ON A A-ADIC ANDRIANOQOV L-FUNCTION FOR GSp(4)

by Alexei PANCHISHKIN, Illya PIATETSKI-SHAPIRO

Introduction

The present paper is based on a joint lecture of L.I. Piatetski-Shapiro and A.A. Pan-
chishkin of June 5, 1998 in the Seminar in Honour of LI. Piatetski-Shapiro held in the Insti-
tut Fourier, Grenoble (June 4-5, 1998) during his visit to Grenoble in May-June 1998.

Let G be a reductive group over a number field F, and p be a prime number. The arith-
metic of L-functions attached to automorphic forms on G(Ar), in particular the study of
their special values, is closely related to the theory of Eisenstein series via Rankin's method
[Ran39], [Ran52]. This method uses Eisenstein series in an integral representation for cer-
tain rather general complex automorphic L-functions [PSh-R], [Ge-PSh]. In order to con-
struct p-adic automorphic L-functions out of their complex special values one can suc-
cessfully use p-adic integration along a (many variable) Eisenstein measure which was in-
troduced by N.Katz [Ka76, Ka77, Ka78] and used by H.Hida [Hi86, Hi91, Hi93] in the case
of G = GL; over a totally real field F (i.e. for the elliptic modular forms and Hilbert mod-
ular forms). The application of such a measure to a given p-adic family of modular forms
provides a general construction of p-adic L-functions of several variables. On the other
hand, the evaluation of this measure at certain points gives another important source of
p-adic L-functions [Ka78]. In the Siegel modular case the Eisenstein measure was stud-
ied in [PaSE]. The purpose of this paper is to construct a A-adic version of the Andrianov
L-function for the symplectic group

GSp, = {g € GLs| 'glag = v(g)Js, v(x) € GL1 },
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over a totally real field F where




using the Eisenstein measure and a p-adic analogue of the Petersson product for A-adic
automorphic forms on GL; over a totally real field F, see [Hi90]. Main Theorem is given in
Section 4.

1. Complex analytic -functions for Gsp(4)

Let F be a global field of characteristic # 2, and V a four dimensional vector space
over F endowed with a non-degenerate skew-symmetric formp : V X V — F,

G, = GSp, = {g € GL(V) | p(gu, gv) = vgp(u,v), vq € FX} ,

the algebraic group of symplectic similitudes of p over F. Let 1 = ® , 1, be an irrreducible
cuspidal automorphic representation of G,(Ar) where v run over all places of F, then
according to Langlands’ classification of irreducible supercuspidal representations 1, of
G, (F,) for almost all v 1T, correspond to a semisimple conjugacy class of a diagonal matrix

.
hy, = diag{ o, ®o&1, Xz, X1 2} € “G,(C) = GSP4(C)
(aj = aj(v), v & S, [S| < 00).

The Andrianov L-function (or the spinor L-function) of r is then the following Euler prod-
uct

L(s,m, 1) = H det (14 — hy - Nv™%) 7! x ( (1.1)

a finite Euler product)
v¢gS

overv € S

This L function plays an impotant role in the arithmetic, in particular it is related to the
I-adic Galois representation on H° of the corresponding Siegel threefold [Tay].

This L function was introduced by Andrianov [AndBud], [And74] in the classical fashion,
for F = Q, and for m = 71 coming from a holomorphic Siegel cusp eigenform f =
D g dg g* for the Siegel modular group ', = Sp4(Z) over the Sigel half plane

H, = {z="z € M(C),Im (2) > 0},

where & run over the semigroup A4 of positive definite half integral symmetric matrices &,
ag € C, ¢ = exp(2miTr(Ez)). Consider the Hecke algebra H = ((I2gT2)) = ®,H,
generated by all double coset classes (I',gT>) with g € GSps(Q). Then we have that #,, =
Q[xgt, xfc, xzi] "2 (W, the Weyl group) and one has a Q-algebras homomorphism Ay : H —
Cgivenby f|X = Af(X)f, X € H,and «; are defined as A (x;), j = 0,1, 2. In the notation
of Andrianov,

Zs(s) = Hdet(14 —hpp )t (1.2)



is called the spinor L function of f, and he proved that it coincides essentially with the
oo

a
Dirichlet series L(s, f,&) = Z Lio where &, > 0 in a fixed positive definit matrix.
m
m=1
Starting from this identification, he obtained an integral representation for Zs (s) using

the group GL,(K) where K = Q(y/—det&) an imaginary quadratic field. This integral
representation implied an analytic continuation of Z¢(s) to the whole complex plane and
the functional equation of the type

Y (s) = Te(s)Te(s — k+2) = (=1)"¥p(2k —2 —5). (1.3)
where I'c = (2m)°T(s) is the standard I'-factor. Its analytic properties were studied by A.
N. Andrianov [And74] but stil little is known about algebraic and arithmetic properties of

the special values of this function; however, from the general Deligne conjecture on critical
values of L-functions it follows that algebraicity properties could exist only for s = k — 1.

This work was extended by I.I.Piatetski-Shapiro [PShBud], [PshPac] to arbitrary F using an
arbitrary quadratic extension K/F and the folloing construction. Put

2 X1 .
V=K"=4x= ,Xj € K,j=1,2
X2 J

then V may be viewed as a four dimensional F vector space, dimp V' = 4, and define
p(x,y) = Trx/r(x1y2 — x231). Consider the following F-algebraic group

G = {g € GL,(K) | detg € F*}, G(F) C GLy(K) (1.4)
then there is an imbedding of F-algebraic groups i : G < G, because x1)» — xoy1 =
det(x,y) and det (gx,gy) = detg - det(x,y), p(gx,gy) = detg - p(x,y). Note that
G(Ar) C GILy(Ax) and G(Ar) < G,(Ar) = GSps(AfF). It turns out that there is an
integral representation for L(s, 1, r) of the following type:

L(s,m 1) = P(i(g))E(g s n)dg (1.5)

~/G(F) Cr\G(Ar)
where @ is an automorphic form on G,(Ar) = GSps(Ar) from the representation space of
T, Cr the center of G(F) C GL(K), E(g, s, ¢) is an Eisenstein series on G(Ar) C GLy(Ax)
attached to a quasicharacter p : K*\Ag — C* ([PshPac], § 5).

2. A p-adic construction

Let p > 5 be a prime number. We consider the case of two totally real fields K D F
and a representation 17 attached to a holomorphic Siegel-Hilbert cusp form f(z) = @ of
scalar weight k = (k, ..., k) on the Siegel-Hilbert half plane

Hyp = H, X --+ x H, (ncopies); (2.1)
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in this case there is also a critical value s = k — 1 for L-functions of the type L(s, 1y, ®X, 1)
where x is a character of finite order of F*\A} . According to general conjectures on mo-
tivic L-functions there should exist p-adic L-functions which interpolate p-adically their
critical values, see [Co], [Co-PeRi], [PalF]. However in our present construction instead of
p-adic interpolation of their special values of the type L(k — 1, 1y ® X, r) we use directly a
p-adic version of (1.5) using techniques of A-adic modular forms (see Section 3). We hope
that the resulting p-adic L-function provide also the above p-adic interpolation.

3. aA-adic modular forms

Recall that the Iwasawa algebra [Iw] A = Z,[[T]] = Z,[[I]] is the completed group
ring of the profinite groupI' = 1+ pZ, = (1 + p) C Z;. According to the theorem of
Kubota-Leopoldt [Ku-Le], there exists a unique element g(7) € A such that forall k > 1,
k=1mod (p—1)

g(1+p)f =1 =01~k
where £*(1 — k) denotes the special value at s = 1 — k of the Riemann zeta-function with
amodified Euler p-factor: T*(s) = (1 — (1 + p) =) (1 — p=)C(s).

Definition 3.1. The Serre ring A[[q]]is the ring of all formal g-expansions with coefficients
inA:

Allgll = {f =D _ an(T)q" | an(T) € A};

Definition 3.2. The A-module M(A) C A[[q]] of A-adic modular forms (of some fixed level
N, (N,p) = 1, consists of all f = Y72 an(T)g" € A[[g]] such that for each k > 5,
k =1 mod (p — 1) the specialisation

fe = Fle=aapyk 1 € Zp[l4]]

is a classical modular form of weight k and level Np. In other terms f is given by a p-adic
measure (i on Z, with values in Z,[[q]] such that the integrals

| shur = @)
Z

P

are classical modular forms.

Example 3.3. The A-adic Eisenstein series f € M(A) (oflevel N = 1) is defined by

fio= ST S ot o = (-0 pY Y @ (32)

n>1 d\n,p fd



Example 3.3. Hida’s families f are elements of
ord . nl
A) =eS(A), e=1
SUYA) = eS(A), e Jim u,

(Up(X >0 and™) = D ,>0 apnq” is the Atkin U-operator), S(A) is the A-submodule of
A-adic cusp forms.

The Hilbert modular case. According to the classical theorem of Klingen [Kli], for a totally
real field F and for k > 1 the special values Cr(1 — k) are rational numbers where Cr(s) is
the Dedekind zeta function of F.

The Deligne-Ribet p-adic zeta function [De-Ri] interpolates p-adically these special values
as an element gy of a version of the Iwasawa algebra over F, Ap = Zp[[G,r]], where G, p =
Gal(F;};o /F) is the Galois group of the maximal abelian extension unramified outside of
prime divisors over p and co. For F = Q we have that G,q =5 Z;j, and there is the natural
restriction homomorphism (or the norm homomorphism) N : G,z — Z;j, so that for an
integer k the group homomorphism N* : Gpr — Z; induces the ring homomorphism
NE 2 Ap = 2,[[Gyr]] — Z, and the numbers N'*(gr) interpolate Tr(1 — k). Also gq
coincides essentially with the Kubota-Leopoldt zeta-function g(T).

A A-adic Hilbert modular form could be defined as a formal Fourier expansion

f= Z apq" € Ar[[g"]] (Lr C F alattice)
neLr
( n runs over totally positive elements or 0) whose appropriate specialisations are clas-
sical Hilbert modular form. More precisely, for an integer k there is a homomorphism
N Ag[[q"]] = Z,[[q]] and it is required that for all appropriate sufficiently large k the
specialization f; = N* (f) be the Fourier expansion of a classical Hilbert modular form.
As over Q, the first example of a A-adic Hilbert modular form is given by an Eisenstein se-
ries (more precisely, this seris is given by the Katz-Hilbert-Eisenstein measure, see [Ka78]).
Also, Hida’s theory could be extended to the Hiilbert modular case [Hi91].

The Siegel-Hilbert modular case. A A-adic Siegel-Hilbert modular form could be defined
as a formal Fourier expansion
f= Z agq® € Ar[[q™"]] (Bor C Myr)

EEBy
(By,r is the semi-group of all symmetric totally non-negative matrices & in a sublattice of
M, r) whose appropriate specialisations are classical Siegel-Hilbert modular form. More
precisely, for an integer k there is a homomorphism N* : Ag[[¢!F]] — Z,[[q]] and it is
required that for all appropriate sufficiently large k the specialization f; = N (f) be the
Fourier expansion of a classical Siegel-Hilbert modular form. The first example of a A-adic
Siegel-Hilbert modular form is given by an Eisenstein series (for F = Q these series are
described in [PaSE]. It seems that Hida’s theory also could be extended to the Siegel-Hilbert
modular case [Hi98], [Til-U],[Til].



4. A-adic -functions

Recall that we consider the case of two totally real fields K D F and arepresentation
1ty attached to a holomorphic Siegel-Hilbert cusp form f(z) = @ of scalar weight k =
(k, ..., k) on the Siegel-Hilbert half plane

Hyr = Hy X --+- X Hy (ncopies);

Then we rewrite the integral representation (1.5) in the form of the Petersson scalar product
over K:

L(s,m,7) = (I*®, E(s, 1))k (4.1)
where i denotes both the imbedding i : G < G, and the corresponding modular imbed-
ding

i:Hp X He = Hyp, Hr =H X -+ X H;Hyp = Hy X --- X Hy (ncopies); (4.2)

(which looks like
2 a(z1 — 2)

(z1,22) — (

(see [Hamy))), i*® = @ o iis arapidly decreasing (but not cuspidal) holomorphic form. For

) with « € F,
a(z1 — 2) 2

the A-adic construction take a A-adic Siegel-Hilbert cusp form @ on GSpy r then i*@ is a
A-adic Hilbert modular form over K explicitely described by its Fourier expansion. Now
take G to be the A-adic Katz-Hilbert-Eisenstein measure for GL, x. In order to define the
Petersson product

(T, Gk (4.3)
we put £ = Quot(A) then it suffices to define

(1eis(i* @), G)k

where 15;(* @) denotes the projection in the £-vector space M(L) to the £-subspace
Eisg (L) of Hilbert-Eisenstein series. The projection 1g;(i*@®) could be explicitely com-
puted using higher terms of the Fourier expansions of i*® and of the Fourier expansions
of a L-basis of Eisg(L). Then we are reduced to the case of (Gy, G)x, where G; and G,
are two Hilbert-Eisenstein series, and in order to define their Petersson product we use the
method of Rankin. If G;, G, were two cusp forms of weight k their Petersson product would
coincide with a normalized residue of the Rankin zeta function Lg, ¢, (s) at s = k. In the

case of normalised Eisenstein series the Rankin zeta function Lg, ,(s) is explicitely eval-
uated via Rankin’s lemma as a product of abelian Dirichlet L-functions, and we define the
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(G1, Go)k in a similar fashion as in [Ko-Za] as the normalised residue of Lg, ¢, (s) in terms
of the corresponding Deligne-Ribet p-adic zeta functions.

Main theorem. Let ¢ be a A-adic Siegel-Hilbert cusp form then
1) there exists a canonically defined element
Lo = (1gs(i*®), G)x € L
where G is the Katz-Hilbert-Eisenstein series, i*® the A-adic pullback of @, 1gis(i* @) its

Eisenstein projection and i*® is a A-adic Hilbert modular form over K explicitely de-
scribed by its Fourier expansion.

2) the element L, gives the p-adic interpolation of the residue of the normalized Rankin L
function LT .01 6, (s) (at s = k, the scalar weight of a specialisation @y.):

k
N (Ly) = RessszikEis(i*(i’k)’Gk (s)

In order to explain some details of the proof we let S be a finite set of primes containing
p. In the rest of this section we consider properties of the Rankin convolutions of Hilbert
modular forms; they correspond to certain automorphic forms on the group G = GL; X
GL; over a totally real field F and have the form of the following Dirichlet series

L(sf.8) = Y Cn§) Cln, g)N(n) ™", (4.4)

n

where f, g are Hilbert automorphic forms of “holomorphic type” over F , and C(n,{),
C(n, g) are their normalized Fourier coefficients (indexed by integral ideals n of the maxi-
mal order O C F). We view {, g as functions on the adelic group Gy = GL,(Af), where
Ap is the ring of adeles of F and we suppose that f is a primitive cusp form of scalar weight
k > 2, conductor ¢(f) C Op, and charachter  and g a primitive cusp form of weight
| < k, conductor c(g), and character w (here y, w : A; — C* are Hecke characters of
finite order).

Let ¢*, w* be the characters of the ideal group of F which are associated with ¢ ,w and let

L(syw)= Y ¢ o' mMNm™ = J[ G-v*@E)o*ENE™)" 4.5

n+c=0f p+c=0p
be the correspoding Hecke L-function (here ¢ = ¢(f)¢(g)). We now define the normalized
zeta function by setting

Y(s,f,8) = yn(s)Le(2s +2 — k — L yw)L(s, §, g)
where n = [F : Q] is the degree of F,
yu(s) = 2m) 2"T(s)" T(s+1—D)"
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is the gamma-factor. Then the function ¥(s, f,g) admits an analytic continuation onto
the entire comlex plane, and it satisfies a certain functional equation [Ja], [Shi78]. For the
non-Archimedean construction we consider the S-adic completion
Os = H OF & Zq H OP
qes plges
of the ring Op.

We set

S ={p | p divides g € S}, my = Hp (over allp € Sp),
and let Galg = Gal(F(S)/F) denote the Galois group of the maximal abelian extension of
F unramified outside S and oco.

The domain of definition of the non-Archimedean L-functions is the p-adic analytic Lie
group

Xs = Homeonn (Gals, C,y )
of all continuouos p-adic characters of the Galois group Gals (C, is the Tate field). Elements
of finite order ¥ € Xs can be identified with those Hecke characters of finite order whose

conductors contain only prime divisors in Sg; this identification uses the map

X:Ap O Gals —» Q° 5 ¢,
where CTF is the homomorphism of class field theory. Recall that the essential property of
the convolution

s 006 = 22" () ) g ()

is the following Euler product decomposmon
L(2s 42—k —Lywx*)L(s f,g(x)) =

[10 = x* @a(@B@N (@)7)(1 = x* (@) (@)B' ()N (@) ") (4.6)

q

x (1= x" (@) (a)B(a) NV (a) ) (1 — x*(a) o' (@) B" ()N (a) ),
where the numbers a(q), o’(q), B(q), and B'(q) are roots of the Hecke polynomials

(@)X + ¢ @N (@) " = (X = a(a)) (X - o'(a)),

and

X2 — C(a,9)X + w* (N (a)' " = (X = B(@))(X — B'()).
The decomposition (4.6) is not difficult to deduce from the following elementary lemma
on rational functions, applied to each of the Euler g-factors: if

i 1
;A’X S 1—ax)(1- ZB’ T =-BX)(1-BX)

then

iA-B-X" = L— ao'BEX" (4.7)
L T (1= aBX)(1 — o' X)(1 — «'B'X)(1 — o' B'X) '



5.1. Hilbert modular forms. Hilbert-Eisenstein series. — Let the symbols
OF, I, FA, FAX, 0 C OF; DF ZN(D)

denote, respectively, the maximal order, the group of fractional ideals, the ring of adeles,
the group of ideles, the different and the discriminant of a totally real field F of degree n
over Q. Let X = ¥, U X, denote the set of places (i.e. eqgivalence classes of valuations) of
F where 3o, = {001, --,00,} are the Archimedean places, 5y = {p = p, C O} finite
(non-Archimedean ) places. The Archimedean places are induced by the real embeddings
of F:x+— xR (v=1,---,n). An element x € F* is called totally positive (x 3> 0)
if one has x{*) > 0 for all v and let F_ff denote the multiplicative group of all totally positive
elements of F. We put also Foo = F ®g R = R" C Fj, and let F2=0ry Q C Fj bethe
subring of finite adeles where Oy is the profinite completion of the ring @ (with respect
to all its ideals). Then Fy = Fo, @ F, and for an adele x = (x,),es we write X = Xoo + Xo
where Xoo € Foo, Xo € F. On the other hand there is the decomposition Fy* = FX x F*
and we shall allow ourselves convenient abuse of notation by writing y = y - o with
Yoo € FX, yo € F*. For theidele y € F,* let the symbol y € I denote the fractional ideal
associated with y (so that y@F = yO@p).

We view the group GL, (F) as the group Gq of all Q-rational points of a certain Q -subgroup
G C GLyj,. Then the adelization Gy = G(A) can be identified with the product

GLy(Fp) = Goo X Ga,

Q
where
Goo = GLz(Fo) = GL2(R)", G5 = GL,(F).
The subgroup

consists of all elements

O(=(O(1---O() 0( :(O(vﬁv)
’ ’ nj» % YV 6V ’
such thatdeta, >0,v =1,---,n. Every element &« € G;“o acts on the product $" of the

n copies of the upper half planes according to the formula

0((21, cee ,zn) = (0(1(21)! Tt ,an(zn)),

where
oyv(zy) = (avzy + by)/(cvzy + dy).

For z = (z1,--+,2,) weput {z} = 21 + --- + 2z, and ep(z) = e({z}), with e(x) =
exp(2mix). Leti = (i,---, i) € H", then

(o € GE [ (i) = i})/RY

9



is a maximal compact subgroup in GX /R}. For « € G , an integer k and an arbitrary
function f : " — C we use the notation

(flke)(2) = N(cz + d)~*f (a(2)) N det ()2,
with N'(2)% = zf--- zk. Let ¢ C OF be an integral ideal, ¢, = ¢Oy its p-part,d, = 00,
the local different. We shall need the open subgroups W = W, C G, defined by
w =G x [[wm),
p
W(p) = (5.1)

b
{(ad> € GLy(F,)|b € 0, ', ¢ € dycp, a,d € Op,ad — be € Og}.
c

Leth = |/C—’7;| be the number of ideal classes of F (in the narrow sense),
Clp = 1/{(x)|x € F}},

and let us choose the ideles t1,- - -, tj, so that f; C OF form a complete system of repre-
sentatives for Clr, (f\)oo = land f + mg = Op A = 1,---,h, mg = qusF q. If
we put x) = ( é r(,)\ ) then there is the following decomposition into a disjoint union (“the
approximation theorem”):

Ga = UpaGoa W = U)\GQX)\_LW, (5. 2)

o

S 1) , tdenotes the involution given by

() - (572)

5.2. — Definition of Hilbert automorphic forms of weight k and level ¢ C O

where x, ' = (
(see [Shi78], p.647).

with a Hecke character ¢ of finite order. By a Hilbert automorphic form of weight k, level
¢ C Op, and Hecke character ¢ we mean a function f : Gy — C satisfying the following
conditions (5.3) - (5.5):

f(sax) = w(s)f(x) forall x € Gy

for s € F{* (the center of Ga), and & € Gy. 5-3)

If we let Yo : (Ofp/c)* — C* denote the c-part of the character g, and then extend the
definition of ¢ over W by the formula

" ((j Z)) = yo(a. mod ¢),

(a. being the c-part of a) then for all x € G

flx w) = w(w")f(x) forw € W, with wy, = 1. (5.4)
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Ifw=w(6) = (w1(61), -, wn(0y)) where

0, —sin @
w0 (6,) = (cos v —sin V)

sin @, cos 0,
then

f(x w(0)) = f(x)e ™ (x € Ga). (5.5)

An automorphic form f§ is called a cusp form if

1t
/ f(( )g) dt = 0forallg € Ga. (5.6)
Fa/F 01

The vector space M (¢, @) of Hilbert automorphic forms of holomorphic type is
defined as the set of functions satisfying (5.3) - (5.5) and the following holomorphy condi-
tion (5.7): for any x € Gp with xo, = 1 there exists a holmorphic function g, : " — C,
such that forall y = (‘Z Z) € G we have

fxy) = (&ley)(i) (5.7)

(inthe case F = Q we must also require that the functions g, be holomorphic at the cusps).

The property (5.7) enables one to describe the automorphic forms f € M (¢, ) more

explicitly in terms of Hilbert modular forms on $)". For this purpose we put f = 8y
t='o

where x; ' = ( A 1) , then fi(z) € M(Ta, o) for the congruence subgroup

A= F;\(c) C Ga_,
My =xWx 'NGy =

ab el _
{(cd) €G3|b€ 507!, c€ hoca,d € O, ad—bcEO;f}.

This means that for all y € I'y(c) the following condition (5.8) is satisfied:
Mley =w(y)fi and fi(z) = ZaA(E)eF(EZ)» (5.8)
H

where 0 <€ € € ) or & = 0 in the sum over & (see [Shi78] for a more detailed discussion of
Fourier expansions). The map f + (f1,- - -, fi) defines a vector space isomorphism

M(c, ) =2 &AM (Ta, @)

Put
C(m,f) =4 ® ()N (f)~%2, iftheideal m = &7, ' is integral; (5.9)
’ 0, if m is not integral.

We have the following Fourier expansion:
yx _ .
F((37)= X cenhven(ive)x(@). (5.10)
0K TEFT=0
where x5 : Fa/F — C* is a fixed additive character with the condition X r(Xo0) = er(Xs0)
(see [Shi78], p. 650).

Let Sk(c, ) C M(c, ) be the subspace of cusp forms and f € Si(c, @) then
ax(0) =0forallA =1,---,h.
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5.3. Hecke operators (see [Shi78]). — They are introduced by means of double
cosets of the type Wy W for y in the semigroup

Ye =GN (GE x [] ve ),

where

Ye(p) = {(‘;2) € GLa(F,) |aOy + ¢, = Oy, b€ 0, c € ¢p0p,d € (’)p}. (5.11)

The Hecke algebra H, consists of all formal finite sums of the type Ey c, WyW withy €
Y., ¢, € C and with the standard multiplication law defined by means of decomposition
of double cosets into a disjoint union of a finite number of left cosets. By definition, T, (m)
is an element of the ring . obtained by taking the sum of all different WyW with y € Y,

such that det (y) = m. Let

T! = N (m)*=22 T (m) (5.12)

be the normalized Hecke operator, whose action on the Fourier coefficients of an automor-
phic form (of the holomorphic type) f € M(c, @) is given by the usual formula

CmfIT!(m) = > ¢*(@N(@)* 'Cla *mn,f) (5.13)

m+n=a

Iff € Mg(c, y) is an eigenfunction of all Hecke operators T} (m) with §|. T!(m) = A(m)f
then we have that C(m,f) = A(m)C(Ok, f). If we normalize the form § by the condition
C(OF,f) = 1 then the L-function has the following Euler product expansion:

Lo = Y NG ¥ = S AN * =

n

n

—s * k—1—2s7—1 (5' 14)
[ = co. HNB)~ + w* (N ()T
p
In this case the coefficients C(n, f) of the form f are algebraic integers.

5.4. — The Petersson inner product is defined for f = (f1,---, fn) € Sk(c, @)

andg = (gly s ,gh) € Mk(c, L/J) by setting
h

= —Z Y4 k z .
Goe=2 [ | REREN" ) (5.15)
where ;

du(z) = [ ? dx, dy,

isa G;'o -invariant measure on $".

Iff € My (c, ) and §| T!(m) = A(m)f for all m with m + ¢ = Q then

A(m) = ¢*(m)A(m),

(5.16)
@™ (m){flTa (m), @) = (f, gl Ta (m)).
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(¢-hermitian property of the Hecke operators). Let q be an integral ideal and §f €
Mi(c, @). Let us define the operators f|q, f|U(q) by their action on Fourier coefficients:

C(m, fla) = C(a~'m, §), C(m,f|U(q)) = C(qm, 7). (5.17)

Here is the explicit description of these operators: for a finite idele g € F, with § = ¢

(fl) = N@) i ("0)), (5.18)

01

@)@ =N@" " 3 i () ), (5.19)

veQOFr/q

We recall now the definition of Eisenstein series in the Hilbert modular case. Let a, b be
arbitrary fractional ideals, m a positive integer, ¢ € (q1,- -, qn) € Z", g, > 0, n a Hecke
character of finite order modulo an integral ideal e C OF such that n*((x)) = signN (x)"™
for x = 1 mod *¢, x € Op. We put (for Re (s) > 2 — m)

K9(z 5;0,b;n) = (2mi) 19} (z — 2)79x

z+d
. (o1 [
xgmgn./\/() n*(db )<cz+d

5.20)

y (
) Nez + d) "IN (cz + )| %,

LI (z,50,b;n) = (2mi) {7 (z = 2) 7

X ZsignN(c)mr]*(ca—l) (Cz+ d 5.21)
c,d

q
—m —2s (
cz+d> N(cz+ d)"™N(cz+ d)|~~,

where z7 =[], 2y, N'(z) = z -+ - z,, the summation in (5.20) and (5.21) is taken over a
system of representatives (¢, d) of O -equivalence classes of non-zero elements in a X b
((c,d) ~ (uc, ud) for u € OF).

Gauss sums and the twist operator. Let x be a Hecke character of finite order with a con-
ductor m and x(xoo) = sign(xeo)” forr = (r1,- -+, rn) € (Z/2Z)" (the parity of x ). Let x*
be the character of the group of fractional ideals prime to m which is associated to x. Let
us set x*(a) = 0 for those a which are not coprime to m and define the Gauss sum by

= D, sign(®) X" (x)md)er(x)

x€m~—1p-1/p-1

Then |[t(x)|* = N (m). The series (5.20) and (5.21) can be extended to functions on the
adelic group G, in such a way that

KI(s;0,6;n)a(2) = N (&) TN (1)K (2, 5; 0a, b; ), (5.22)
LI(s;a,6;n)a(2) = N(B) "N ()L (2, 5 0, b5 "'oY n). (5.23)
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The functions (5.20)-(5.23) admit analytic continuation onto the entire complex plane with
respect to the parameter s € C, and they satisfy the following functional equation (see
[Shi78], p.672, where it is given in a slightly different notation) under the assumption that
n is primitive modulo e:

Al(z,1 —m—$)KI(1 —m—sa,b;n) = (5.24)
T(n)N (dabe) ™ 7 1A,,(s)7L7 (s; a, be; 1),

with the [-factor Af, (2, s) = ="y +) [T T(s + m + qy).

We need Fourier expansions of the Eisenstein series which can be explicitly written in
terms of the Whittaker function W (y, &, ). This function is defined by the integral

W(y, «, B) :/ (u+ 1) 1b e au
0

which is absolutely convergent for Re (o + ) > 1, and

Wy, &« —r) = Z(—l)‘(r> l_(r(ia).yr_i forreZ,r>0

— i) T(o— i)

5.5. Proposition. (On Fourier expansions of the Eisenstein series). Let s be an integer such
that s — g, < 0 for all v, n(mode) be a Hecke character of finite order as above (not nec-
essarily primitive) such thate # O. Then under the above notation there is the following
Fourier expansion:

DY’ N (8) [T, T(s + m + q)
(_zﬂ-i)n(m+23)(_1)ns+{q}

(4my) 0 S an(E s yn)er(E2),

LI(z,0;Op, 50 ;n) =

0<KEEDR
where
ar(& s, y,n) =
Z signV (b)™ "N (b)) 1n*(¢) H W(Angyyy, m+s+4q,,s—qy),
ceSphen )

and W (y, «, B) is the Whittaker function.

Proof. Using Fourier transform, one has

% q
DINGR) S (EE) N+ 0 WG+ 0]

—1._1
[Et)\ 0

Z H/ exp(—2mibyt,) dt,
R (zy + 1)~ (m+2a) (75 4 1) —2(s—av)’

bef, v

14



where

/ exp(—2ibyt,) diy B
R (2 + 1)~ (m+20) (7, 4 1,)—2(s—a) =

(—2mi) ™2 (1) p BTN (s 4 m 4 g,) "' W(anthyyy, m+ s+ gy, s — qv) er(b2).

Indeed, if we consider the integral

oo

f() = / z=%z 7P exp(—2mitz) dz,
—0o0

which is absolutely convergent for Re (« + ) > 1, then application of contour integration

shows that

£(t) =(2m)* P or(a) " 'r(B) ¥ ™ x
B4 W (4mrty, o, B)  if £ >0

|t|* 1w (4mt]y, B, &) ift<0
(see [Shi75], pp.84 —85). Therefore

z q
DEN(R) X (EE0) N+ 0 WG+ 0

—1._1
ST

(—2mi) n(m+25)(_1)n3+{‘7} H I(s+m+ qv)_l X

X Z N (b)mt2s=1 H W(4mthyyy, m + s+ qy, s — qv)er(bz),
bED v

and the proposition is then easily deduced from the last equality (see the analogous calcu-
lation in [Ka78]).

Remark. We need only a special case of 5.2, when g = 0, m = k— [ since the weights k and
I are scalars; however, the proposition is applicable for the study of Rankin convolutions

of Hilbert modular forms f and g of arbitrary integer vector weights k = (ki,- - -, k,,) and
1= (l,---,1,) satisfying the following condition
kh=k=---=k;mod2, [ =bL=---=1; mod 2.

5.6. The integral representation. We set
G € Sk(my,p), G € Si(my, w).
Then the following integral representation of Rankin type holds (see [Shi78], (4.32)):
¥(s,G1,Go) = DY*T(s +1— )"t ™(G!, V(s — k+ 1, g@0) ) m;my» (5.25)
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where

V(s yw) = Gy - K{_,(s;mymy, Op; ww).

More precisely,

h

¥(s, G, G) = DY*T(s+1— )" " ZN(fA)sH—(kH)/zx

A=1 (5.26)

»

X / G (2)Gop(2) K (2, s — k + 1; 50, Op; ww)N (y)* ! dx dy.
A (mimz)\$H"
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