AN ANDREOTTI-VESENTINI SEPARATION THEOREM ON REAL HYPERSURFACES

Christine LAURENT-THIÉBAUT * and Jürgen LEITERER *

Abstract

Using Serre duality in *CR* manifolds and integral operators for the solution of the tangential Cauchy-Riemann equation with compact support, we prove a separation theorem of Andreotti-Vesentini type for the $\overline{\partial}_b$ -cohomology in *q*-concave real hypersurfaces.

Let *X* be an *n*-dimensional complex manifold and *E* a holomorphic vector bundle over *X*. If *X* is *q*-concave in the sense of Andreotti-Grauert (*i.e.* (n - q)-concave in the sense of [6]), the Andreotti-Grauert finiteness theorem [1] says that

 $\dim H^{0,r}(X,E) < \infty \qquad \text{if} \quad r \leqslant n-q-1.$

Moreover Andreotti and Vesentini [2] proved that the cohomology group $H^{0,n-q}(X, E)$ is separated. Other proofs of this separability are given in [6],[9] and [12].

Let us consider now the case of *CR* manifolds. Let *M* be a *CR* generic manifold embedded in an *n*-dimensional complex manifold *X* and *E* a holomorphic vector bundle over *X*. Assume that the Levi form of *M* restricted to the complex tangent space has at least *q* negative eigenvalues in all directions at each point of *M*, this condition ensures the local solvability of the $\overline{\partial}_b$ -equation up to bidegree (0, q) (cf. [4]).

If *M* is compact, Henkin [4] obtained the finitness of the $\overline{\partial}_b$ -cohomology groups of bidegree (0, r) for $r \leq q - 1$ and the separability of the group $H^{0,q}(X, E)$. This result has been generalized by Hill and Nacinovich [7] to the case of compact abstract *CR* manifolds.

If M is no more compact but admits an exhausting function, whose Levi form restricted to the complex tangent space to M has at least q negative eigenvalues at each point outside a compact subset of M then (cf. [7], and [8] for the hypersurface case)

$$\dim H^{0,r}(M,E) < \infty \qquad \text{if} \quad r \leqslant q-2.$$

The purpose of the present paper is to prove that the $\overline{\partial}_b$ -cohomology group $H^{0,q-1}(M, E)$ is separated in this situation, when M is of real codimension 1. The proof follows the ideas of [9], where we replace the integral operators of the Grauert-Henkin-Lieb type by the operators constructed

^{*} Partially supported by HCM Research Network CHRX - CT94 - 0468

¹⁹⁹¹ Mathematics Subject Classification. 32F40-32F10

Keywords and phrases. Serre duality, CR manifold, tangential Cauchy-Riemann equation, separation theorem

in [8] to get the finitness of some $\overline{\partial}_b$ -cohomology group with compact support. Then the separation theorem follows from a careful study of Serre duality in the *CR* setting, which involves some propagation property of the exactness in bidegree (0, q - 1).

To get the same result in higher codimension, we would need some analogue of the operators of [8] and some theorems on the propagation of the exactness in bidegree (0, q - 1), which do not exist at this moment.

Note that the possibility to prove a separation theorem of this type by means of integral formulas was pointed out for the first time by Henkin in his survey article [5].

1. Notations and definitions

Let *X* be an *n*-dimensional complex manifold. For $\xi \in X$, we denote by $T_{\xi}^{1,0}(X)$ the holomorphic tangent space of *X* at ξ , *i.e.* if z_1, \ldots, z_n are holomorphic coordinates in a neighborhood of ξ , then $T_{\xi}^{1,0}(X)$ consists of all tangent vectors *t* of the form

$$t = \sum_{j=1}^{n} t_j \frac{\partial}{\partial z_j}(\xi)$$
(1.1)

where t_1, \ldots, t_n are complex numbers.

If *M* is a real \mathscr{C}^2 -submanifold of *X* and $\xi \in M$, then we denote by $T^{1,0}_{\xi}(M)$ the subspace of all vectors in $T^{1,0}_{\xi}(X)$ which are tangential to *M*.

Let $\xi \in X$ and ρ a real \mathscr{C}^2 -function defined in a neighborhood of ξ . Then we denote by $L^X_{\xi}(\rho)$ the Levi form of ρ at ξ , *i.e.* the hermitian form on $T^{1,0}_{\xi}(X)$ defined by

$$L^X_{\xi}(
ho)t = \sum_{j,k=1}^n rac{\partial^2
ho(\xi)}{\partial z_j \partial \overline{z}_k} t_j \overline{t}_k$$

if $t \in T^{1,0}_{\xi}(X)$ is written in the form (1.1). If M is a real \mathscr{C}^2 -submanifold of X and $\xi \in M$, then we denote by $L^M_{\xi}(\rho)$ the restriction of $L^X_{\xi}(\rho)$ to $T^{1,0}_{\xi}(M)$.

DEFINITION 1.1. — Let M be a real \mathscr{C}^2 -hypersurface in some n-dimensional complex manifold X, and let q be an integer with $0 \leq q \leq (n-1)/2$. M will be called q-convex-concave at a point $\xi \in M$ if, for each real \mathscr{C}^2 -function ρ in some X-neighborhood U of ξ with $M \cap U = \{\rho = 0\}$ and $d\rho(\xi) \neq 0$, $L_{\xi}^M(\rho)$ has at least q positive and q negative eigenvalues. M will be called q-convex-concave at each point in M.

DEFINITION 1.2. — Let M be a real \mathscr{C}^2 -hypersurface in an n-dimensional complex manifold X, and let q be an integer with $0 \leq q \leq (n-1)/2$. A real \mathscr{C}^2 -function φ on M will be called (q+1)-convex at a point $\xi \in M$ if there exist an X-neighborhood U of ξ and real \mathscr{C}^2 -functions $\tilde{\varphi}, \rho_+, \rho_-$ on U with the following properties:

- $\tilde{\varphi} = \varphi \text{ on } U \cap M$
- $M \cap U = \{\rho_+ = 0\} = \{\rho_- = 0\}$

• $d\rho_{\pm}(\zeta) \neq 0$ for all $\zeta \in U$ and $\rho_{+}\rho_{-} < 0$ on $U \setminus M$

• for each $\lambda \in [0, 1]$ and for each $\zeta \in U$, the forms $L^X_{\zeta}(\lambda \tilde{\varphi} + (1-\lambda)\rho_{\pm})$ have at least (q+1) positive eigenvalues.

PROPOSITION 1.3. — (see Proposition I.2.3 in[8]). Let M be a real \mathscr{C}^2 -hypersurface in some n-dimensional complex manifold X, and let q be an integer with $0 \leq q \leq (n-1)/2$. A real \mathscr{C}^2 -function φ on M is (q + 1)-convex at a point $\xi \in M$ if and only if M is q-convex-concave at ξ and, for any real \mathscr{C}^2 -extension ψ of φ to an X-neighborhood of ξ , $L_{\xi}^M(\psi)$ has at least q-positive eigenvalues.

DEFINITION 1.4. — Let M be a real \mathscr{C}^2 -hypersurface in an n-dimensional complex manifold X, and let q be an integer with $0 \leq q \leq (n-1)/2$. A real \mathscr{C}^2 -function φ on M will be called (q+1)-concave at a point $\xi \in M$ if $-\varphi$ is (q+1)-convex at ξ . A (q+1)-concave function on M is, by definition, a real \mathscr{C}^2 -function on M which is (q+1)-concave at all points in M.

Remark : If *M* is a *q*-convex-concave real \mathscr{C}^2 -hypersurface in an *n*-dimensional complex manifold *X*, $0 \leq q \leq (n-1)/2$, and ψ is a strictly plurisubharmonic function on *X*, then the restriction of $-\psi$ to *M* is (q + 1)-concave on *M* in the sense of the previous definition.

DEFINITION 1.5. — Let M be a q-convex-concave real \mathscr{C}^2 -hypersurface in an n-dimensional complex manifold $X, 1 \leq q \leq \frac{(n-1)}{2}$. In the following definitions, for subsets W of M, we denote by \overline{W} the closure of W in M, and by ∂W the boundary of W in M.

(i) A q-concave extension in M is an ordered couple $[D, \Omega]$ of open subsets $D \subset \Omega$ of M satisfying the following condition: ∂D is compact, every connected component of Ω has a nonempty intersection with D, and there exist an open M-neighborhood $U_{\partial D}$ of ∂D and a (q + 1)concave \mathscr{C}^2 function φ defined on $U_{\varphi} := U_{\partial D} \cup (\Omega \setminus D)$ such that for some $c_0, c_{\infty} \in \mathbb{R} \cup \{\infty\}$, with $c_0 < c_{\infty}$,

- (a) $D \cap U_{\varphi} = \{\varphi < c_0\}$ and $d\varphi(z) \neq 0$ for $z \in \partial D$
- (b) the sets $(\Omega \setminus D) \cap \{\varphi \leqslant c\}$, $c_0 \leqslant c < c_{\infty}$, are compact.

(ii) *M* will be called *q*-concave if there exists a relatively compact open subset *D* in *M* such that [D, M] is a *q*-concave extension in *M*.

Let *E* be a holomorphic vector bundle over *X*, *M* a real \mathscr{C}^2 -hypersurface in *X* (not necessarily closed) and *D* an open subset with \mathscr{C}^2 -boundary in *M*, and let \overline{D} be the closure of *D* in *M*.

We denote by $\mathscr{C}_{n,r}^{\alpha}(\overline{D}, E)$ $(0 \leq r \leq n, 0 \leq \alpha < 1)$ the space of continuous (if $\alpha = 0$), *resp*. Hölder continuous with exponent α (if $\alpha > 0$), *E*-valued differential forms of bidegree (n, r) on \overline{D} .

If \overline{D} is compact, then $\mathscr{C}_{n,r}^{\alpha}(\overline{D}, E)$ will be considered as *Banach space* endowed with the maxnorm (if $\alpha = 0$), *resp*. the Hölder norm with exponent α (if $\alpha > 0$).

If \overline{D} is not compact, then $\mathscr{C}_{n,r}^{\alpha}(\overline{D}, E)$ will be considered as *Fréchet space* endowed with the topology defined by the Banach spaces $\mathscr{C}_{n,r}^{\alpha}(\overline{W}, E)$ where W runs over all open sets $W \subseteq D$ with \mathscr{C}^2 -boundary such that the closure \overline{W} of W in \overline{D} is compact.

The forms which are Hölder continuous with exponent $1/2 - \varepsilon$ for all $\varepsilon > 0$ are of particular interest in this paper. Therefore we introduce also the spaces

$$\mathscr{C}_{n,r}^{<1/2}(\overline{D},E) := \bigcap_{\varepsilon > 0} \mathscr{C}_{n,r}^{1/2-\varepsilon}(\overline{D},E).$$

These spaces will be considered as Fréchet spaces endowed with the topology defined by the topologies of the spaces $\mathscr{C}_{n,r}^{1/2-\varepsilon}(\overline{D}, E)$, $\varepsilon > 0$, *i.e.* a map with values in $\mathscr{C}_{n,r}^{<1/2}(\overline{D}, E)$ is continuous if and only if it is continuous as a map with values in each $\mathscr{C}_{n,r}^{1/2-\varepsilon}(\overline{D}, E)$, $\varepsilon > 0$.

We denote by $Z_{n,r}^{\alpha}(\overline{D}, E)$ $(0 \leq r \leq n, 0 \leq \alpha < 1)$ and $Z_{n,r}^{<1/2}(\overline{D}, E)$ the subspaces of closed forms in $\mathscr{C}_{n,r}^{\alpha}(\overline{D}, E)$, $resp.\mathscr{C}_{n,r}^{<1/2}(\overline{D}, E)$. For $1 \leq r \leq n$, we set

$$E_{n,r}^{<1/2}(\overline{D},E) = Z_{n,r}^0(\overline{D},E) \cap d\mathscr{C}_{n,r-1}^{<1/2}(\overline{D},E) \quad \text{and} \quad H_{<1/2}^{n,r}(\overline{D},E) = Z_{n,r}^0(\overline{D},E)/E_{n,r}^{<1/2}(\overline{D},E).$$

2. Finiteness of some $\overline{\partial}_b$ -cohomology group with compact support in *q*-concave real hypersurfaces

This section is devoted to the proof of the following result :

THEOREM 2.1. — Let X be an n-dimensional complex manifold, $n \ge 5$, E a holomorphic vector bundle over X and M a real C^2 -hypersurface in X (not necessarily closed). Assume M is qconcave, $2 \le q \le (n-1)/2$, then

$$\dim H_{c,0}^{n,n-q+1}(M,E) < \infty$$
(2.1)

where $H_{c,0}^{n,n-q+1}(M, E)$ denotes the $\overline{\partial}_b$ -cohomology group of bidegree (n, n-q+1) for continuous *E*-valued forms with compact support in *M* (see (2.2)).

First we introduce some notations and prove some lemmas.

Let *X* be a complex manifold, *E* a holomorphic vector bundle over X and *M* a real \mathscr{C}^2 -hypersurface in *X*. If $D \subset \subset M$ is open, then we denote by $\mathscr{C}^{\alpha}_{n,r}(\overline{D}; M, E)$, $0 \leq \alpha < 1$, the Banach space of forms $f \in \mathscr{C}^0_{n,r}(M, E)$ with

supp
$$f \subseteq \overline{D}$$
 and $f|_{\overline{D}} \in \mathscr{C}^{\alpha}_{n,r}(\overline{D}, E)$.

 $\mathscr{C}^{\alpha}_{n,r}(M, E)$ denotes the Fréchet space of forms $f \in \mathscr{C}^{0}_{n,r}(M, E)$ such that $f|_{\overline{D}} \in \mathscr{C}^{\alpha}_{n,r}(\overline{D}, E)$ for each open $D \subset \subset M$, endowed with the topology of convergence in each $\mathscr{C}^{\alpha}_{n,r}(\overline{D}, E)$.

If *Y* is an arbitrary subset of *M*, then we denote by $\mathscr{C}^{\alpha}_{n,r}(Y; M, E)$ the subspace of all $f \in \mathscr{C}^{\alpha}_{n,r}(M, E)$ with supp $f \subseteq Y$ endowed with the Fréchet topology of $\mathscr{C}^{\alpha}_{n,r}(M, E)$. We set

$$Z_{n,r}^{\alpha}(Y; M, E) = Z_{n,r}^{\alpha}(M, E) \cap \mathscr{C}_{n,r}^{\alpha}(Y; M, E).$$

 $Z_{n,r}^{\alpha}(Y; M, E)$ will be considered also as Fréchet space endowed with the topology of $\mathscr{C}_{n,r}^{\alpha}(M, E)$. Note that if *Y* is compact, then $\mathscr{C}_{n,r}^{\alpha}(Y; M, E)$ and $Z_{n,r}^{\alpha}(Y; M, E)$ are Banach spaces. $\mathscr{C}_{n,r}^{\alpha}(c; M, E)$ denotes the linear subspace of $\mathscr{C}_{n,r}^{\alpha}(M, E)$ which consists of the forms with compact support. Set

$$Z_{n,r}^{\alpha}(c; M, E) = Z_{n,r}^{\alpha}(M, E) \cap \mathscr{C}_{n,r}^{\alpha}(c; M, E).$$

These two spaces will be considered as topological vector spaces endowed with the inductive limit topology of the spaces $\mathscr{C}_{n,r}^{\alpha}(K; M, E), K \subset M$ compact.

Further, we denote by $E_{n,r}^0(c; M, E)$ the space of all $\varphi \in \mathscr{C}_{n,r}^0(c; M, E)$ of the form $\varphi = \overline{\partial} \psi$ with $\psi \in \mathscr{C}_{n,r-1}^0(c; M, E)$ if r > 0, and we set $E_{n,r}^0(c; M, E) = \{0\}$ if r = 0. With these notations,

$$H_{c,0}^{n,r}(M,E) = Z_{n,r}^0(c;M,E) / E_{n,r}^0(c;M,E).$$
(2.2)

LEMMA 2.2. — Let X be an n-dimensional complex manifold, $n \ge 5$, E a holomorphic vector bundle over X, M a q-convex-concave real \mathscr{C}^2 -hypersurface in X and ψ a real \mathscr{C}^2 function on M whose Levi form $L^M_{\xi}(\psi)$ has at least q + 1 positive eigenvalues at every point ξ in M, $2 \le q \le (n-1)/2$, such that if

$$a: = \inf_{\zeta \in M} \psi(\zeta) \quad and \quad b: = \sup_{\zeta \in M} \psi(\zeta),$$

then, for all $\alpha, \beta \in]a, b[$, the set { $\alpha \leq \psi \leq \beta$ } is compact. Then, for all $\alpha, \beta \in]a, b[$ with $\alpha < \beta$ and for any $\delta > 0$, the following assertion holds :

There exists a continuous linear operator

$$T_{n-q+1}^{\alpha}: Z_{n,n-q+1}^{0}(\{\alpha \leqslant \psi\}; M, E) \longrightarrow \mathscr{C}_{n,n-q}^{<1/2}(\{\alpha - \delta \leqslant \psi \leqslant \beta + \delta\}; M, E)$$

such that

$$\overline{\partial}_b T^{\alpha}_{n-q+1} f = f \qquad on \quad \{\psi < \beta\}$$

for all $f \in Z^0_{n,n-q+1}(\{\alpha \leq \psi\}; M, E)$.

Proof. — Lemmas I.6.6 (ii) and I.7.6 in [8] immediately imply the following statement: If $f \in Z_{n,n-q+1}^{0}(\{\alpha \leq \psi\}; M, E)$, then there exists $u \in \mathscr{C}_{n,n-q}^{0}(M, E)$ with $\overline{\partial}_{b}u = f$ on $\{\psi < \beta\}$. Moreover, the proof of Lemma I.6.6 (ii) in [8] shows that this solution has support in $\{\alpha - \delta \leq \psi\}$ and can be given by an operator T_{n-q+1}^{α} as required.

THEOREM 2.3. — Let M be a q-concave real \mathscr{C}^2 -hypersurface in an n-dimensional complex manifold $X, 2 \leq q \leq (n-1)/2$, E a holomorphic vector bundle over X, and let φ , c_0 , c_∞ be as in Definition 1.5. Further, let $\alpha_0, \alpha \in \mathbb{R}$ be given such that: $\alpha_0 < \alpha < c_0$ and α_0 such that if $\xi \in M$ with $\varphi(\xi) \geq \alpha_0$ then the Levi form $L_{\mathcal{E}}^M(\varphi)$ has at least q + 1 positive eigenvalues.

Then, for all $\delta > 0$, there exist continuous linear operators

$$T_{n-q+1}: Z^0_{n,n-q+1}(\{\varphi \leqslant \alpha\}; M, E) \longrightarrow \mathscr{C}^{<1/2}_{n,n-q}(\{\varphi \leqslant \alpha + \delta\}; M, E)$$

and

$$K_{n-q+1}: Z^0_{n,n-q+1}(\{\varphi \leqslant \alpha\}; M, E) \longrightarrow Z^{<1/2}_{n,n-q+1}(\{\varphi \leqslant \alpha_0\}; M, E)$$

such that

$$\overline{\partial} T_{n-q+1}f = f + K_{n-q+1}f$$

for all $f \in Z^0_{n,n-q+1}(\{\varphi \leq \alpha\}; M, E)$.

Proof. — By Lemma 2.2, if δ is sufficiently small, there exist continuous linear operators

$$T_{n-q+1}^{\alpha}: Z_{n,n-q+1}^{0}(\{\varphi \leqslant \alpha\}; M, E) \longrightarrow \mathscr{C}_{n,n-q}^{<1/2}(\{\alpha_{0} - \delta < \varphi < \alpha + \delta\}; M, E)$$

such that

$$\overline{\partial}_b T^{\alpha}_{n-q+1} f = f$$
 on $\left\{ \alpha_0 - \frac{\delta}{2} < \varphi \right\}$

Take a \mathscr{C}^{∞} partition of unity $\chi_{\alpha}, \chi_1, \ldots, \chi_N$ on *M* such that

(a) $\chi_{\alpha} \equiv 1$ in a neighborhood of $\{\alpha_0 \leq \varphi\}$ and $\chi_{\alpha} \equiv 0$ in a neighborhood of $\{\varphi \leq \alpha_0 - \delta/2\}$;

(b) for $1 \leq j \leq N$, the support of χ_j is contained in certain open subset $U_j \subset \{\varphi < \alpha_0\}$ of M, which is sufficiently small. Then we have continuous linear operators (e.g.[4] or TheoremI.4.2 in [8]).

$$T_{n-q+1}^{j}: Z_{n,n-q+1}^{0}(M,E) \longrightarrow \mathscr{C}_{n,n-q}^{<1/2}(U_{j},E), \qquad 1 \leq j \leq N,$$

such that

$$\overline{\partial}_b T^J_{n-q+1} f = f|_{U_j}$$

for all $f \in Z^0_{0,q+1}(M, E)$.

Now the operators

$$T_{n-q+1} := \chi_{\alpha} T_{n-q+1}^{\alpha} + \sum_{j=1}^{N} \chi_j T_{n-q+1}^{j}$$

and

$$K_{n-q+1} := \overline{\partial} \chi_{\alpha} \wedge T_{n-q+1}^{\alpha} + \sum_{j=1}^{N} \overline{\partial} \chi_{j} \wedge T_{n-q+1}^{j}$$

have the required properties.

Proof of Theorem 2.1. — Let φ , c_0 , c_∞ , α , α_0 , δ , T_r , K_r be as is Theorem 2.3 where δ is so small that $inf \varphi < \alpha - \delta$. Then $Z^0_{n,n-q+1}(\{\varphi \leq \alpha\}; M, E)$ is a Banach space,

$$T_{n-q+1}\left(Z^0_{n,n-q+1}(\{\varphi \leqslant \alpha\}; M, E)\right) \subseteq \mathscr{C}^0_{n,n-q}(c; M, E)$$
(2.3)

and, by Ascoli's theorem, K_{n-q+1} is compact as an operator acting from $Z_{n,n-q+1}^0(\{\varphi \leq \alpha\}; M, E)$ into itself. Since $\overline{\partial}_b T_{n-q+1} = id + K_{n-q+1}$ on this space, it follows that $\overline{\partial}_b T_{n-q+1}$ is a Fredholm operator in $Z_{n,n-q+1}^0(\{\varphi \leq \alpha\}; M, E)$. Hence

$$\overline{\partial}_b T_{n-q+1} \left(Z^0_{n,n-q+1} (\{ \varphi \leqslant \alpha \}; M, E) \right)$$

is of finite codimension in $Z^0_{n,n-q+1}(\{\varphi \leq \alpha\}; M, E)$. Since, by (2.3),

$$\overline{\partial}_b T_{n-q+1} \left(Z^0_{n,n-q+1} (\{ \varphi \leqslant \alpha \}; M, E) \right) \subseteq E^0_{n,n-q+1} (c; M, E),$$

this implies that

$$\dim \left[Z^0_{n,n-q+1}(\{\varphi \leqslant \alpha\}; M, E) \middle/ \left(E^0_{n,n-q+1}(c; M, E) \cap Z^0_{n,n-q+1}(\{\varphi \leqslant \alpha\}; M, E) \right) \right] < \infty.$$

$$(2.4)$$

Moreover, Theorem 2.3 implies the relation

$$Z^{0}_{n,n-q+1}(c;M,E) = \text{linear hull of} \quad E^{0}_{n,n-q+1}(c;M,E) \cup Z^{0}_{n,n-q+1}(\{\varphi \leqslant \alpha\};M,E).$$
(2.5)

Now (2.1) follows from (2.4) and (2.5).

3. Serre duality in CR manifolds

In this section we need not to restrict ourselves to the hypersurface case. For the main properties of *CR* manifolds and of the tangential Cauchy-Riemann complex, which are useful in this section, the reader may consult for example the book of Boggess [3]

Let *X* be an *n*-dimensional complex manifold, *E* a holomorphic vector bundle over *X*, *M* a \mathscr{C}^{∞} -smooth *CR* generic submanifold of *X* of real codimension *k*, $p, q \in \mathbb{N}$ and $l \in \mathbb{N} \cup \infty$. We denote by $\Lambda_{X,E}^{p,q}$ the vector bundle over *X* of (p, q)-forms in *X* with values in *E* and by $\Lambda_{M,E}^{p,q}$ the vector bundle over *M* of (p, q)-forms in *M* with values in *E*. $\mathscr{C}_{p,q}^{l}(M, E)$ is the space of \mathscr{C}^{l} -smooth sections of $\Lambda_{M,E}^{p,q}$ over *M* and $\mathscr{C}_{p,q}^{l}(c; M, E)$ the space of compactly supported elements of $\mathscr{C}_{p,q}^{l}(M, E)$. Note that $\Lambda_{M,E}^{p,q} = 0$ if either p > n or q > n-k and consequently $\mathscr{C}_{p,q}^{l}(M, E) = \mathscr{C}_{p,q}^{l}(c; M, E) = 0$ for such *p* and *q*.

We put on $\mathscr{C}_{p,q}^{l}(M, E)$ the topology of uniform convergence on compact sets of the sections and all their derivatives.

Let *K* be a compact subset of *M*, let $\mathscr{C}_{p,q}^{l}(K; M, E)$ the closed subspace of $\mathscr{C}_{p,q}^{l}(M, E)$ of forms with support in *K* endowed with the induced topology. Choose $(K_n)_{n \in \mathbb{N}}$ an exhausting sequence of compact subsets of *M*. Then $\mathscr{C}_{p,q}^{l}(c; M, E) = \bigcup_{n \ge 0} \mathscr{C}_{p,q}^{l}(K_n; M, E)$. We put on $\mathscr{C}_{p,q}^{l}(c; M, E)$ the strict inductive limit topology defined by the Fréchet spaces $\mathscr{C}_{p,q}^{l}(K_n; M, E)$.

The space of currents on M with values in E^* of bidegree (n-p, n-k-q) is the dual of the space $\mathscr{C}_{p,q}^{\infty}(c; M, E)$ and is denoted by $\mathscr{D}^{n-p,n-k-q}(M, E^*)$. An element of $\mathscr{D}^{n-p,n-k-q}(M, E^*)$ can be identified with a distribution section of $\Lambda_{M,E^*}^{n-p,n-k-q}$. The dual of $\mathscr{C}_{p,q}^{\infty}(M, E)$, denoted by $\mathscr{C}^{n-p,n-k-q}(M, E^*)$, is the space of currents of bidegree (n-p, n-k-q) with compact supports.

We shall use the following notations:

$$Z_{p,q}^{l}(M, E) = \mathscr{C}_{p,q}^{l}(M, E) \cap \operatorname{Ker} \overline{\partial}_{b}, \qquad E_{p,q}^{l}(M, E) = \mathscr{C}_{p,q}^{l}(M, E) \cap \operatorname{Im} \overline{\partial}_{b}$$

$$Z_{p,q}^{l}(c; M, E) = \mathscr{C}_{p,q}^{l}(c; M, E) \cap \operatorname{Ker} \overline{\partial}_{b}, \qquad E_{p,q}^{l}(c; M, E) = \mathscr{C}_{p,q}^{l}(c; M, E) \cap \operatorname{Im} \overline{\partial}_{b}$$

$$Z_{p,q}^{\operatorname{cur}}(M, E^{*}) = \mathscr{D}'^{p,q}(M, E^{*}) \cap \operatorname{Ker} \overline{\partial}_{b}, \qquad E_{p,q}^{\operatorname{cur}}(M, E^{*}) = \mathscr{D}'^{p,q}(M, E^{*}) \cap \operatorname{Im} \overline{\partial}_{b}$$

$$Z_{p,q}^{\operatorname{cur}}(c; M, E^{*}) = \mathscr{C}'^{p,q}(M, E^{*}) \cap \operatorname{Ker} \overline{\partial}_{b}, \qquad E_{p,q}^{\operatorname{cur}}(c; M, E^{*}) = \mathscr{D}'^{p,q}(M, E^{*}) \cap \operatorname{Im} \overline{\partial}_{b}$$

$$H_{l}^{p,q}(M, E) = Z_{p,q}^{l}(M, E) / E_{p,q}^{l}(M, E), \qquad H_{c,l}^{p,q}(M, E) = Z_{p,q}^{l}(c; M, E) / E_{p,q}^{l}(c; M, E^{*})$$

$$H_{\operatorname{cur}}^{p,q}(M, E^{*}) = Z_{\operatorname{cur}}^{p,q}(M, E^{*}) / E_{\operatorname{cur}}^{p,q}(M, E^{*}), \qquad H_{c,\operatorname{cur}}^{p,q}(M, E^{*}) = Z_{p,q}^{\operatorname{cur}}(c; M, E^{*}) / E_{p,q}^{\operatorname{cur}}(c; M, E^{*}).$$

In [10], using the fact that for all (p,q), $0 \leq p \leq n$ and $0 \leq q \leq n-k$, $\mathscr{C}_{p,q}^{\infty}(M, E)$ is a FS-space and its dual $\mathscr{E}^{In-p,n-k-q}(M, E^*)$ is a DFS-space, we get the following result :

THEOREM 3.1. — Let M be a CR generic \mathscr{C}^{∞} -submanifold of real codimension k in an n-dimensional complex manifold X. Let $p, q \in \mathbb{N}$ with $0 \leq p \leq n$ and $0 \leq q \leq n-k$, then the following assertions are equivalent :

(i)
$$E_{n-p,n-k-q}^{\operatorname{cur}}(c;M,E^*) = \left\{ T \in \mathscr{E}'_{n-p,n-k-q}(M,E^*) \mid \langle T,\varphi \rangle = 0, \ \forall \varphi \in Z_{p,q}^{\infty}(M,E) \right\}$$

(ii)
$$H_{c,cur}^{n-p,n-k-q}(M, E^*)$$
 is separated;

$$(iii) \quad E_{p,q+1}^{\infty}(M,E) = \left\{ f \in \mathscr{C}_{p,q+1}^{\infty}(M,E) \mid \langle T,f \rangle = 0, \ \forall T \in Z_{n-p,n-k-q-1}^{\operatorname{cur}}(c;M,E^*) \right\}$$

(iv) $H^{p,q+1}_{\infty}(M, E)$ is separated.

Moreover, if these assertions hold, then

a) the natural linear map $H^{n-p,n-k-q}_{c,cur}(M,E^*) \longrightarrow (H^{p,q}_{\infty}(M,E))'$ is a topological isomorphism;

b) the natural linear map $H^{p,q+1}_{\infty}(M,E) \longrightarrow (H^{n-p,n-k-q-1}_{c,cur}(M,E^*))'$ is an algebraic isomorphism.

Now the question arises about what happens if we assume that $H_{c,\infty}^{p,q+1}(M, E)$ is separated. Would it imply that the group $H_{cur}^{p,q+1}(M, E^*)$ is separated ? In this case several difficulties appears : $\mathscr{C}_{p,q}^{\infty}(c; M, E)$ is no more a Fréchet space but only a strict inductive limit of Fréchet spaces and a closed subspace of a strict inductive limit of Fréchet spaces is not a strict inductive limit of Fréchet spaces, which gives troubles in the application of the open mapping theorem, and also $\mathscr{D}^{n-p,n-k-q}(M, E^*)$ is not metrizable. Nevertheless, under additional assumptions on the $\overline{\partial}_b$ operator, we can get some duality theorem.

DEFINITION 3.2. — Let M be a CR generic \mathscr{C}^{∞} -submanifold of real codimension k in an ndimensional complex manifold X and $p, q \in \mathbb{N}$ with $0 \leq p \leq n$ and $0 \leq q \leq n - k$. The $\overline{\partial}_b$ operator is regular in bidegree (p,q), if for T a (p,q-1) current on an open subset Ω of M, with values in a holomorphic vector bundle E over X, such that $\overline{\partial}_b T$ is defined by a \mathscr{C}^{∞} -smooth (p,q)-form on Ω , their exists a (p,q-1) form u of class \mathscr{C}^{∞} on Ω , with values in E, such that $\overline{\partial}_b u = \overline{\partial}_b T$.

DEFINITION 3.3. — Let M be a CR generic \mathscr{C}^{∞} -submanifold of real codimension k in an ndimensional complex manifold X and $p, q \in \mathbb{N}$ with $0 \leq p \leq n$ and $0 \leq q \leq n - k$. We shall say that M satisfies the (p, q)-exactness \mathscr{C}^l -propagation property if the following assertion holds :

There exists a sequence $(K_n)_{n \in \mathbb{N}}$ of compact subsets of M such that $K_n \subset \check{K}_{n+1}$ for all $n \in \mathbb{N}$, $M = \bigcup_{n \in \mathbb{N}} K_n$ and if φ is a (p, q)-form of class \mathscr{C}^l on M with values in a holomorphic vector bundle

E over *X* which satisfies $\overline{\partial}_M \psi_n = \varphi$ on $\overset{\circ}{K}_n$, where ψ_n is a form of class \mathscr{C}^l on $\overset{\circ}{K}_n$, one can find a form ψ_{n+1} of class \mathscr{C}^l on $\overset{\circ}{K}_{n+1}$ such that $\overline{\partial}_M \psi_{n+1} = \varphi$ on $\overset{\circ}{K}_{n+1}$ and $\psi_{n+1} = \psi_n$ on $\overset{\circ}{K}_{n-1}$.

THEOREM 3.4. — Let M be a CR generic \mathscr{C}^{∞} -submanifold of real codimension k in an n-dimensional complex manifold X, and $p, q \in \mathbb{N}$ with $0 \leq p \leq n$ and $0 \leq q \leq n - k$. Assume $\overline{\partial}_b$ is regular in bidegree (n-p, n-k-q) and satisfies the (n-p, n-k-q)-exactness \mathscr{C}^l -propagation property for some $l \in \mathbb{N} \cup \infty$.

Consider the following assertions

(*i*)
$$E_{p,q+1}^{l}(c; M, E) = \left\{ f \in \mathscr{C}_{p,q+1}^{l}(c; M, E) \mid \langle f, \varphi \rangle = 0, \ \forall \varphi \in Z_{n-p,n-k-q-1}^{l}(M, E^{*}) \right\};$$

(ii) $H_{c,l}^{p,q+1}(M,E)$ is separated;

$$(iii) \quad E_{n-p,n-k-q}^{\infty}(M,E^*) = \left\{ \varphi \in \mathscr{C}_{n-p,n-k-q}^{\infty}(M,E^*) \mid \langle \varphi,f \rangle = 0, \ \forall f \in Z_{p,q}^l(c;M,E) \right\};$$

(iv) $H^{n-p,n-k-q}_{\infty}(M, E^*)$ is separated;

 $\textit{then}~(i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (iv).$

Moreover if (*i*) *holds for* $l = \infty$ *, then the natural map*

$$H^{n-p,n-k-q}_{\infty}(M,E^*) \longrightarrow \left(H^{p,q}_{c,\infty}(M,E)\right)'$$

is an algebraic isomorphism.

Theorem 3.4 will be deduced from several lemmas.

LEMMA 3.5. — Let M, p, q be as in Theorem 3.4, we consider the following assertions

(*ii*) $H_{c,l}^{p,q+1}(M, E)$ is separated;

(*ii*)' For each compact subset K in M, $\mathscr{C}_{p,q+1}^{l}(K; M, E) \cap E_{p,q+1}^{l}(c; M, E)$ is topologically closed in $\mathscr{C}_{p,q+1}^{l}(K; M, E)$.

(ii)'' For each compact subset K in M, there exists a compact subset \widetilde{K} in M with

$$\mathscr{C}_{p,q+1}^{l}(K;M,E) \cap E_{p,q+1}^{l}(c;M,E) = \mathscr{C}_{p,q+1}^{l}(K;M,E) \cap \overline{\partial}_{b}\mathscr{C}_{p,q}^{l}(\widetilde{K};M,E)$$

then $(ii) \Longrightarrow (ii)' \Longrightarrow (ii)''$.

Proof. — The assertion (*ii*) says that $E_{p,q+1}^{l}(c; M, E)$ is topologically closed in $\mathcal{C}_{p,q+1}^{l}(c; M, E)$, this implies (*ii*)' by definition of the inductive limit topology on $\mathcal{C}_{p,q+1}^{l}(c; M, E)$.

Assume now that (ii)' is fulfilled. We denote by $(K_n)_{n \in \mathbb{N}}$ an exhaustive sequence of compact subsets in M, then for a fixed compact subset K in M

$$\mathscr{C}_{p,q+1}^{l}(K;M,E) \cap E_{p,q+1}^{l}(c;M,E) = \bigcup_{n \in \mathbb{N}} \left(\mathscr{C}_{p,q+1}^{l}(K;M,E) \cap \overline{\partial} \mathscr{C}_{p,q}^{l}(K_{n};M,E) \right).$$

Since, by $(ii)', \mathscr{C}_{p,q+1}^{l}(K; M, E) \cap E_{p,q+1}^{l}(c; M, E)$ is a Fréchet space, for a certain n_0 , the space $\mathscr{C}_{p,q+1}^{l}(K; M, E) \cap \overline{\partial} \mathscr{C}_{p,q}^{l}(K_{n_0}; M, E)$ is of second Baire category. Then $\overline{\partial}_b$ is a closed operator

with domain of definition $\{\varphi \in \mathscr{C}_{p,q}^{l}(K_{n_{0}}; M, E) \mid \overline{\partial}_{M}\varphi \in \mathscr{C}_{p,q}^{l}(K; M, E)\}$ between the Fréchet spaces $\mathscr{C}_{p,q}^{l}(K_{n_{0}}; M, E)$ and $\mathscr{C}_{p,q+1}^{l}(K; M, E) \cap E_{p,q+1}^{l}(c; M, E)$ whose range is of second Baire category in $\mathscr{C}_{p,q+1}^{l}(K; M, E) \cap E_{p,q+1}^{l}(c; M, E)$; it follows by the open mapping theorem that this operator is onto and open. Setting $\widetilde{K} = K_{n_{0}}$, (ii)'' is proven.

LEMMA 3.6. — Let M, p, q be as in Theorem 3.4 and K a fixed compact subset in M. Assume

 $(ii)'_{K} \quad \mathscr{C}^{l}_{p,q+1}(K; M, E) \cap E^{l}_{p,q+1}(c; M, E)$ is topologically closed in $\mathscr{C}^{l}_{p,q+1}(K; M, E)$ and let \widetilde{K} be the compact subset associated to K by (ii)'' in Lemma 3.5. If φ is a (n - p, n - k - q)-form of class \mathscr{C}^{∞} on M with values in E^* which satisfies $\langle \varphi, f \rangle = 0$ for all $f \in Z^{l}_{p,q}(c; M, E) \cap \mathscr{C}^{l}_{p,q}(\widetilde{K}; M, E)$, then there exists a form ψ of class \mathscr{C}^{∞} on M such that $\overline{\partial}_{b}\psi = \varphi$ on $\overset{\circ}{K}$.

Proof. — We define a linear form L_{φ} on $\mathscr{C}_{p,q+1}^{l}(K; M, E) \cap E_{p,q+1}^{l}(c; M, E)$ by setting for $\varphi \in \mathscr{C}_{n-p,n-k-q}^{\infty}(M, E^{*})$ as in the lemma

$$L_{\varphi}(\beta) = \langle \varphi, \alpha \rangle$$
 if $\beta = \overline{\partial}_M \alpha$ with supp $\alpha \subset \widetilde{K}$.

By Lemma 3.5 and the orthogonality condition on φ , L_{φ} is well defined, moreover by $(ii)'_{K}$ and the open mapping theorem, L_{φ} is continuous. We may apply the Hahn-Banach theorem and extends L_{φ} to a continuous linear form on $\mathscr{C}^{l}_{p,q+1}(M, E)$.

This extension defines a current S of order l on M such that

$$\langle S, \overline{\partial}_M \alpha \rangle = \langle T, \alpha \rangle$$
 for $\alpha \in \mathscr{C}^{\infty}_{p,q}(K; M, E)$

which implies $\overline{\partial}_M S = \varphi$ on \mathring{K} . As the operator $\overline{\partial}_b$ is regular in bidegree (n - p, n - k - q), there exists a a form ψ of class \mathscr{C}^{∞} on M such that $\overline{\partial}_M \psi = \varphi$ on \mathring{K} .

Proof of Theorem 3.4. — It is clear that $(i) \implies (ii)$ and $(iii) \implies (iv)$. It remains to prove $(ii) \implies (iii)$.

Assume (*ii*) is fulfilled and fix $\varphi \in \mathscr{C}_{n-p,n-k-q}^{\infty}(M, E^*)$ which satisfies $\langle \varphi, f \rangle = 0$ for all $f \in Z_{p,q}^l(c; M, E)$. Then by Lemma 3.5, (*ii*)' and (*ii*)'' are satisfied and it follows from Lemma 3.6 that, for any compact subset K of M, there exists a form ψ of class \mathscr{C}^{∞} on M such that $\overline{\partial}_M \psi = \varphi$ on $\overset{\circ}{K}$.

By the (n-p, n-k-q)-exactness \mathscr{C}^l -propagation property, there exists a sequence $(K_n)_{n\in\mathbb{N}}$ of compact subsets of M such that $K_n \subset \widetilde{K}_{n+1}$ for all $n \in \mathbb{N}$, $M = \bigcup_{n\in\mathbb{N}} K_n$ and if φ is a (n-p, n-k-q)-form of class \mathscr{C}^l on M which satisfies $\overline{\partial}_M \psi_n = \varphi$ on $\overset{\circ}{K}_n$, where ψ_n is a form of class \mathscr{C}^l on $\overset{\circ}{K}_n$, one can find a form ψ_{n+1} of class \mathscr{C}^l on $\overset{\circ}{K}_{n+1}$ such that $\overline{\partial}_M \psi_{n+1} = \varphi$ on $\overset{\circ}{K}_{n+1}$ and $\psi_{n+1} = \psi_n$ on $\overset{\circ}{K}_{n-1}$. Taking $K = K_1$, we can define by induction a sequence $(\psi_n)_{n\in\mathbb{N}}$ of (n-p, n-k-q-1)-form of class \mathscr{C}^l such that $\psi_{n+1} = \psi_n$ on $\overset{\circ}{K}_{n-1}$. Then the \mathscr{C}^l -smooth (n-p, n-k-q-1)-form $\psi = \lim_{n\to\infty} \psi_n$ satisfies $\overline{\partial}_b \psi = \varphi$ on M. Moreover by regularity of the $\overline{\partial}_b$ -operator in bidegree (n-p, n-k-q) and since φ is of class \mathscr{C}^∞ , there exists a \mathscr{C}^∞ -smooth (n-p, n-k-q-1)-form $\widetilde{\psi}$ on M such that $\overline{\partial}_b \widetilde{\psi} = \varphi$ on M.

4. An Andreotti-Vesentini separation theorem on q-concave hypersurfaces

From the previous sections we can deduce a separation theorem of Andreotti-Vesentini type for the $\overline{\partial}_b$ cohomology in *q*-concave hypersurfaces.

THEOREM 4.1. — Let X be an n-dimensional complex manifold, E a holomorphic vector bundle over X and M a real \mathscr{C}^{∞} -hypersurface in X (not necessarily closed). Assume M is q-concave, then $H^{0,q-1}_{\infty}(M, E)$ is separated.

Proof. — If q = 1, $H^{0,q-1}_{\infty}(M, E)$ is the space of *CR* sections of *E* in *M*, and therefore separated.

If $q \ge 2$, in Theorem 2.1 we have proved that under the hypotheses of Theorem 4.1

$$\dim H^{n,n-q+1}_{c,0}(M,E^*) < \infty$$
,

which implies the condition (ii)' of Lemma 3.5 in bidegree (n, n - q + 1) for l = 0.

As a *q*-concave real hypersurface is *q*-convex-concave, it follows from the De Rham-Weil isomorphism and the Poincaré lemma for the $\overline{\partial}_b$ operator in bidegree (0, q-1) (cf. [4], [11]) that the $\overline{\partial}_b$ operator is regular in bidegree (0, q-1). Moreover Theorem 9.5 in [8] says that a *q*-concave real hypersurface has the (0, q-1)-exactness \mathscr{C}^0 -propagation property. Consequently the hypotheses of Theorem 3.4 are fulfilled and we deduce from the proof of this theorem that the condition (ii)' of Lemma 3.5 in bidegree (n, n - q + 1) for l = 0 implies that the $\overline{\partial}_b$ -cohomology group $H^{0,q-1}_{\infty}(M, E)$ is separated.

References

- ANDREOTTI A., GRAUERT H. Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. math. France, 90 (1962), 193–259.
- [2] ANDREOTTI A., VESENTINI E. Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. I.H.E.S., 25 (1965), 81–130.
- [3] BOGGESS A. CR manifolds and the tangential Cauchy-Riemann complex, CRC Press, Boca Raton, Florida, 1991.
- [4] HENKIN G. Solution des équations de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann qconvexes, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 27–30.
- [5] HENKIN G. The Method of Integral Representations in Complex Analysis, Encyclopaedia of Mathematikcal Sciences, 7, Several Complex Variables I, edited by A.G. Vitushkin, Springer (1990), 19–116.
- [6] HENKIN G., LEITERER J. Andreotti-Grauert Theory by Integral Formulas, Progress in Mathematics 74, Birkhäuser, 1988.
- [7] HILL C.D., NACINOVICH M. Pseudoconcave CR Manifolds, Complex Analysis and Geometry, Lecture Notes in Pure and Appl. Math., 173, Marcel Dekker, New York (1996), 275–297.
- [8] LAURENT-THIÉBAUT CH., LEITERER J. Andreotti-Grauert theory on real hypersurfaces, Quaderni della Scuola Normale Superiore di Pisa, 1995.

- [9] LAURENT-THIÉBAUT CH., LEITERER J. *The Andreotti-Vesentini separation theorem and global homotopy representation*, Math. Zeitschrift, **227** (1998), 711–727.
- [10] LAURENT-THIÉBAUT CH., LEITERER J. Some applications of Serre duality in CR manifolds, Prépublication de l'Institut Fourier n° 402,Grenoble, 1998.
- [11] NACINOVICH M. Poincaré lemma for tangential Cauchy-Riemann complexes, Math. Ann., 281 (1988), 459-482.
- [12] RAMIS J.-P. Théorèmes de séparation et de finitude pour l'homologie et la cohomologie des espaces (p,q)convexes-concaves, Ann. Scuola Norm. Super. Pisa, **27** (1973), 933–997.

Institut Fourier UMR 5582 CNRS-UJF Laboratoire de Mathématiques Université de Grenoble I B.P. 74 F-38402 St-Martin d'Hères Cedex

Institut für Mathematik Humboldt-Universität

Ziegelstrasse 13 A D-10117 Berlin (Allemagne)