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Abstract

Using Serre duality in CR manifolds and integral operators for the solution of the tan-
gential Cauchy-Riemann equation with compact support, we prove a separation theorem of
Andreotti-Vesentini type for the 3,-cohomology in g-concave real hypersurfaces.

Let X be an n-dimensional complex manifold and E a holomorphic vector bundle over X. If
X is g-concave in the sense of Andreotti-Grauert (i.e. (n — g)-concave in the sense of [6]), the
Andreotti-Grauert finiteness theorem [1] says that

dim H*"(X,E) <co  if r<n—q—1

Moreover Andreotti and Vesentini [2] proved that the cohomology group H%"~4 (X, E) is sepa-
rated. Other proofs of this separability are given in [6],[9] and [12].

Let us consider now the case of CR manifolds. Let M be a CR generic manifold embedded in
an n-dimensional complex manifold X and E a holomorphic vector bundle over X. Assume that
the Levi form of M restricted to the complex tangent space has at least g negative eigenvalues in
all directions at each point of M, this condition ensures the local solvability of the 0;,-equation
up to bidegree (0, q) (cf. [4]).

If M is compact, Henkin [4] obtained the finitness of the d;,-cohomology groups of bidegree
(0, r) for r < g — 1 and the separability of the group H*%(X, E). This result has been generalized
by Hill and Nacinovich [7] to the case of compact abstract CR manifolds.

If M is no more compact but admits an exhausting function, whose Levi form restricted to the
complex tangent space to M has at least g negative eigenvalues at each point outside a compact
subset of M then (cf. [7], and [8] for the hypersurface case)

dim H*" (M, E) < oo if r<q-—2.

The purpose of the present paper is to prove that the 3;,-cohomology group H*9~! (M, E) is sep-
arated in this situation, when M is of real codimension 1. The proof follows the ideas of [9], where
we replace the integral operators of the Grauert-Henkin-Lieb type by the operators constructed
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in [8] to get the finitness of some d;,-cohomology group with compact support. Then the separa-
tion theorem follows from a careful study of Serre duality in the CR setting, which involves some
propagation property of the exactness in bidegree (0, g — 1).

To get the same result in higher codimension, we would need some analogue of the operators
of [8] and some theorems on the propagation of the exactness in bidegree (0, g — 1), which do
not exist at this moment.

Note that the possibility to prove a separation theorem of this type by means of integral for-
mulas was pointed out for the first time by Henkin in his survey article [5].

1. Notations and definitions

Let X be an n-dimensional complex manifold. For & € X, we denote by T, El’o (X) the holomor-
phic tangent space of X at &, i.e. if z;, ... , z; are holomorphic coordinates in a neighborhood of
g, then Tgl’0 (X) consists of all tangent vectors ¢ of the form

n
0
j=1

where 1y, ... , t; are complex numbers.

If M is a real €-submanifold of X and & € M, then we denote by Tgl’O(M ) the subspace of

all vectors in Tgl’0 (X) which are tangential to M.

Let £ € X and p areal ¢’>-function defined in a neighborhood of £. Then we denote by Lg (p)
the Levi form of p at &, i.e. the hermitian form on Tgl’0 (X) defined by

n
°p(8) -
X (p)t = tT
3 (p) Z aZjaEk itk

Jik=1

ifr € TEI'0 (X) is written in the form (1.1). If M is a real ¢’>-submanifold of X and £ € M, then we

denote by LIE\’I (p) the restriction of Lé( (p) to Tgl’0 (M).

DEFINITION 1.1. — Let M bea real €’ -hypersurface in some n-dimensional complex manifold
X, and let q be an integer with0 < q < (n—1)/2. M will be called g-convex-concave at a point
£ € M if, for each real €*-function p in some X -neighborhood U of € withMN U = {p = 0} and
dp(&) # 0, Lg’f (p) has at least q positive and q negative eigenvalues. M will be called g-convex-
concave if it is q-convex-concave at each point in M.

DEFINITION 1.2. — Let M be a real € -hypersurface in an n-dimensional complex manifold
X, and let q be an integer with 0 < q < (n—1)/2. A real €*-function @ on M will be called
(g + 1)-convex at a point £ € M if there exist an X -neighborhood U of € and real € ? -functions
®, p+, p— on U with the following properties:

e =@ponUNM

e MNU={py =0} ={p- =0}



o dpi(C)#OforallC € Uandpyip— <0onU\ M

e foreachA € [0,1] and foreachT € U, the forms L{:(()\(f? +(1—2A)p+) haveat least (q+1)
positive eigenvalues.

PROPOSITION 1.3. — (see Proposition 1.2.3 in[8]). Let M be a real €?-hypersurface in some
n-dimensional complex manifold X, and let q be an integer with0 < q < (n—1)/2. Areal €>-
function @ on M is (q + 1)-convex at a point & € M if and only if M is q-convex-concave at &
and, for any real € -extension @ of  to an X -neighborhood of &, Lg’f (@) has at least q-positive
eigenvalues.

DEFINITION 1.4. — Let M be a real 6> -hypersurface in an n-dimensional complex manifold
X, and let q be an integer with0 < q < (n—1)/2. Areal € -function @ on M will be called
(g + 1)-concave atapointE € M if—@ is (q + 1)-convex at§. A(q + 1)-concave function on M
is, by definition, a real €’ -function on M which is (q + 1) -concave at all points in M.

Remark : If M is a g-convex-concave real %2-hypersurface in an n-dimensional complex
manifold X, 0 < g < (n—l) /2, and  is a strictly plurisubharmonic function on X, then the
restriction of —¢ to M is (¢ + 1)-concave on M in the sense of the previous definition.

DEFINITION 1.5. — Let M be a q-convex-concave real € > -hypersurface in an n-dimensional

complex manifold X,1 < q < (";1). In the following definitions, for subsets W of M, we denote

by W the closure of W in M, and by dW the boundary of W in M.

(i) A g-concave extension in M is an ordered couple [D, Q] of open subsets D C Q of M
satisfying the following condition: 0D is compact, every connected component of Q has a non-
empty intersection with D, and there exist an open M -neighborhood U;p of 0D and a (q + 1)-
concave € function @ defined on Uy := Upp U (Q \ D) such that for some ¢y, ¢ € R U {00},
with ¢y < Coo,

(@ DNUp=A{@<c}anddp(z) #0forz € oD
() thesets(Q\ D) N {p < ¢}, o < ¢ < ¢x0, are compact.

(i) M will be called g-concave if there exists a relatively compact open subset D in M such
that[D, M] is a q-concave extension in M.

Let E be a holomorphic vector bundle over X, M areal ’>-hypersurface in X (not necessarily
closed) and D an open subset with %z-boundary in M, and let D be the closure of D in M.

We denote by €.(D, E)(0 < r < n,0 < « < 1) the space of continuous (if & = 0), resp.
Hoélder continuous with exponent « (if &« > 0), E-valued differential forms of bidegree (n, r) on

D.

If D is compact, then &,(D, E) will be considered as Banach space endowed with the max-
norm (if = 0), resp. the Holder norm with exponent « (if « > 0).

If D is not compact, then €, (D, E) will be considered as Fréchet space endowed with the
topology defined by the Banach spaces €,(W, E) where W runs over all open sets W C D with
%?-boundary such that the closure W of W in D is compact.



The forms which are Holder continuous with exponent 1/2 — ¢ for all € > 0 are of particular
interest in this paper. Therefore we introduce also the spaces

%ny/*(D,E) = %x? “(D,E).
&0

These spaces will be considered as Fréchet spaces endowed with the topology defined by the
topologies of the spaces €/ ~¢(D, E), € > 0, i.e. a map with values in ¢5/?(D, E) is continuous
if and only if it is continuous as a map with values in each %/ ~¢(D, E), € > 0.

We denote by Z%,(D,E) (0 < r € n,0 < « < 1) and Z;/*(D, E) the subspaces of closed
forms in €,(D, E), resp.¢5/*(D, E). For 1 < r < n, we set

E5/(D,E) = 2),(D,E) N d654 (D,E) and  HLY,(D, E) = 23, (D, E)/ExY>(D, E).

2. Finiteness of some (T?b-cohomology group with compact support in g-concave real
hypersurfaces

This section is devoted to the proof of the following result :

THEOREM 2.1. — Let X be an n-dimensional complex manifold, n > 5, E a holomorphic vec-
tor bundle over X and M a real € -hypersurface in X (not necessarily closed). Assume M is q-
concave,2 < q < (n—1)/2, then

dimH'y" ™" (M, E) < 00 2.1)

where Hc%n_qﬂ (M, E) denotes thedy,-cohomology group of bidegree (n, n— q+1) for continuous
E-valued forms with compact support in M (see (2.2)).

First we introduce some notations and prove some lemmas.

Let X be a complex manifold, E a holomorphic vector bundle over X and M a real €-
hypersurface in X. If D CC M is open, then we denote by &, (D; M, E), 0 < « < 1, the Banach
space of forms f € € (M, E) with

suppf €D  and  f|5€ %, (DE).

%\.(M, E) denotes the Fréchet space of forms f € €, (M, E) such that f|5 € ¢2,(D, E) for
each open D CC M, endowed with the topology of convergence in each €%, (D, E).
If Y is an arbitrary subset of M, then we denote by €, (Y; M, E) the subspace of all f €
€ (M, E) with supp f C Y endowed with the Fréchet topology of €5, (M, E). We set
Z%(Y; M, E) = Z%,.(M,E) N €X.(Y; M, E).

Z3,(Y; M, E) will be considered also as Fréchet space endowed with the topology of €. (M, E).
Note that if ¥ is compact, then €%, (Y; M, E) and Z; .(Y; M, E) are Banach spaces.



%y (c; M, E) denotes the linear subspace of €,.(M, E) which consists of the forms with
compact support. Set

Z%.(¢; M, E) = Z%,(M, E) N €.(c; M, E).

These two spaces will be considered as topological vector spaces endowed with the inductive
limit topology of the spaces € .(K; M, E), K CC M compact.

Further, we denote by ES .(c; M, E) the space of all @ € % .(c; M, E) of the form ¢ = dy
with g € €3 ,_,(¢c; M, E) if r > 0, and we set Ep (¢; M, E) = {0} if r = 0. With these notations,

H§ (M, E) = Z, .(c; M, E)/Ey ,(c; M, E). (2.2)

LeEmMaA 2.2. — Let X be an n-dimensional complex manifold, n > 5, E a holomorphic vector
bundle over X, M a q-convex-concave real €*-hypersurface in X and @ a real €* function on M
whose Levi form Lg’f (@) has at least q + 1 positive eigenvalues at every point & in M,2 < q <
(n—1)/2, such that if

a: = inf and b: = su ,
inf (@) sup ()

then, for all x, B € |a, b[, the set {ox < @ < B} is compact. Then, for all «, B €]a, b| with x < B
and for any 6 > 0, the following assertion holds :

There exists a continuous linear operator

To—g+1 Zg,n—q-i—l({o‘ SWEME) — Gl ({a =8 < w < B+ 6} M,E)

nn—q
such that

5bT;;(—q+1f =f on {y<pB}
forallf € zy, .. \({a < ¢} M, E).

Proof. — Lemmas 1.6.6 (ii) and .7.6 in [8] immediately imply the following statement: If f €
Zpn—gr1({a < @} M, E), then there exists u € € ,_,(M,E) witho,u = f on {y < B}.
Moreover, the proof of Lemma 1.6.6 (ii) in [8] shows that this solution has supportin {a — 6 < ¢}
and can be given by an operator T G+13S required. ]

THEOREM 2.3. — Let M be a q-concave real € -hypersurface in an n-dimensional complex
manifold X,2 < q < (n — 1)/2, E a holomorphic vector bundle over X, and let @, ¢y, coo be as in
Definition 1.5. Further, let &y, & € R be given such that: &g < & < ¢y and &g such that if§ € M
with (&) > o then the Levi form LIEVI (@) has at least g + 1 positive eigenvalues.

Then, for all 6 > 0, there exist continuous linear operators

Tn—g+1 :Zg,n—cH-l({(P <ol M, E) — 652 ({@ < o+ 8} M, E)

nn—q
and
Kn—g+1: Zg,n—q—f—l({(p S af;M,E) — Zr<z,ln/iq—|—1({(p < o} M, E)
such that
0Tp—gt1f = [ + Kn—gi1f
forallf € Zp,_ . ({® < a}; M, E).



Proof. — By Lemma 2.2, if § is sufficiently small, there exist continuous linear operators

g+l Zg,n—q—f—l({q) <ol ME) — G2 ({0 — 6 <@ <o+ 8} M, E)

n,n—q

such that 5
Ty g f = F on {0(0—5<(p}
Take a ¥"°° partition of unity X, X1,... , Xy on M such that

(@) Xo = 1 in a neighborhood of {xg < @} and x« = 0 in a neighborhood of {@ < «y —
6/2};

(b) for1 < j < N, the support of x; is contained in certain open subset U; CC {p <y} of
M, which is sufficiently small. Then we have continuous linear operators (e.g.[4] or TheoremI.4.2
in [8]).

T/

n—qg+1 :Zg,n—q-l—l(M' E) — (g<1/2 (Uj’E)’ 1< ] <N,

nn—q
such that _

ngrJz—q—Hf = f|Uj
forall f € qu+1(M, E).

Now the operators

N
. J
Th—g+1 = X« Tr(zx—q—f—l + ZXan—q—H

j=1
and
N .
Kn—gt1 = 0Xa A Tp g1 + 30X ATh g4y
j=1
have the required properties. O
Proof of Theorem 2.1. — Let @, ¢y, Cx0, &, &g, 0, Tr, K; be as is Theorem 2.3 where & is so

small that inf @ < « — & . Then Zg,n_[ﬁ_l({(p < «}; M, E) is a Banach space,
Tt (2 pe g (9 < & MLE)) € €0, (6 M, E) 23)

and, by Ascoli’s theorem, K441 is compact as an operator acting from Zg_n_q a{e <
o}; M, E) into itself. Since 0, Tp—g+1 = id + Ky— g1 on this space, it follows that 0pTn—g+1isa

Fredholm operator in Z0 ({® < «}; M, E). Hence

nn—q+1
0 Tn—gt1 (Znp—gi1({® < a}; M, E))
is of finite codimension in Z,?,n_qﬂ ({(P < 0(}; M, E) Since, by (2.3),
0bTn—q+1 (Zg,n—qul({‘p < ahM, E)) - E?z,n—qul(C; M, E),
this implies that

dim Zg,n—q—l—l({(p < “};M' E)/ (E?z,n—q—l—l((:; M' E) N Zg,n—q—i—l({(p < ‘X};M’ E)) < 00.

(2.4)



Moreover, Theorem 2.3 implies the relation
z) g+1(¢; M, E) = linear hull of Ep,._ g+1(6c M, E) U Zg_n_q_H({(p < a};M,E). (2.5

Now (2.1) follows from (2.4) and (2.5). O

3. Serre duality in CR manifolds

In this section we need not to restrict ourselves to the hypersurface case. For the main prop-
erties of CR manifolds and of the tangential Cauchy-Riemann complex, which are useful in this
section, the reader may consult for example the book of Boggess [3]

Let X be an n-dimensional complex manifold, E a holomorphic vector bundle over X, M a
% °-smooth CR generic submanifold of X of real codimension k, p,g € Nand ! € N U oo.
We denote by Af(”% the vector bundle over X of (p, g)-forms in X with values in E and by Aﬁ,’[‘”E
the vector bundle over M of (p, g)-forms in M with values in E. (fé_q(M , E) is the space of €'/
smooth sections of A E over M and %lfyq(c; M, E) the space of compactly supported elements
of %Ifyq(M, E). Note that /\%’E = 0 if either p > nor g > n—k and consequently %é,q(M, E) =
‘glfyq(c; M, E) = 0 for such p and q.

We put on ‘Ké, q(M , E) the topology of uniform convergence on compact sets of the sections
and all their derivatives.

Let K be a compact subset of M, let ‘Klqu (K; M, E) the closed subspace of‘gliq(M, E) of forms
with support in K endowed with the induced topology. Choose (K},) nen an exhausting sequence
of compact subsets of M. Then ‘gé’q(c; M,E) = nL>Jo ‘gé_q(Kn; M, E). We put on ‘Ké’q(c; M, E) the

strict inductive limit topology defined by the Fréchet spaces ‘5;_ q(Kn; M, E).

The space of currents on M with values in E* of bidegree (n—p, n—k—gq) is the dual of the
space 659(c; M, E) and is denoted by 2"~ P"~%=4(M, E*). An element of 9"~ P"~k=4(M, E*)
can be identified with a distribution section of AX/I é’*n k=4 The dual of ‘500 (M E), denoted
by &M~P"—k=d(M, E*), is the space of currents of bidegree (n—p, n—k—q) w1th compact sup-

ports.

We shall use the following notations:

( (M, E) N Ker 0y, ( JE) = (M E)NIma,
(c,M E) (c; M, E) N Ker 0y, (c,M E) = (c,M E) NIma,
ZC‘“(M E*) = @’p"(M, E*) N Ker dp, EC‘“(M E*) = @”“’(M E*) NImd,
Zyu(c; M, E*) = &'P9(M, E*) N Kerdy, Ep%y(e; M, E*) = £'™9(M, E*) N Im ),
H(M,E) = Z} (M, E)/E} (M, E), HY(M,E) = Z| ,(c; M, E)/E}, ,(¢; M, E)
Ll(M, E*) = qu?(M E )/Efu?(M E®), HPI.(M,E*) = Zcur(c M, E*)/Ep% (c; M, E¥).

In [10], using the fact that for all (p,¢), 0 < p < nand0 < q < n—k, €;0(M,E) is a
FS-space and its dual &7~ P""~k=4(M, E*) is a DFS-space, we get the following result :



TueoreM 3.1. — Let M be a CR generic € °° -submanifold of real codimension k in an n-
dimensional complex manifold X. Let p,g € N with0 < p < nand0 < g < n—k, then
the following assertions are equivalent :

(@) E™ (6 M, E*) = {T €& (M, E*) [ {T,0) = 0, Vop € Z35(M, F) }

—pn—k—q —pn—k—q

(ii) ch_uf’n_k_q(M, E*) is separated;
(i) B3 (M,E) = {f € 55 (M.E) | (T.f) =0, ¥T € Z8, (M, ")}

(iv) HZ' (M, E) is separated.

Moreover; if these assertions hold, then

a) the natural linear map Hc'fc_ulr”n_k_q(M, E*) — (HR(M, E))' is a topological isomor-
phism;

b) the natural linear map HZ'' (M, E) —» (ch_u’f'n_k_q_l(M, E*))’ is an algebraic iso-
morphism.

Now the question arises about what happens if we assume that H} 'cf’oH (M, E) is separated.
Would it imply that the group Hf{l?H(M , E*) is separated ? In this case several difficulties ap-
pears : ‘5,‘7’,?1(0; M, E) is no more a Fréchet space but only a strict inductive limit of Fréchet spaces
and a closed subspace of a strict inductive limit of Fréchet spaces is not a strict inductive limit of
Fréchet spaces, which gives troubles in the application of the open mapping theorem, and also
9’ ”_p'”_k_"(M , E*) is not metrizable. Nevertheless, under additional assumptions on the op
operator, we can get some duality theorem.

DEFINITION 3.2. — Let M be a CR generic € °° -submanifold of real codimension k in an n-
dimensional complex manifold X andp,q € N with0 < p < nand0 < g < n— k. The
0y operator is regular in bidegree (p, q), if for T a (p, q—1) current on an open subset Q of M,
with values in a holomorphic vector bundle E over X, such thatd,T is defined by a € -smooth

(p, q)-form on Q, their exists a (p, g—1) form u of class €°° on Q, with values in E, such that
opu = 0pT.
DEFINITION 3.3. — Let M be a CR generic € *° -submanifold of real codimension k in an n-

dimensional complex manifold X andp,q € N with0 < p < nand0 < g < n— k. Weshall say
that M satisfies the (p, q) -exactness %' -propagation property if the following assertion holds :

o
There exists a sequence (Ky) nen of compact subsets of M such that K, CCK 41 foralln € N,

M = | Kyandifpisa(p, q)-formofclass €' on M with values in a holomorphic vector bundle
neN

E over X which satisfies 6M(,Un = @on Kn, where Y, is aform of class €' on Kn, one can find a

formy,q ofclass% on Kn+1 such thataMl,l/n+1 @ on Kn+1 andYn41 = Y, on Kn 1-



THEOREM 3.4. — Let M be a CR generic € *° -submanifold of real codimension k in an n-di-
mensional complex manifold X, and p, g € N with0 < p < nand0 < g < n — k. Assumedy, is
regular in bidegree (n— p, n— k— q) and satisfies the (n— p, n— k — q)-exactness €' -propagation
property for somel € N U oc.

Consider the following assertions

() EL i (c; M, E) = {f €€ (GME) | (f.9)=0,Ypezl_, . (M, E*)};
(ii) Hz’qu(M, E) is separated;
(i) B g ME*) = {@ € 622, ((ME*) | {@.f) =0, Vf € Z} (M, E) };
(iv) H;lo“””"“‘q(M, E*) is separated;
then (i) = (ii) = (iii) = (iv).
Moreover if (i) holds for | = oo, then the natural map
HE PR (M, B*) — (HPL (M, E))'
is an algebraic isomorphism.
Theorem 3.4 will be deduced from several lemmas.
Lemma 3.5. — Let M, p, g be as in Theorem 3.4, we consider the following assertions
(ii) Hg'qu(M, E) is separated;

(ii)! For each compact subset K in M, ‘KlquH(K; M,E) N Ell,yqﬂ(c; M, E) is topologi-
cally closed in ‘fé’qH(K; M, E).

(ii)"" For each compact subset K in M, there exists a compact subset K in M with
I I I 3 ol (7
Cpg+1(Ks M, E) N Ep, 011(6; M, E) = 6, 441 (K; M, E) N 0p6), 4(K; M, E)
then (ii) = (i) => (ii)".

Proof. — The assertion (ii) says that E’lg,[ﬁ_l(c; M, E) is topologically closed in %é,q—kl (¢; M,E),
this implies (ii)’ by definition of the inductive limit topology on ‘5; g+1(6; M, E).
Assume now that (ii)’ is fulfilled. We denote by (K},) ,en an exhaustive sequence of compact

subsets in M, then for a fixed compact subset K in M

pg1(K; M, E)NE, 1y (6; M, E) = Upey (%,j,qH(K; M, E) N 3%, ,(Ku; M, E)) .

Since, by (ii)’, ‘fé,qH(K; M,E)N E’lg,[ﬁ_l(c; M, E) is a Fréchet space, for a certain ny, the space
‘Klqu_i_l(K; M,E) N 5‘5;67(1(,10; M, E) is of second Baire category. Then 9}, is a closed operator



with domain of definition {¢ € ‘Ké_q(KnO i M,E) | oy € %é_q(K ; M, E) } between the Fréchet
spaces %Aq(KHO; M, E) and ‘fé,qH(K; M,E) N E’lg,[ﬁ_l(c; M, E) whose range is of second Baire
category in ‘5; g+1(KGM,E) N E’lg, g+1(¢; M, E); it follows by the open mapping theorem that this

/

operator is onto and open. Setting K = Kp,, (ii)" is proven. O

LEMMA 3.6. — Let M, p, q be as in Theorem 3.4 and K a fixed compact subset in M. Assume

(ii)% (gé,qul(K; M, E) ﬂE;,’qH(c; M, E) is topologically closed in%;_qH(K; M, E) and

let K be the compact subset associated to K by (ii)" in Lemma 3.5. Ifp isa(n — p,n — k — q)-

form of class €>° on M with values in E* which satisfies (p, f) = 0 forall f € Zrl,’q(c; M,E) N
cfriq(f; M, E), then there exists a form @ of class € °° on M such thatd,y = @ on I?

Proof. — We define a linear form Ly on %ﬂé,zﬁ—l(K; M,E) N E. . (c; M, E) by setting for

p.q+1
P € G2, i—k—q(M, E*) asin the lemma

Ly(B) = (@, &) if B = dpex with supp o C K.

By Lemma 3.5 and the orthogonality condition on @, Ly, is well defined, moreover by (i i) and
the open mapping theorem, L, is continuous. We may apply the Hahn-Banach theorem and
extends Ly, to a continuous linear form on (Klgy g+1(M, E).

This extension defines a current S of order / on M such that

(S, 0ma) = (T, &) for & € € (K; M, E)

which implies 9)/S = @ on Ig . As the operator 0}, is regular in bidegree (n — p, n — k — q), there
— o
exists a a form  of class €°° on M such that oy = @ on K. O

Proof of Theorem 3.4. — Iltis clear that (i) = (ii) and (iii) = (iv). It remains to prove
(i) = (iii).

Assume (ii) is fulfilled and fix @ € €2, (M, E*) which satisfies (@, f) = 0 for all
f € Z} ,(¢; M, E).Then by Lemma 3.5, (ii)’ and (ii)" are satisfied and it follows from Lemma 3.6
that, for any compact subset K of M, there exists a form ¢ of class € > on M such that oy, ¢ = @

[e]

on kK.

By the (n— p, n— k— g)-exactness € '-propagation property, there exists a sequence (K;) nen

[¢]
of compact subsets of M such that K;, CCK 4 foralln € N, M = |J K,andifpisa(n —
neN

p,n — k — g)-form of class %' on M which satisfies 9y, = @ on Ign, where ,, is a form of
class €' on Ign, one can find a form ¢, of class €' on Iz'nﬂ such that dp;@,11 = @ on 1?n+1
and Yy,11 = Y, on I? n—1. Taking K = Kj, we can define by induction a sequence (¢,) nen of
(n— p,n—k — g — 1)-form of class €' such that ¢,,;1 = @, on Ign_l. Then the €'-smooth
(n—p,n—k—q—1)-form ¢ = lim,_,. Y, satisfies 0, = @ on M. Moreover by regularity
of the dj,-operator in bidegree (n — p,n — k — g) and since @ is of class €*°, there exists a
%°-smooth (n — p,n — k — g — 1)-form  on M such that 3,y = @ on M. O
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4. An Andreotti-Vesentini separation theorem on g-concave hypersurfaces

From the previous sections we can deduce a separation theorem of Andreotti-Vesentini type
for the 0;, cohomology in g-concave hypersurfaces.

THEOREM 4.1. — Let X be an n-dimensional complex manifold, E a holomorphic vector bun-
dle over X and M a real € *° -hypersurface in X (not necessarily closed). Assume M is q-concave,

then HY ™" (M, E) is separated.

Proof. — If g =1, H&"‘l (M, E) is the space of CR sections of E in M, and therefore sepa-
rated.

If g > 2, in Theorem 2.1 we have proved that under the hypotheses of Theorem 4.1
dim H'3"~ " (M, E*) < oo,
which implies the condition (ii)’ of Lemma 3.5 in bidegree (n,n — g + 1) for I = 0.

As a g-concave real hypersurface is g-convex-concave, it follows from the De Rham-Weil iso-
morphism and the Poincaré lemma for the 9, operator in bidegree (0, g — 1) (cf. [4], [11]) that the
0p, operator is regular in bidegree (0, g—1). Moreover Theorem 9.5 in [8] says that a g-concave real
hypersurface has the (0, ¢ — 1)-exactness %"-propagation property. Consequently the hypothe-
ses of Theorem 3.4 are fulfilled and we deduce from the proof of this theorem that the condition
(i)’ of Lemma 3.5 in bidegree (n,n — q + 1) for [ = 0 implies that the d;-cohomology group

HoA ™ (M, E) is separated. O
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