ON A Λ -ADIC ANDRIANOV *L*-FUNCTION FOR GSp(4)

by Alexei PANCHISHKIN, Ilya PIATETSKI-SHAPIRO

Introduction

The present paper is based on a joint lecture of I.I. Piatetski-Shapiro and A.A. Panchishkin of June 5, 1998 in the Seminar in Honour of I.I. Piatetski-Shapiro held in the Institut Fourier, Grenoble (June 4-5, 1998) during his visit to Grenoble in May-June 1998.

Let *G* be a reductive group over a number field *F*, and *p* be a prime number. The arithmetic of *L*-functions attached to automorphic forms on $G(\mathbf{A}_F)$, in particular the study of their special values, is closely related to the theory of Eisenstein series via Rankin's method [Ran39], [Ran52]. This method uses Eisenstein series in an integral representation for certain rather general complex automorphic *L*-functions [PSh-R], [Ge-PSh]. In order to construct *p*-adic automorphic *L*-functions out of their complex special values one can successfully use *p*-adic integration along a (many variable) Eisenstein measure which was introduced by N.Katz [Ka76, Ka77, Ka78] and used by H.Hida [Hi86, Hi91, Hi93] in the case of $G = GL_2$ over a totally real field *F* (i.e. for the elliptic modular forms and Hilbert modular forms). The application of such a measure to a given *p*-adic family of modular forms provides a general construction of *p*-adic *L*-functions of several variables. On the other hand, the evaluation of this measure at certain points gives another important source of *p*-adic *L*-functions [Ka78]. In the Siegel modular case the Eisenstein measure was studied in [PaSE]. The purpose of this paper is to construct a Λ -adic version of the Andrianov *L*-function for the symplectic group

$$\mathrm{GSp}_4 = \left\{ g \in \mathrm{GL}_4 \mid {}^t g J_4 g = \nu(g) J_4, \nu(\alpha) \in \mathrm{GL}_1 \right\},$$

over a totally real field F where

$$J_4 = \begin{pmatrix} 0_2 & -1_2 \\ 1_2 & 0_2 \end{pmatrix}$$

Mots-clés : forme automorphe, famille *p*-adique, série d'Eisenstein, méthode de Rankin. *Classification math.* : 11F 13, 11F41, 11F67, 11F70, 11F85.

¹

using the Eisenstein measure and a *p*-adic analogue of the Petersson product for Λ -adic automorphic forms on GL_2 over a totally real field *F*, see [Hi90]. Main Theorem is given in Section 4.

1. Complex analytic *L*-functions for GSp(4)

Let *F* be a global field of characteristic $\neq 2$, and *V* a four dimensional vector space over *F* endowed with a non-degenerate skew-symmetric form $\rho : V \times V \rightarrow F$,

$$G_{\rho} = \mathrm{GSp}_{4} = \left\{ g \in \mathrm{GL}(V) \mid \rho(gu, gv) = \nu_{g}\rho(u, v), \ \nu_{g} \in F^{\times} \right\},$$

the algebraic group of symplectic similitudes of ρ over F. Let $\pi = \bigotimes_{v} \pi_{v}$ be an irreducible cuspidal automorphic representation of $G_{\rho}(\mathbf{A}_{F})$ where v run over all places of F, then according to Langlands' classification of irreducible supercuspidal representations π_{v} of $G_{\rho}(F_{v})$ for almost all $v \pi_{v}$ correspond to a semisimple conjugacy class of a diagonal matrix

$$h_{\nu} = \operatorname{diag}\{\alpha_{0}, \alpha_{0}\alpha_{1}, \alpha_{0}\alpha_{2}, \alpha_{0}\alpha_{1}\alpha_{2}\} \in {}^{L}G_{\rho}(\mathbb{C}) \xrightarrow{r} GSP_{4}(\mathbb{C})$$
$$(\alpha_{j} = \alpha_{j}(\nu), \nu \notin S, |S| < \infty).$$

The Andrianov *L*-function (or the spinor *L*-function) of π is then the following Euler product

$$L(s, \pi, r) = \prod_{v \notin S} \det \left(1_4 - h_v \cdot N v^{-s} \right)^{-1} \times \begin{pmatrix} \text{a finite Euler product} \\ \text{over } v \in S \end{pmatrix}$$
(1.1)

This *L* function plays an impotant role in the arithmetic, in particular it is related to the *l*-adic Galois representation on H^3 of the corresponding Siegel threefold [Tay].

This *L* function was introduced by Andrianov [AndBud], [And74] in the classical fashion, for $F = \mathbf{Q}$, and for $\pi = \pi_f$ coming from a holomorphic Siegel cusp eigenform $f = \sum_{\xi} a_{\xi} q^{\xi}$ for the Siegel modular group $\Gamma_2 = Sp_4(\mathbf{Z})$ over the Sigel half plane

$$H_2 = \{ z = {}^t z \in M_2(\mathbf{C}), \operatorname{Im}(z) > 0 \},\$$

where ξ run over the semigroup A_4 of positive definite half integral symmetric matrices ξ , $a_{\xi} \in \mathbf{C}$, $q^{\xi} = \exp(2\pi i \operatorname{Tr}(\xi z))$. Consider the Hecke algebra $\mathcal{H} = \langle (\Gamma_2 g \Gamma_2) \rangle = \bigotimes_p \mathcal{H}_p$ generated by all double coset classes ($\Gamma_2 g \Gamma_2$) with $g \in GSp_4(\mathbf{Q})$. Then we have that $\mathcal{H}_p = \mathbf{Q}[x_0^{\pm}, x_1^{\pm}, x_2^{\pm}]^{W_2}$ (W_2 the Weyl group) and one has a \mathbf{Q} -algebras homomorphism $\lambda_f : \mathcal{H} \to \mathbf{C}$ given by $f | X = \lambda_f(X) f$, $X \in \mathcal{H}$, and α_j are defined as $\lambda_f(x_j)$, j = 0, 1, 2. In the notation of Andrianov,

$$Z_f(s) = \prod_p \det(1_4 - h_p p^{-s})^{-1}$$
(1.2)

is called the spinor *L* function of *f*, and he proved that it coincides essentially with the Dirichlet series $L(s, f, \xi_0) = \sum_{m=1}^{\infty} \frac{a_m \xi_0}{m^s}$ where $\xi_0 > 0$ in a fixed positive definit matrix. Starting from this identification, he obtained an integral representation for $Z_f(s)$ using the group $GL_2(K)$ where $K = \mathbf{Q}(\sqrt{-\det \xi_0})$ an imaginary quadratic field. This integral representation implied an analytic continuation of $Z_f(s)$ to the whole complex plane and the functional equation of the type

$$\Psi_f(s) = \Gamma_{\rm C}(s)\Gamma_{\rm C}(s-k+2) = (-1)^k \Psi_f(2k-2-s).$$
(1.3)

where $\Gamma_{\rm C} = (2\pi)^{-s}\Gamma(s)$ is the standard Γ -factor. Its analytic properties were studied by A. N. Andrianov [And74] but stil little is known about algebraic and arithmetic properties of the special values of this function; however, from the general Deligne conjecture on critical values of *L*-functions it follows that algebraicity properties could exist only for s = k - 1.

This work was extended by I.I.Piatetski-Shapiro [PShBud], [PshPac] to arbitrary F using an arbitrary quadratic extension K/F and the folloing construction. Put

$$V = K^{2} = \left\{ x = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}, x_{j} \in K, j = 1, 2 \right\}$$

then *V* may be viewed as a four dimensional *F* vector space, dim_{*F*} *V* = 4, and define $\rho(x, y) = \text{Tr}_{K/F}(x_1y_2 - x_2y_1)$. Consider the following *F*-algebraic group

$$G = \{g \in GL_2(K) \mid \det g \in F^{\times}\}, \ G(F) \subset GL_2(K)$$

$$(1.4)$$

then there is an imbedding of *F*-algebraic groups $i : G \hookrightarrow G_{\rho}$ because $x_1y_2 - x_2y_1 = \det(x, y)$ and $\det(gx, gy) = \det g \cdot \det(x, y)$, $\rho(gx, gy) = \det g \cdot \rho(x, y)$. Note that $G(\mathbf{A}_F) \subset GL_2(\mathbf{A}_K)$ and $G(\mathbf{A}_F) \hookrightarrow G_{\rho}(\mathbf{A}_F) = GSp_4(\mathbf{A}_F)$. It turns out that there is an integral representation for $L(s, \pi, r)$ of the following type:

$$L(s,\pi,r) = \int_{G(F)C_F \setminus G(\mathbf{A}_F)} \varphi(i(g))E(g,s,\mu)dg$$
(1.5)

where φ is an automorphic form on $G_{\rho}(\mathbf{A}_F) = GSp_4(\mathbf{A}_F)$ from the representation space of π , C_F the center of $G(F) \subset GL_2(K)$, $E(g, s, \mu)$ is an Eisenstein series on $G(\mathbf{A}_F) \subset GL_2(\mathbf{A}_K)$ attached to a quasicharacter $\mu : K^{\times} \setminus \mathbf{A}_K^{\times} \to \mathbf{C}^{\times}$ ([PshPac], § 5).

2. A *p*-adic construction

Let $p \ge 5$ be a prime number. We consider the case of two totally real fields $K \supset F$ and a representation π_f attached to a holomorphic Siegel-Hilbert cusp form $f(z) = \tilde{\varphi}$ of scalar weight k = (k, ..., k) on the Siegel-Hilbert half plane

$$H_{2,F} = H_2 \times \cdots \times H_2 \ (n \text{ copies}); \tag{2.1}$$

in this case there is also a critical value s = k - 1 for *L*-functions of the type $L(s, \pi_f, \otimes \chi, r)$ where χ is a character of finite order of $F^{\times} \setminus A_F^{\times}$. According to general conjectures on motivic *L*-functions there should exist *p*-adic *L*-functions which interpolate *p*-adically their critical values, see [Co], [Co-PeRi], [PaIF]. However in our present construction instead of *p*-adic interpolation of their special values of the type $L(k - 1, \pi_f \otimes \chi, r)$ we use directly a *p*-adic version of (1.5) using techniques of Λ -adic modular forms (see Section 3). We hope that the resulting *p*-adic *L*-function provide also the above *p*-adic interpolation.

3. A-adic modular forms

Recall that the Iwasawa algebra $[Iw] \Lambda = \mathbb{Z}_p[[T]] \cong \mathbb{Z}_p[[\Gamma]]$ is the completed group ring of the profinite group $\Gamma = 1 + p\mathbb{Z}_p = \langle 1 + p \rangle \subset \mathbb{Z}_p^{\times}$. According to the theorem of Kubota-Leopoldt [Ku-Le], there exists a unique element $g(T) \in \Lambda$ such that for all $k \ge 1$, $k \equiv 1 \mod (p-1)$

$$g((1+p)^k - 1) = \zeta^*(1-k)$$

where $\zeta^*(1-k)$ denotes the special value at s = 1 - k of the Riemann zeta-function with a modified Euler *p*-factor: $\zeta^*(s) = (1 - (1 + p)^{-s+1})(1 - p^{-s})\zeta(s)$.

Definition 3.1. *The Serre ring* $\Lambda[[q]]$ is the ring of all formal *q*-expansions with coefficients in Λ :

$$\Lambda[[q]] = \{ f = \sum_{n=0}^{\infty} a_n(T)q^n \mid a_n(T) \in \Lambda \};$$

Definition 3.2. The Λ -module $M(\Lambda) \subset \Lambda[[q]]$ of Λ -*adic modular forms* (of some fixed level N, (N, p) = 1, consists of all $f = \sum_{n=0}^{\infty} a_n(T)q^n \in \Lambda[[q]]$ such that for each $k \geq 5$, $k \equiv 1 \mod (p-1)$ the specialisation

$$f_k = f|_{T=(1+p)^{k}-1} \in \mathbf{Z}_p[[q]]$$

is a classical modular form of weight *k* and level *Np*. In other terms *f* is given by a *p*-adic measure μ_f on \mathbf{Z}_p^{\times} with values in $\mathbf{Z}_p[[q]]$ such that the integrals

$$\int_{\mathbf{Z}_{p}^{\times}} x_{p}^{k} \mu_{f} = f_{k} \tag{3.1}$$

are classical modular forms.

--- /

Example 3.3. *The* Λ *-adic Eisenstein series* $f \in M(\Lambda)$ (of level N = 1) is defined by

$$f_k = \frac{\zeta^*(1-k)}{2} + \sum_{n \ge 1} \sigma_{k-1}^*(n) q^n, \ \ \sigma_{k-1}^*(n) = (1 - (1+p)^k) \sum_{d \mid n, p \not\mid d} d^{k-1}.$$
(3.2)

Example 3.3. *Hida's families f* are elements of

$$S^{\operatorname{ord}}(\Lambda) = eS(\Lambda), \ e = \lim_{n \to \infty} U_p^{n!}$$

 $(U_p(\sum_{n\geq 0} a_n q^n) = \sum_{n\geq 0} a_{pn}q^n$ is the Atkin *U*-operator), $S(\Lambda)$ is the Λ -submodule of Λ -adic cusp forms.

The Hilbert modular case. According to the classical theorem of Klingen [Kli], for a totally real field *F* and for $k \ge 1$ the special values $\zeta_F(1-k)$ are rational numbers where $\zeta_F(s)$ is the Dedekind zeta function of *F*.

The Deligne-Ribet *p*-adic zeta function [De-Ri] interpolates *p*-adically these special values as an element g_F of a version of the Iwasawa algebra over F, $\Lambda_F = \mathbb{Z}_p[[G_{p,F}]]$, where $G_{p,F} =$ $Gal(F_{p,\infty}^{ab}/F)$ is the Galois group of the maximal abelian extension unramified outside of prime divisors over *p* and ∞ . For $F = \mathbb{Q}$ we have that $G_{p,\mathbb{Q}} \xrightarrow{\sim} \mathbb{Z}_p^{\times}$, and there is the natural restriction homomorphism (or the norm homomorphism) $\mathcal{N} : G_{p,F} \to \mathbb{Z}_p^{\times}$, so that for an integer *k* the group homomorphism $\mathcal{N}^k : G_{p,F} \to \mathbb{Z}_p^{\times}$ induces the ring homomorphism $\mathcal{N}^k : \Lambda_F = \mathbb{Z}_p[[G_{p,F}]] \to \mathbb{Z}_p$ and the numbers $\mathcal{N}^k(g_F)$ interpolate $\zeta_F(1-k)$. Also $g_{\mathbb{Q}}$ coincides essentially with the Kubota-Leopoldt zeta-function g(T).

A A-adic Hilbert modular form could be defined as a formal Fourier expansion

$$f = \sum_{\eta \in L_F} a_\eta q^\eta \in \Lambda_F[[q^{L_F}]] \ (L_F \subset F ext{ a lattice})$$

(η runs over totally positive elements or 0) whose appropriate specialisations are classical Hilbert modular form. More precisely, for an integer k there is a homomorphism $\mathcal{N}^k : \Lambda_F[[q^{L_F}]] \to \mathbb{Z}_p[[q]]$ and it is required that for all appropriate sufficiently large k the specialization $f_k = \mathcal{N}^k(f)$ be the Fourier expansion of a classical Hilbert modular form. As over \mathbb{Q} , the first example of a Λ -adic Hilbert modular form is given by an Eisenstein series (more precisely, this series is given by the Katz-Hilbert-Eisenstein measure, see [Ka78]). Also, Hida's theory could be extended to the Hiilbert modular case [Hi91].

The Siegel-Hilbert modular case. A Λ-adic Siegel-Hilbert modular form could be defined as a formal Fourier expansion

$$f = \sum_{\xi \in B_{2,F}} a_{\xi} q^{\xi} \in \Lambda_F[[q^{B_{2,F}}]] \ (B_{2,F} \subset M_{2,F})$$

 $(B_{2,F})$ is the semi-group of all symmetric totally non-negative matrices ξ in a sublattice of $M_{2,F}$) whose appropriate specialisations are classical Siegel-Hilbert modular form. More precisely, for an integer k there is a homomorphism $\mathcal{N}^k : \Lambda_F[[q^{L_F}]] \to \mathbb{Z}_p[[q]]$ and it is required that for all appropriate sufficiently large k the specialization $f_k = \mathcal{N}^k(f)$ be the Fourier expansion of a classical Siegel-Hilbert modular form. The first example of a Λ -adic Siegel-Hilbert modular form is given by an Eisenstein series (for $F = \mathbb{Q}$ these series are described in [PaSE]. It seems that Hida's theory also could be extended to the Siegel-Hilbert modular case [Hi98], [Til-U],[Til].

4. A-adic L-functions

Recall that we consider the case of two totally real fields $K \supset F$ and a representation π_f attached to a holomorphic Siegel-Hilbert cusp form $f(z) = \tilde{\varphi}$ of scalar weight $k = (k, \ldots, k)$ on the Siegel-Hilbert half plane

$$H_{2,F} = H_2 \times \cdots \times H_2$$
 (*n* copies);

Then we rewrite the integral representation (1.5) in the form of the Petersson scalar product over *K*:

$$L(s,\pi,r) = \langle \tilde{i}^* \tilde{\varphi}, \tilde{E}(s,\mu) \rangle_K \tag{4.1}$$

where *i* denotes both the imbedding $i : G \hookrightarrow G_{\rho}$ and the corresponding modular imbedding

$$i: H_F \times H_F \to H_{2,F}, \ H_F = H \times \cdots \times H; H_{2,F} = H_2 \times \cdots \times H_2 \ (n \text{ copies});$$
(4.2)

(which looks like

$$(z_1, z_2) \mapsto \begin{pmatrix} z_1 & \alpha(z_1 - z_2) \\ \alpha(z_1 - z_2) & z_2 \end{pmatrix}$$
 with $\alpha \in F_1$

(see [Ham])), $i^* \tilde{\varphi} = \varphi \circ i$ is a rapidly decreasing (but not cuspidal) holomorphic form. For the Λ -adic construction take a Λ -adic Siegel-Hilbert cusp form $\tilde{\varphi}$ on $GSp_{4,F}$ then $i^* \tilde{\varphi}$ is a Λ -adic Hilbert modular form over K explicitly described by its Fourier expansion. Now take G to be the Λ -adic Katz-Hilbert-Eisenstein measure for $GL_{2,K}$. In order to define the Petersson product

$$\langle \tilde{i}^* \varphi, G \rangle_K$$
 (4.3)

we put $\mathcal{L} = \text{Quot}(\Lambda)$ then it suffices to define

$$\langle 1_{\rm Eis}(i^*\tilde{\varphi}),G\rangle_K$$

where $1_{\text{Eis}}(i^*\tilde{\varphi})$ denotes the projection in the \mathcal{L} -vector space $M(\mathcal{L})$ to the \mathcal{L} -subspace $Eis_K(\mathcal{L})$ of Hilbert-Eisenstein series. The projection $1_{\text{Eis}}(i^*\tilde{\varphi})$ could be explicitely computed using higher terms of the Fourier expansions of $i^*\tilde{\varphi}$ and of the Fourier expansions of a \mathcal{L} -basis of $Eis_K(\mathcal{L})$. Then we are reduced to the case of $\langle G_1, G_2 \rangle_K$, where G_1 and G_2 are two Hilbert-Eisenstein series, and in order to define their Petersson product we use the method of Rankin. If G_1, G_2 were two cusp forms of weight k their Petersson product would coincide with a normalized residue of the Rankin zeta function $L_{G_1,G_2}(s)$ at s = k. In the case of normalised Eisenstein series the Rankin zeta function $L_{G_1,G_2}(s)$ is explicitely evaluated via Rankin's lemma as a product of abelian Dirichlet L-functions, and we define the

 $\langle G_1, G_2 \rangle_K$ in a similar fashion as in [Ko-Za] as the normalised residue of $L_{G_1,G_2}(s)$ in terms of the corresponding Deligne-Ribet *p*-adic zeta functions.

Main theorem. Let $\tilde{\varphi}$ be a Λ -adic Siegel-Hilbert cusp form then

1) there exists a canonically defined element

 $\mathcal{L}_{\varphi} = \langle 1_{\mathrm{Eis}}(i^* \tilde{\varphi}), G \rangle_K \in \mathcal{L}_F$

where *G* is the Katz-Hilbert-Eisenstein series, $i^*\tilde{\varphi}$ the Λ -adic pullback of φ , $1_{\text{Eis}}(i^*\tilde{\varphi})$ its Eisenstein projection and $i^*\tilde{\varphi}$ is a Λ -adic Hilbert modular form over *K* explicitly described by its Fourier expansion.

2) the element \mathcal{L}_{φ} gives the *p*-adic interpolation of the residue of the normalized Rankin L function $L^*_{1_{\text{Fis}}(i^*\tilde{\varphi}_k),G_k}(s)$ (at s = k, the scalar weight of a specialisation $\tilde{\varphi}_k$):

$$\mathcal{N}^{k}(\mathcal{L}_{\varphi}) = \operatorname{Res}_{s=k} L^{*}_{1_{\operatorname{Eis}}(i^{*}\tilde{\varphi}_{k}), G_{k}}(s)$$

In order to explain some details of the proof we let *S* be a finite set of primes containing *p*. In the rest of this section we consider properties of the Rankin convolutions of Hilbert modular forms; they correspond to certain automorphic forms on the group $G = GL_2 \times GL_2$ over a totally real field *F* and have the form of the following Dirichlet series

$$L(s,\mathfrak{f},\mathfrak{g}) = \sum_{\mathfrak{n}} C(\mathfrak{n},\mathfrak{f}) C(\mathfrak{n},\mathfrak{g}) \mathcal{N}(\mathfrak{n})^{-s}, \qquad (4.4)$$

where \mathfrak{f} , \mathfrak{g} are Hilbert automorphic forms of "holomorphic type" over F, and $C(\mathfrak{n}, \mathfrak{f})$, $C(\mathfrak{n}, \mathfrak{g})$ are their normalized Fourier coefficients (indexed by integral ideals \mathfrak{n} of the maximal order $\mathcal{O}_F \subset F$). We view \mathfrak{f} , \mathfrak{g} as functions on the adelic group $G_A = \mathrm{GL}_2(\mathbf{A}_F)$, where \mathbf{A}_F is the ring of adeles of F and we suppose that \mathfrak{f} is a primitive cusp form of scalar weight $k \geq 2$, conductor $\mathfrak{c}(\mathfrak{f}) \subset \mathcal{O}_F$, and charachter ψ and \mathfrak{g} a primitive cusp form of weight l < k, conductor $\mathfrak{c}(\mathfrak{g})$, and character ω (here $\psi, \omega : \mathbf{A}_F^{\times} \to \mathbf{C}^{\times}$ are Hecke characters of finite order).

Let ψ^* , ω^* be the characters of the ideal group of F which are associated with ψ , ω and let $L_{\mathfrak{c}}(s,\psi\omega) = \sum_{\mathfrak{n}+\mathfrak{c}=\mathcal{O}_F} \psi^*(\mathfrak{n})\omega^*(\mathfrak{n})\mathcal{N}(\mathfrak{n})^{-s} = \prod_{\mathfrak{p}+\mathfrak{c}=\mathcal{O}_F} (1-\psi^*(\mathfrak{p})\omega^*(\mathfrak{p})\mathcal{N}(\mathfrak{p})^{-s})^{-1}$ (4.5)

be the correspoding Hecke *L*-function (here $\mathfrak{c} = \mathfrak{c}(\mathfrak{f})\mathfrak{c}(\mathfrak{g})$). We now define the normalized zeta function by setting

$$\Psi(s,\mathfrak{f},\mathfrak{g})=\gamma_n(s)L_{\mathfrak{c}}(2s+2-k-l,\psi\omega)L(s,\mathfrak{f},\mathfrak{g})$$

where $n = [F : \mathbf{Q}]$ is the degree of *F*,

$$\gamma_n(s) = (2\pi)^{-2ns} \Gamma(s)^n \Gamma(s+1-l)^n$$

is the gamma-factor. Then the function $\Psi(s, \mathfrak{f}, \mathfrak{g})$ admits an analytic continuation onto the entire comlex plane, and it satisfies a certain functional equation [Ja], [Shi78]. For the non-Archimedean construction we consider the *S*-adic completion

$$\mathcal{O}_S = \prod_{q \in S} (\mathcal{O}_F \otimes \mathbf{Z}_q) = \prod_{\mathfrak{p} \mid q \in S} \mathcal{O}_{\mathfrak{p}}$$

of the ring \mathcal{O}_F .

We set

$$S_F = \{ \mathfrak{p} \mid \mathfrak{p} \text{ divides } q \in S \}, \ \mathfrak{m}_0 = \prod \mathfrak{p} (\text{over all } \mathfrak{p} \in S_F) \}$$

and let $\operatorname{Gal}_S = \operatorname{Gal}(F(S)/F)$ denote the Galois group of the maximal abelian extension of *F* unramified outside *S* and ∞ .

The domain of definition of the non-Archimedean L-functions is the p-adic analytic Lie group

$$\mathcal{X}_{S} = \operatorname{Hom}_{\operatorname{contin}}(\operatorname{Gal}_{S}, \mathbf{C}_{p}^{\times})$$

of all continuouos *p*-adic characters of the Galois group Gal_S (C_p is the Tate field). Elements of finite order $\chi \in \mathcal{X}_S$ can be identified with those Hecke characters of finite order whose conductors contain only prime divisors in S_F ; this identification uses the map

$$\chi: \mathbf{A}_F^{\times} \xrightarrow{\mathrm{CFT}} \mathrm{Gal}_S \to \overline{\mathbf{Q}}^{\times} \xrightarrow{\iota_p} \mathbf{C}_p^{\times},$$

where CTF is the homomorphism of class field theory. Recall that the essential property of the convolution

$$L(s,\mathfrak{f},\mathfrak{g}(\chi))=\sum_{\mathfrak{n}}\chi^*(\mathfrak{n})C(\mathfrak{n},\mathfrak{f})\ C(\mathfrak{n},\mathfrak{g})\mathcal{N}(\mathfrak{n})^{-s}$$

is the following Euler product decomposition

$$L_{\mathfrak{c}}(2s+2-k-l,\psi\omega\chi^2)L(s,\mathfrak{f},\mathfrak{g}(\chi)) =$$

$$\prod_{\mathfrak{q}} (1 - \chi^*(\mathfrak{q})\alpha(\mathfrak{q})\beta(\mathfrak{q})\mathcal{N}(\mathfrak{q})^{-s})(1 - \chi^*(\mathfrak{q})\alpha(\mathfrak{q})\beta'(\mathfrak{q})\mathcal{N}(\mathfrak{q})^{-s}) \times$$
(4.6)

 $\times (1 - \chi^*(\mathfrak{q})\alpha'(\mathfrak{q})\beta(\mathfrak{q})\mathcal{N}(\mathfrak{q})^{-s})(1 - \chi^*(\mathfrak{q})\alpha'(\mathfrak{q})\beta'(\mathfrak{q})\mathcal{N}(\mathfrak{q})^{-s}),$ where the numbers $\alpha(\mathfrak{q}), \alpha'(\mathfrak{q}), \beta(\mathfrak{q})$, and $\beta'(\mathfrak{q})$ are roots of the Hecke polynomials

 $X^{2} - C(\mathfrak{q},\mathfrak{f})X + \psi^{*}(\mathfrak{q})\mathcal{N}(\mathfrak{q})^{k-1} = (X - \alpha(\mathfrak{q}))(X - \alpha'(\mathfrak{q})),$

and

then

$$X^{2} - C(\mathfrak{q},\mathfrak{g})X + \omega^{*}(\mathfrak{q})\mathcal{N}(\mathfrak{q})^{l-1} = (X - \beta(\mathfrak{q}))(X - \beta'(\mathfrak{q})).$$

The decomposition (4.6) is not difficult to deduce from the following elementary lemma on rational functions, applied to each of the Euler q-factors: if

$$\sum_{i=0}^{\infty} A_i X^i = \frac{1}{(1 - \alpha X)(1 - \alpha' X)}, \quad \sum_{i=0}^{\infty} B_i X^i = \frac{1}{(1 - \beta X)(1 - \beta' X)},$$
$$\sum_{i=0}^{\infty} A_i B_i X^i = \frac{1 - \alpha \alpha' \beta \beta' X^2}{(1 - \alpha \beta X)(1 - \alpha \beta' X)(1 - \alpha' \beta' X)(1 - \alpha' \beta' X)}.$$
(4.7)

5.1. Hilbert modular forms. Hilbert-Eisenstein series. — Let the symbols

$$\mathcal{O}_F$$
, I, F_A , F_A^{\times} , $\mathfrak{d} \subset \mathcal{O}_F$, $D_F = \mathcal{N}(\mathfrak{d})$

denote, respectively, the maximal order, the group of fractional ideals, the ring of adeles, the group of ideles, the different and the discriminant of a totally real field *F* of degree *n* over **Q**. Let $\Sigma = \Sigma_{\infty} \cup \Sigma_0$ denote the set of places (i.e. eqivalence classes of valuations) of *F* where $\Sigma_{\infty} = \{\infty_1, \dots, \infty_n\}$ are the Archimedean places, $\Sigma_0 = \{\mathfrak{p} = \mathfrak{p}_v \subset \mathcal{O}_F\}$ finite (non-Archimedean) places. The Archimedean places are induced by the real embeddings of $F: x \mapsto x^{(v)} \in \mathbf{R}$ ($v = 1, \dots, n$). An element $x \in F^{\times}$ is called totally positive ($x \gg 0$) if one has $x^{(v)} > 0$ for all *v* and let F_+^{\times} denote the multiplicative group of all totally positive elements of *F*. We put also $F_{\infty} = F \otimes_{\mathbf{Q}} \mathbf{R} \cong \mathbf{R}^n \subset F_A$, and let $\hat{F} \cong \hat{\mathcal{O}}_F \otimes_{\mathbf{Z}} \mathbf{Q} \subset F_A$ be the subring of finite adeles where $\hat{\mathcal{O}}_F$ is the profinite completion of the ring \mathcal{O}_F (with respect to all its ideals). Then $F_A = F_{\infty} \oplus \hat{F}$, and for an adele $x = (x_v)_{v \in \Sigma}$ we write $x = x_{\infty} + x_0$ where $x_{\infty} \in F_{\infty}, x_0 \in \hat{F}$. On the other hand there is the decomposition $F_A^{\times} = F_{\infty}^{\times} \times \hat{F}^{\times}$ and we shall allow ourselves convenient abuse of notation by writing $y = y_{\infty} \cdot y_0$ with $y_{\infty} \in F_{\infty}^{\times}, y_0 \in \hat{F}^{\times}$. For the idele $y \in F_A^{\times}$ let the symbol $\tilde{y} \in I$ denote the fractional ideal associated with *y* (so that $\tilde{y} \widehat{\mathcal{O}}_F = y_0 \widehat{\mathcal{O}}_F$).

We view the group $GL_2(F)$ as the group G_Q of all Q-rational points of a certain Q -subgroup $G \subset GL_{2n}$. Then the adelization $G_A = G(A)$ can be identified with the product

$$\operatorname{GL}_2(F_{\mathbf{A}}) \cong G_{\infty} \times G_{\widehat{\mathbf{0}}},$$

where

$$G_{\infty} = \operatorname{GL}_2(F_{\infty}) \cong \operatorname{GL}_2(\mathbf{R})^n, \ G_{\widehat{\mathbf{0}}} = \operatorname{GL}_2(\widehat{F}).$$

The subgroup

$$G_{\infty}^+ \cong \operatorname{GL}_2^+(\mathbf{R})^n \subset G_{\infty}$$

consists of all elements

$$\boldsymbol{\alpha} = (\alpha_1, \cdots, \alpha_n), \quad \boldsymbol{\alpha}_{\nu} = \begin{pmatrix} \alpha_{\nu} \ \beta_{\nu} \\ \gamma_{\nu} \ \delta_{\nu} \end{pmatrix},$$

such that det $\alpha_{\nu} > 0$, $\nu = 1, \dots, n$. Every element $\alpha \in G_{\infty}^+$ acts on the product \mathfrak{H}^n of the *n* copies of the upper half planes according to the formula

$$\alpha(z_1,\cdots,z_n)=(\alpha_1(z_1),\cdots,\alpha_n(z_n)),$$

where

$$\alpha_{\nu}(z_{\nu}) = (a_{\nu}z_{\nu} + b_{\nu})/(c_{\nu}z_{\nu} + d_{\nu}).$$

For $z = (z_1, \dots, z_n)$ we put $\{z\} = z_1 + \dots + z_n$ and $e_F(z) = e(\{z\})$, with $e(x) = \exp(2\pi i x)$. Let $\mathbf{i} = (i, \dots, i) \in \mathfrak{H}^n$, then

$$(\{\alpha \in G^+_{\infty} \mid \alpha(\mathbf{i}) = \mathbf{i}\})/\mathbf{R}^{\times}_+$$

\mathbf{n}
u.
-

is a maximal compact subgroup in $G_{\infty}^+/\mathbb{R}_+^{\times}$. For $\alpha \in G_{\infty}^+$, an integer k and an arbitrary function $f : \mathfrak{H}^n \to \mathbb{C}$ we use the notation

$$(f|_k \alpha)(z) = \mathcal{N}(cz+d)^{-k} f(\alpha(z)) \mathcal{N}\det(\alpha)^{k/2},$$

with $\mathcal{N}(z)^k = z_1^k \cdots z_n^k$. Let $\mathfrak{c} \subset \mathcal{O}_F$ be an integral ideal, $\mathfrak{c}_{\mathfrak{p}} = \mathfrak{c}\mathcal{O}_{\mathfrak{p}}$ its \mathfrak{p} -part, $\mathfrak{d}_{\mathfrak{p}} = \mathfrak{d}\mathcal{O}_{\mathfrak{p}}$ the local different. We shall need the open subgroups $W = W_{\mathfrak{c}} \subset G_{\mathbf{A}}$ defined by

$$W = G_{\infty}^{+} \times \prod_{\mathfrak{p}} W(\mathfrak{p}),$$

$$W(\mathfrak{p}) = (5.1)$$

$$\left\{ \begin{pmatrix} a \ b \\ c \ d \end{pmatrix} \in \operatorname{GL}_{2}(F_{\mathfrak{p}}) | b \in \mathfrak{d}_{\mathfrak{p}}^{-1}, c \in \mathfrak{d}_{\mathfrak{p}}\mathfrak{c}_{\mathfrak{p}}, a, d \in \mathcal{O}_{\mathfrak{p}}, ad - bc \in \mathcal{O}_{\mathfrak{p}}^{\times} \right\}.$$

Let $h = |Cl_F|$ be the number of ideal classes of *F* (in the narrow sense),

$$\widetilde{Cl_F} = I/\{(x)|x \in F_+^\times\},\$$

and let us choose the ideles t_1, \dots, t_h so that $\tilde{t}_{\lambda} \subset \mathcal{O}_F$ form a complete system of representatives for $\widetilde{Cl_F}$, $(t_{\lambda})_{\infty} = 1$ and $\tilde{t}_{\lambda} + \mathfrak{m}_0 = \mathcal{O}_F$ ($\lambda = 1, \dots, h, \mathfrak{m}_0 = \prod_{\mathfrak{q} \in S_F} \mathfrak{q}$). If we put $x_{\lambda} = \begin{pmatrix} 1 & 0 \\ 0 & t_{\lambda} \end{pmatrix}$ then there is the following decomposition into a disjoint union ("the approximation theorem"):

$$G_{\mathbf{A}} = \bigcup_{\lambda} G_{\mathbf{Q}} x_{\lambda} W = \bigcup_{\lambda} G_{\mathbf{Q}} x_{\lambda}^{-\iota} W, \qquad (5.2)$$

where $x_{\lambda}^{-\iota} = \begin{pmatrix} t_{\lambda}^{-1} & 0 \\ 0 & 1 \end{pmatrix}$, ι denotes the involution given by

$$\begin{pmatrix} a \ b \\ c \ d \end{pmatrix}^{t} = \begin{pmatrix} d \ -b \\ -c \ a \end{pmatrix}$$

(see [Shi78], p.647).

5.2. — **Definition of Hilbert automorphic forms** of weight *k* and level $\mathfrak{c} \subset \mathcal{O}_F$ with a Hecke character ψ of finite order. By a *Hilbert automorphic form* of weight *k*, level $\mathfrak{c} \subset \mathcal{O}_F$, and Hecke character ψ we mean a function $\mathfrak{f} : G_A \to \mathbf{C}$ satisfying the following conditions (5.3) - (5.5):

$$f(s\alpha x) = \psi(s)f(x) \text{ for all } x \in G_{A}$$

for $s \in F_{A}^{\times}$ (the center of G_{A}), and $\alpha \in G_{Q}$. (5.3)

If we let $\psi_0 : (\mathcal{O}_F/\mathfrak{c})^{\times} \to \mathbb{C}^{\times}$ denote the \mathfrak{c} -part of the character ψ , and then extend the definition of ψ over *W* by the formula

$$\psi\left(\begin{pmatrix}a \ b\\c \ d\end{pmatrix}\right) = \psi_0(a_{\mathfrak{c}} \mod \mathfrak{c}),$$

($a_{\mathfrak{c}}$ being the \mathfrak{c} -part of a) then for all $x \in G_{A}$

$$\mathfrak{f}(x\,w) = \psi(w^{\iota})\mathfrak{f}(x) \text{ for } w \in W_{\mathfrak{c}} \text{ with } w_{\infty} = 1. \tag{5.4}$$

If $w = w(\theta) = (w_1(\theta_1), \cdots, w_n(\theta_n))$ where

$$w_{\nu}(heta_{
u}) = \begin{pmatrix} \cos heta_{
u} - \sin heta_{
u} \\ \sin heta_{
u} & \cos heta_{
u} \end{pmatrix}$$
 ,

then

$$\mathfrak{f}(x\,w(\theta)) = \mathfrak{f}(x)e^{-ik\{\theta\}} \quad (x \in G_{\mathbf{A}}). \tag{5.5}$$

An automorphic form f is called a *cusp form* if

$$\int_{F_{\mathbf{A}}/F} \mathfrak{f}\left(\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} g\right) dt = 0 \text{ for all } g \in G_{\mathbf{A}}.$$
(5.6)

The vector space $\mathcal{M}_k(\mathfrak{c}, \psi)$ of Hilbert automorphic forms of *holomorphic type* is defined as the set of functions satisfying (5.3) – (5.5) and the following *holomorphy condition* (5.7): for any $x \in G_A$ with $x_\infty = 1$ there exists a holmorphic function $g_x : \mathfrak{H}^n \to \mathbf{C}$, such that for all $y = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_\infty^+$ we have

$$f(x y) = (g_x|_k y)(\mathbf{i})$$
(5.7)

(in the case $F = \mathbf{Q}$ we must also require that the functions g_x be holomorphic at the cusps). The property (5.7) enables one to describe the automorphic forms $\mathfrak{f} \in \mathcal{M}_k(\mathfrak{c}, \psi)$ more explicitly in terms of Hilbert modular forms on \mathfrak{H}^n . For this purpose we put $f_{\lambda} = g_{x_{\lambda}^{-\iota}}$ where $x_{\lambda}^{-\iota} = \begin{pmatrix} t_{\lambda}^{-1} & 0 \\ 0 & 1 \end{pmatrix}$, then $f_{\lambda}(z) \in \mathcal{M}_k(\Gamma_{\lambda}, \psi_0)$ for the congruence subgroup $\Gamma_{\lambda} = \Gamma_{\lambda}(\mathfrak{c}) \subset G_{\lambda}^+$.

$$\Gamma_{\lambda} = \Gamma_{\lambda}(\mathfrak{c}) \subset G_{Q},$$

$$\Gamma_{\lambda} = x_{\lambda}Wx_{\lambda}^{-1} \cap G_{Q} = \left\{ \begin{pmatrix} a \ b \\ c \ d \end{pmatrix} \in G_{Q}^{+} | b \in \tilde{t}_{\lambda}^{-1}\mathfrak{d}^{-1}, \ c \in \tilde{t}_{\lambda}\mathfrak{d}\mathfrak{c}, a, d \in \mathcal{O}_{F}, \ ad - bc \in \mathcal{O}_{F}^{\times} \right\}.$$
and that for all $y \in \Gamma_{V}(\mathfrak{c})$ the following condition (5.8) is satisfied:

This means that for all $\gamma \in \Gamma_{\lambda}(\mathfrak{c})$ the following condition (5.8) is satisfied:

$$f_{\lambda}|_{k}\gamma = \psi(\gamma)f_{\lambda}$$
 and $f_{\lambda}(z) = \sum_{\xi} a_{\lambda}(\xi)e_{F}(\xi z),$ (5.8)

where $0 \ll \xi \in \tilde{t}_{\lambda}$ or $\xi = 0$ in the sum over ξ (see [Shi78] for a more detailed discussion of Fourier expansions). The map $\mathfrak{f} \mapsto (f_1, \dots, f_h)$ defines a vector space isomorphism

$$\mathcal{M}(\mathfrak{c}, \psi) \cong \oplus_{\lambda} \mathcal{M}_{k}(\Gamma_{\lambda}, \psi)$$

Put

$$C(\mathfrak{m},\mathfrak{f}) = \begin{cases} a_{\lambda}(\xi)\mathcal{N}(\tilde{t}_{\lambda})^{-k/2}, & \text{if the ideal } \mathfrak{m} = \xi \tilde{t}_{\lambda}^{-1} \text{ is integral}; \\ 0, & \text{if } \mathfrak{m} \text{ is not integral}. \end{cases}$$
(5.9)

We have the following Fourier expansion:

$$\mathfrak{f}\left(\binom{y\,x}{0\,1}\right) = \sum_{0 \ll \zeta \in F, \zeta = 0} C(\zeta \tilde{y}, \mathfrak{f}) |y|^{k/2} e_F(\zeta \mathbf{i} y_\infty) \chi(\zeta x), \tag{5.10}$$

where $\chi_F : F_A/F \to C^{\times}$ is a fixed additive character with the condition $\chi_F(x_{\infty}) = e_F(x_{\infty})$ (see [Shi78], p. 650).

Let $S_k(\mathfrak{c}, \psi) \subset \mathcal{M}(\mathfrak{c}, \psi)$ be the subspace of cusp forms and $\mathfrak{f} \in S_k(\mathfrak{c}, \psi)$ then $a_{\lambda}(0) = 0$ for all $\lambda = 1, \dots, h$.

5.3. Hecke operators (see [Shi78]). — They are introduced by means of double cosets of the type WyW for *y* in the semigroup

$$Y_{\mathfrak{c}} = G_{\mathbf{A}} \cap (G_{\infty}^{+} \times \prod Y_{\mathfrak{c}}(\mathfrak{p})),$$

where

$$Y_{\mathfrak{c}}(\mathfrak{p}) = \left\{ \begin{pmatrix} a \ b \\ c \ d \end{pmatrix} \in \mathrm{GL}_{2}(F_{\mathfrak{p}}) \mid a\mathcal{O}_{\mathfrak{p}} + \mathfrak{c}_{\mathfrak{p}} = \mathcal{O}_{\mathfrak{p}}, \ b \in \mathfrak{d}_{\mathfrak{p}}^{-1}, c \in \mathfrak{c}_{\mathfrak{p}}\mathfrak{d}_{\mathfrak{p}}, d \in \mathcal{O}_{\mathfrak{p}} \right\}.$$
(5.11)

The Hecke algebra $\mathcal{H}_{\mathfrak{c}}$ consists of all formal finite sums of the type $\sum_{y} c_{y}WyW$ with $y \in Y_{\mathfrak{c}}, c_{y} \in \mathbb{C}$ and with the standard multiplication law defined by means of decomposition of double cosets into a disjoint union of a finite number of left cosets. By definition, $T_{\mathfrak{c}}(\mathfrak{m})$ is an element of the ring $\mathcal{H}_{\mathfrak{c}}$ obtained by taking the sum of all different WyW with $y \in Y_{\mathfrak{c}}$ such that $\det(y) = \mathfrak{m}$. Let

$$T'_{\mathfrak{c}} = \mathcal{N}(\mathfrak{m})^{(k-2)/2} T_{\mathfrak{c}}(\mathfrak{m})$$
(5.12)

be the normalized Hecke operator, whose action on the Fourier coefficients of an automorphic form (of the holomorphic type) $\mathfrak{f} \in \mathcal{M}_k(\mathfrak{c}, \psi)$ is given by the usual formula

$$C(\mathfrak{m},\mathfrak{f}|T'_{\mathfrak{c}}(\mathfrak{m})) = \sum_{\mathfrak{m}+\mathfrak{n}=\mathfrak{a}} \psi^*(\mathfrak{a}) \mathcal{N}(\mathfrak{a})^{k-1} C(\mathfrak{a}^{-2}\mathfrak{m}\mathfrak{n},\mathfrak{f})$$
(5.13)

If $\mathfrak{f} \in \mathcal{M}_k(\mathfrak{c}, \psi)$ is an eigenfunction of all Hecke operators $T'_{\mathfrak{c}}(\mathfrak{m})$ with $\mathfrak{f}|_k T'_{\mathfrak{c}}(\mathfrak{m}) = \lambda(\mathfrak{m})\mathfrak{f}$ then we have that $C(\mathfrak{m}, \mathfrak{f}) = \lambda(\mathfrak{m})C(\mathcal{O}_F, \mathfrak{f})$. If we normalize the form \mathfrak{f} by the condition $C(\mathcal{O}_F, \mathfrak{f}) = 1$ then the *L*-function has the following Euler product expansion:

$$L(s,\mathfrak{f}) = \sum_{\mathfrak{n}} C(\mathfrak{n},\mathfrak{f})\mathcal{N}(\mathfrak{n})^{-s} = \sum_{\mathfrak{n}} \lambda(\mathfrak{n})\mathcal{N}(\mathfrak{n})^{-s} = \prod_{\mathfrak{p}} [1 - C(\mathfrak{p},\mathfrak{f})\mathcal{N}(\mathfrak{p})^{-s} + \psi^*(\mathfrak{p})\mathcal{N}(\mathfrak{p})^{k-1-2s}]^{-1}.$$
(5.14)

In this case the coefficients C(n, f) of the form f are algebraic integers.

5.4. — The Petersson inner product is defined for $\mathfrak{f} = (f_1, \dots, f_h) \in \mathcal{S}_k(\mathfrak{c}, \psi)$ and $\mathfrak{g} = (g_1, \dots, g_h) \in \mathcal{M}_k(\mathfrak{c}, \psi)$ by setting

$$\langle \mathfrak{f}, \mathfrak{g} \rangle_{\mathfrak{c}} = \sum_{\lambda=1}^{h} \int_{\Gamma_{\lambda}(\mathfrak{c}) \setminus \mathfrak{H}^{n}} \overline{f_{\lambda}(z)} g_{\lambda}(z) \mathcal{N}(y)^{k} d\mu(z), \qquad (5.15)$$

where

$$d\mu(z) = \prod_{\nu=1}^n y_\nu^{-2} \, dx_\nu \, dy_\nu$$

is a G^+_{∞} -invariant measure on \mathfrak{H}^n .

If
$$\mathfrak{f} \in \mathcal{M}_{k}(\mathfrak{c}, \psi)$$
 and $\mathfrak{f}|_{k} T_{\mathfrak{c}}'(\mathfrak{m}) = \lambda(\mathfrak{m})\mathfrak{f}$ for all \mathfrak{m} with $\mathfrak{m} + \mathfrak{c} = \mathbf{Q}_{F}$ then

$$\lambda(\mathfrak{m}) = \psi^{*}(\mathfrak{m})\overline{\lambda(\mathfrak{m})},$$

$$\psi^{*}(\mathfrak{m})\langle\mathfrak{f}|_{k} T_{\lambda}'(\mathfrak{m}), \mathfrak{g}\rangle_{\mathfrak{c}} = \langle\mathfrak{f}, \mathfrak{g}|_{k} T_{\lambda}'(\mathfrak{m})\rangle_{\mathfrak{c}}$$
(5.16)

 $(\psi$ -hermitian property of the Hecke operators). Let \mathfrak{q} be an integral ideal and $\mathfrak{f} \in \mathcal{M}_k(\mathfrak{c}, \psi)$. Let us define the operators $\mathfrak{f}|\mathfrak{q}, \mathfrak{f}|U(\mathfrak{q})$ by their action on Fourier coefficients:

$$C(\mathfrak{m},\mathfrak{f}|\mathfrak{q}) = C(\mathfrak{q}^{-1}\mathfrak{m},\mathfrak{f}), \ C(\mathfrak{m},\mathfrak{f}|U(\mathfrak{q})) = C(\mathfrak{q}\mathfrak{m},\mathfrak{f}).$$
(5.17)

Here is the explicit description of these operators: for a finite idele $q \in F_A^{\times}$ with $\tilde{q} = q$

$$(\mathfrak{f}|\mathfrak{q})(x) = \mathcal{N}(\mathfrak{q})^{-k/2}\mathfrak{f}(x\begin{pmatrix} q \ 0\\ 0 \ 1 \end{pmatrix}), \qquad (5.18)$$

$$(\mathfrak{f}|U(\mathfrak{q}))(x) = \mathcal{N}(\mathfrak{q})^{k/2-1} \sum_{\nu \in \mathcal{O}_F/\mathfrak{q}} \mathfrak{f}(x \begin{pmatrix} 1 & \nu \\ 0 & q \end{pmatrix}).$$
(5.19)

We recall now the definition of *Eisenstein series* in the Hilbert modular case. Let \mathfrak{a} , \mathfrak{b} be arbitrary fractional ideals, m a positive integer, $q \in (q_1, \dots, q_n) \in \mathbb{Z}^n$, $q_{\nu} \ge 0$, η a Hecke character of finite order modulo an integral ideal $\mathfrak{e} \subset \mathcal{O}_F$ such that $\eta^*((x)) = \operatorname{sign} \mathcal{N}(x)^m$ for $x \equiv 1 \mod \times \mathfrak{e}$, $x \in \mathcal{O}_F$. We put (for Re (s) > 2 - m)

$$K_m^q(z, s; \mathfrak{a}, \mathfrak{b}; \eta) = (2\pi i)^{-\{q\}} (z - \overline{z})^{-q} \times \\ \times \sum_{c,d} \operatorname{sign} \mathcal{N}(d)^m \eta^* (d\mathfrak{b}^{-1}) \left(\frac{c\overline{z} + d}{cz + d}\right)^q \mathcal{N}(cz + d)^{-m} |\mathcal{N}(cz + d)|^{-2s},$$
(5.20)

$$L_m^q(z, s; \mathfrak{a}, \mathfrak{b}; \eta) = (2\pi i)^{-\{q\}} (z - \overline{z})^{-q} \times \\ \times \sum_{c,d} \operatorname{sign} \mathcal{N}(c)^m \eta^*(c\mathfrak{a}^{-1}) \left(\frac{c\overline{z} + d}{cz + d}\right)^q \mathcal{N}(cz + d)^{-m} |\mathcal{N}(cz + d)|^{-2s},$$
(5.21)

where $z^q = \prod_{\nu} z_{\nu}^{q_{\nu}}$, $\mathcal{N}(z) = z_1 \cdots z_n$, the summation in (5.20) and (5.21) is taken over a system of representatives (c, d) of \mathcal{O}_F^{\times} -equivalence classes of non-zero elements in $\mathfrak{a} \times \mathfrak{b}$ $((c, d) \sim (uc, ud) \text{ for } u \in \mathcal{O}_F^{\times}).$

Gauss sums and the twist operator. Let χ be a Hecke character of finite order with a conductor \mathfrak{m} and $\chi(x_{\infty}) = \operatorname{sign}(x_{\infty})^r$ for $r = (r_1, \dots, r_n) \in (\mathbb{Z}/2\mathbb{Z})^n$ (the parity of χ). Let χ^* be the character of the group of fractional ideals prime to \mathfrak{m} which is associated to χ . Let us set $\chi^*(\mathfrak{a}) = 0$ for those \mathfrak{a} which are not coprime to \mathfrak{m} and define the Gauss sum by

$$\tau(\chi) = \sum_{x \in \mathfrak{m}^{-1}\mathfrak{d}^{-1}} \operatorname{sign}(x)^r \chi^*((x)\mathfrak{m}\mathfrak{d}) e_F(x)$$

Then $|\tau(\chi)|^2 = \mathcal{N}(\mathfrak{m})$. The series (5.20) and (5.21) can be extended to functions on the adelic group G_A in such a way that

$$K_m^q(s; \mathfrak{a}, \mathfrak{b}; \eta)_{\lambda}(z) = \mathcal{N}(\tilde{t}_{\lambda})^{s + (m/2)} \mathcal{N}(y)^s K_m^q(z, s; \tilde{t}_{\lambda} \mathfrak{da}, \mathfrak{b}; \eta),$$
(5.22)

$$L_m^q(s; \mathfrak{a}, \mathfrak{b}; \eta)_{\lambda}(z) = \mathcal{N}(\tilde{t}_{\lambda})^{-s - (m/2)} \mathcal{N}(y)^s L_m^q(z, s; \mathfrak{a}, \mathfrak{b}\tilde{t}_{\lambda}^{-1} \mathfrak{d}^{-1}; \eta).$$
(5.23)

The functions (5.20)–(5.23) admit analytic continuation onto the entire complex plane with respect to the parameter $s \in C$, and they satisfy the following functional equation (see [Shi78], p.672, where it is given in a slightly different notation) under the assumption that η is *primitive* modulo \mathfrak{e} :

$$\Delta_m^q(z, 1 - m - s) K_m^q(1 - m - s; \mathfrak{a}, \mathfrak{b}; \eta) = \tau(\eta) \mathcal{N}(\mathfrak{dabe})^{m+2s-1} \Delta_m(s)^q L_m^q(s; \mathfrak{a}, \mathfrak{be}; \overline{\eta}),$$
(5.24)

with the Γ -factor $\Delta_m^q(z, s) = \pi^{-ns} y^{(m+s)} \prod_{\nu} \Gamma(s + m + q_{\nu}).$

We need Fourier expansions of the Eisenstein series which can be explicitly written in terms of the Whittaker function $W(y, \alpha, \beta)$. This function is defined by the integral

$$W(y,\alpha,\beta) = \int_0^\infty (u+1)^{\alpha-1} u^{\beta-1} e^{-yu} du$$

which is absolutely convergent for Re $(\alpha + \beta) > 1$, and

$$W(y, \alpha, -r) = \sum_{i=0}^{r} (-1)^{i} {r \choose i} \frac{\Gamma(\alpha)}{\Gamma(\alpha - i)} y^{r-i} \text{ for } r \in \mathbf{Z}, r \ge 0$$

5.5. Proposition. (On Fourier expansions of the Eisenstein series). Let *s* be an integer such that $s - q_v \leq 0$ for all v, $\eta(\text{mod}\mathfrak{e})$ be a Hecke character of finite order as above (not necessarily primitive) such that $\mathfrak{e} \neq \mathcal{O}$. Then under the above notation there is the following Fourier expansion:

$$\begin{split} \frac{D_F^{1/2}\mathcal{N}(\tilde{t}_{\lambda})\prod_{\nu}\Gamma(s+m+q_{\lambda})}{(-2\pi i)^{n(m+2s)}(-1)^{ns+\{q\}}}L_m^q(z,0;\mathcal{O}_F,\tilde{t}_{\lambda}^{-1}\mathfrak{d}^{-1};\eta) = \\ (4\pi y)^{-q}\sum_{0\ll\xi\in\tilde{t}_{\lambda}}a_{\lambda}(\xi,s,y,\eta)e_F(\xi z), \end{split}$$

where

$$a_{\lambda}(\xi, s, y, \eta) = \sum_{\substack{\xi = b\tilde{c} \\ c \in \mathcal{O}_{F}, b \in \tilde{t}_{\lambda}}} \operatorname{sign} \mathcal{N}(\tilde{b})^{m-1} \mathcal{N}(\tilde{b})^{m+2s-1} \eta^{*}(\tilde{c}) \prod_{\nu} W(4\pi \xi_{\nu} y_{\nu}, m+s+q_{\nu}, s-q_{\nu}),$$

and $W(y, \alpha, \beta)$ is the Whittaker function.

Proof. Using Fourier transform, one has

$$D_{F}^{1/2} \mathcal{N}(\tilde{t}_{\lambda}) \sum_{t \in \tilde{t}_{\lambda}^{-1} \mathfrak{d}^{-1}} \left(\frac{\overline{z}+t}{z+t}\right)^{q} \mathcal{N}(z+t)^{-m} |\mathcal{N}(z+t)|^{-2s} = \sum_{b \in \tilde{t}_{\lambda}} \prod_{\nu} \int_{\mathbf{R}} \frac{\exp(-2\pi i b_{\nu} t_{\nu}) dt_{\nu}}{(z_{\nu}+t_{\nu})^{-(m+2q_{\nu})} (\overline{z_{\nu}}+t_{\nu})^{-2(s-q_{\nu})}},$$

where

$$\int_{\mathbf{R}} \frac{\exp(-2\pi i b_{\nu} t_{\nu}) dt_{\nu}}{(z_{\nu} + t_{\nu})^{-(m+2q_{\nu})} (\overline{z_{\nu}} + t_{\nu})^{-2(s-q_{\nu})}} = (-2\pi i)^{m+2s} (-1)^{s+q_{\nu}} b_{\nu}^{m+2s-1} \Gamma(s+m+q_{\nu})^{-1} W(4\pi b_{\nu} y_{\nu}, m+s+q_{\nu}, s-q_{\nu}) e_{F}(bz).$$

Indeed, if we consider the integral

$$f(t) = \int_{-\infty}^{\infty} z^{-\alpha} \overline{z}^{-\beta} \exp(-2\pi i t z) \, dz,$$

which is absolutely convergent for Re $(\alpha + \beta) > 1$, then application of contour integration shows that

$$f(t) = (2\pi)^{\alpha+\beta} i^{\beta-\alpha} \Gamma(\alpha)^{-1} \Gamma(\beta)^{-1} e^{2\pi t y} \times$$

$$\times \begin{cases} t^{\alpha+\beta-1}e^{-4\pi ty}W(4\pi ty,\alpha,\beta) & \text{if } t > 0\\ \\ |t|^{\alpha+\beta-1}W(4\pi|t|y,\beta,\alpha) & \text{if } t < 0 \end{cases}$$

(see [Shi75], pp.84-85). Therefore

$$D_F^{1/2} \mathcal{N}(\tilde{t}_{\lambda}) \sum_{t \in \tilde{t}_{\lambda}^{-1} \mathfrak{d}^{-1}} \left(\frac{\overline{z}+t}{z+t} \right)^q \mathcal{N}(z+t)^{-m} |\mathcal{N}(z+t)|^{-2s} =$$

$$(-2\pi i)^{n(m+2s)} (-1)^{ns+\{q\}} \prod_{\nu} \Gamma(s+m+q_{\nu})^{-1} \times$$

$$\times \sum_{b \in \tilde{t}_{\lambda}} \mathcal{N}(b)^{m+2s-1} \prod_{\nu} W(4\pi b_{\nu} y_{\nu}, m+s+q_{\nu}, s-q_{\nu}) e_F(bz),$$

and the proposition is then easily deduced from the last equality (see the analogous calculation in [Ka78]).

Remark. We need only a special case of 5.2, when q = 0, m = k - l since the weights k and l are scalars; however, the proposition is applicable for the study of Rankin convolutions of Hilbert modular forms f and g of arbitrary integer vector weights $k = (k_1, \dots, k_n)$ and $l = (l_1, \dots, l_n)$ satisfying the following condition

$$k_1 \equiv k_2 \equiv \cdots \equiv k_n \mod 2, \ l_1 \equiv l_2 \equiv \cdots \equiv l_d \mod 2.$$

5.6. The integral representation. We set

$$G_1 \in \mathcal{S}_k(\mathfrak{m}_1, \psi), \ G_2 \in \mathcal{S}_l(\mathfrak{m}_2, \omega).$$

Then the following integral representation of Rankin type holds (see [Shi78], (4.32)):

$$\Psi(s, G_1, G_2) = D_F^{1/2} \Gamma(s+1-l)^n \pi^{-ns} \langle G_1^{\rho}, V(s-k+1, \psi \omega) \rangle_{\mathfrak{m}_1 \mathfrak{m}_2}, \qquad (5.25)$$

where

$$V(s, \psi\omega) = G_2 \cdot K^0_{k-l}(s; \mathfrak{m}_1\mathfrak{m}_2, \mathcal{O}_F; \psi\omega)$$

More precisely,

$$\Psi(s, G_1, G_2) = D_F^{1/2} \Gamma(s+1-l)^n \pi^{-ns} \sum_{\lambda=1}^h \mathcal{N}(\tilde{t}_\lambda)^{s+1-(k+l)/2} \times$$

$$\times \int_{\Gamma_\lambda(\mathfrak{m}_1\mathfrak{m}_2) \setminus \mathfrak{H}^n} \overline{G_{1,\lambda}^{\rho}(z)} G_{2,\lambda}(z) K_{k-l}^0(z, s-k+1; \tilde{t}_\lambda \mathfrak{d}, \mathcal{O}_F; \psi\omega) \mathcal{N}(y)^{s-1} dx dy.$$
(5.26)

References

- [AndBud] ANDRIANOV A.N. Zeta-functions and the Siegel modular forms. Proc. Summer School Bolya-Janos Math.Soc (Budapest, 1970), Halsted, N.-Y., 1975, 9–20.
- [And74] ANDRIANOV A.N. Euler products attached to Siegel modular forms of degree 2, Uspekhi Mat. Nauk 29 (1974), 44–109 (in Russian).
- [Co] COATES J. On *p*-adic *L*-functions. Sem. Bourbaki, 40eme annee, 1987-88, no 701, Asterisque (1989), 177–178.
- [Co-PeRi] COATES J., PERRIN–RIOU B. On *p*-adic *L*-functions attached to motives over **Q**. Advanced Studies in Pure Math. 17 (1989), 23–54.
- [Col] COLEMAN R. *p*-adic Banach Spaces and Families of Modular forms. Invent. Math. 127 (1997), 417–479.
- [De-Ri] DELIGNE P,RIBET ,K.A. Values of Abelian *L*-functions at negative integers over totally real fields. Invent. Math. 59 (1980), 227–286.
- [Ge-PSh] GELBART S., PIATETSKI-SHAPIRO I.I., RALLIS S. Explicit constructions of automorphic *L* functions. Springer-Verlag, Lect. Notes in Math. N 1254 (1987) 152p.
- [HHKh] HA HUY KHOAI Sur les séries *L* associées aux formes modulaires. Bull. Soc. Math. Fr. 120, N 1 (1992), 1–13.
- [Ham] HAMMOND W.E. The modular groups of Hilbert and Siegel. Am. J. Math. 88 (1966), 497–516.
- [Hi86] HIDA H. Galois representations into $GL_2(\mathbb{Z}_p[[X]])$ attached to ordinary cusp forms, Invent. Math. 85 (1986), 545–613.
- [Hi90] HIDA H. Le produit de Petersson et de Rankin p-adique. Semin. Theor. Nombres, Paris/Fr. 1988-89, Prog. Math. 91 (1990), 87–102.
- [Hi93]
 HIDA H. Elementary theory of L-functions and Eisenstein series London Mathematical Society Student Texts. 26 Cambridge: Cambridge University Press, 386 p., 1993.
- [Hi96] HIDA H. On the search of genuine *p*-adic modular *L*-functions for GL(2). Mém. Soc. Math. de France (N.S.), N 67 (1996), 110 p.
- [Hi98] HIDA H. Control of p-ordinary global sections of coherent p-adic sheaves on Shimura varieties of PEL-type, Lecture of June 5, 1998 in the Seminar in Honour of I.I.Piatetski-Shapiro held in the Institut Fourier, Grenoble, June 4-5, 1998.

[Iw]	Iwasawa K. — Lectures on <i>p</i> -adic <i>L</i> -functions. Ann. of Math.Studies, N 74. Princeton University Press, 1972.
[Ja]	JACQUET H. — Automorphic forms on GL(2). Part II. Springer-Verlag, Lect. Notes in Math. N 278 (1972).
[Ja-L]	JACQUET H., LANGLANDS R. — Automorphic Forms on GL(2). Springer-Verlag, Lect. Notes in Math. N 114 (1972) 548 p.
[Ka76]	KATZ, N.M. — p -adic interpolation of real analytic Eisenstein series, Ann. of Math. 104 (1976), 459–571.
[Ka77]	Katz, N.M. — The Eisenstein measure and p -adic interpolation, Amer. J. Math. 99 (1977), 238–311.
[Ka78]	KATZ N.M. — p -adic L -functions for CM -fields, Invent. Math. 48 (1978) 199–297
[KiPa]	К тадаwа К., Ранснізнкін А.А. — On the Λ -adic Klingen-Eisenstein series, Prépublication de l'Institut Fourier (Grenoble), No. 339 (1996), 1–11.
[Kli]	KLINGEN H. — Über die Werte Dedekindscher Zetafunktionen. Math. Ann. 145 (1962), 265–272.
[Ko-Z]	Конnen W., Zagier D. — Modular forms with rational periods. In: Modul. Forms Symp., Durham, 30 June - 10 July 1983. Chichester (1984), 197–249
[Ku-Le]	Кивота Т., Leopoldt HW — Eine p -adische Theorie der Zetawerte. J- reine angew. math. 214/215 (1964), 328–339.
[Man]	MANIN YU.I. — Non-Archimedean integration and Jacquet-Langlands p -adic L -functions. Russ. Math. Surveys 31, N 1 (1976), 5–57.
[Maz]	MAZUR B. — Deforming Galois representations, in Galois Groups over ${f Q}$. Ed. Y.Ihara, K.Ribet, J.–P. Serre, 1989, Springer–Verlag.
[Maz-W1]	MAZUR B., WILES A. — Class fields of Abelian extensions of ${f Q}$. Invent. math. 76 (1984), 179–330.
[Maz–W2]	MAZUR B., WILES A. — On $p\mbox{-}adic$ analytic families of Galois representations. Compos. Math. 59 (1986), 231–264.
[Nov]	NOVODVORSKY M. E. — Automorphic <i>L</i> -functions for symplectic group GSp(4). Automorphic forms, representations and <i>L</i> -functions, Proc. Symp. pure Math. Amer. Math. Soc., Corval-lis/Oregon 1977, Proc. Symp. pure Math. 33, No.2 (1979), 87–95.
[PaLNM]	Рамснізнкім А.А. — Non-Archimedean <i>L</i> -functions of Siegel and Hilbert modular forms, Lecture Notes in Math., 1471, Springer-Verlag, 1991, 166р.
[PaIF]	Рамснізнкім А.А. — Motives over totally real fields and p -adic L -functions, Annales de l'Institut Fourier, Grenoble, 44 (1994), 989–1023.
[PaSE]	Рамснізнкім А.А. — On the Siegel-Eisenstein measure and its applications, (à paraître dans Israel Journal of Mathematics, 1999).
[PaViet]	Рамснізнкім А.А. — Non-Archimedean Mellin transform and <i>p</i> -adic <i>L</i> Functions. Vietnam Journal of Mathematics, 1997, N3, 179–202.
[PShBud]	Ріатетski-Shapiro I.I. — Euler subgroups, Proc. Summer School Bolya-Janos Math.Soc (Budapest, 1970), Halsted, NY., 1975, 597–620.
[PShPac]	РІАТЕТSКІ-SHAPIRO I.I. — <i>L</i> -functions for GSp_4 . Pacific J.Math, Olga Tausski-Todd memorial issue, (1998), 259–275.
[PSh-R]	Ріатетsкі-Shapiro I.I., Rallis S. — <i>L</i> -functions of automorphic forms on simple classical groups. In: Modul. Forms Symp., Durham, 30 June - 10 July 1983. Chichester (1984), 251–261.

- [Ran39] RANKIN R.A. Contribution to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. I.II. Proc. Camb. Phil. Soc 35 (1939), 351–372.
- [Ran52] RANKIN R.A. The scalar product of modular forms. Proc. London math. Soc. 2 (1952), 198–217.
- [Shi71] ShiMura G. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton Univ. Press, 1971.
- [Shi75] SHIMURA G. On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. 31 (1975), 79–98.
- [Shi76] Shimura G. The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math. 29 (1976), 783–804.
- [Shi77] SHIMURA G. On the periods of modular forms. Math. Annalen 229 (1977), 211–221.
- [Shi78] SHIMURA G. The special values of zeta functions associated with Hilbert modular forms. Duke Math. J. 45 (1978), 637–679.
- [Shi83] SHIMURA G. On Eisenstein series. Duke Math. J. 50 (1983), 417–476.
- [Tay] TAYLOR R. On the *l*-adic cohomology of Siegel threefold. Invent. Math. 114 (1993), 289–310.
- [Til-U] TILOUINE J., URBAN E. Several variable *p*-adic families of Siegel-Hilbert cusp eigenforms and their Galois representations. Preprint 97-4, March 1997, Université Paris-Nord.
- [Til] TILOUINE J. Deformations of Siegel-Hilbert Hecke eigensystems and their Galois representations. Contemporary Math. 210 (1998), 195–225.
- [Wi] WILES A. On ordinary λ-adic representations associated to modular forms. Invent. Math. 94, No.3 (1988), 529–573.
- [Wi] WILES A. Modular elliptic curves and Fermat's Last Theorem. Ann. Math., II. Ser. 141, No.3 (1995), 443–551.

- 🔷 -

Université de Grenoble I Institut Fourier UMR 5582 CNRS-UJF UFR de Mathématiques B.P. 74 38402 ST MARTIN D'HÈRES Cedex (France)

(26 janvier 1999)