ON A Λ-ADIC ANDRIANOV L-FUNCTION FOR GSp(4)

by Alexei PANCHISHKIN, IIya PIATETSKI-SHAPIRO

Introduction

The present paper is based on a joint lecture of I.I. Piatetski-Shapiro and A.A. Panchishkin of June 5, 1998 in the Seminar in Honour of I.I. Piatetski-Shapiro held in the Institut Fourier, Grenoble (June 4-5, 1998) during his visit to Grenoble in May-June 1998.

Let G be a reductive group over a number field F, and p be a prime number. The arithmetic of L-functions attached to automorphic forms on $G\left(\mathbf{A}_{F}\right)$, in particular the study of their special values, is closely related to the theory of Eisenstein series via Rankin's method [Ran39], [Ran52]. This method uses Eisenstein series in an integral representation for certain rather general complex automorphic L-functions [PSh-R], [Ge-PSh]. In order to construct p-adic automorphic L-functions out of their complex special values one can successfully use p-adic integration along a (many variable) Eisenstein measure which was introduced by N.Katz [Ka76, Ka77, Ka78] and used by H.Hida [Hi86, Hi91, Hi93] in the case of $G=\mathrm{GL}_{2}$ over a totally real field F (i.e. for the elliptic modular forms and Hilbert modular forms). The application of such a measure to a given p-adic family of modular forms provides a general construction of p-adic L-functions of several variables. On the other hand, the evaluation of this measure at certain points gives another important source of p-adic L-functions [Ka78]. In the Siegel modular case the Eisenstein measure was studied in [PaSE]. The purpose of this paper is to construct a Λ-adic version of the Andrianov L-function for the symplectic group

$$
\mathrm{GSp}_{4}=\left\{\left.g \in \mathrm{GL}_{4}\right|^{t} g J_{4} g=v(g) J_{4}, v(\alpha) \in \mathrm{GL}_{1}\right\}
$$

over a totally real field F where

$$
J_{4}=\left(\begin{array}{cc}
0_{2} & -1_{2} \\
1_{2} & 0_{2}
\end{array}\right)
$$

[^0]using the Eisenstein measure and a p-adic analogue of the Petersson product for Λ-adic automorphic forms on $G L_{2}$ over a totally real field F, see [Hi90]. Main Theorem is given in Section 4.

1. Complex analytic L-functions for $G S p(4)$

Let F be a global field of characteristic $\neq 2$, and V a four dimensional vector space over F endowed with a non-degenerate skew-symmetric form $\rho: V \times V \rightarrow F$,

$$
G_{\rho}=\mathrm{GSp}_{4}=\left\{g \in \mathrm{GL}(V) \mid \rho(g u, g v)=v_{g} \rho(u, v), v_{g} \in F^{\times}\right\},
$$

the algebraic group of symplectic similitudes of ρ over F. Let $\pi=\otimes_{\nu} \pi_{\nu}$ be an irrreducible cuspidal automorphic representation of $G_{\rho}\left(\mathbf{A}_{F}\right)$ where v run over all places of F, then according to Langlands' classification of irreducible supercuspidal representations π_{v} of $G_{\rho}\left(F_{\nu}\right)$ for almost all $\nu \pi_{\nu}$ correspond to a semisimple conjugacy class of a diagonal matrix

$$
h_{v}=\operatorname{diag}\left\{\alpha_{0}, \alpha_{0} \alpha_{1}, \alpha_{0} \alpha_{2}, \alpha_{0} \alpha_{1} \alpha_{2}\right\} \in{ }^{L} G_{\rho}(\mathbf{C}) \stackrel{r}{\rightarrow} G S P_{4}(\mathbf{C})
$$

$$
\left(\alpha_{j}=\alpha_{j}(v), v \notin S,|S|<\infty\right)
$$

The Andrianov L-function (or the spinor L-function) of π is then the following Euler product

$$
\begin{equation*}
L(s, \pi, r)=\prod_{v \notin S} \operatorname{det}\left(1_{4}-h_{v} \cdot N v^{-s}\right)^{-1} \times\binom{\text { a finite Euler product }}{\text { over } v \in S} \tag{1.1}
\end{equation*}
$$

This L function plays an impotant role in the arithmetic, in particular it is related to the l-adic Galois representation on H^{3} of the corresponding Siegel threefold [Tay].

This L function was introduced by Andrianov [AndBud], [And74] in the classical fashion, for $F=\mathbf{Q}$, and for $\pi=\pi_{f}$ coming from a holomorphic Siegel cusp eigenform $f=$ $\sum_{\xi} a_{\xi} q^{\xi}$ for the Siegel modular group $\Gamma_{2}=S p_{4}(\mathbf{Z})$ over the Sigel half plane

$$
H_{2}=\left\{z={ }^{t} z \in M_{2}(\mathbf{C}), \operatorname{Im}(z)>0\right\},
$$

where ξ run over the semigroup A_{4} of positive definite half integral symmetric matrices ξ, $a_{\xi} \in \mathbf{C}, q^{\xi}=\exp (2 \pi i \operatorname{Tr}(\xi z))$. Consider the Hecke algebra $\mathcal{H}=\left\langle\left(\Gamma_{2} g \Gamma_{2}\right)\right\rangle=\otimes_{p} \mathcal{H}_{p}$ generated by all double coset classes $\left(\Gamma_{2} g \Gamma_{2}\right)$ with $g \in G S p_{4}(\mathbf{Q})$. Then we have that $\mathcal{H}_{p}=$ $\mathbf{Q}\left[x_{0}^{ \pm}, x_{1}^{ \pm}, x_{2}^{ \pm}\right]^{W_{2}}$ (W_{2} the Weyl group) and one has a \mathbf{Q}-algebras homomorphism $\lambda_{f}: \mathcal{H} \rightarrow$ C given by $f \mid X=\lambda_{f}(X) f, X \in \mathcal{H}$, and α_{j} are defined as $\lambda_{f}\left(x_{j}\right), j=0,1,2$. In the notation of Andrianov,

$$
\begin{equation*}
Z_{f}(s)=\prod_{p} \operatorname{det}\left(1_{4}-h_{p} p^{-s}\right)^{-1} \tag{1.2}
\end{equation*}
$$

is called the spinor L function of f, and he proved that it coincides essentially with the Dirichlet series $L\left(s, f, \xi_{0}\right)=\sum_{m=1}^{\infty} \frac{a_{m \xi_{0}}}{m^{s}}$ where $\xi_{0}>0$ in a fixed positive definit matrix. Starting from this identification, he obtained an integral representation for $Z_{f}(s)$ using the group $G L_{2}(K)$ where $K=\mathbf{Q}\left(\sqrt{-\operatorname{det} \xi_{0}}\right)$ an imaginary quadratic field. This integral representation implied an analytic continuation of $Z_{f}(s)$ to the whole complex plane and the functional equation of the type

$$
\begin{equation*}
\Psi_{f}(s)=\Gamma_{\mathbf{C}}(s) \Gamma_{\mathbf{C}}(s-k+2)=(-1)^{k} \Psi_{f}(2 k-2-s) \tag{1.3}
\end{equation*}
$$

where $\Gamma_{\mathrm{C}}=(2 \pi)^{-s} \Gamma(s)$ is the standard Γ-factor. Its analytic properties were studied by A . N . Andrianov [And74] but stil little is known about algebraic and arithmetic properties of the special values of this function; however, from the general Deligne conjecture on critical values of L-functions it follows that algebraicity properties could exist only for $s=k-1$.

This work was extended by I.I.Piatetski-Shapiro [PShBud], [PshPac] to arbitrary F using an arbitrary quadratic extension K / F and the folloing construction. Put

$$
V=K^{2}=\left\{x=\binom{x_{1}}{x_{2}}, x_{j} \in K, j=1,2\right\}
$$

then V may be viewed as a four dimensional F vector space, $\operatorname{dim}_{F} V=4$, and define $\rho(x, y)=\operatorname{Tr}_{K / F}\left(x_{1} y_{2}-x_{2} y_{1}\right)$. Consider the following F-algebraic group

$$
\begin{equation*}
G=\left\{g \in G L_{2}(K) \mid \operatorname{det} g \in F^{\times}\right\}, G(F) \subset G L_{2}(K) \tag{1.4}
\end{equation*}
$$

then there is an imbedding of F-algebraic groups $i: G \hookrightarrow G_{\rho}$ because $x_{1} y_{2}-x_{2} y_{1}=$ $\operatorname{det}(x, y)$ and $\operatorname{det}(g x, g y)=\operatorname{det} g \cdot \operatorname{det}(x, y), \rho(g x, g y)=\operatorname{det} g \cdot \rho(x, y)$. Note that $G\left(\mathbf{A}_{F}\right) \subset G L_{2}\left(\mathbf{A}_{K}\right)$ and $G\left(\mathbf{A}_{F}\right) \hookrightarrow G_{\rho}\left(\mathbf{A}_{F}\right)=G S p_{4}\left(\mathbf{A}_{F}\right)$. It turns out that there is an integral representation for $L(s, \pi, r)$ of the following type:

$$
\begin{equation*}
L(s, \pi, r)=\int_{G(F) C_{F} \backslash G\left(\mathbf{A}_{F}\right)} \varphi(i(g)) E(g, s, \mu) d g \tag{1.5}
\end{equation*}
$$

where φ is an automorphic form on $G_{\rho}\left(\mathbf{A}_{F}\right)=G S p_{4}\left(\mathbf{A}_{F}\right)$ from the representation space of π, C_{F} the center of $G(F) \subset G L_{2}(K), E(g, s, \mu)$ is an Eisenstein series on $G\left(\mathbf{A}_{F}\right) \subset G L_{2}\left(\mathbf{A}_{K}\right)$ attached to a quasicharacter $\mu: K^{\times} \backslash \mathbf{A}_{K}^{\times} \rightarrow \mathbf{C}^{\times}$([PshPac], § 5).

2. A p-adic construction

Let $p \geq 5$ be a prime number. We consider the case of two totally real fields $K \supset F$ and a representation π_{f} attached to a holomorphic Siegel-Hilbert cusp form $f(z)=\tilde{\varphi}$ of scalar weight $k=(k, \ldots, k)$ on the Siegel-Hilbert half plane

$$
\begin{equation*}
H_{2, F}=H_{2} \times \cdots \times H_{2}(n \text { copies }) ; \tag{2.1}
\end{equation*}
$$

in this case there is also a critical value $s=k-1$ for L-functions of the type $L\left(s, \pi_{f}, \otimes \chi, r\right)$ where χ is a character of finite order of $F^{\times} \backslash \mathbf{A}_{F}^{\times}$. According to general conjectures on motivic L-functions there should exist p-adic L-functions which interpolate p-adically their critical values, see [Co], [Co-PeRi], [PaIF]. However in our present construction instead of p-adic interpolation of their special values of the type $L\left(k-1, \pi_{f} \otimes \chi, r\right)$ we use directly a p-adic version of (1.5) using techniques of Λ-adic modular forms (see Section 3). We hope that the resulting p-adic L-function provide also the above p-adic interpolation.

3. Λ-adic modular forms

Recall that the Iwasawa algebra $[\mathrm{Iw}] \Lambda=\mathrm{Z}_{p}[[T]] \cong \mathrm{Z}_{p}[[\Gamma]]$ is the completed group ring of the profinite group $\Gamma=1+p \mathbf{Z}_{p}=\langle 1+p\rangle \subset \mathbf{Z}_{p}^{\times}$. According to the theorem of Kubota-Leopoldt [Ku-Le], there exists a unique element $g(T) \in \Lambda$ such that for all $k \geq 1$, $k \equiv 1 \bmod (p-1)$

$$
g\left((1+p)^{k}-1\right)=\zeta^{*}(1-k)
$$

where $\zeta^{*}(1-k)$ denotes the special value at $s=1-k$ of the Riemann zeta-function with a modified Euler p-factor: $\zeta^{*}(s)=\left(1-(1+p)^{-s+1}\right)\left(1-p^{-s}\right) \zeta(s)$.

Definition 3.1. The Serre ring $\Lambda[[q]]$ is the ring of all formal q-expansions with coefficients in Λ :

$$
\Lambda[[q]]=\left\{f=\sum_{n=0}^{\infty} a_{n}(T) q^{n} \mid a_{n}(T) \in \Lambda\right\}
$$

Definition 3.2. The Λ-module $M(\Lambda) \subset \Lambda[[q]]$ of Λ-adic modular forms (of some fixed level $N,(N, p)=1$, consists of all $f=\sum_{n=0}^{\infty} a_{n}(T) q^{n} \in \Lambda[[q]]$ such that for each $k \geq 5$, $k \equiv 1 \bmod (p-1)$ the specialisation

$$
f_{k}=\left.f\right|_{T=(1+p)^{k}-1} \in \mathbf{Z}_{p}[[q]]
$$

is a classical modular form of weight k and level $N p$. In other terms f is given by a p-adic measure μ_{f} on \mathbf{Z}_{p}^{\times}with values in $\mathbf{Z}_{p}[[q]]$ such that the integrals

$$
\begin{equation*}
\int_{\mathbf{Z}_{p}^{\times}} x_{p}^{k} \mu_{f}=f_{k} \tag{3.1}
\end{equation*}
$$

are classical modular forms.
Example 3.3. The Λ-adic Eisenstein series $f \in M(\Lambda)$ (of level $N=1$) is defined by

$$
\begin{equation*}
f_{k}=\frac{\zeta^{*}(1-k)}{2}+\sum_{n \geq 1} \sigma_{k-1}^{*}(n) q^{n}, \quad \sigma_{k-1}^{*}(n)=\left(1-(1+p)^{k}\right) \sum_{d \mid n, p \nmid d} d^{k-1} \tag{3.2}
\end{equation*}
$$

Example 3.3. Hida's families f are elements of

$$
S^{\operatorname{ord}}(\Lambda)=e S(\Lambda), \quad e=\lim _{n \rightarrow \infty} U_{p}^{n!}
$$

($U_{p}\left(\sum_{n \geq 0} a_{n} q^{n}\right)=\sum_{n \geq 0} a_{p n} q^{n}$ is the Atkin U-operator), $S(\Lambda)$ is the Λ-submodule of Λ-adic cusp forms.

The Hilbert modular case. According to the classical theorem of Klingen [Kli], for a totally real field F and for $k \geq 1$ the special values $\zeta_{F}(1-k)$ are rational numbers where $\zeta_{F}(s)$ is the Dedekind zeta function of F.

The Deligne-Ribet p-adic zeta function [De-Ri] interpolates p-adically these special values as an element g_{F} of a version of the Iwasawa algebra over $F, \Lambda_{F}=\mathbf{Z}_{p}\left[\left[G_{p, F}\right]\right]$, where $G_{p, F}=$ $\operatorname{Gal}\left(F_{p, \infty}^{\mathrm{ab}} / F\right)$ is the Galois group of the maximal abelian extension unramified outside of prime divisors over p and ∞. For $F=\mathbf{Q}$ we have that $G_{p, \mathbf{Q}} \xrightarrow{\sim} \mathbf{Z}_{p}^{\times}$, and there is the natural restriction homomorphism (or the norm homomorphism) $\mathcal{N}: G_{p, F} \rightarrow \mathbf{Z}_{p}^{\times}$, so that for an integer k the group homomorphism $\mathcal{N}^{k}: G_{p, F} \rightarrow \mathbf{Z}_{p}^{\times}$induces the ring homomorphism $\mathcal{N}^{k}: \Lambda_{F}=\mathrm{Z}_{p}\left[\left[G_{p, F}\right]\right] \rightarrow \mathrm{Z}_{p}$ and the numbers $\mathcal{N}^{k}\left(g_{F}\right)$ interpolate $\zeta_{F}(1-k)$. Also $g_{\mathbf{Q}}$ coincides essentially with the Kubota-Leopoldt zeta-function $g(T)$.

A Λ-adic Hilbert modular form could be defined as a formal Fourier expansion

$$
f=\sum_{\eta \in L_{F}} a_{\eta} q^{\eta} \in \Lambda_{F}\left[\left[q^{L_{F}}\right]\right]\left(L_{F} \subset F \text { a lattice }\right)
$$

(η runs over totally positive elements or 0) whose appropriate specialisations are classical Hilbert modular form. More precisely, for an integer k there is a homomorphism $\mathcal{N}^{k}: \Lambda_{F}\left[\left[q^{L_{F}}\right]\right] \rightarrow \mathbf{Z}_{p}[[q]]$ and it is required that for all appropriate sufficiently large k the specialization $f_{k}=\mathcal{N}^{k}(f)$ be the Fourier expansion of a classical Hilbert modular form. As over \mathbf{Q}, the first example of a Λ-adic Hilbert modular form is given by an Eisenstein series (more precisely, this seris is given by the Katz-Hilbert-Eisenstein measure, see [Ka78]). Also, Hida's theory could be extended to the Hiilbert modular case [Hi91].

The Siegel-Hilbert modular case. A Λ-adic Siegel-Hilbert modular form could be defined as a formal Fourier expansion

$$
f=\sum_{\xi \in B_{2, F}} a_{\xi} q^{\xi} \in \Lambda_{F}\left[\left[q^{B_{2, F}}\right]\right]\left(B_{2, F} \subset M_{2, F}\right)
$$

($B_{2, F}$ is the semi-group of all symmetric totally non-negative matrices ξ in a sublattice of $M_{2, F}$) whose appropriate specialisations are classical Siegel-Hilbert modular form. More precisely, for an integer k there is a homomorphism $\mathcal{N}^{k}: \Lambda_{F}\left[\left[q^{L_{F}}\right]\right] \rightarrow \mathrm{Z}_{p}[[q]]$ and it is required that for all appropriate sufficiently large k the specialization $f_{k}=\mathcal{N}^{k}(f)$ be the Fourier expansion of a classical Siegel-Hilbert modular form. The first example of a Λ-adic Siegel-Hilbert modular form is given by an Eisenstein series (for $F=\mathbf{Q}$ these series are described in [PaSE]. It seems that Hida's theory also could be extended to the Siegel-Hilbert modular case [Hi98], [Til-U],[Til].

4. Λ-adic L-functions

Recall that we consider the case of two totally real fields $K \supset F$ and a representation π_{f} attached to a holomorphic Siegel-Hilbert cusp form $f(z)=\tilde{\varphi}$ of scalar weight $k=$ (k, \ldots, k) on the Siegel-Hilbert half plane

$$
H_{2, F}=H_{2} \times \cdots \times H_{2}(n \text { copies }) ;
$$

Then we rewrite the integral representation (1.5) in the form of the Petersson scalar product over K :

$$
\begin{equation*}
L(s, \pi, r)=\left\langle i^{*} \tilde{\varphi}, \tilde{E}(s, \mu)\right\rangle_{K} \tag{4.1}
\end{equation*}
$$

where i denotes both the imbedding $i: G \hookrightarrow G_{\rho}$ and the corresponding modular imbedding

$$
\begin{equation*}
i: H_{F} \times H_{F} \rightarrow H_{2, F}, \quad H_{F}=H \times \cdots \times H ; H_{2, F}=H_{2} \times \cdots \times H_{2}(n \text { copies }) ; \tag{4.2}
\end{equation*}
$$

(which looks like

$$
\left(z_{1}, z_{2}\right) \mapsto\left(\begin{array}{cc}
z_{1} & \alpha\left(z_{1}-z_{2}\right) \\
\alpha\left(z_{1}-z_{2}\right) & z_{2}
\end{array}\right) \text { with } \alpha \in F
$$

(see [Ham])), $i^{*} \tilde{\varphi}=\varphi \circ i$ is a rapidly decreasing (but not cuspidal) holomorphic form. For the Λ-adic construction take a Λ-adic Siegel-Hilbert cusp form $\tilde{\varphi}$ on $G S p_{4, F}$ then $i^{*} \tilde{\varphi}$ is a Λ-adic Hilbert modular form over K explicitely described by its Fourier expansion. Now take G to be the Λ-adic Katz-Hilbert-Eisenstein measure for $G L_{2, K}$. In order to define the Petersson product

$$
\begin{equation*}
\left\langle i^{*} \varphi, G\right\rangle_{K} \tag{4.3}
\end{equation*}
$$

we put $\mathcal{L}=\operatorname{Quot}(\Lambda)$ then it suffices to define

$$
\left\langle 1_{\mathrm{Eis}}\left(i^{*} \tilde{\varphi}\right), G\right\rangle_{K}
$$

where $1_{\text {Eis }}\left(i^{*} \tilde{\varphi}\right)$ denotes the projection in the \mathcal{L}-vector space $M(\mathcal{L})$ to the \mathcal{L}-subspace $E i s_{K}(\mathcal{L})$ of Hilbert-Eisenstein series. The projection $1_{\text {Eis }}\left(i^{*} \tilde{\varphi}\right)$ could be explicitely computed using higher terms of the Fourier expansions of $i^{*} \tilde{\varphi}$ and of the Fourier expansions of a \mathcal{L}-basis of $E i s_{K}(\mathcal{L})$. Then we are reduced to the case of $\left\langle G_{1}, G_{2}\right\rangle_{K}$, where G_{1} and G_{2} are two Hilbert-Eisenstein series, and in order to define their Petersson product we use the method of Rankin. If G_{1}, G_{2} were two cusp forms of weight k their Petersson product would coincide with a normalized residue of the Rankin zeta function $L_{G_{1}, G_{2}}(s)$ at $s=k$. In the case of normalised Eisenstein series the Rankin zeta function $L_{G_{1}, G_{2}}(s)$ is explicitely evaluated via Rankin's lemma as a product of abelian Dirichlet L-functions, and we define the
$\left\langle G_{1}, G_{2}\right\rangle_{K}$ in a similar fashion as in [Ko-Za] as the normalised residue of $L_{G_{1}, G_{2}}(s)$ in terms of the corresponding Deligne-Ribet p-adic zeta functions.

Main theorem. Let $\tilde{\varphi}$ be a Λ-adic Siegel-Hilbert cusp form then

1) there exists a canonically defined element

$$
\mathcal{L}_{\varphi}=\left\langle 1_{\mathrm{Eis}}\left(i^{*} \tilde{\varphi}\right), G\right\rangle_{K} \in \mathcal{L}_{F}
$$

where G is the Katz-Hilbert-Eisenstein series, $i^{*} \tilde{\varphi}$ the Λ-adic pullback of $\varphi, 1_{\text {Eis }}\left(i^{*} \tilde{\varphi}\right)$ its Eisenstein projection and $i^{*} \tilde{\varphi}$ is a Λ-adic Hilbert modular form over K explicitely described by its Fourier expansion.
2) the element \mathcal{L}_{φ} gives the p-adic interpolation of the residue of the normalized Rankin L function $L_{1_{\mathrm{Eis}}\left(i^{*} \tilde{\varphi}_{k}\right), G_{k}}^{*}(s)$ (at $s=k$, the scalar weight of a specialisation $\left.\tilde{\varphi}_{k}\right)$:

$$
\mathcal{N}^{k}\left(\mathcal{L}_{\varphi}\right)=\operatorname{Res}_{s=k} L_{1_{\mathrm{Eis}^{\prime}}\left(i^{*} \tilde{\varphi}_{k}\right), G_{k}}^{*}(s)
$$

In order to explain some details of the proof we let S be a finite set of primes containing p. In the rest of this section we consider properties of the Rankin convolutions of Hilbert modular forms; they correspond to certain automorphic forms on the group $G=\mathrm{GL}_{2} \times$ GL_{2} over a totally real field F and have the form of the following Dirichlet series

$$
\begin{equation*}
L(s, \mathfrak{f}, \mathfrak{g})=\sum_{\mathfrak{n}} C(\mathfrak{n}, \mathfrak{f}) C(\mathfrak{n}, \mathfrak{g}) \mathcal{N}(\mathfrak{n})^{-s} \tag{4.4}
\end{equation*}
$$

where $\mathfrak{f}, \mathfrak{g}$ are Hilbert automorphic forms of "holomorphic type" over F, and $C(\mathfrak{n}, \mathfrak{f})$, $C(\mathfrak{n}, \mathfrak{g})$ are their normalized Fourier coefficients (indexed by integral ideals \mathfrak{n} of the maximal order $\left.\mathcal{O}_{F} \subset F\right)$. We view \mathfrak{f}, \mathfrak{g} as functions on the adelic group $G_{\mathrm{A}}=\mathrm{GL}_{2}\left(\mathbf{A}_{F}\right)$, where \mathbf{A}_{F} is the ring of adeles of F and we suppose that \mathfrak{f} is a primitive cusp form of scalar weight $k \geq 2$, conductor $\mathfrak{c}(\mathfrak{f}) \subset \mathcal{O}_{F}$, and charachter ψ and \mathfrak{g} a primitive cusp form of weight $l<k$, conductor $\mathfrak{c}(\mathfrak{g})$, and character ω (here $\psi, \omega: \mathbf{A}_{F}^{\times} \rightarrow \mathbf{C}^{\times}$are Hecke characters of finite order).

Let ψ^{*}, ω^{*} be the characters of the ideal group of F which are associated with ψ, ω and let

$$
\begin{equation*}
L_{\mathfrak{c}}(s, \psi \omega)=\sum_{\mathfrak{n}+\mathfrak{c}=\mathcal{O}_{F}} \psi^{*}(\mathfrak{n}) \omega^{*}(\mathfrak{n}) \mathcal{N}(\mathfrak{n})^{-s}=\prod_{\mathfrak{p}+\mathfrak{c}=\mathcal{O}_{F}}\left(1-\psi^{*}(\mathfrak{p}) \omega^{*}(\mathfrak{p}) \mathcal{N}(\mathfrak{p})^{-s}\right)^{-1} \tag{4.5}
\end{equation*}
$$

be the correspoding Hecke L-function (here $\mathfrak{c}=\mathfrak{c}(\mathfrak{f}) \mathfrak{c}(\mathfrak{g})$). We now define the normalized zeta function by setting

$$
\Psi(s, \mathfrak{f}, \mathfrak{g})=\gamma_{n}(s) L_{\mathfrak{c}}(2 s+2-k-l, \psi \omega) L(s, \mathfrak{f}, \mathfrak{g})
$$

where $n=[F: \mathbf{Q}]$ is the degree of F,

$$
\gamma_{n}(s)=(2 \pi)^{-2 n s} \Gamma(s)^{n} \Gamma(s+1-l)^{n}
$$

is the gamma-factor. Then the function $\Psi(s, \mathfrak{f}, \mathfrak{g})$ admits an analytic continuation onto the entire comlex plane, and it satisfies a certain functional equation [Ja], [Shi78]. For the non-Archimedean construction we consider the S-adic completion

$$
\mathcal{O}_{S}=\prod_{q \in S}\left(\mathcal{O}_{F} \otimes \mathbf{Z}_{q}\right)=\prod_{\mathfrak{p} \mid q \in S} \mathcal{O}_{\mathfrak{p}}
$$

of the ring \mathcal{O}_{F}.
We set

$$
S_{F}=\{\mathfrak{p} \mid \mathfrak{p} \text { divides } q \in S\}, \mathfrak{m}_{0}=\prod \mathfrak{p}\left(\text { over all } \mathfrak{p} \in S_{F}\right)
$$

and let $\mathrm{Gal}_{S}=\operatorname{Gal}(F(S) / F)$ denote the Galois group of the maximal abelian extension of F unramified outside S and ∞.

The domain of definition of the non-Archimedean L-functions is the p-adic analytic Lie group

$$
\mathcal{X}_{S}=\operatorname{Hom}_{\text {contin }}\left(\operatorname{Gal}_{S}, \mathbf{C}_{p}^{\times}\right)
$$

of all continuouos p-adic characters of the Galois $\operatorname{group~}_{\mathrm{Gal}}^{S}$ (\mathbf{C}_{p} is the Tate field). Elements of finite order $\chi \in \mathcal{X}_{S}$ can be identified with those Hecke characters of finite order whose conductors contain only prime divisors in S_{F}; this identification uses the map

$$
\chi: \mathbf{A}_{F}^{\times} \xrightarrow{\mathrm{CFT}} \mathrm{Gal}_{S} \rightarrow \overline{\mathbf{Q}}^{\times} \xrightarrow{i_{p}} \mathbf{C}_{p}^{\times},
$$

where CTF is the homomorphism of class field theory. Recall that the essential property of the convolution

$$
L(s, \mathfrak{f}, \mathfrak{g}(\chi))=\sum_{\mathfrak{n}} \chi^{*}(\mathfrak{n}) C(\mathfrak{n}, \mathfrak{f}) C(\mathfrak{n}, \mathfrak{g}) \mathcal{N}(\mathfrak{n})^{-s}
$$

is the following Euler product decomposition

$$
\begin{align*}
& L_{\mathfrak{c}}\left(2 s+2-k-l, \psi \omega x^{2}\right) L(s, \mathfrak{f}, \mathfrak{g}(x))= \\
& \prod_{\mathfrak{q}}\left(1-x^{*}(\mathfrak{q}) \alpha(\mathfrak{q}) \beta(\mathfrak{q}) \mathcal{N}(\mathfrak{q})^{-s}\right)\left(1-x^{*}(\mathfrak{q}) \alpha(\mathfrak{q}) \beta^{\prime}(\mathfrak{q}) \mathcal{N}(\mathfrak{q})^{-s}\right) \times \tag{4.6}\\
& \times\left(1-\chi^{*}(\mathfrak{q}) \alpha^{\prime}(\mathfrak{q}) \beta(\mathfrak{q}) \mathcal{N}(\mathfrak{q})^{-s}\right)\left(1-x^{*}(\mathfrak{q}) \alpha^{\prime}(\mathfrak{q}) \beta^{\prime}(\mathfrak{q}) \mathcal{N}(\mathfrak{q})^{-s}\right),
\end{align*}
$$

where the numbers $\alpha(\mathfrak{q}), \alpha^{\prime}(\mathfrak{q}), \beta(\mathfrak{q})$, and $\beta^{\prime}(\mathfrak{q})$ are roots of the Hecke polynomials

$$
X^{2}-C(\mathfrak{q}, \mathfrak{f}) X+\psi^{*}(\mathfrak{q}) \mathcal{N}(\mathfrak{q})^{k-1}=(X-\alpha(\mathfrak{q}))\left(X-\alpha^{\prime}(\mathfrak{q})\right)
$$

and

$$
X^{2}-C(\mathfrak{q}, \mathfrak{g}) X+\omega^{*}(\mathfrak{q}) \mathcal{N}(\mathfrak{q})^{l-1}=(X-\beta(\mathfrak{q}))\left(X-\beta^{\prime}(\mathfrak{q})\right) .
$$

The decomposition (4.6) is not difficult to deduce from the following elementary lemma on rational functions, applied to each of the Euler \mathfrak{q}-factors: if

$$
\sum_{i=0}^{\infty} A_{i} X^{i}=\frac{1}{(1-\alpha X)\left(1-\alpha^{\prime} X\right)}, \quad \sum_{i=0}^{\infty} B_{i} X^{i}=\frac{1}{(1-\beta X)\left(1-\beta^{\prime} X\right)}
$$

then

$$
\begin{equation*}
\sum_{i=0}^{\infty} A_{i} B_{i} X^{i}=\frac{1-\alpha \alpha^{\prime} \beta \beta^{\prime} X^{2}}{(1-\alpha \beta X)\left(1-\alpha \beta^{\prime} X\right)\left(1-\alpha^{\prime} \beta^{\prime} X\right)\left(1-\alpha^{\prime} \beta^{\prime} X\right)} \tag{4.7}
\end{equation*}
$$

5.1. Hilbert modular forms. Hilbert-Eisenstein series. - Let the symbols

$$
\mathcal{O}_{F}, I, F_{\mathrm{A}}, F_{\mathrm{A}}^{\times}, \mathfrak{d} \subset \mathcal{O}_{F}, D_{F}=\mathcal{N}(\mathfrak{d})
$$

denote, respectively, the maximal order, the group of fractional ideals, the ring of adeles, the group of ideles, the different and the discriminant of a totally real field F of degree n over \mathbf{Q}. Let $\Sigma=\Sigma_{\infty} \cup \Sigma_{0}$ denote the set of places (i.e. eqivalence classes of valuations) of F where $\Sigma_{\infty}=\left\{\infty_{1}, \cdots, \infty_{n}\right\}$ are the Archimedean places, $\Sigma_{0}=\left\{\mathfrak{p}=\mathfrak{p}_{v} \subset \mathcal{O}_{F}\right\}$ finite (non-Archimedean) places. The Archimedean places are induced by the real embeddings of $F: x \mapsto x^{(v)} \in \mathbf{R} \quad(v=1, \cdots, n)$. An element $x \in F^{\times}$is called totally positive $(x \gg 0)$ if one has $x^{(v)}>0$ for all v and let F_{+}^{\times}denote the multiplicative group of all totally positive elements of F. We put also $F_{\infty}=F \otimes_{\mathbf{Q}} \mathbf{R} \cong \mathbf{R}^{n} \subset F_{\mathrm{A}}$, and let $\hat{F} \cong \hat{\mathcal{O}}_{F} \otimes_{\mathbf{Z}} \mathbf{Q} \subset F_{\mathrm{A}}$ be the subring of finite adeles where $\hat{\mathcal{O}}_{F}$ is the profinite completion of the ring \mathcal{O}_{F} (with respect to all its ideals). Then $F_{\mathrm{A}}=F_{\infty} \oplus \hat{F}$, and for an adele $x=\left(x_{v}\right)_{v \in \Sigma}$ we write $x=x_{\infty}+x_{0}$ where $x_{\infty} \in F_{\infty}, x_{0} \in \hat{F}$. On the other hand there is the decomposition $F_{\mathrm{A}} \times F_{\infty}^{\times} \times \hat{F}^{\times}$ and we shall allow ourselves convenient abuse of notation by writing $y=y_{\infty} \cdot y_{0}$ with $y_{\infty} \in F_{\infty}^{\times}, y_{0} \in \hat{F}^{\times}$. For the idele $y \in F_{\mathrm{A}}{ }^{\times}$let the symbol $\tilde{y} \in I$ denote the fractional ideal associated with y (so that $\tilde{y} \widehat{\mathcal{O}}_{F}=y_{0} \widehat{\mathcal{O}}_{F}$).

We view the group $\mathrm{GL}_{2}(F)$ as the group $G_{\mathbf{Q}}$ of all \mathbf{Q}-rational points of a certain \mathbf{Q}-subgroup $G \subset \mathrm{GL}_{2 n}$. Then the adelization $G_{\mathrm{A}}=G(\mathbf{A})$ can be identified with the product

$$
\mathrm{GL}_{2}\left(F_{\mathrm{A}}\right) \cong G_{\infty} \times G_{\widehat{\mathbf{Q}}}
$$

where

$$
G_{\infty}=\mathrm{GL}_{2}\left(F_{\infty}\right) \cong \mathrm{GL}_{2}(\mathbf{R})^{n}, \quad G_{\widehat{\mathbf{Q}}}=\mathrm{GL}_{2}(\widehat{F})
$$

The subgroup

$$
G_{\infty}^{+} \cong \mathrm{GL}_{2}^{+}(\mathbf{R})^{n} \subset G_{\infty}
$$

consists of all elements

$$
\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \quad \alpha_{v}=\left(\begin{array}{l}
\alpha_{v} \beta_{v} \\
\gamma_{v} \\
\delta_{v}
\end{array}\right),
$$

such that $\operatorname{det} \alpha_{v}>0, v=1, \cdots, n$. Every element $\alpha \in G_{\infty}^{+}$acts on the product \mathfrak{H}^{n} of the n copies of the upper half planes according to the formula

$$
\alpha\left(z_{1}, \cdots, z_{n}\right)=\left(\alpha_{1}\left(z_{1}\right), \cdots, \alpha_{n}\left(z_{n}\right)\right),
$$

where

$$
\alpha_{v}\left(z_{v}\right)=\left(a_{v} z_{v}+b_{v}\right) /\left(c_{v} z_{v}+d_{v}\right)
$$

For $z=\left(z_{1}, \cdots, z_{n}\right)$ we put $\{z\}=z_{1}+\cdots+z_{n}$ and $e_{F}(z)=e(\{z\})$, with $e(x)=$ $\exp (2 \pi i x)$. Let $\mathbf{i}=(i, \cdots, i) \in \mathfrak{H}^{n}$, then

$$
\left(\left\{\alpha \in G_{\infty}^{+} \mid \alpha(\mathbf{i})=\mathbf{i}\right\}\right) / \mathbf{R}_{+}^{\times}
$$

is a maximal compact subgroup in $G_{\infty}^{+} / \mathbf{R}_{+}^{\times}$. For $\alpha \in G_{\infty}^{+}$, an integer k and an arbitrary function $f: \mathfrak{H}^{n} \rightarrow \mathbf{C}$ we use the notation

$$
\left(\left.f\right|_{k} \alpha\right)(z)=\mathcal{N}(c z+d)^{-k} f(\alpha(z)) \mathcal{N} \operatorname{det}(\alpha)^{k / 2}
$$

with $\mathcal{N}(z)^{k}=z_{1}^{k} \cdots z_{n}^{k}$. Let $\mathfrak{c} \subset \mathcal{O}_{F}$ be an integral ideal, $\mathfrak{c}_{\mathfrak{p}}=\mathfrak{c} \mathcal{O}_{\mathfrak{p}}$ its \mathfrak{p}-part, $\mathfrak{d}_{\mathfrak{p}}=\mathfrak{d} \mathcal{O}_{\mathfrak{p}}$ the local different. We shall need the open subgroups $W=W_{\mathfrak{c}} \subset G_{\mathrm{A}}$ defined by

$$
\begin{align*}
& W=G_{\infty}^{+} \times \prod_{\mathfrak{p}} W(\mathfrak{p}) \\
& W(\mathfrak{p})= \tag{5.1}\\
& \quad\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(F_{\mathfrak{p}}\right) \right\rvert\, b \in \mathfrak{d}_{\mathfrak{p}}^{-1}, c \in \mathfrak{d}_{\mathfrak{p}} \mathfrak{c}_{\mathfrak{p}}, a, d \in \mathcal{O}_{\mathfrak{p}}, a d-b c \in \mathcal{O}_{\mathfrak{p}}^{\times}\right\} .
\end{align*}
$$

Let $h=\left|\widetilde{C l_{F}}\right|$ be the number of ideal classes of F (in the narrow sense),

$$
\widetilde{C l_{F}}=I /\left\{(x) \mid x \in F_{+}^{\times}\right\}
$$

and let us choose the ideles t_{1}, \cdots, t_{h} so that $\tilde{t}_{\lambda} \subset \mathcal{O}_{F}$ form a complete system of representatives for $\widetilde{C l_{F}},\left(t_{\lambda}\right)_{\infty}=1$ and $\tilde{t}_{\lambda}+\mathfrak{m}_{0}=\mathcal{O}_{F}\left(\lambda=1, \cdots, h, \mathfrak{m}_{0}=\prod_{\mathfrak{q} \in S_{F}} \mathfrak{q}\right)$. If we put $x_{\lambda}=\left(\begin{array}{ll}1 & 0 \\ 0 & t_{\lambda}\end{array}\right)$ then there is the following decomposition into a disjoint union ("the approximation theorem"):

$$
\begin{equation*}
G_{\mathrm{A}}=\cup_{\lambda} G_{\mathrm{Q}} x_{\lambda} W=\cup_{\lambda} G_{\mathrm{Q}} x_{\lambda}^{-\iota} W \tag{5.2}
\end{equation*}
$$

where $x_{\lambda}^{-\iota}=\left(\begin{array}{cc}t_{\lambda}^{-1} & 0 \\ 0 & 1\end{array}\right), \iota$ denotes the involution given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\iota}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

(see [Shi78], p.647).
5.2. - Definition of Hilbert automorphic forms of weight k and level $\mathfrak{c} \subset \mathcal{O}_{F}$ with a Hecke character ψ of finite order. By a Hilbert automorphic form of weight k, level $\mathfrak{c} \subset \mathcal{O}_{F}$, and Hecke character ψ we mean a function $\mathfrak{f}: G_{\mathrm{A}} \rightarrow \mathbf{C}$ satisfying the following conditions (5.3) - (5.5):

$$
\begin{align*}
& \mathfrak{f}(s \alpha x)=\psi(s) \mathfrak{f}(x) \text { for all } x \in G_{\mathrm{A}} \\
& \text { for } s \in F_{\mathrm{A}}^{\times}\left(\text {the center of } G_{\mathrm{A}}\right) \text {, and } \alpha \in G_{\mathbf{Q}} . \tag{5.3}
\end{align*}
$$

If we let $\psi_{0}:\left(\mathcal{O}_{F} / \mathfrak{c}\right)^{\times} \rightarrow \mathbf{C}^{\times}$denote the \mathfrak{c}-part of the character ψ, and then extend the definition of ψ over W by the formula

$$
\psi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\psi_{0}\left(a_{\mathfrak{c}} \bmod \mathfrak{c}\right)
$$

(a_{c} being the c -part of a) then for all $x \in G_{\mathrm{A}}$

$$
\begin{equation*}
\mathfrak{f}(x w)=\psi\left(w^{l}\right) \mathfrak{f}(x) \text { for } w \in W_{\mathfrak{c}} \text { with } w_{\infty}=1 \tag{5.4}
\end{equation*}
$$

If $w=w(\theta)=\left(w_{1}\left(\theta_{1}\right), \cdots, w_{n}\left(\theta_{n}\right)\right)$ where

$$
w_{v}\left(\theta_{v}\right)=\left(\begin{array}{cc}
\cos \theta_{v} & -\sin \theta_{v} \\
\sin \theta_{v} & \cos \theta_{v}
\end{array}\right)
$$

then

$$
\begin{equation*}
\mathfrak{f}(x w(\theta))=\mathfrak{f}(x) e^{-i k\{\theta\}} \quad\left(x \in G_{\mathrm{A}}\right) \tag{5.5}
\end{equation*}
$$

An automorphic form \mathfrak{f} is called a cusp form if

$$
\int_{F_{\mathrm{A}} / F} \mathfrak{f}\left(\left(\begin{array}{ll}
1 & t \tag{5.6}\\
0 & 1
\end{array}\right) g\right) d t=0 \text { for all } g \in G_{\mathrm{A}} .
$$

The vector space $\mathcal{M}_{k}(\mathfrak{c}, \psi)$ of Hilbert automorphic forms of holomorphic type is defined as the set of functions satisfying (5.3) - (5.5) and the following holomorphy condition (5.7): for any $x \in G_{\mathrm{A}}$ with $x_{\infty}=1$ there exists a holmorphic function $g_{x}: \mathfrak{H}^{n} \rightarrow \mathbf{C}$, such that for all $y=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G_{\infty}^{+}$we have

$$
\begin{equation*}
\mathfrak{f}(x y)=\left(\left.g_{x}\right|_{k} y\right)(\mathbf{i}) \tag{5.7}
\end{equation*}
$$

(in the case $F=\mathbf{Q}$ we must also require that the functions g_{x} be holomorphic at the cusps). The property (5.7) enables one to describe the automorphic forms $\mathfrak{f} \in \mathcal{M}_{k}(\mathfrak{c}, \psi)$ more explicitly in terms of Hilbert modular forms on \mathfrak{H}^{n}. For this purpose we put $f_{\lambda}=g_{x_{\lambda}^{-\iota}}$ where $x_{\lambda}^{-\iota}=\left(\begin{array}{cc}t_{\lambda}^{-1} & 0 \\ 0 & 1\end{array}\right)$, then $f_{\lambda}(z) \in \mathcal{M}_{k}\left(\Gamma_{\lambda}, \psi_{0}\right)$ for the congruence subgroup

$$
\begin{aligned}
& \Gamma_{\lambda}=\Gamma_{\lambda}(\mathfrak{c}) \subset G_{\mathbf{Q}}^{+} \\
& \Gamma_{\lambda}=x_{\lambda} W x_{\lambda}^{-1} \cap G_{\mathbf{Q}}= \\
& \left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G_{\mathbf{Q}}^{+} \right\rvert\, b \in \tilde{t}_{\lambda}^{-1} \mathfrak{d}^{-1}, c \in \tilde{t}_{\lambda} \mathfrak{d} \mathfrak{c}, a, d \in \mathcal{O}_{F}, a d-b c \in \mathcal{O}_{F}^{\times}\right\} .
\end{aligned}
$$

This means that for all $\gamma \in \Gamma_{\lambda}(\mathfrak{c})$ the following condition (5.8) is satisfied:

$$
\begin{equation*}
\left.f_{\lambda}\right|_{k} \gamma=\psi(\gamma) f_{\lambda} \text { and } f_{\lambda}(z)=\sum_{\xi} a_{\lambda}(\xi) e_{F}(\xi z) \tag{5.8}
\end{equation*}
$$

where $0 \ll \xi \in \tilde{t}_{\lambda}$ or $\xi=0$ in the sum over ξ (see [Shi78] for a more detailed discussion of Fourier expansions). The map $\mathfrak{f} \mapsto\left(f_{1}, \cdots, f_{h}\right)$ defines a vector space isomorphism

$$
\mathcal{M}(\mathfrak{c}, \psi) \cong \oplus_{\lambda} \mathcal{M}_{k}\left(\Gamma_{\lambda}, \psi\right)
$$

Put

$$
C(\mathfrak{m}, \mathfrak{f})= \begin{cases}a_{\lambda}(\xi) \mathcal{N}\left(\tilde{t}_{\lambda}\right)^{-k / 2}, & \text { if the ideal } \mathfrak{m}=\xi \tilde{t}_{\lambda}^{-1} \text { is integral; } \tag{5.9}\\ 0, & \text { if } \mathfrak{m} \text { is not integral. }\end{cases}
$$

We have the following Fourier expansion:
where $\chi_{F}: F_{\mathrm{A}} / F \rightarrow \mathbf{C}^{\times}$is a fixed additive character with the condition $\chi_{F}\left(x_{\infty}\right)=e_{F}\left(x_{\infty}\right)$ (see [Shi78], p. 650).

Let $\mathcal{S}_{k}(\mathfrak{c}, \psi) \subset \mathcal{M}(\mathfrak{c}, \psi)$ be the subspace of cusp forms and $\mathfrak{f} \in \mathcal{S}_{k}(\mathfrak{c}, \psi)$ then $a_{\lambda}(0)=0$ for all $\lambda=1, \cdots, h$.
5.3. Hecke operators (see [Shi78]). - They are introduced by means of double cosets of the type $W y W$ for y in the semigroup

$$
Y_{\mathfrak{c}}=G_{\mathrm{A}} \cap\left(G_{\infty}^{+} \times \prod Y_{\mathfrak{c}}(\mathfrak{p})\right)
$$

where

$$
Y_{\mathfrak{c}}(\mathfrak{p})=\left\{\left.\left(\begin{array}{ll}
a & b \tag{5.11}\\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(F_{\mathfrak{p}}\right) \right\rvert\, a \mathcal{O}_{\mathfrak{p}}+\mathfrak{c}_{\mathfrak{p}}=\mathcal{O}_{\mathfrak{p}}, b \in \mathfrak{d}_{\mathfrak{p}}^{-1}, c \in \mathfrak{c}_{\mathfrak{p}} \mathfrak{d}_{\mathfrak{p}}, d \in \mathcal{O}_{\mathfrak{p}}\right\}
$$

The Hecke algebra $\mathcal{H}_{\mathfrak{c}}$ consists of all formal finite sums of the type $\sum_{y} c_{y} W y W$ with $y \in$ $Y_{\mathfrak{c}}, c_{y} \in \mathrm{C}$ and with the standard multiplication law defined by means of decomposition of double cosets into a disjoint union of a finite number of left cosets. By definition, $T_{\mathfrak{c}}(\mathfrak{m})$ is an element of the ring $\mathcal{H}_{\mathfrak{c}}$ obtained by taking the sum of all different $W y W$ with $y \in Y_{\mathfrak{c}}$ such that $\widetilde{\operatorname{det}(y)}=\mathfrak{m}$. Let

$$
\begin{equation*}
T_{\mathfrak{c}}^{\prime}=\mathcal{N}(\mathfrak{m})^{(k-2) / 2} T_{\mathfrak{c}}(\mathfrak{m}) \tag{5.12}
\end{equation*}
$$

be the normalized Hecke operator, whose action on the Fourier coefficients of an automorphic form (of the holomorphic type) $\mathfrak{f} \in \mathcal{M}_{k}(\mathfrak{c}, \psi)$ is given by the usual formula

$$
\begin{equation*}
C\left(\mathfrak{m}, \mathfrak{f} \mid T_{\mathfrak{c}}^{\prime}(\mathfrak{m})\right)=\sum_{\mathfrak{m}+\mathfrak{n}=\mathfrak{a}} \psi^{*}(\mathfrak{a}) \mathcal{N}(\mathfrak{a})^{k-1} C\left(\mathfrak{a}^{-2} \mathfrak{m} \mathfrak{n}, \mathfrak{f}\right) \tag{5.13}
\end{equation*}
$$

If $\mathfrak{f} \in \mathcal{M}_{k}(\mathfrak{c}, \psi)$ is an eigenfunction of all Hecke operators $T_{\mathfrak{c}}^{\prime}(\mathfrak{m})$ with $\left.\mathfrak{f}\right|_{k} T_{\mathfrak{c}}^{\prime}(\mathfrak{m})=\lambda(\mathfrak{m}) \mathfrak{f}$ then we have that $C(\mathfrak{m}, \mathfrak{f})=\lambda(\mathfrak{m}) C\left(\mathcal{O}_{F}, \mathfrak{f}\right)$. If we normalize the form \mathfrak{f} by the condition $C\left(\mathcal{O}_{F}, \mathfrak{f}\right)=1$ then the L-function has the following Euler product expansion:

$$
\begin{gather*}
L(s, \mathfrak{f})=\sum_{\mathfrak{n}} C(\mathfrak{n}, \mathfrak{f}) \mathcal{N}(\mathfrak{n})^{-s}=\sum_{\mathfrak{n}} \lambda(\mathfrak{n}) \mathcal{N}(\mathfrak{n})^{-s}= \\
\prod_{\mathfrak{p}}\left[1-C(\mathfrak{p}, \mathfrak{f}) \mathcal{N}(\mathfrak{p})^{-s}+\psi^{*}(\mathfrak{p}) \mathcal{N}(\mathfrak{p})^{k-1-2 s}\right]^{-1} \tag{5.14}
\end{gather*}
$$

In this case the coefficients $C(\mathfrak{n}, \mathfrak{f})$ of the form \mathfrak{f} are algebraic integers.
5.4. - The Petersson inner product is defined for $\mathfrak{f}=\left(f_{1}, \cdots, f_{h}\right) \in \mathcal{S}_{k}(\mathfrak{c}, \psi)$ and $\mathfrak{g}=\left(g_{1}, \cdots, g_{h}\right) \in \mathcal{M}_{k}(\mathfrak{c}, \psi)$ by setting

$$
\begin{equation*}
\langle\mathfrak{f}, \mathfrak{g}\rangle_{\mathfrak{c}}=\sum_{\lambda=1}^{h} \int_{\Gamma_{\lambda}(\mathfrak{c}) \backslash \mathfrak{H}^{n}} \overline{f_{\lambda}(z)} g_{\lambda}(z) \mathcal{N}(y)^{k} d \mu(z) \tag{5.15}
\end{equation*}
$$

where

$$
d \mu(z)=\prod_{v=1}^{n} y_{v}^{-2} d x_{v} d y_{v}
$$

is a G_{∞}^{+}-invariant measure on \mathfrak{H}^{n}.

$$
\text { If } \mathfrak{f} \in \mathcal{M}_{k}(\mathfrak{c}, \psi) \text { and }\left.\mathfrak{f}\right|_{k} T_{\mathfrak{c}}^{\prime}(\mathfrak{m})=\lambda(\mathfrak{m}) \mathfrak{f} \text { for all } \mathfrak{m} \text { with } \mathfrak{m}+\mathfrak{c}=\mathbf{Q}_{F} \text { then }
$$

$$
\begin{align*}
& \lambda(\mathfrak{m})=\psi^{*}(\mathfrak{m}) \overline{\lambda(\mathfrak{m})} \\
& \psi^{*}(\mathfrak{m})\left\langle\left.\mathfrak{f}\right|_{k} T_{\lambda}^{\prime}(\mathfrak{m}), \mathfrak{g}\right\rangle_{\mathfrak{c}}=\left\langle\mathfrak{f},\left.\mathfrak{g}\right|_{k} T_{\lambda}^{\prime}(\mathfrak{m})\right\rangle_{\mathfrak{c}} \tag{5.16}
\end{align*}
$$

(ψ-hermitian property of the Hecke operators). Let \mathfrak{q} be an integral ideal and $\mathfrak{f} \in$ $\mathcal{M}_{k}(\mathfrak{c}, \psi)$. Let us define the operators $\mathfrak{f}|\mathfrak{q}, \mathfrak{f}| U(\mathfrak{q})$ by their action on Fourier coefficients:

$$
\begin{equation*}
C(\mathfrak{m}, \mathfrak{f} \mid \mathfrak{q})=C\left(\mathfrak{q}^{-1} \mathfrak{m}, \mathfrak{f}\right), \quad C(\mathfrak{m}, \mathfrak{f} \mid U(\mathfrak{q}))=C(\mathfrak{q} \mathfrak{m}, \mathfrak{f}) \tag{5.17}
\end{equation*}
$$

Here is the explicit description of these operators: for a finite idele $q \in F_{\mathrm{A}}^{\times}$with $\tilde{q}=q$

$$
\begin{gather*}
(\mathfrak{f} \mid \mathfrak{q})(x)=\mathcal{N}(\mathfrak{q})^{-k / 2} \mathfrak{f}\left(x\left(\begin{array}{ll}
q & 0 \\
0 & 1
\end{array}\right)\right), \tag{5.18}\\
(\mathfrak{f} \mid U(\mathfrak{q}))(x)=\mathcal{N}(\mathfrak{q})^{k / 2-1} \sum_{v \in \mathcal{O}_{F} / \mathfrak{q}} \mathfrak{f}\left(x\left(\begin{array}{ll}
1 & v \\
0 & q
\end{array}\right)\right) . \tag{5.19}
\end{gather*}
$$

We recall now the definition of Eisenstein series in the Hilbert modular case. Let $\mathfrak{a}, \mathfrak{b}$ be arbitrary fractional ideals, m a positive integer, $q \in\left(q_{1}, \cdots, q_{n}\right) \in \mathbf{Z}^{n}, q_{v} \geq 0, \eta$ a Hecke character of finite order modulo an integral ideal $\mathfrak{e} \subset \mathcal{O}_{F}$ such that $\eta^{*}((x))=\operatorname{sign} \mathcal{N}(x)^{m}$ for $x \equiv 1 \bmod { }^{\times} \mathfrak{e}, x \in \mathcal{O}_{F}$. We put (for $\left.\operatorname{Re}(s)>2-m\right)$

$$
\begin{align*}
& K_{m}^{q}(z, s ; \mathfrak{a}, \mathfrak{b} ; \eta)=(2 \pi i)^{-\{q\}}(z-\bar{z})^{-q} \times \\
& \times \sum_{c, d} \operatorname{sign} \mathcal{N}(d)^{m} \eta^{*}\left(d \mathfrak{b}^{-1}\right)\left(\frac{c \bar{z}+d}{c z+d}\right)^{q} \mathcal{N}(c z+d)^{-m}|\mathcal{N}(c z+d)|^{-2 s} \tag{5.20}\\
& L_{m}^{q}(z, s ; \mathfrak{a}, \mathfrak{b} ; \eta)=(2 \pi i)^{-\{q\}}(z-\bar{z})^{-q} \times \\
& \times \sum_{c, d} \operatorname{sign} \mathcal{N}(c)^{m} \eta^{*}\left(c \mathfrak{a}^{-1}\right)\left(\frac{c \bar{z}+d}{c z+d}\right)^{q} \mathcal{N}(c z+d)^{-m}|\mathcal{N}(c z+d)|^{-2 s} \tag{5.21}
\end{align*}
$$

where $z^{q}=\prod_{v} z_{v}^{q_{v}}, \mathcal{N}(z)=z_{1} \cdots z_{n}$, the summation in (5.20) and (5.21) is taken over a system of representatives (c, d) of \mathcal{O}_{F}^{\times}-equivalence classes of non-zero elements in $\mathfrak{a} \times \mathfrak{b}$ $\left((c, d) \sim(u c, u d)\right.$ for $\left.u \in \mathcal{O}_{F}^{\times}\right)$.

Gauss sums and the twist operator. Let χ be a Hecke character of finite order with a conductor \mathfrak{m} and $\chi\left(x_{\infty}\right)=\operatorname{sign}\left(x_{\infty}\right)^{r}$ for $r=\left(r_{1}, \cdots, r_{n}\right) \in(\mathbf{Z} / 2 \mathbf{Z})^{n}$ (the parity of χ). Let χ^{*} be the character of the group of fractional ideals prime to \mathfrak{m} which is associated to χ. Let us set $\chi^{*}(\mathfrak{a})=0$ for those \mathfrak{a} which are not coprime to \mathfrak{m} and define the Gauss sum by

$$
\tau(x)=\sum_{x \in \mathfrak{m}-1 \mathfrak{d}^{-1} / \mathfrak{d}^{-1}} \operatorname{sign}(x)^{r} \chi^{*}((x) \mathfrak{m} \mathfrak{d}) e_{F}(x)
$$

Then $|\tau(x)|^{2}=\mathcal{N}(\mathfrak{m})$. The series (5.20) and (5.21) can be extended to functions on the adelic group G_{A} in such a way that

$$
\begin{array}{r}
K_{m}^{q}(s ; \mathfrak{a}, \mathfrak{b} ; \eta)_{\lambda}(z)=\mathcal{N}\left(\tilde{t}_{\lambda}\right)^{s+(m / 2)} \mathcal{N}(y)^{s} K_{m}^{q}\left(z, s ; \tilde{t}_{\lambda} \mathfrak{d a}, \mathfrak{b} ; \eta\right), \\
L_{m}^{q}(s ; \mathfrak{a}, \mathfrak{b} ; \eta)_{\lambda}(z)=\mathcal{N}\left(\tilde{t}_{\lambda}\right)^{-s-(m / 2)} \mathcal{N}(y)^{s} L_{m}^{q}\left(z, s ; \mathfrak{a}, \mathfrak{b} \tilde{t}_{\lambda}^{-1} \mathfrak{d}^{-1} ; \eta\right) \tag{5.23}
\end{array}
$$

The functions (5.20)-(5.23) admit analytic continuation onto the entire complex plane with respect to the parameter $s \in \mathbf{C}$, and they satisfy the following functional equation (see [Shi78], p.672, where it is given in a slightly different notation) under the assumption that η is primitive modulo \mathfrak{e} :

$$
\begin{align*}
& \Delta_{m}^{q}(z, 1-m-s) K_{m}^{q}(1-m-s ; \mathfrak{a}, \mathfrak{b} ; \eta)= \\
& \quad \tau(\eta) \mathcal{N}(\mathfrak{d a b e})^{m+2 s-1} \Delta_{m}(s)^{q} L_{m}^{q}(s ; \mathfrak{a}, \mathfrak{b e} ; \bar{\eta}) \tag{5.24}
\end{align*}
$$

with the Γ-factor $\Delta_{m}^{q}(z, s)=\pi^{-n s} y^{(m+s)} \prod_{v} \Gamma\left(s+m+q_{v}\right)$.

We need Fourier expansions of the Eisenstein series which can be explicitly written in terms of the Whittaker function $W(y, \alpha, \beta)$. This function is defined by the integral

$$
W(y, \alpha, \beta)=\int_{0}^{\infty}(u+1)^{\alpha-1} u^{\beta-1} e^{-y u} d u
$$

which is absolutely convergent for $\operatorname{Re}(\alpha+\beta)>1$, and

$$
W(y, \alpha,-r)=\sum_{i=0}^{r}(-1)^{i}\binom{r}{i} \frac{\Gamma(\alpha)}{\Gamma(\alpha-i)} y^{r-i} \text { for } r \in \mathbf{Z}, r \geq 0
$$

5.5. Proposition. (On Fourier expansions of the Eisenstein series). Let s be an integer such that $s-q_{v} \leq 0$ for all $v, \eta(\operatorname{mode})$ be a Hecke character of finite order as above (not necessarily primitive) such that $\mathfrak{e} \neq \mathcal{O}$. Then under the above notation there is the following Fourier expansion:

$$
\begin{aligned}
& \frac{D_{F}^{1 / 2} \mathcal{N}\left(\tilde{t}_{\lambda}\right) \prod_{v} \Gamma\left(s+m+q_{\lambda}\right)}{(-2 \pi i)^{n(m+2 s)}(-1)^{n s+\{q\}}} L_{m}^{q}\left(z, 0 ; \mathcal{O}_{F}, \tilde{t}_{\lambda}^{-1} \mathfrak{d}^{-1} ; \eta\right)= \\
& (4 \pi y)^{-q} \sum_{0<\xi \in \tilde{\tau}_{\lambda}} a_{\lambda}(\xi, s, y, \eta) e_{F}(\xi z),
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{\lambda}(\xi, s, y, \eta)= \\
& \sum_{\substack{\tilde{\xi}=\tilde{b} \tilde{c} \\
c \in \mathcal{O}_{F}, b \in \tilde{\tau}_{\lambda}}} \operatorname{sign} \mathcal{N}(\tilde{b})^{m-1} \mathcal{N}(\tilde{b})^{m+2 s-1} \eta^{*}(\tilde{c}) \prod_{v} W\left(4 \pi \xi_{\nu} y_{v}, m+s+q_{v}, s-q_{v}\right),
\end{aligned}
$$

and $W(y, \alpha, \beta)$ is the Whittaker function.
Proof. Using Fourier transform, one has

$$
\begin{aligned}
& D_{F}^{1 / 2} \mathcal{N}\left(\tilde{t}_{\lambda}\right) \sum_{t \in \tilde{t}_{\lambda}^{-1} \mathfrak{d}^{-1}}\left(\frac{\bar{z}+t}{z+t}\right)^{q} \mathcal{N}(z+t)^{-m}|\mathcal{N}(z+t)|^{-2 s}= \\
& \sum_{b \in \tilde{\tau}_{\lambda}} \prod_{v} \int_{\mathbf{R}} \frac{\exp \left(-2 \pi i b_{v} t_{v}\right) d t_{v}}{\left(z_{v}+t_{v}\right)^{-\left(m+2 q_{v}\right)}\left(\overline{z_{v}}+t_{v}\right)^{-2\left(s-q_{v}\right)}}
\end{aligned}
$$

where

$$
\int_{\mathbf{R}} \frac{\exp \left(-2 \pi i b_{v} t_{v}\right) d t_{v}}{\left(z_{v}+t_{v}\right)^{-\left(m+2 q_{v}\right)}\left(\overline{z_{v}}+t_{v}\right)^{-2\left(s-q_{v}\right)}}=
$$

$$
(-2 \pi i)^{m+2 s}(-1)^{s+q_{v}} b_{v}^{m+2 s-1} \Gamma\left(s+m+q_{v}\right)^{-1} W\left(4 \pi b_{v} y_{v}, m+s+q_{v}, s-q_{v}\right) e_{F}(b z)
$$

Indeed, if we consider the integral

$$
f(t)=\int_{-\infty}^{\infty} z^{-\alpha} \bar{z}^{-\beta} \exp (-2 \pi i t z) d z
$$

which is absolutely convergent for $\operatorname{Re}(\alpha+\beta)>1$, then application of contour integration shows that

$$
\begin{aligned}
f(t)= & (2 \pi)^{\alpha+\beta} i^{\beta-\alpha} \Gamma(\alpha)^{-1} \Gamma(\beta)^{-1} e^{2 \pi t y} \times \\
& \times \begin{cases}t^{\alpha+\beta-1} e^{-4 \pi t y} W(4 \pi t y, \alpha, \beta) & \text { if } t>0 \\
|t|^{\alpha+\beta-1} W(4 \pi|t| y, \beta, \alpha) & \text { if } t<0\end{cases}
\end{aligned}
$$

(see [Shi75], pp. $84-85$). Therefore

$$
\begin{aligned}
& D_{F}^{1 / 2} \mathcal{N}\left(\tilde{t}_{\lambda}\right) \sum_{t \in \tilde{t}_{\lambda}^{-1} \mathfrak{d}^{-1}}\left(\frac{\bar{z}+t}{z+t}\right)^{q} \mathcal{N}(z+t)^{-m}|\mathcal{N}(z+t)|^{-2 s}= \\
& (-2 \pi i)^{n(m+2 s)}(-1)^{n s+\{q\}} \prod_{v} \Gamma\left(s+m+q_{v}\right)^{-1} \times \\
& \times \sum_{b \in \tilde{\tau}_{\lambda}} \mathcal{N}(b)^{m+2 s-1} \prod_{v} W\left(4 \pi b_{v} y_{v}, m+s+q_{v}, s-q_{v}\right) e_{F}(b z),
\end{aligned}
$$

and the proposition is then easily deduced from the last equality (see the analogous calculation in [Ka78]).

Remark. We need only a special case of 5.2 , when $q=0, m=k-l$ since the weights k and l are scalars; however, the proposition is applicable for the study of Rankin convolutions of Hilbert modular forms \mathfrak{f} and \mathfrak{g} of arbitrary integer vector weights $k=\left(k_{1}, \cdots, k_{n}\right)$ and $l=\left(l_{1}, \cdots, l_{n}\right)$ satisfying the following condition

$$
k_{1} \equiv k_{2} \equiv \cdots \equiv k_{n} \bmod 2, \quad l_{1} \equiv l_{2} \equiv \cdots \equiv l_{d} \bmod 2
$$

5.6. The integral representation. We set

$$
G_{1} \in \mathcal{S}_{k}\left(\mathfrak{m}_{1}, \psi\right), \quad G_{2} \in \mathcal{S}_{l}\left(\mathfrak{m}_{2}, \omega\right)
$$

Then the following integral representation of Rankin type holds (see [Shi78], (4.32)):

$$
\begin{equation*}
\Psi\left(s, G_{1}, G_{2}\right)=D_{F}^{1 / 2} \Gamma(s+1-l)^{n} \pi^{-n s}\left\langle G_{1}^{\rho}, V(s-k+1, \psi \omega)\right\rangle_{\mathfrak{m}_{1} \mathfrak{m}_{2}} \tag{5.25}
\end{equation*}
$$

where

$$
V(s, \psi \omega)=G_{2} \cdot K_{k-l}^{0}\left(s ; \mathfrak{m}_{1} \mathfrak{m}_{2}, \mathcal{O}_{F} ; \psi \omega\right)
$$

More precisely,

$$
\begin{align*}
& \Psi\left(s, G_{1}, G_{2}\right)=D_{F}^{1 / 2} \Gamma(s+1-l)^{n} \pi^{-n s} \sum_{\lambda=1}^{h} \mathcal{N}\left(\tilde{t}_{\lambda}\right)^{s+1-(k+l) / 2} \times \tag{5.26}\\
& \times \int_{\Gamma_{\lambda}\left(\mathfrak{m}_{1} \mathfrak{m}_{2}\right) \backslash \mathfrak{H}^{n}} \overline{G_{1, \lambda}^{\rho}(z)} G_{2, \lambda}(z) K_{k-l}^{0}\left(z, s-k+1 ; \tilde{t}_{\lambda} \mathfrak{d}, \mathcal{O}_{F} ; \psi \omega\right) \mathcal{N}(y)^{s-1} d x d y .
\end{align*}
$$

References

[AndBud]	Andrianov A.N. - Zeta-functions and the Siegel modular forms. Proc. Summer School BolyaJanos Math.Soc (Budapest, 1970), Halsted, N.-Y., 1975, 9-20.
[And74]	Andrianov A.N. - Euler products attached to Siegel modular forms of degree 2 , Uspekhi Mat. Nauk 29 (1974), 44-109 (in Russian).
[Co]	Coates J. - On p-adic L-functions. Sem. Bourbaki, 40eme annee, 1987-88, no 701, Asterisque (1989), 177-178.
[Co-PeRi]	Coates J., Perrin-Riou B. - On p-adic L-functions attached to motives over Q. Advanced Studies in Pure Math. 17 (1989), 23-54.
[Col]	Coleman R. - p-adic Banach Spaces and Families of Modular forms. Invent. Math. 127 (1997), 417-479.
[De-Ri]	Deligne P.,Ribet ,K.A. - Values of Abelian L-functions at negative integers over totally real fields. Invent. Math. 59 (1980), 227-286.
[Ge-PSh]	Gelbart S.,Piatetski-Shapiro I.I., Rallis S. - Explicit constructions of automorphic L - functions. Springer-Verlag, Lect. Notes in Math. N 1254 (1987) 152p.
[HHKh]	Ha Huy Khoai - Sur les séries L associées aux formes modulaires. Bull. Soc. Math. Fr. 120, N 1 (1992), 1-13.
[Ham]	Hammond W.F. - The modular groups of Hilbert and Siegel. Am. J. Math. 88 (1966), 497-516.
[Hi86]	Hida H. - Galois representations into $G L_{2}\left(\mathbf{Z}_{p}[[X]]\right)$ attached to ordinary cusp forms, Invent. Math. 85 (1986), 545-613.
[Hi90]	Hida H. - Le produit de Petersson et de Rankin p-adique. Semin. Theor. Nombres, Paris/Fr. 1988-89, Prog. Math. 91 (1990), 87-102.
[Hi91]	Hida H. - On p-adic L-functions of $G L(2) \times G L(2)$ over totally real fields, Ann. de l'Inst. Fourier, 40 (1991), 311-391.
[Hi93]	Hida H. - Elementary theory of L-functions and Eisenstein series London Mathematical Society Student Texts. 26 Cambridge: Cambridge University Press, 386 p., 1993.
[Hi96]	Hida H. - On the search of genuine p-adic modular L-functions for GL(2). Mém. Soc. Math. de France (N.S.), N 67 (1996), 110 p.
[Hi98]	Hida H. - Control of p-ordinary global sections of coherent p-adic sheaves on Shimura varieties of PEL-type, Lecture of June 5, 1998 in the Seminar in Honour of I.I.Piatetski-Shapiro held in the Institut Fourier, Grenoble, June 4-5, 1998.

[Iw]	Iwasawa K. - Lectures on p-adic L-functions. Ann. Press, 1972.
[Ja]	Jacquet H. - Automorphic forms on GL(2). Part II. Springer-Verlag, Lect. Notes in Math. N 278 (1972).
[Ja-L]	Jacquet H., Langlands R. - Automorphic Forms on GL(2). Springer-Verlag, Lect. Notes in Math. N 114 (1972) 548 p.
[Ka76]	Katz, N.M. - p-adic interpolation of real analytic Eisenstein series, Ann. of Math. 104 (1976), 459-571.
[Ka77]	Katz, N.M. - The Eisenstein measure and p-adic interpolation, Amer. J. Math. 99 (1977), 238311.
[Ka78]	Katz N.M. - p-adic L-functions for $C M$-fields, Invent. Math. 48 (1978) 199-297
[KiPa]	Kitagawa K., Panchishkin A.A. - On the Λ-adic Klingen-Eisenstein series, Prépublication de l'Institut Fourier (Grenoble), No. 339 (1996), 1-11.
[Kli]	Kıingen H. - Über die Werte Dedekindscher Zetafunktionen. Math. Ann. 145 (1962), 265-272.
[Ko-Z]	Kohnen W., Zagier D. - Modular forms with rational periods. In: Modul. Forms Symp., Durham, 30 June - 10 July 1983. Chichester (1984), 197-249
[Ku-Le]	Kubota T., Leopoldt H.-W - Eine p-adische Theorie der Zetawerte. J- reine angew. math. 214/215 (1964), 328-339.
[Man]	Manin Yu.I. - Non-Archimedean integration and Jacquet-Langlands p-adic L-functions. Russ. Math. Surveys 31, N 1 (1976), 5-57.
[Maz]	Mazur B. - Deforming Galois representations, in Galois Groups over Q. Ed. Y.Ihara, K.Ribet, J.-P. Serre, 1989, Springer-Verlag.
[Maz-W1]	Mazur B., Wiles A. - Class fields of Abelian extensions of Q. Invent. math. 76 (1984), 179-330.
[Maz-W2]	Mazur B., Wiles A. - On p-adic analytic families of Galois representations. Compos. Math. 59 (1986), 231-264.
[Nov]	Novodvorsky M. E. - Automorphic L-functions for symplectic group GSp(4). Automorphic forms, representations and L-functions, Proc. Symp. pure Math. Amer. Math. Soc., Corvallis/Oregon 1977, Proc. Symp. pure Math. 33, No. 2 (1979), 87-95.
[PaLNM]	Panchishkin A.A. - Non-Archimedean L-functions of Siegel and Hilbert modular forms, Lecture Notes in Math., 1471, Springer-Verlag, 1991, 166p.
[PaIF]	Panchishkin A.A. - Motives over totally real fields and p-adic L-functions, Annales de l'Institut Fourier, Grenoble, 44 (1994), 989-1023.
[PaSE]	Panchishkin A.A. - On the Siegel-Eisenstein measure and its applications, (à paraître dans Israel Journal of Mathematics, 1999).
[PaViet]	Panchishkin A.A. - Non-Archimedean Mellin transform and p-adic L Functions. Vietnam Journal of Mathematics, 1997, N3, 179-202.
[PShBud]	Piatetski-Shapiro I.I. - Euler subgroups, Proc. Summer School Bolya-Janos Math.Soc (Budapest, 1970), Halsted, N.-Y., 1975, 597-620.
[PShPac]	Piatetski-Shapiro I.I. - L-functions for GS p_{4}. Pacific J.Math, Olga Tausski-Todd memorial issue, (1998), 259-275.
[PSh-R]	Piatetski-Shapiro I.I., Rallis S. - L-functions of automorphic forms on simple classical groups. In: Modul. Forms Symp., Durham, 30 June - 10 July 1983. Chichester (1984), 251-261.

[Ran39]	Rankin R.A. - Contribution to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. I.II. Proc. Camb. Phil. Soc 35 (1939), 351-372.
[Ran52]	Rankin R.A. - The scalar product of modular forms. Proc. London math. Soc. 2 (1952), 198-217.
[Shi71]	Shimura G. - Introduction to the Arithmetic Theory of Automorphic Functions. Princeton Univ. Press, 1971.
[Shi75]	Shimura G. - On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. 31 (1975), 79-98.
[Shi76]	Shimura G. - The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math. 29 (1976), 783-804.
[Shi77]	Shimura G. - On the periods of modular forms. Math. Annalen 229 (1977), 211-221.
[Shi78]	Shimura G. - The special values of zeta functions associated with Hilbert modular forms. Duke Math. J. 45 (1978), 637-679.
[Shi83]	Shimura G. - On Eisenstein series. Duke Math. J. 50 (1983), 417-476.
[Tay]	Taylor R. - On the l-adic cohomology of Siegel threefold. Invent. Math. 114 (1993), 289-310.
[Til-U]	Tilouine J., Urban E. - Several variable p-adic families of Siegel-Hilbert cusp eigenforms and their Galois representations. Preprint 97-4, March 1997, Université Paris-Nord.
[Til]	Tilouine J. - Deformations of Siegel-Hilbert Hecke eigensystems and their Galois representations. Contemporary Math. 210 (1998), 195-225.
[Wi]	Wiles A. - On ordinary λ-adic representations associated to modular forms. Invent. Math. 94, No. 3 (1988), 529-573.
[Wi]	Wiles A. - Modular elliptic curves and Fermat's Last Theorem. Ann. Math., II. Ser. 141, No. 3 (1995), 443-551.

```
Université de Grenoble I
Institut Fourier
UMR 5582 CNRS-UJF
UFR de Mathématiques
B.P. }7
38402 ST MARTIN D'HÈRES Cedex (France)
```


[^0]: Mots-clés : forme automorphe, famille p-adique, série d'Eisenstein, méthode de Rankin. Classification math. : 11F 13, 11F41, 11F67, 11F70, 11F85.

