
�����
Λ � ���	��
����������������� L ����� ��
�������� � ��� GS p(4)

by Alexei PANCHISHKIN, Ilya PIATETSKI-SHAPIRO

Introduction

The present paper is based on a joint lecture of I.I. Piatetski-Shapiro and A.A. Pan-

chishkin of June 5, 1998 in the Seminar in Honour of I.I. Piatetski-Shapiro held in the Insti-

tut Fourier, Grenoble (June 4-5, 1998) during his visit to Grenoble in May-June 1998.

Let G be a reductive group over a number field F , and p be a prime number. The arith-

metic of L-functions attached to automorphic forms on G � AF  , in particular the study of
their special values, is closely related to the theory of Eisenstein series via Rankin’s method

[Ran39], [Ran52]. This method uses Eisenstein series in an integral representation for cer-

tain rather general complex automorphic L-functions [PSh-R], [Ge-PSh]. In order to con-

struct p-adic automorphic L-functions out of their complex special values one can suc-

cessfully use p-adic integration along a (many variable) Eisenstein measure which was in-

troduced by N.Katz [Ka76, Ka77, Ka78] and used by H.Hida [Hi86, Hi91, Hi93] in the case

of G ! GL2 over a totally real field F (i.e. for the elliptic modular forms and Hilbert mod-

ular forms). The application of such a measure to a given p-adic family of modular forms

provides a general construction of p-adic L-functions of several variables. On the other

hand, the evaluation of this measure at certain points gives another important source of

p-adic L-functions [Ka78]. In the Siegel modular case the Eisenstein measure was stud-

ied in [PaSE]. The purpose of this paper is to construct a Λ-adic version of the Andrianov

L-function for the symplectic group

GSp4 !#" g $ GL4 % t g J4g ! ν � g  J4, ν � α  $ GL1 & ,
over a totally real field F where

J4 !(' 02 ) 12
12 02 *

Mots-clés : forme automorphe, famille p-adique, série d’Eisenstein, méthode de Rankin.
Classification math. : 11F 13, 11F41, 11F67, 11F70, 11F85.

1



using the Eisenstein measure and a p-adic analogue of the Petersson product for Λ-adic

automorphic forms on GL2 over a totally real field F , see [Hi90]. Main Theorem is given in

Section 4.

1. Complex analytic L-functions for GSp � 4  
Let F be a global field of characteristic �! 2, and V a four dimensional vector space

over F endowed with a non-degenerate skew-symmetric form ρ : V � V � F ,

Gρ ! GSp4 ! " g $ GL � V  % ρ � gu, gv  ! νgρ � u, v  , νg $ F � & ,
the algebraic group of symplectic similitudes of ρ over F . Letπ !�� vπv be an irrreducible

cuspidal automorphic representation of Gρ � AF  where v run over all places of F , then
according to Langlands’ classification of irreducible supercuspidal representations πv of

Gρ � Fv  for almost all v πv correspond to a semisimple conjugacy class of a diagonal matrix

hv ! diag � α0,α0α1,α0α2,α0α1α2 � $ LGρ � C  r�� GSP4 � C  � αj ! αj � v  , v �$ S, % S % < 	  .
The Andrianov L-function (or the spinor L-function) ofπ is then the following Euler prod-

uct

L � s,π, r  !�

v � S

det � 14 ) hv � Nv � s  � 1 � ' a finite Euler product
over v $ S * � 1. 1  

This L function plays an impotant role in the arithmetic, in particular it is related to the

l-adic Galois representation onH 3 of the corresponding Siegel threefold [Tay].

This L function was introduced by Andrianov [AndBud], [And74] in the classical fashion,

for F ! Q, and for π ! πf coming from a holomorphic Siegel cusp eigenform f !�
ξ aξq

ξ for the Siegel modular group Γ2 ! Sp4 � Z  over the Sigel half plane
H2 !�� z ! tz $ M2 � C  , Im � z  > 0 � ,

where ξ run over the semigroup A4 of positive definite half integral symmetric matrices ξ,

aξ $ C, qξ ! exp � 2πiTr � ξz   . Consider the Hecke algebra � !�� � Γ2gΓ2  �� !�� p � p
generated by all double coset classes � Γ2gΓ2  with g $ GSp4 � Q  . Then we have that � p !
Q � x �0 , x �1 , x �2 � W2 (W2 theWeyl group) and one has aQ-algebras homomorphism λ f : ���
C given by f % X ! λf � X  f , X $�� , andαj are defined asλf � xj  , j ! 0, 1, 2. In the notation
of Andrianov,

Zf � s  ! 

p

det � 14 ) hpp � s  � 1 � 1. 2  
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is called the spinor L function of f , and he proved that it coincides essentially with the

Dirichlet series L � s, f , ξ0  !���
m � 1 amξ0

ms
where ξ0 > 0 in a fixed positive definit matrix.

Starting from this identification, he obtained an integral representation for Z f � s  using
the group GL2 � K  where K ! Q ��� ) detξ0  an imaginary quadratic field. This integral
representation implied an analytic continuation of Z f � s  to the whole complex plane and
the functional equation of the type

Ψf � s  ! ΓC � s  ΓC � s ) k � 2  ! � ) 1  kΨf � 2k ) 2 ) s  . � 1. 3  
where ΓC ! � 2π  � sΓ � s  is the standard Γ-factor. Its analytic properties were studied by A.

N. Andrianov [And74] but stil little is known about algebraic and arithmetic properties of

the special values of this function; however, from the general Deligne conjecture on critical

values of L-functions it follows that algebraicity properties could exist only for s ! k ) 1.
This work was extended by I.I.Piatetski-Shapiro [PShBud], [PshPac] to arbitrary F using an

arbitrary quadratic extension K /F and the folloing construction. Put

V ! K 2 !�� x ! ' x1
x2 * , xj $ K , j ! 1, 2 	

then V may be viewed as a four dimensional F vector space, dimF V ! 4, and define

ρ � x, y  ! TrK /F � x1y2 ) x2y1  . Consider the following F -algebraic group
G ! � g $ GL2 � K  % det g $ F � � , G � F  �
 GL2 � K  � 1. 4  

then there is an imbedding of F -algebraic groups i : G ↪� Gρ because x1y2 ) x2y1 !
det � x, y  and det � gx, g y  ! det g � det � x, y  , ρ � gx, g y  ! det g � ρ � x, y  . Note that
G � AF  �
 GL2 � AK  and G � AF  ↪� Gρ � AF  ! GSp4 � AF  . It turns out that there is an
integral representation for L � s,π, r  of the following type:

L � s,π, r  !�
G � F � CF � G � AF � ϕ � i � g   E � g , s, µ  dg � 1. 5  

whereϕ is an automorphic form onGρ � AF  ! GSp4 � AF  from the representation space of

π, CF the center ofG � F  �
 GL2 � K  , E � g , s, µ  is an Eisenstein series onG � AF  �
 GL2 � AK  
attached to a quasicharacter µ : K ��� A �K � C � ([PshPac], � 5).

2. A p-adic construction

Let p � 5 be a prime number. We consider the case of two totally real fields K � F
and a representation πf attached to a holomorphic Siegel-Hilbert cusp form f � z  ! ϕ̃ of

scalar weight k ! � k, . . . , k  on the Siegel-Hilbert half plane
H2,F ! H2 � � � � � H2 � n copies  ; � 2. 1  
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in this case there is also a critical value s ! k ) 1 for L-functions of the type L � s,π f , � χ, r  
where χ is a character of finite order of F � � A �F . According to general conjectures on mo-
tivic L-functions there should exist p-adic L-functions which interpolate p-adically their

critical values, see [Co], [Co-PeRi], [PaIF]. However in our present construction instead of

p-adic interpolation of their special values of the type L � k ) 1,π f � χ, r  we use directly a
p-adic version of (1.5) using techniques of Λ-adic modular forms (see Section 3). We hope

that the resulting p-adic L-function provide also the above p-adic interpolation.

3. Λ-adic modular forms

Recall that the Iwasawa algebra [Iw] Λ ! Zp � � T � ���! Zp � � Γ � � is the completed group
ring of the profinite group Γ ! 1 � pZp ! � 1 � p � 
 Z �p . According to the theorem of

Kubota-Leopoldt [Ku-Le], there exists a unique element g � T  $ Λ such that for all k � 1,
k
�
1 mod � p ) 1  

g � � 1 � p  k ) 1  ! ζ
� � 1 ) k  

where ζ
� � 1 ) k  denotes the special value at s ! 1 ) k of the Riemann zeta-function with

a modified Euler p-factor: ζ
� � s  ! � 1 ) � 1 � p  � s � 1  � 1 ) p � s  ζ � s  .

Definition 3.1. The Serre ring Λ � � q � � is the ring of all formal q-expansions with coefficients
in Λ:

Λ � � q � � !�� f ! ��
n � 0 an � T  qn % an � T  $ Λ � ;

Definition 3.2. TheΛ-moduleM � Λ  
 Λ � � q � � of Λ-adic modular forms (of some fixed level
N , � N, p  ! 1, consists of all f ! � �n � 0 an � T  qn $ Λ � � q � � such that for each k � 5,

k
�
1 mod � p ) 1  the specialisation

fk ! f % T � � 1 � p � k � 1 $ Zp � � q � �
is a classical modular form of weight k and level Np. In other terms f is given by a p-adic

measure µf on Z �p with values in Zp � � q � � such that the integrals

Z �p
xkpµf ! fk � 3. 1  

are classical modular forms.

Example 3.3. The Λ-adic Eisenstein series f $ M � Λ  (of levelN ! 1) is defined by
fk ! ζ

� � 1 ) k  
2

� �
n � 1

σ
�
k � 1 � n  qn , σ

�
k � 1 � n  !�� 1 ) � 1 � p  k  �

d � n,p � � d
dk � 1. � 3. 2  
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Example 3.3. Hida’s families f are elements of

Sord � Λ  ! eS � Λ  , e ! lim
n � � U

n!
p

(Up � � n � 0 anq
n  ! � n � 0 apnq

n is the Atkin U -operator), S � Λ  is the Λ-submodule of

Λ-adic cusp forms.

The Hilbert modular case. According to the classical theorem of Klingen [Kli], for a totally

real field F and for k � 1 the special values ζF � 1 ) k  are rational numbers where ζF � s  is
the Dedekind zeta function of F .

The Deligne-Ribet p-adic zeta function [De-Ri] interpolates p-adically these special values

as an element gF of a version of the Iwasawa algebra over F ,ΛF ! Zp � �Gp,F � � , whereGp,F !
Gal � F abp, � /F  is the Galois group of the maximal abelian extension unramified outside of
prime divisors over p and 	 . For F ! Qwe have that Gp,Q �� Z �p , and there is the natural
restriction homomorphism (or the norm homomorphism)

�
: Gp,F � Z �p , so that for an

integer k the group homomorphism
�

k : Gp,F � Z �p induces the ring homomorphism�
k : ΛF ! Zp � �Gp,F � � � Zp and the numbers

�
k � gF  interpolate ζF � 1 ) k  . Also gQ

coincides essentially with the Kubota-Leopoldt zeta-function g � T  .
A Λ-adic Hilbert modular form could be defined as a formal Fourier expansion

f ! �
η

LF

aηq
η $ ΛF � � qLF � � � LF 
 F a lattice  

( η runs over totally positive elements or 0) whose appropriate specialisations are clas-

sical Hilbert modular form. More precisely, for an integer k there is a homomorphism
�

k : ΛF � � qLF � � � Zp � � q � � and it is required that for all appropriate sufficiently large k the
specialization fk ! �

k � f  be the Fourier expansion of a classical Hilbert modular form.
As over Q, the first example of a Λ-adic Hilbert modular form is given by an Eisenstein se-

ries (more precisely, this seris is given by the Katz-Hilbert-Eisensteinmeasure, see [Ka78]).

Also, Hida’s theory could be extended to the Hiilbert modular case [Hi91].

The Siegel-Hilbert modular case. A Λ-adic Siegel-Hilbert modular form could be defined

as a formal Fourier expansion

f ! �
ξ

B2,F

aξq
ξ $ ΛF � � qB2,F � � � B2,F 
 M2,F  

(B2,F is the semi-group of all symmetric totally non-negative matrices ξ in a sublattice of

M2,F ) whose appropriate specialisations are classical Siegel-Hilbert modular form. More

precisely, for an integer k there is a homomorphism
�

k : ΛF � � qLF � � � Zp � � q � � and it is
required that for all appropriate sufficiently large k the specialization fk ! �

k � f  be the
Fourier expansion of a classical Siegel-Hilbertmodular form. The first example of a Λ-adic

Siegel-Hilbert modular form is given by an Eisenstein series (for F ! Q these series are

described in [PaSE]. It seems that Hida’s theory also could be extended to the Siegel-Hilbert

modular case [Hi98], [Til-U],[Til].
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4. Λ-adic L-functions

Recall that we consider the case of two totally real fieldsK � F and a representation
πf attached to a holomorphic Siegel-Hilbert cusp form f � z  ! ϕ̃ of scalar weight k !� k, . . . , k  on the Siegel-Hilbert half plane

H2,F ! H2 � � � � � H2 � n copies  ;
Thenwe rewrite the integral representation (1.5) in the formof the Petersson scalar product

over K :

L � s,π, r  ! � ĩ � ϕ̃, Ẽ � s, µ  �� K � 4. 1  
where i denotes both the imbedding i : G ↪� Gρ and the corresponding modular imbed-

ding

i : HF � HF � H2,F , HF ! H � � � � � H ;H2,F ! H2 � � � � � H2 � n copies  ; � 4. 2  
(which looks like � z1, z2  ��� ' z1

α � z1 ) z2  α � z1 ) z2  
z2 * with α $ F,

(see [Ham])), i
�
ϕ̃ ! ϕ � i is a rapidly decreasing (but not cuspidal) holomorphic form. For

the Λ-adic construction take a Λ-adic Siegel-Hilbert cusp form ϕ̃ on GSp4,F then i
�
ϕ̃ is a

Λ-adic Hilbert modular form over K explicitely described by its Fourier expansion. Now

take G to be the Λ-adic Katz-Hilbert-Eisenstein measure for GL2,K . In order to define the

Petersson product

� ĩ � ϕ, G � K � 4. 3  
we put

� ! Quot � Λ  then it suffices to define
� 1Eis � i � ϕ̃  , G � K

where 1Eis � i � ϕ̃  denotes the projection in the � -vector space M � �  to the � -subspace
EisK � �  of Hilbert-Eisenstein series. The projection 1Eis � i � ϕ̃  could be explicitely com-
puted using higher terms of the Fourier expansions of i

�
ϕ̃ and of the Fourier expansions

of a
�
-basis of EisK � �  . Then we are reduced to the case of � G1, G2 � K , where G1 and G2

are two Hilbert-Eisenstein series, and in order to define their Petersson product we use the

method of Rankin. IfG1, G2 were two cusp forms of weight k their Petersson product would

coincide with a normalized residue of the Rankin zeta function LG1 ,G2 � s  at s ! k. In the

case of normalised Eisenstein series the Rankin zeta function LG1 ,G2 � s  is explicitely eval-
uated via Rankin’s lemma as a product of abelian Dirichlet L-functions, and we define the
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� G1, G2 � K in a similar fashion as in [Ko-Za] as the normalised residue of LG1 ,G2 � s  in terms
of the corresponding Deligne-Ribet p-adic zeta functions.

Main theorem. Let ϕ̃ be a Λ-adic Siegel-Hilbert cusp form then

1) there exists a canonically defined element

�
ϕ ! � 1Eis � i � ϕ̃  , G � K $ � F

where G is the Katz-Hilbert-Eisenstein series, i
�
ϕ̃ the Λ-adic pullback of ϕ, 1Eis � i � ϕ̃  its

Eisenstein projection and i
�
ϕ̃ is a Λ-adic Hilbert modular form over K explicitely de-

scribed by its Fourier expansion.

2) the element
�

ϕ gives the p-adic interpolation of the residue of the normalized Rankin L

function L
�
1Eis � i � ϕ̃k � ,Gk � s  (at s ! k, the scalar weight of a specialisation ϕ̃k  :

�
k � � ϕ  ! Ress � kL �1Eis � i � ϕ̃k � ,Gk � s  

In order to explain some details of the proof we let S be a finite set of primes containing

p. In the rest of this section we consider properties of the Rankin convolutions of Hilbert

modular forms; they correspond to certain automorphic forms on the group G ! GL2 �
GL2 over a totally real field F and have the form of the following Dirichlet series

L � s, � , �  ! � � C ��� , �  C ��� , �  � ���  � s , � 4. 4  
where

�
, � are Hilbert automorphic forms of “holomorphic type” over F , and C ��� , �  ,

C ��� , �  are their normalized Fourier coefficients (indexed by integral ideals � of the maxi-
mal order � F 
 F ). We view

�
, � as functions on the adelic group GA ! GL2 � AF  , where

AF is the ring of adeles of F and we suppose that
�
is a primitive cusp form of scalar weight

k � 2, conductor � � �  
 � F , and charachter ψ and � a primitive cusp form of weight

l < k, conductor � ���  , and character ω (here ψ,ω : A �F � C � are Hecke characters of
finite order).

Letψ
�
,ω
�
be the characters of the ideal group of F which are associated withψ ,ω and let

L 	 � s,ψω  ! �
� � 	 ��
 F ψ

� ���  ω � ���  � ���  � s ! 

� � 	 �
 F � 1 ) ψ

� ���  ω � ���  � ���  � s  � 1 � 4. 5  
be the correspoding Hecke L-function (here � !�� � �  � ���  ). We now define the normalized
zeta function by setting

Ψ � s, � , �  ! γn � s  L 	 � 2s � 2 ) k ) l,ψω  L � s, � , �  
where n !�� F : Q � is the degree of F ,

γn � s  ! � 2π  � 2nsΓ � s  nΓ � s � 1 ) l  n
7



is the gamma-factor. Then the function Ψ � s, � , �  admits an analytic continuation onto
the entire comlex plane, and it satisfies a certain functional equation [Ja], [Shi78]. For the

non-Archimedean construction we consider the S-adic completion

� S !�

q

S

� � F � Zq  ! 
� � q  S � �
of the ring � F .

We set

SF !�� � % � divides q $ S � , �
0 ! 
 � � over all � $ SF  ,

and let GalS ! Gal � F � S  /F  denote the Galois group of the maximal abelian extension of
F unramified outside S and 	 .
The domain of definition of the non-Archimedean L-functions is the p-adic analytic Lie

group �
S ! Homcontin � GalS ,C �p  

of all continuouos p-adic characters of theGalois groupGalS (Cp is the Tate field). Elements

of finite order χ $ �
S can be identified with those Hecke characters of finite order whose

conductors contain only prime divisors in SF ; this identification uses the map

χ : A �F CFT) � GalS � Q � ip� C �p ,
where CTF is the homomorphism of class field theory. Recall that the essential property of

the convolution

L � s, � , ��� χ   ! � � χ
� ���  C ��� , �  C ��� , �  � ���  � s

is the following Euler product decomposition

L 	 � 2s � 2 ) k ) l,ψωχ2  L � s, � , ��� χ   !

�� � 1 ) χ

� ���  α ���  β ���  � ���  � s  � 1 ) χ
� ���  α ���  β �����  � ���  � s  �

� � 1 ) χ
� ���  α � ���  β ���  � ���  � s  � 1 ) χ

� ���  α �����  β �����  � ���  � s  ,
� 4. 6  

where the numbersα ���  , α � ���  , β ���  , and β � ���  are roots of the Hecke polynomials
X 2 ) C ��� , �  X � ψ

� ���  � ���  k � 1 ! � X ) α ���   � X ) α � ���   ,
and

X 2 ) C ��� , �  X � ω
� ���  � ���  l � 1 ! � X ) β ���   � X ) β � ���   .

The decomposition (4.6) is not difficult to deduce from the following elementary lemma

on rational functions, applied to each of the Euler � -factors: if
��
i � 0 AiX i ! 1� 1 ) αX  � 1 ) α � X  , ��

i � 0 BiX i ! 1� 1 ) βX  � 1 ) β � X  ,
then ��

i � 0 AiBiX i ! 1 ) αα � ββ � X 2� 1 ) αβX  � 1 ) αβ � X  � 1 ) α � β � X  � 1 ) α � β � X  . � 4. 7  
8



5.1. Hilbertmodular forms. Hilbert-Eisenstein series. — Let the symbols

� F , I , FA, F �A , � 
 � F , DF ! � ���  
denote, respectively, the maximal order, the group of fractional ideals, the ring of adeles,

the group of ideles, the different and the discriminant of a totally real field F of degree n

over Q. Let Σ ! Σ �
�

Σ0 denote the set of places (i.e. eqivalence classes of valuations) of

F where Σ � !�� 	 1, � � � , 	 n � are the Archimedean places, Σ0 ! � � ! � v 
 � F � finite
(non-Archimedean ) places. The Archimedean places are induced by the real embeddings

of F : x �� x � ν � $ R � ν ! 1, � � � , n  . An element x $ F � is called totally positive (x � 0)

if one has x � ν � > 0 for all ν and let F �� denote the multiplicative group of all totally positive
elements of F . We put also F � ! F � Q R �! Rn 
 FA, and let F̂ �! ˆ� F � Z Q 
 FA be the
subring of finite adeles where ˆ� F is the profinite completion of the ring � F (with respect
to all its ideals). Then FA ! F � �

F̂ , and for an adele x ! � xv  v  Σ we write x ! x � � x0where x � $ F � , x0 $ F̂ . On the other hand there is the decomposition F �A ! F �� � F̂ �and we shall allow ourselves convenient abuse of notation by writing y ! y � � y0 withy � $ F �� , y0 $ F̂ � . For the idele y $ F �A let the symbol ỹ $ I denote the fractional ideal
associated with y (so that ỹ

�
� F ! y0

�
� F ).

We view the group GL2 � F  as the groupGQ of allQ-rational points of a certainQ -subgroup
G 
 GL2n. Then the adelization GA ! G � A  can be identified with the product

GL2 � FA  �! G � � G�Q,
where

G � ! GL2 � F �  �! GL2 � R  n , G�Q ! GL2 �
�
F  .

The subgroup

G �� �! GL �2 � R  n 
 G �
consists of all elements

α ! � α1, � � � ,αn  , αν ! ' αν

γν

βν

δν * ,
such that detαν > 0, ν ! 1, � � � , n . Every element α $ G �� acts on the product � n of then copies of the upper half planes according to the formula

α � z1, � � � , zn  ! � α1 � z1  , � � � ,αn � zn   ,
where

αν � zν  ! � aνzν � bν  / � cνzν � dν  .
For z ! � z1, � � � , zn  we put � z � ! z1 � � � � � zn and eF � z  ! e � � z �  , with e � x  !
exp � 2πix  . Let i ! � i, � � � , i  $�� n , then� " α $ G �� % α � i  ! i &  /R ��
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is a maximal compact subgroup in G �� /R �� . For α $ G �� , an integer k and an arbitrary

function f : � n � C we use the notation� f % kα  � z  ! � � cz � d  � k f � α � z   �
det � α  k/2,

with
� � z  k ! zk1 � � � zkn . Let � 
 � F be an integral ideal, � � ! � � � its � -part, � � ! � � �

the local different. We shall need the open subgroupsW ! W 	 
 GA defined by
W ! G �� � 
 � W ���  ,
W ���  !
� ' a

c

b

d * $ GL2 � F �  % b $�� � 1� , c $�� � � � , a, d $ � � , ad ) bc $ � �� 	 .
� 5. 1  

Let h ! % �ClF % be the number of ideal classes of F (in the narrow sense),�
ClF ! I/ " � x  % x $ F �� & ,

and let us choose the ideles t1, � � � , th so that t̃λ 
 � F form a complete system of repre-

sentatives for
�
ClF , � tλ  � ! 1 and t̃λ � �

0 ! � F (λ ! 1, � � � , h, � 0 ! � � 
SF

� ). If
we put xλ !�� 10 0tλ � then there is the following decomposition into a disjoint union (“the
approximation theorem”):

GA ! �
λGQxλW ! �

λGQx � ι
λ W, � 5. 2  

where x � ι
λ !�� t � 1λ

0

0
1 � , ι denotes the involution given by

' a
c

b

d * ι ! ' d) c ) ba *
(see [Shi78], p.647).

5.2. — Definition of Hilbert automorphic forms of weight k and level � 
 � F

with a Hecke character ψ of finite order. By a Hilbert automorphic form of weight k, level

� 
 � F , and Hecke character ψ we mean a function
�
: GA � C satisfying the following

conditions (5.3) - (5.5):
� � sαx  ! ψ � s  � � x  for all x $ GA
for s $ F �A � the center of GA  , andα $ GQ. � 5. 3  

If we let ψ0 : � � F / �  � � C � denote the � -part of the character ψ, and then extend the

definition ofψ overW by the formula

ψ ' ' a
c

b

d * * ! ψ0 � a 	 mod �  ,
( a 	 being the � -part of a) then for all x $ GA

� � x w  ! ψ � wι  � � x  forw $ W 	 with w � ! 1. � 5. 4  
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Ifw ! w � θ  !�� w1 � θ1  , � � � , wn � θn   where
wν � θν  ! ' cosθν

sinθν

) sinθν

cosθν * ,
then � � x w � θ   ! � � x  e � ik � θ � � x $ GA  . � 5. 5  

An automorphic form
�
is called a cusp form if


FA/F

� ' ' 1
0

t

1 * g * dt ! 0 for all g $ GA. � 5. 6  
The vector space � k � � ,ψ  of Hilbert automorphic forms of holomorphic type is

defined as the set of functions satisfying (5.3) – (5.5) and the following holomorphy condi-

tion (5.7): for any x $ GA with x � ! 1 there exists a holmorphic function gx : � n � C,

such that for all y ! � a
c
b
d � $ G �� we have� � x y  ! � gx % ky  � i  � 5. 7  

(in the case F ! Qwemust also require that the functions gx be holomorphic at the cusps).
The property (5.7) enables one to describe the automorphic forms

� $�� k � � ,ψ  more
explicitly in terms of Hilbert modular forms on � n . For this purpose we put fλ ! gx � ι

λ

where x � ι
λ ! � t � 1λ

0

0
1 � , then fλ � z  $�� k � Γλ,ψ0  for the congruence subgroup

Γλ ! Γλ � �  
 G �Q ,
Γλ ! xλWx � 1λ � GQ !� ' a

c

b

d * $ G �Q % b $ t̃ � 1λ � � 1, c $ t̃λ � � , a, d $ � F , ad ) bc $ � �F 	 .
This means that for all γ $ Γλ � �  the following condition (5.8) is satisfied:

fλ % kγ ! ψ � γ  fλ and fλ � z  ! �
ξ

aλ � ξ  eF � ξz  , � 5. 8  
where 0 � ξ $ t̃λ or ξ ! 0 in the sum over ξ (see [Shi78] for a more detailed discussion of

Fourier expansions). The map
�
���� f1, � � � , fh  defines a vector space isomorphism
� � � ,ψ  �! �

λ � k � Γλ,ψ  
Put

C � � , �  ! � aλ � ξ  � � t̃λ  � k/2, if the ideal
� ! ξt̃ � 1λ is integral;

0, if
�
is not integral.

� 5. 9  
We have the following Fourier expansion:

� � � y
0

x

1 � � ! �
0 � ζ

F,ζ � 0C � ζỹ , �  % y % k/2eF � ζiy �  χ � ζx  , � 5. 10  

where χF : FA/F � C � is a fixed additive character with the condition χF � x �  ! eF � x �  (see [Shi78], p. 650).

Let � k � � ,ψ  �
 � � � ,ψ  be the subspace of cusp forms and � $	� k � � ,ψ  then
aλ � 0  ! 0 for all λ ! 1, � � � , h.
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5.3. Hecke operators (see [Shi78]). — They are introduced by means of double

cosets of the typeWyW for y in the semigroup

Y 	 ! GA � � G �� � 
 Y 	 ���   ,
where

Y 	 ���  ! � ' a
c

b

d * $ GL2 � F �  % a � � � � � ! � � , b $�� � 1� , c $ � � � � , d $ � � 	 . � 5. 11  
The Hecke algebra � 	 consists of all formal finite sums of the type � y cyWyW with y $
Y 	 , cy $ C and with the standard multiplication law defined by means of decomposition
of double cosets into a disjoint union of a finite number of left cosets. By definition, T 	 � �  
is an element of the ring � 	 obtained by taking the sum of all differentWyW with y $ Y 	
such that

�
det � y  ! �

. Let

T �	 ! � � �  � k � 2 � /2T 	 � �  � 5. 12  
be the normalizedHecke operator, whose action on the Fourier coefficients of an automor-

phic form (of the holomorphic type)
� $ � k � � ,ψ  is given by the usual formula

C � � , � % T �	 � �   ! �
� � � ��� ψ

� � �  � � �  k � 1C � � � 2 � � , �  � 5. 13  
If
� $ � k � � ,ψ  is an eigenfunction of all Hecke operators T �	 � �  with � % kT �	 � �  ! λ � �  �

then we have that C � � , �  ! λ � �  C � � F , �  . If we normalize the form �
by the condition

C � � F , �  ! 1 then the L-function has the following Euler product expansion:
L � s, �  ! � � C ��� , �  � ���  � s ! � � λ ���  � ���  � s !


�
� 1 ) C ��� , �  � ���  � s � ψ

� ���  � ���  k � 1 � 2s � � 1. � 5. 14  
In this case the coefficients C ��� , �  of the form �

are algebraic integers.

5.4. — The Petersson inner product is defined for
� !�� f1, � � � , fh  $ � k � � ,ψ  

and � !�� g1, � � � , gh  $ � k � � ,ψ  by setting
� � , � � 	 ! h�

λ � 1  Γλ � 	 � ��� n fλ � z  gλ � z  � � y  k dµ � z  , � 5. 15  
where

dµ � z  ! n



ν � 1 y � 2ν dxν dyν

is a G �� -invariant measure on � n .If
� $ � k � � ,ψ  and � % kT �	 � �  ! λ � �  � for all � with

� � � ! QF then
λ � �  ! ψ

� � �  λ � �  ,
ψ
� � �  � � % kT �λ � �  , � � 	 !�� � , � % kT �λ � �  � 	 � 5. 16  
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(ψ-hermitian property of the Hecke operators). Let � be an integral ideal and � $
� k � � ,ψ  . Let us define the operators � % � , � %U ���  by their action on Fourier coefficients:

C � � , � % �  ! C ��� � 1 � , �  , C � � , � %U ���   ! C ��� � , �  . � 5. 17  
Here is the explicit description of these operators: for a finite idele q $ F �A with q̃ ! q

� � % �  � x  ! � ���  � k/2 � � x ' q
0

0

1 *  , � 5. 18  
� � %U ���   � x  ! � ���  k/2 � 1 �

v
 
 F /

� � � x ' 1
0

v

q *  . � 5. 19  
We recall now the definition of Eisenstein series in the Hilbert modular case. Let

�
, � be

arbitrary fractional ideals,m a positive integer, q $�� q1, � � � , qn  $ Zn , qν � 0, η a Hecke
character of finite order modulo an integral ideal � 
 � F such that η

� � � x   ! sign� � x  m
for x

�
1 mod � � , x $ � F . We put (for Re � s  > 2 ) m)

K qm � z, s; � , � ; η  !�� 2πi  � � q � � z ) z  � q �
� �

c,d

sign
� � d  m η

� � d � � 1  ' cz � d
cz � d * q � � cz � d  � m % � � cz � d  % � 2s , � 5. 20  

Lqm � z, s; � , � ; η  ! � 2πi  � � q � � z ) z  � q �
� �

c,d

sign
� � c  m η

� � c � � 1  ' cz � d
cz � d * q � � cz � d  � m % � � cz � d  % � 2s , � 5. 21  

where zq ! � ν z
qν
ν ,

� � z  ! z1 � � � zn , the summation in (5.20) and (5.21) is taken over a
system of representatives � c, d  of � �F -equivalence classes of non-zero elements in � ���
( � c, d  � � uc, ud  for u $ � �F ).
Gauss sums and the twist operator. Let χ be a Hecke character of finite order with a con-

ductor
�
and χ � x �  ! sign � x �  r for r !#� r1, � � � , rn  $�� Z/2Z  n (the parity of χ ). Let χ

�

be the character of the group of fractional ideals prime to
�
which is associated to χ. Let

us set χ
� � �  ! 0 for those � which are not coprime to �

and define the Gauss sum by

τ � χ  ! �
x
 � � 1 � � 1/ � � 1 sign � x  rχ � � � x  � �  eF � x  

Then % τ � χ  % 2 ! � � �  . The series (5.20) and (5.21) can be extended to functions on the
adelic group GA in such a way that

K qm � s; � , � ; η  λ � z  ! � � t̃λ  s � � m/2 � � � y  sK qm � z, s; t̃λ � � , � ; η  , � 5. 22  
Lqm � s; � , � ; η  λ � z  ! � � t̃λ  � s � � m/2 � � � y  sLqm � z, s; � , � t̃ � 1λ � � 1; η  . � 5. 23  
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The functions (5.20)–(5.23) admit analytic continuation onto the entire complex planewith

respect to the parameter s $ C, and they satisfy the following functional equation (see

[Shi78], p.672, where it is given in a slightly different notation) under the assumption that

η is primitivemodulo � :

∆qm � z, 1 ) m ) s  K qm � 1 ) m ) s; � , � ; η  !
τ � η  � ��� � � �  m � 2s � 1∆m � s  qLqm � s; � , � � ; η  , � 5. 24  

with the Γ-factor ∆qm � z, s  ! π � nsy � m � s � � ν Γ � s � m � qν  .
We need Fourier expansions of the Eisenstein series which can be explicitly written in

terms of the Whittaker functionW � y,α, β  . This function is defined by the integral
W � y,α, β  !  �

0

� u � 1  α � 1uβ � 1e � yudu
which is absolutely convergent for Re � α � β  > 1, and

W � y,α, ) r  ! r�
i � 0 � ) 1  i ' ri * Γ � α  

Γ � α ) i  yr � i for r $ Z, r � 0
5.5. Proposition. (On Fourier expansions of the Eisenstein series). Let s be an integer such

that s ) qν

�
0 for all ν, η � mod �  be a Hecke character of finite order as above (not nec-

essarily primitive) such that � �! � . Then under the above notation there is the following
Fourier expansion:

D1/2F
� � t̃λ  � ν Γ � s � m � qλ  � ) 2πi  n � m � 2s � � ) 1  ns � � q � Lqm � z, 0; � F , t̃ � 1λ � � 1; η  !� 4πy  � q �

0 � ξ

t̃λ

aλ � ξ, s, y, η  eF � ξz  ,
where

aλ � ξ, s, y, η  !�
ξ̃ � b̃c̃

c ��� F ,b � t̃λ

sign
� � b̃  m � 1 � � b̃  m � 2s � 1η � � c̃  


ν

W � 4πξνyν, m � s � qν, s ) qν  ,
andW � y,α, β  is the Whittaker function.

Proof. Using Fourier transform, one has

D1/2F
� � t̃λ  �

t

t̃ � 1
λ
� � 1 ' z � tz � t * q � � z � t  � m % � � z � t  % � 2s !

�
b

t̃λ



ν


R

exp � ) 2πibνtν  dtν� zν � tν  � � m � 2qν � � zν � tν  � 2 � s � qν � ,
14



where


R

exp � ) 2πibνtν  dtν� zν � tν  � � m � 2qν � � zν � tν  � 2 � s � qν � !
� ) 2πi  m � 2s � ) 1  s � qνbm � 2s � 1ν Γ � s � m � qν  � 1W � 4πbνyν, m � s � qν, s ) qν  eF � bz  .

Indeed, if we consider the integral

f � t  !� �
� �

z � αz � β exp � ) 2πitz  dz,
which is absolutely convergent for Re � α � β  > 1, then application of contour integration

shows that
f � t  ! � 2π  α � βiβ � αΓ � α  � 1Γ � β  � 1e2πty �

�
�� � tα � β � 1e � 4πtyW � 4πty,α, β  if t > 0

% t % α � β � 1W � 4π % t % y, β,α  if t < 0

(see [Shi75], pp.84 –85). Therefore

D1/2F
� � t̃λ  �

t

t̃ � 1
λ
� � 1 ' z � tz � t * q � � z � t  � m % � � z � t  % � 2s !

� ) 2πi  n � m � 2s � � ) 1  ns � � q � 

ν

Γ � s � m � qν  � 1 �
� �
b

t̃λ

� � b  m � 2s � 1 

ν

W � 4πbνyν, m � s � qν, s ) qν  eF � bz  ,
and the proposition is then easily deduced from the last equality (see the analogous calcu-

lation in [Ka78]).

Remark. Weneed only a special case of 5.2,when q ! 0,m ! k ) l since theweights k and
l are scalars; however, the proposition is applicable for the study of Rankin convolutions

of Hilbert modular forms
�
and � of arbitrary integer vector weights k ! � k1, � � � , kn  and

l ! � l1, � � � , ln  satisfying the following condition
k1
�
k2
� � � � � kn mod 2, l1

�
l2
� � � � � ld mod 2.

5.6. The integral representation.We set

G1 $ � k � � 1,ψ  , G2 $ � l � � 2,ω  .
Then the following integral representation of Rankin type holds (see [Shi78], (4.32)):

Ψ � s, G1, G2  ! D1/2F Γ � s � 1 ) l  nπ � ns � Gρ
1 , V � s ) k � 1,ψω  � � 1 � 2 , � 5. 25  
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where

V � s,ψω  ! G2 � K 0k � l � s; � 1
�
2, � F ;ψω  .

More precisely,

Ψ � s, G1, G2  ! D1/2F Γ � s � 1 ) l  nπ � ns
h�

λ � 1
� � t̃λ  s � 1 � � k � l � /2 �

� 
Γλ � � 1 � 2 � ��� n Gρ

1,λ � z  G2,λ � z  K 0k � l � z, s ) k � 1; t̃λ � , � F ;ψω  � � y  s � 1 dx dy. � 5. 26  

References

[AndBud] A A.N. — Zeta-functions and the Siegel modular forms. Proc. Summer School Bolya-
Janos Math.Soc (Budapest, 1970), Halsted, N.-Y., 1975, 9–20.

[And74] A A.N. — Euler products attached to Siegel modular forms of degree 2 , Uspekhi Mat.
Nauk 29 (1974), 44–109 (in Russian).

[Co] C J. — On p-adic L-functions. Sem. Bourbaki, 40eme annee, 1987-88, no 701, Asterisque
(1989), 177–178.

[Co-PeRi] C J., P–R B. — On p-adic L-functions attached to motives over Q. Advanced Stud-
ies in Pure Math. 17 (1989), 23–54.

[Col] C R. — p-adic Banach Spaces and Families of Modular forms. Invent. Math. 127 (1997),
417–479.

[De-Ri] D P.,R ,K.A. — Values of Abelian L-functions at negative integers over totally real fields.
Invent. Math. 59 (1980), 227–286.

[Ge-PSh] G S.,P-S I.I., R S. — Explicit constructions of automorphic L - func-
tions. Springer-Verlag, Lect. Notes in Math. N 1254 (1987) 152p.

[HHKh] HH K — Sur les séries L associées aux formes modulaires. Bull. Soc. Math. Fr. 120, N 1
(1992), 1–13.

[Ham] HW.F. — The modular groups of Hilbert and Siegel. Am. J. Math. 88 (1966), 497–516.

[Hi86] H H. — Galois representations into GL2(Zp[[X ]]) attached to ordinary cusp forms, Invent.
Math. 85 (1986), 545–613.

[Hi90] H H. — Le produit de Petersson et de Rankin p-adique. Semin. Theor. Nombres, Paris/Fr.
1988-89, Prog. Math. 91 (1990), 87–102.

[Hi91] HH. — On p-adic L-functions of GL(2) � GL(2) over totally real fields, Ann. de l’Inst. Fourier,
40 (1991), 311–391.

[Hi93] HH. — Elementary theory of L-functions and Eisenstein series London Mathematical Society
Student Texts. 26 Cambridge: Cambridge University Press, 386 p., 1993.

[Hi96] H H. — On the search of genuine p–adic modular L–functions for GL(2). Mém. Soc. Math.
de France (N.S.), N 67 (1996), 110 p.

[Hi98] HH. — Control of p-ordinary global sections of coherent p-adic sheaves on Shimura varieties
of PEL-type, Lecture of June 5, 1998 in the Seminar in Honour of I.I.Piatetski-Shapiro held in the
Institut Fourier, Grenoble, June 4-5, 1998.

16



[Iw] I K. — Lectures on p-adic L-functions. Ann. of Math.Studies, N 74. Princeton University
Press, 1972.

[Ja] J H. — Automorphic forms on GL(2). Part II. Springer-Verlag, Lect. Notes in Math. N 278
(1972).

[Ja-L] JH., LR. — Automorphic Forms on GL(2). Springer-Verlag, Lect. Notes in Math.
N 114 (1972) 548 p.

[Ka76] K, N.M. — p-adic interpolation of real analytic Eisenstein series, Ann. of Math. 104 (1976),
459–571.

[Ka77] K, N.M. — The Eisenstein measure and p-adic interpolation, Amer. J. Math. 99 (1977), 238–
311.

[Ka78] KN.M. — p-adic L-functions for C M -fields, Invent. Math. 48 (1978) 199–297

[KiPa] K K., P A.A. — On the Λ-adic Klingen-Eisenstein series, Prépublication de
l’Institut Fourier (Grenoble), No. 339 (1996), 1–11.

[Kli] KH. — Über die Werte Dedekindscher Zetafunktionen. Math. Ann. 145 (1962), 265–272.

[Ko-Z] KW., ZD. — Modular forms with rational periods. In: Modul. Forms Symp., Durham,
30 June - 10 July 1983. Chichester (1984), 197–249

[Ku-Le] K T., L H.-W — Eine p-adische Theorie der Zetawerte. J- reine angew. math.
214/215 (1964), 328–339.

[Man] M Y.I. — Non-Archimedean integration and Jacquet-Langlands p-adic L-functions. Russ.
Math. Surveys 31, N 1 (1976), 5–57.

[Maz] M B. — Deforming Galois representations, in Galois Groups over Q. Ed. Y.Ihara, K.Ribet,
J.–P. Serre, 1989, Springer–Verlag.

[Maz-W1] M B., W A. — Class fields of Abelian extensions of Q. Invent. math. 76 (1984), 179–330.

[Maz–W2] M B., W A. — On p-adic analytic families of Galois representations. Compos. Math. 59
(1986), 231–264.

[Nov] N M. E. — Automorphic L-functions for symplectic group GSp(4). Automorphic
forms, representations and L-functions, Proc. Symp. pure Math. Amer. Math. Soc., Corval-
lis/Oregon 1977, Proc. Symp. pure Math. 33, No.2 (1979), 87–95.

[PaLNM] PA.A. — Non-Archimedean L-functions of Siegel and Hilbert modular forms, Lecture
Notes in Math., 1471, Springer-Verlag, 1991, 166p.

[PaIF] P A.A. — Motives over totally real fields and p–adic L–functions, Annales de l’Institut
Fourier, Grenoble, 44 (1994), 989–1023.

[PaSE] PA.A. — On the Siegel-Eisenstein measure and its applications, (à paraître dans Israel
Journal of Mathematics, 1999).

[PaViet] PA.A. — Non-Archimedean Mellin transform and p-adic L Functions. Vietnam Jour-
nal of Mathematics, 1997, N3, 179–202.

[PShBud] P-S I.I. — Euler subgroups, Proc. Summer School Bolya-Janos Math.Soc (Bu-
dapest, 1970), Halsted, N.-Y., 1975, 597–620.

[PShPac] P-S I.I. — L-functions for GS p4. Pacific J.Math, Olga Tausski-Todd memorial is-
sue, (1998), 259–275.

[PSh-R] P-S I.I., R S. — L-functions of automorphic forms on simple classical groups.
In: Modul. Forms Symp., Durham, 30 June - 10 July 1983. Chichester (1984), 251–261.

17



[Ran39] RR.A. — Contribution to the theory of Ramanujan’s function τ(n) and similar arithmetical
functions. I.II. Proc. Camb. Phil. Soc 35 (1939), 351–372.

[Ran52] R R.A. — The scalar product of modular forms. Proc. London math. Soc. 2 (1952), 198–217.

[Shi71] SG. — Introduction to the Arithmetic Theory of Automorphic Functions. Princeton Univ.
Press, 1971.

[Shi75] S G. — On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. 31 (1975),
79–98.

[Shi76] S G. — The special values of the zeta functions associated with cusp forms. Comm. Pure
Appl. Math. 29 (1976), 783–804.

[Shi77] S G. — On the periods of modular forms. Math. Annalen 229 (1977), 211–221.

[Shi78] SG. — The special values of zeta functions associated with Hilbert modular forms. Duke
Math. J. 45 (1978), 637–679.

[Shi83] S G. — On Eisenstein series. Duke Math. J. 50 (1983), 417–476.

[Tay] T R. — On the l -adic cohomology of Siegel threefold. Invent. Math. 114 (1993), 289–310.

[Til-U] T J., U E. — Several variable p–adic families of Siegel-Hilbert cusp eigenforms and
their Galois representations. Preprint 97-4, March 1997, Université Paris-Nord.

[Til] T J. — Deformations of Siegel-Hilbert Hecke eigensystems and their Galois representa-
tions. Contemporary Math. 210 (1998), 195–225.

[Wi] W A. — On ordinary λ-adic representations associated to modular forms. Invent. Math. 94,
No.3 (1988), 529–573.

[Wi] W A. — Modular elliptic curves and Fermat’s Last Theorem. Ann. Math., II. Ser. 141, No.3
(1995), 443–551.

–
�

–

Université de Grenoble I
Institut Fourier

UMR 5582 CNRS-UJF
UFR de Mathématiques
B.P. 74
38402 ST MARTIN D’HÈRES Cedex (France)

(26 janvier 1999)

18


