/ gAD{/D|d¢|g dvg+BD/D|¢| dv,}

for all ¢ € C§°(D), where Ap is a universal constant and where Bp is defined
by

p | H_if c<o,
P=U Vet H? if ¢>0.

Proof. To prove this lemma, we use the fact that the immersion ¢ : (D, g) —

(Hs(c),g) is an isometric immersion with constant mean curvature H. When
¢ < 0 we can directly apply the Sobolev inequality in [11]. When ¢ > 0, we
compose i with the isometric immersion of the 3-sphere of curvature ¢ into IR*.
This gives an isometric immersion 7 whose mean curvature vector has norm

v+ H? and we apply [11] again. n
From this inequality, we deduce that

(73) /D 6P dog) /P < c15(p)( /S dv,) /7 /D o2 dv, + B2, /D 8 duy ),

upp ¢
for all ¢ € C§°(D) and for all p > 1.

In order to prove Lemma 5.10, we apply inequality (73) to the function ¢ = (h,
with h as in Lemma 5.9 and ¢ € C§°(B(R4)) with (|B(3R4/4) = 1. We get

([ wra)'” < o[ w) [ s,
B(3Ra4/4) B(Ra4) B(Ra4)
(74)

+ B,Q:,/ h2¢? dvg }.
B(R4)
Using
|d(Ch); = h?|dC[; + ¢2|dhl; + 2¢h{dC, dh),

and
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(d(¢?h), dh)y = 2Ch(d(, dh)y + C*|dhl;
integration by parts and the inequality Ayh + fh > 0, we obtain

/ B¢ do, + / (d(¢*h), dhy, dv,
B(Ra4) B(Ra)

/ R2|dC|2 dv, + / ¢ dv,
B(Ra) B(RaA)

Using Lemma 5.8, one can rewrite inequality (74) as

/ |d(Ch)? dv,
B(Ra4)

IN

(/ WP dug)'” < eio(p, AVRY"] W25 dvg
B(3Ra/4) B(7Ra/8)

+ / (f +B})+h’ duy}
B(7TRA/8)

provided that Supp ¢ C B(7TR4/8) and 0 < ¢ < 1. Using the inequality f; < h?
of Lemma 5.9 and a suitable function (, we obtain

( / W dv,)'? < cr(p, A)RYP{R}? / h2 du,
B(3Ra/4) B(7TRA/8)

(75)

+ / h* dvy }.
B(TRA/8)

We now need to control [ B(TRA/8) h* dv,. For this purpose, we apply Lemma
5.11 to the function (h? and we choose a suitable function ¢ such that

¢|B(TR4/8) = 1,Supp( C B(156R4/16).
We obtain

(/ Kt dvg)'" < exo |d(Ch?)|, dv, + BD/ Ch? dv,}.
B(7Ra/8) B(Ra) B(Ra)

We also have
/ |d(Ch2)|g dvg < / h2|dC|g dvg + / C|dh2|g dvg
B(Ra4) B(Ra) B(Ra4)

/ d(CH)] dvg < o1 (ARG + / |dh|, do,,
B(Ra) B(15R 4 /16)

and,
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/ |dh?|, dv, / |d(h/?)4|, dv, = 4/ R32|dn'/?|, dv,
B(aR4) B(aRa)

B(aR4)
< 4(/ h3d’l}g)1/2(/ |dh1/2|§dvg)1/2
B(aRa) B(aRa)
< en@WRT([ jan s )
B(CLRA)

where we have used Lemma 5.9 in the last inequality.
From the definition of the function h := (AR~2 4+ 25 + |A°?)'/2? and from the
equation A, In|A°|? = 4K, (Proposition 6.7), we deduce the equality

. 1 .
A, Inh'/2 = K, |A°2h 2 4 Z|d|A°|2|2(AR—2 +28)|A°| 24
and, since AR™2 + 2S5 > 0,
A,Inh'/? > K, |A%?h 2
and
h1/2Agh1/2 > |dh1/2|j + hE,|A°2h 2.
According to (45) with f = h, one also has
hl/nghl/z > |dh1/2|2 + B(K, A 2h=2 + 28 + |A°]?).
9

If K, > 0, we have |[dh!/?|2 < h*/2L,n'/2. 1f K, < 0 we have K |A°|2h 2 +2S+
|A°]2 > K, + 25 +|A°> > 1|A°|? + 35 > 0 and again |dh'/22 < RY/2L h1/2.
With an appropriate choice of {, this implies

/ dh'?2 < / B2 L,hY2 dv,
B(aRa) B(aRa)

A

S / C2h1/2Lgh1/2 d’l}g
B(aR4)

< / hld¢ % dv, + 2 / h¢? du,
B(Ra) B(Ra4)

< C24(A)RA72/ hdv,

B(R4)

Where we have used (58ii). Using (69), Lemma 5.8, Lemma 5.9 and (58ii) we
get

/B( . )|dh1/2|§ dv, < cos(A)R,,

aRy

/B( . )|dh2|g dv, < cog(A)R,Y,
aRg

/B o [y < (MR
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(/ Wt dv,)"? < eso(A){R3' + BD/ h? dv, }.
B(7R4/8) B(Ra4)

Using the definition of Bp,

g2 [ HW i c<0,
PR T Vet H?R? if e>0.
In the case ¢ < 0 we have, using H? < 2(H? +¢), h = (|A°? + 2(c + H?) +

ARQ)I/2 > H. In the case ¢ > 0, we have h > +/c+ H2. These inequalities
imply that Bph? < h3. Using Lemma 5.9, Assertion (iii), we obtain

/ h4 dvg S C31 (A)RZ2
B(7TRA/8)

Finally, we have obtained the estimate

(76) ( / B2 dug) ' < cgs(p, AR
B(3R4/4)
and we can now apply Lemma 2.1 to obtain the estimate

sup h2< 033RZ2
B(Ra/2)

from which Assertion B follows in view of the Gauss equation (35). "

6 Appendices

6.1 Some Analytic Formulas

Let (M,g) be a Riemannian manifold. We denote by |du|, the norm of the
differential of the function u on M (for the induced metric on T*M) and by
dv, the Riemannian measure on M. We denote by A, the non-positive Laplace
operator acting on functions.

Lemma 6.1 Given any u € C*®(M,IR) on M with v > 0 and any f €
C*® (M, IR) such as Aglnu(z) = f(z) when u(z) > 0, we have

) _ Bgul@) — |du(a:)|§ where u(x

(4) Aglnu(z) = (@) (@) h (z) >0,
(44) u(z)Agu(z) — |du(x)|§ = f(z)u®*(x) where u(z) >0,
(7i1) Agu(z) > f(z)u(z) where u(z) > 0.

If a is a positive constant (a > 0) and if B € IR,

(iv) Ag(u+a)? > uﬁi ”a (u + a)®.
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Proof. Clearly (i), (ii), (iii) hold. By (i),
Ay(u+a) > (u+a)’ A, In(u+ a)?

and

|dul?

u+a

Bfu

u+a

) >

Ayln(u+a)? = A, In(u + a) = uta (Agu

which implies (iv). "

Lemma 6.2 Let g be a continuous function on M and assume that the operator
L := A, + q is non-positive on C§°(M), i.e.

/ pLypdvy = —/ (ldel; — gp*) dvy <0,
M M

for all p € C§° (M, IR).
Then, for all p € C*°(M, IR), for all ( € C§°(M, IR),

/CchLwdng/ ¢°|d¢[; dvy .
M M

Proof. Write [,/ |d(0Q)|2 dvy = [, (#®|dC[2 + C?|deo|2 + 3{dgp?,dC?)) du,.
Integration by parts and the formula A, (¢?) = 204, + 2|dy|? give

| a0 dn = [ acia, - [ Conpd,

Then
/ (*oLpdy, = / Co(Agy +ap) du,
M M
= ([ o, [ o)+ [ Plack i,
which gives the result. n

6.2 Some Geometric Formulas

6.2.1 The Gauss Equation

In this section, we consider an isometric immersion f : (M, g) — (Hs(c),y). We
denote by v a (local) unit normal vector field along f(M) and by A : T,M —
TpM the shape operator of f. We also denote by 2H = k; + k» the mean
curvature of f and by |A|?> = k? + k2 the square of the norm of A. Here, k1, k2
are the eigenvalues of A, i.e. the principal curvatures of the immersion f. We
assume that H = Ct and we define A% := A — HId. This operator is traceless
and satisfies Codazzi equation since H is constant. Notice that the norm of A°
is given by |A°|? = 1 (ki — k2)? and measures how much M deviates from being
umbilic at a given point.
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The following formulas hold:

2H = ki + ko and |A|> = k? + k2,
(77) |A|2 = |A°]2 + 2H?,
kiko = 2H? — L A? = H? — 1A%

We choose a local adapted frame {eq, ea,e3 = v}, where the first two vectors
fields are tangent to M. The Gauss equation of the immersion reads (with
obvious notations, see [20])

(78) K, = Secty{e1, ea} = Sectyr{er, ea} + kiko.

This formula can also be written as

(79) { K, = Scaly; — Ricgz(v) + 2H? — 1|AJ]?,

K, = Scalg; — Ricgr(v) + H? — 1[A%2.
In the particular case in which the ambient manifold M has constant curvature

¢, the Gauss equation can be rewritten as

1
(80) Ky =c+H - J]A°.

6.2.2 The Stability Operator

The stablity operator of the immersion is the operator

(81) Ly = Ag + {Ricg(v) + |A]’}

where A, is the non-positive Laplace operator on (M,g) (ie. [,, uAgudv, =
— Jur |dul? dvy). The following obvious formulas for L, will be usefull.

(82) Ly = Ay + {Scaly; + 2H? + %|A|2 - K,},
Ly = Ay + {Scalg; + 3H? + 5|A°|? — K, }.

and, in the case M has constant curvature c,

(83) Ly =Ag + {3(c+ H?) + }|A°]> — K,},
L, =A,+ {2(c+ H?) + |A°?}.

6.3 The Lawson Correspondance

In this Appendix we recall a correspondance introduced by B. Lawson [12] (see
also [17]).

Lemma 6.3 Let M be a simply connected Riemannian surface and let i1 :
(M,g) — (Hg(c),y) be an isometric immersion with constant mean curvature
Hy; > +/—c>0 (here ¢ < 0). Then the metric g can be induced by an isometric
immersion iy : (M,g) — IR®, with constant mean curvature Hy = \/c + H}.
Conversely, any isometric immersion iy : (M,g) — IR®, with constant mean
curvature Hy > 0 induces, for every ¢ < 0, an isometric immersion i3 :

(M, g) - (M3(C),§) with constant mean curvature Hs = \/H3 — ¢ > v/—c > 0.
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Proof. We use the fundamental existence theorem for surfaces (see [17]). This

theorem is local in general and global on simply-connected surfaces. Let i; :
(M,g) = (H3(c),§) be the isometric immersion and let be W7 be its shape op-

erator. The tensor W; satisfies the Gauss and Codazzi equations in (M 3(c), 9).
In particular Det Wy + ¢ = K. We consider Wo = Wy — (Hy — \/(c + H?))Id.
Since H; is constant, DW; = DW> and Det W5 = Det W7 +c¢ which implies that
W, satifies the Gauss and Codazzi equations in IR®. Furthermore, Trace Wy =
2H, = 2y/(c+ H?). Conversely, we consider W3 = Wy — (Ha — \/(H2 — ¢))Id

to find the isometric immersion i3 : (M, g) — (H3(c),g). "

6.4 On Simons’ Equation

In this Appendix, we consider an isometric immersion (M™,g) — (M ﬁ,g).
Given a tensor field U : NM — SM from the normal bundle NM of M into
the bundle of symmetric endomorphisms of the tangent bundle TM of M, we

introduce two tensor fields U and ’l\j, defined as follows. Using the usual exten-

sions of the Riemannian metric g to tensor fields, we define the transpose map
U :SM — NM by the formula

n

(U (s),w) = g(s,U") := Trace,(U" o 5) := Z U¥(e;)s(e;),

i=1

where {e;} is a local orthonormal basis in M. We then define U by

U:NM = NM, U=1UoU
ie g(ﬁ (w),v) = g(lUUY),v) = g(UV,U") = Trace,(U® o U¥), for all
v,w € NM.
In particular,
(84) (U (w),w) = Trace,(U" o UY) = |U¥|?
for all w € NM.
It is straightforward that for all s € SM and v,w € NM, [UY,[U",s]] € SM.
We define U: SM — SM as

n—n
(s) == Z [U°,[U*, ]|

a=1
where {v, }is an orthonormal basis of the normal spaces to M, i.e. as the trace
of the bilinear map NM x NM 5 (v,w) — Ady» o Ady» € End(SM).
The case in which M is a hypersurface in M is of particular interest. In this
case, one has:

S

Proposition 6.4 In the case i = n + 1 (ie M has codimension 1 in M), for
any tensor field U : NM — SM as above, and for all w € NM, one has

(i) Uo U (w) = [U*PU;
(ii) U oU = 0.
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Proof. From formula (84) and from the fact that the codimension is 1, one
can deduce that U (w) = |U%|?w and hence that Uo U (w) = |U¥|2U".

In codimension 1, for a unit normal vector w, one can write U (s) = [U", [U", 5]]
and hence, U oU" =U (U") = [U",[U",U"]] = 0. "
Given an isometric immersion (M™,g) — (M ",§), the second fundamental
form can be viewed as the tensor field A : NM — SM defined (with the
obvious notations, see [20]) by the formula

A% (z) = —(V,W)".
A symmetric tensor field B : TM x TM — NM can also be defined by

B(z,y) := (V.Y)*.

These tensor fields are related by the formula:

Vm e M,z,y € Tp,M,w € Np M, g, (AY(2),y) = gm(B(z,y),w).
Finally, the mean curvature vector is defined by H := %Tmceg B.

When the codimension (7 — n) is 1, we can choose a unit normal vector field
v along M (at least locally) and we define A as A” and the associated mean
curvature by H := %Tmceg A. In this case, we also introduce the traceless
second fundamental form of the immersion A° := A — HId.

The only assumption we have used on the tensor U in Proposition 6.4 is that U
is symmetric. We can in particular apply it to the second fundamental form A
or to the traceless second fundamental form A°.

Associated with the second fundamental form A : NM — SM of the isometric
immersion M — M, J. Simons defined the tensor R(A)“(z) as follows ([20],
formula 4.2.2 page 81).

(R(A)w(m)ay> = Z{2<Rez’,y(3(xaei))aw)+2<Rei,w(3(yaei))aw>

- (AY(x),R., yei) — (4 “(y), Re; 2€i)

+ (Rei,B(a),y)eh ) < w( ) Rez,wy)}
where z,y € T,, M, w € N,, M.
When the codimension is 1, we can take w = v (at least locally). The first two
terms in the above formula vanish since B (+,-) is parallel to v and the fifth term
can be written as (A(x),y)(Re; €, v) (here we have written A instead of A”).
It is then clear that the preceding formula can be applied to any symmetric
tensor U and we therefore define R(U), in codimension 1, by the formula

(R(U) Z{ s Reiyei) = (U(y), Re, wei)

+ <U($)ay><ﬁei,ueia V) - 2<U(ei)aﬁei,zy)}'
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A straightforward computation then yields

(85) (R(U + Md)(z),y) = (R(U)(),y) — ARic(v)(z,y)

where Ric is the Ricci curvature of M. We shall in particular apply this formula
to A=A%+ HId.

Another straightforward computation ([3], Corollary 2) yields the following

formula when M has constant curvature ¢ (ie when Rtl,tztg = —c(t1, t3)ts +
c(ta, t3)t1)
(86) (R(A)(z),y) = ne((A(x),y) — 2H (z,y))-

. . . — nt+1 _ . . .
For an isometric immersion (M™,g) — (M ,g), with codimension 1 and
constant mean curvature H, J. Simons’ generalized equation reads

(87) AA(z) = |A*A(z) — R(A)(x) —nH(R, ,v) —nHAo A(z) — R ().

This formula follows from [3], Theorem 2 and from Proposition 6.4 (we used
A instead of A”). We also used A to denote the (positive) Bochner Laplacian
(A = —V?, see [20]) and R ' to denote the tensor field

Z{ (VeR)e, i, v) + (Ve R)es oy, v) }

([20], formula 4.2.1, page 80).

Since the mean curvature is constant, one has AA° = AA. Substituting A° +
H1d to A in formula (87) we obtain:

Proposition 6.5 Let (M",g) — (M "+1,g), be an isometric immersion, with
codimension 1 and constant mean curvature H. The traceless second fundamen-
tal form A° of M satisfies J. Simons’ generalized equations

AA%(z) = |A°2A%2) —nHA® 0 A%(z) + H|A®)?z — nH?A%(x)
R(A%)(z) + HRic(v)x —nH(R, ,,v) — R '(2),

and

(AA° A% = |A%' — nH Trace(A%)® — nH?|A°)? — (R(A?), A°)
— nH Z(R,,,eiAo(ei),u) —(R',A%).

i=1

The second formula in Proposition 6.5 is the formula we are really interested in.
It is valid for the traceless tensor field A%, in codimension 1. We now consider
several cases.

Case 1: codimension 1, no further assumption.
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In this general case, one can estimate the right hand side of the second formula
in Proposition 6.5 as follows

(DA%, A% <A1+ (C(R) —nH?)|A°P
(88)

n—2
v/n(n —1)

where C(R) (resp. C(R")) is a constant which only depends on the dimension n
and on bounds on the curvature tensor of M (resp. on the dimension n and on
bounds on the curvature tensor and its first order covariant derivatives). The
estimate of the term Trace,(A°)? is due to H. Alencar and M. do Carmo (see
[3] §5) ; this term vanishes in dimension 2.

+ nH |A°]2 + C(R")|A°|

Case 2: codimension 1, M has constant curvature c.
In this case, the formula reads, using (86),

(89) (AA° A% = |A%* — nH Trace(A%)® — n(c + H?)|A°?

and, if necessary, the second term can be estimated by nH \/%MOP in
absolute value.

Case 3: codimension 1, n = 2.

The above estimate gives

(90) (AA%, A% < A" + (C(R) — 2H?)|A°P + C(R ")|A°|.

where the constants are as above.

Case 4: codimension 1, n = 2 and M has constant curvature c.

In this particular case, the above formula reads
(91) (AA° A% = |A%* — 2(c+ H?)|A%)?
We have the following general formulas for any symmetric tensor field U

A U = 2|U|A,|U| - 2|d|U]J%,

where A, is the non-negative Laplacian, and

AU = 2(U,AU) - 2|VIU .

In general, Cauchy-Schwarz inequality gives |Vu|? > ||d|U||?. In the particular
case TraceU = 0, M has constant sectional curvature and M has codimension
1, this inequality can be improved to [VU|? > (14 2)|d|U|? (see [3], §5 or [18]
for a more general estimate). This gives

2 _
[U[AG U] + EIUlIUII2 <(AU,U)

when TraceU = 0 and when M has codimension 1. In the particular case in
which n = 2, this estimate can still be improved.
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Lemma 6.6 When M has dimension 3 and constant curvature and when M
has dimension 2, one has

|VA®J? = 2|d| A",

Proof. Let {e;} be a local orthonormal basis, and let U := A°. The matrix
Ui; == Ulei,e;) is symmetric. We also define Ujj, := (V¢,U)(e;,€;). Due to
Codazzi equations ([3], Theorem 1), U;ji, is symmetric with respect to the three
indices. Since the dimension is 2 and since U is traceless, we have Uy +Usz =0
and similarly Ui1g + Usar, = 0 ([3], Theorem 1). We set Uy = —Uaz = a
and Ujix = —Usor = ar. We can also assume that the orthonormal basis
diagonalizes U at the point we consider. This gives |U|?|VU|? = 8a?(a? + a3) if
we take into account the symmetries of Ujj;. On the other hand, we can write
[UPIAIU|> = X, (3, UiinUii)? = 4a® Y, a;.. These equalities give the result. m

Proposition 6.7 Let (M2,g9) - (M 3(c),g) be an isometric immersion of a
surface in a 3-space of constant curvature c, with constant mean curvature H
and traceless second fundamental form A°.
(i) The Gauss equation can be written as

2K, = 2(c + H) - |A°P,

(i5) Simons’ equation gives
—(AA°%, A% = |A%|Ag|A°| — |d|A°|]* = —| A" + 2(c + H?)| AP,

Ayln|A°| = —|A°12 + 2(c + H?) = 2K,

9>

where K, is the Gauss curvature of (M, g) and where A, is the Laplacian for
the metric g on M such that [, uAgudv, = — [, |du|? dv,.

Proof. Straightforward using (91), Lemma 6.6 and formula (80). "

The last formula in Proposition 6.7 gives the classical formula Aln|A4| = 2K,
for minimal surfaces in IR?® (see also [22]).

6.5 Bounds on the radius of stable balls

In this section, we follow an argument of A. Ros — H. Rosenberg ([14]) and R.
Freire de Lima ([9]) to give a bound on the radius of stable balls. More precisely,
we have

Proposition 6.8 Let i : (M,g) — (HB(c),g) be an immersion with constant
mean curvature H such that ¢ + H? > 0. Then, any (strongly) stable ball
contained in M must have radius R less than /272 [3(c + H?).
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Proof. Assume that there is a number R' > 0 such that the ball B(R') :=
BY(xg, R') is relatively compact in M. Assume furthermore that B(R') is stable,
i.e. the stability operator L, is non-positive on C§°(B(R')). Then according to
Lemma 5.1, there exists a non-negative function 4 on B(R') such that Lyu < 0.
Given some R < R', since u > 0 on B(R) by the maximum principle, we can
consider the metric § := u?g.

e Fact. Let yg be a point on dB(R) such that dj(zg,yo) = inf{d;(zo,y) | y €
OB(R)}. Then, there exists a g-minimizing geodesic v from zqy to yo.

Assume _that v is parametrized by arc-length in the g-metric and that it has
length R. Let s(t) denote the arc-length for the g-metric along v,

¢
(92) s = [ )y dr
Define v(t) := u o y(t). Since g := u?g, we have
(93) S(t)(t) = 1.

It follows that

R
. R —
/ |9(7)|g dr = g —length(y)|; =R >R
0

since dg(z0,y0) = R.

Since 7 is g-minimizing, the second variation formula give the inequality

1}/ ~
(04) / {(#)2(t) - FO) (1)} dt > 0

for any smooth function ¢ such that ¢(0) = ¢(R) = 0, where k(t) = K o~(t) is
the curvature along the curve v for the metric g.

We change from parameter ¢ to parameter s along v and we write
o(t) =: ¢(s(t), (t) =:c(s(t)), v(t) =:w(s(t)).
Equation (94) can be re-written as
R "
(95) / {@)? ()" (1) = k(t)*(s(t) } dt > 0
0
and, changing variables in the integral,

R
(96) /0 {(@")?(s)w ' (s) — K o c(s)p*(s)w(s) } ds > 0.

On the other-hand, the relationship § := u2g gives, for the Gauss curvature,

K u (K — Aglnu)
(o7 = (duf? — ugu+ Ky?)
uw*(|dul2 + 3(c + H*)u?)

v
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where the inequality follows from the inequality Lyu < 0 (indeed, Lyu = Agju —
Kyu+3(c+ H?)u + 1|A%?u, according to Section 6.2.2).

Since w(s) := u o ¢(s), we have w'(s) = du(c'(s)) and (w')*(s) < |dul5]c'(s)]2-
It follows that

(98) (w')?(s) < |dul;

because |¢'(s)]|, = 1.

Using (96) — (98), we obtain

R E_
/ (2w tds > / K o cp*wds
0 0

R
> / w*4{|du|g +3(c+ H*)u?} o cp*wds
0
R
> {(w"?w 2 +3(c+ H>)w *}p*ds
0
ie.
R R
(99) / (¢ )w 'ds > / O {(w") w2 + 3(c + H*)w ' }ds.
0 0

Let us now write ¢ as ¢(s) = w(s)¥(s). A straightforward computation trans-
forms (99) to (100)

R
(100) /0 {20(s)9" () + (') (s) + 3(c + H*)p*(s) }w(s) ds < 0.
Choosing ¢(s) = sin 7, equation (100) gives

s

R 272 w2 T8
101 / 3(c+ H?) — ==-)sin? + — cos? =1ds < 0.
oy G B - Z5)sin® T+ T o T

When 3R (c+ H?) > 272, the inequality (101) is not possible. It follows that we
necesarily have 3R (c + H?) < 272 and hence 3R?(c + H?) < 2x2 since R < R.
| |
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