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Abstract

Using Serre duality in CR manifolds and integral operators for the solution of the tan-

gential Cauchy-Riemann equation with compact support, we prove a separation theorem of

Andreotti-Vesentini type for the ∂b-cohomology in q-concave real hypersurfaces.

Let X be an n-dimensional complex manifold and E a holomorphic vector bundle over X . If

X is q-concave in the sense of Andreotti-Grauert (i.e.
�
n � q � -concave in the sense of [6]), the

Andreotti-Grauert finiteness theorem [1] says that

dim H 0,r �
X , E � < � if r � n � q � 1.

Moreover Andreotti and Vesentini [2] proved that the cohomology group H 0,n � q �
X , E � is sepa-

rated. Other proofs of this separability are given in [6],[9] and [12].

Let us consider now the case of CR manifolds. Let M be a CR generic manifold embedded in

an n-dimensional complex manifold X and E a holomorphic vector bundle over X . Assume that

the Levi form of M restricted to the complex tangent space has at least q negative eigenvalues in

all directions at each point of M , this condition ensures the local solvability of the ∂b-equation

up to bidegree
�
0, q � (cf. [4]).

If M is compact, Henkin [4] obtained the finitness of the ∂b-cohomology groups of bidegree�
0, r � for r � q � 1 and the separability of the group H 0,q �

X , E � . This result has been generalized

by Hill and Nacinovich [7] to the case of compact abstract CR manifolds.

If M is no more compact but admits an exhausting function,whose Levi form restricted to the

complex tangent space to M has at least q negative eigenvalues at each point outside a compact

subset of M then (cf. [7], and [8] for the hypersurface case)

dim H 0,r �
M , E � < � if r � q � 2.

The purpose of the present paper is to prove that the ∂b-cohomology group H 0,q � 1 �
M , E � is sep-

arated in this situation, when M is of real codimension 1. The proof follows the ideas of [9], where

we replace the integral operators of the Grauert-Henkin-Lieb type by the operators constructed
�
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in [8] to get the finitness of some ∂b-cohomology group with compact support. Then the separa-

tion theorem follows from a careful study of Serre duality in the CR setting, which involves some

propagation property of the exactness in bidegree
�
0, q � 1 � .

To get the same result in higher codimension, we would need some analogue of the operators

of [8] and some theorems on the propagation of the exactness in bidegree
�
0, q � 1 � , which do

not exist at this moment.

Note that the possibility to prove a separation theorem of this type by means of integral for-

mulas was pointed out for the first time by Henkin in his survey article [5].

1. Notations and definitions

Let X be an n-dimensional complex manifold. For ξ � X , we denote by T 1,0
ξ

�
X � the holomor-

phic tangent space of X at ξ, i.e. if z1, . . . , zn are holomorphic coordinates in a neighborhood of

ξ, then T 1,0
ξ

�
X � consists of all tangent vectors t of the form

t �
n�

j � 1

tj
∂

∂zj

�
ξ � (1.1)

where t1, . . . , tn are complex numbers.

If M is a real � 2-submanifold of X and ξ � M , then we denote by T 1,0
ξ

�
M � the subspace of

all vectors in T 1,0
ξ

�
X � which are tangential to M .

Let ξ � X and ρ a real � 2-function defined in a neighborhood of ξ. Then we denote by LX
ξ

�
ρ �

the Levi form of ρ at ξ, i.e. the hermitian form on T 1,0
ξ

�
X � defined by

LX
ξ

�
ρ � t �

n�
j,k � 1

∂2ρ
�
ξ �

∂zj ∂zk
tj t k

if t � T 1,0
ξ

�
X � is written in the form (1.1). If M is a real � 2-submanifold of X and ξ � M , then we

denote by LM
ξ

�
ρ � the restriction of LX

ξ

�
ρ � to T 1,0

ξ

�
M � .

D 1.1. — Let M be a real � 2-hypersurface in some n-dimensional complex manifold

X , and let q be an integer with 0 � q � �
n � 1 � /2. M will be called q-convex-concave at a point

ξ � M if, for each real � 2-function ρ in some X -neighborhood U of ξ with M � U ��� ρ � 0 � and

dρ
�
ξ �
	� 0, LM

ξ

�
ρ � has at least q positive and q negative eigenvalues. M will be called q-convex-

concave if it is q-convex-concave at each point in M .

D 1.2. — Let M be a real � 2-hypersurface in an n-dimensional complex manifold

X , and let q be an integer with 0 � q � �
n � 1 � /2. A real � 2-function ϕ on M will be called�

q � 1 � -convex at a point ξ � M if there exist an X -neighborhood U of ξ and real � 2-functions

ϕ̃, ρ � , ρ � on U with the following properties:


ϕ̃ � ϕ on U � M

 M � U ��� ρ � � 0 ����� ρ � � 0 �
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 dρ � �
ζ � 	� 0 for all ζ � U and ρ � ρ � < 0 on U

�
M

 for each λ ��� 0, 1 � and for each ζ � U , the forms LX
ζ

�
λϕ̃ � �

1 � λ � ρ � � have at least
�
q � 1 �

positive eigenvalues.

P 1.3. — (see Proposition I.2.3 in[8]). Let M be a real � 2-hypersurface in some

n-dimensional complex manifold X , and let q be an integer with 0 � q � �
n � 1 � /2. A real � 2-

function ϕ on M is
�
q � 1 � -convex at a point ξ � M if and only if M is q-convex-concave at ξ

and, for any real � 2-extension ψ of ϕ to an X -neighborhood of ξ, LM
ξ

�
ψ � has at least q-positive

eigenvalues.

D 1.4. — Let M be a real � 2-hypersurface in an n-dimensional complex manifold

X , and let q be an integer with 0 � q � �
n � 1 � /2. A real � 2-function ϕ on M will be called�

q � 1 � -concave at a point ξ � M if � ϕ is
�
q � 1 � -convex at ξ. A

�
q � 1 � -concave function on M

is, by definition, a real � 2-function on M which is
�
q � 1 � -concave at all points in M .

Remark : If M is a q-convex-concave real � 2-hypersurface in an n-dimensional complex

manifold X , 0 � q � �
n � 1 � /2, and ψ is a strictly plurisubharmonic function on X , then the

restriction of � ψ to M is
�
q � 1 � -concave on M in the sense of the previous definition.

D 1.5. — Let M be a q-convex-concave real � 2-hypersurface in an n-dimensional

complex manifold X , 1 � q ��� n � 1 �
2 . In the following definitions, for subsets W of M , we denote

by W the closure of W in M , and by ∂W the boundary of W in M .

(i) A q-concave extension in M is an ordered couple �D, Ω � of open subsets D � Ω of M

satisfying the following condition: ∂D is compact, every connected component of Ω has a non-

empty intersection with D, and there exist an open M -neighborhood U∂D of ∂D and a
�
q � 1 � -

concave � 2 function ϕ defined on Uϕ : � U∂D 	 �
Ω
�

D � such that for some c0, c 
 ��� 	 � � � ,
with c0 < c 
 ,

(a) D � Uϕ ��� ϕ < c0 � and dϕ
�
z � 	� 0 for z � ∂D

(b) the sets
�
Ω
�

D � � � ϕ � c � , c0 � c < c 
 , are compact.

(ii) M will be called q-concave if there exists a relatively compact open subset D in M such

that �D, M � is a q-concave extension in M .

Let E be a holomorphic vector bundle over X , M a real � 2-hypersurface in X (not necessarily

closed) and D an open subset with � 2-boundary in M , and let D be the closure of D in M .

We denote by � α
n,r

�
D, E � �

0 � r � n, 0 � α < 1 � the space of continuous (if α � 0), resp.

Hölder continuous with exponent α (if α > 0), E-valued differential forms of bidegree
�
n, r � on

D.

If D is compact, then � α
n,r

�
D, E � will be considered as Banach space endowed with the max-

norm (if α � 0), resp. the Hölder norm with exponent α (if α > 0).

If D is not compact, then � α
n,r

�
D, E � will be considered as Fréchet space endowed with the

topology defined by the Banach spaces � α
n,r

�
W , E � where W runs over all open sets W  D with

� 2-boundary such that the closure W of W in D is compact.

3



The forms which are Hölder continuous with exponent 1/2 � ε for all ε > 0 are of particular

interest in this paper. Therefore we introduce also the spaces

� <1/2
n,r

�
D, E � : ���

ε>0

� 1/2 � ε
n,r

�
D, E � .

These spaces will be considered as Fréchet spaces endowed with the topology defined by the

topologies of the spaces � 1/2 � ε
n,r

�
D, E � , ε > 0, i.e. a map with values in � <1/2

n,r

�
D, E � is continuous

if and only if it is continuous as a map with values in each � 1/2 � ε
n,r

�
D, E � , ε > 0.

We denote by Z α
n,r

�
D, E � �

0 � r � n, 0 � α < 1 � and Z <1/2
n,r

�
D, E � the subspaces of closed

forms in � α
n,r

�
D, E � , resp. � <1/2

n,r

�
D, E � . For 1 � r � n, we set

E <1/2
n,r

�
D, E � � Z 0

n,r

�
D, E � � d � <1/2

n,r � 1

�
D, E � and H n,r

<1/2

�
D, E � � Z 0

n,r

�
D, E � /E <1/2

n,r

�
D, E � .

2. Finiteness of some � b-cohomology group with compact support in q-concave real

hypersurfaces

This section is devoted to the proof of the following result :

T 2.1. — Let X be an n-dimensional complex manifold, n � 5, E a holomorphic vec-

tor bundle over X and M a real � 2-hypersurface in X (not necessarily closed). Assume M is q-

concave, 2 � q � �
n � 1 � /2, then

dim H
n,n � q � 1
c,0

�
M , E � < � (2.1)

where H
n,n � q � 1
c,0

�
M , E � denotes the ∂b-cohomology group of bidegree

�
n, n � q � 1 � for continuous

E-valued forms with compact support in M (see (2.2)).

First we introduce some notations and prove some lemmas.

Let X be a complex manifold, E a holomorphic vector bundle over X and M a real � 2-

hypersurface in X . If D � � M is open, then we denote by � α
n,r

�
D; M , E � , 0 � α < 1, the Banach

space of forms f � � 0
n,r

�
M , E � with

supp f  D and f � D � � α
n,r

�
D, E � .

� α
n,r

�
M , E � denotes the Fréchet space of forms f � � 0

n,r

�
M , E � such that f � D � � α

n,r

�
D, E � for

each open D � � M , endowed with the topology of convergence in each � α
n,r

�
D, E � .

If Y is an arbitrary subset of M , then we denote by � α
n,r

�
Y ; M , E � the subspace of all f �

� α
n,r

�
M , E � with supp f  Y endowed with the Fréchet topology of � α

n,r

�
M , E � . We set

Z α
n,r

�
Y ; M , E � � Z α

n,r

�
M , E � � � α

n,r

�
Y ; M , E � .

Z α
n,r

�
Y ; M , E � will be considered also as Fréchet space endowed with the topology of � α

n,r

�
M , E � .

Note that if Y is compact, then � α
n,r

�
Y ; M , E � and Z α

n,r

�
Y ; M , E � are Banach spaces.
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� α
n,r

�
c; M , E � denotes the linear subspace of � α

n,r

�
M , E � which consists of the forms with

compact support. Set

Z α
n,r

�
c; M , E � � Z α

n,r

�
M , E � � � α

n,r

�
c; M , E � .

These two spaces will be considered as topological vector spaces endowed with the inductive

limit topology of the spaces � α
n,r

�
K ; M , E � , K � � M compact.

Further, we denote by E 0
n,r

�
c; M , E � the space of all ϕ � � 0

n,r

�
c; M , E � of the form ϕ � ∂ψ

with ψ � � 0
n,r � 1

�
c; M , E � if r > 0, and we set E 0

n,r

�
c; M , E � ��� 0 � if r � 0. With these notations,

H n,r
c,0

�
M , E � � Z 0

n,r

�
c; M , E � /E 0

n,r

�
c; M , E � . (2.2)

L 2.2. — Let X be an n-dimensional complex manifold, n � 5, E a holomorphic vector

bundle over X , M a q-convex-concave real � 2-hypersurface in X and ψ a real � 2 function on M

whose Levi form LM
ξ

�
ψ � has at least q � 1 positive eigenvalues at every point ξ in M , 2 � q ��

n � 1 � /2, such that if

a : � inf
ζ � M

ψ
�
ζ � and b : � sup

ζ � M
ψ

�
ζ � ,

then, for all α, β � � a, b � , the set � α � ψ � β � is compact. Then, for all α, β � � a, b � with α < β

and for any δ > 0, the following assertion holds :

There exists a continuous linear operator

T α
n � q � 1 : Z 0

n,n � q � 1

� � α � ψ � ; M , E � ��� � <1/2
n,n � q

� � α � δ � ψ � β � δ � ; M , E �
such that

∂bT α
n � q � 1 f � f on � ψ < β �

for all f � Z 0
n,n � q � 1

� � α � ψ � ; M , E � .

Proof. — Lemmas I.6.6 (ii) and I.7.6 in [8] immediately imply the following statement: If f �
Z 0

n,n � q � 1

� � α � ψ � ; M , E � , then there exists u � � 0
n,n � q

�
M , E � with ∂bu � f on � ψ < β � .

Moreover, the proof of Lemma I.6.6 (ii) in [8] shows that this solution has support in � α � δ � ψ �
and can be given by an operator T α

n � q � 1 as required.

T 2.3. — Let M be a q-concave real � 2-hypersurface in an n-dimensional complex

manifold X , 2 � q � �
n � 1 � /2, E a holomorphic vector bundle over X , and let ϕ, c0, c 
 be as in

Definition 1.5. Further, let α0, α � � be given such that: α0 < α < c0 and α0 such that if ξ � M

with ϕ
�
ξ � � α0 then the Levi form LM

ξ

�
ϕ � has at least q � 1 positive eigenvalues.

Then, for all δ > 0, there exist continuous linear operators

Tn � q � 1 : Z 0
n,n � q � 1

� � ϕ � α � ; M , E � ��� � <1/2
n,n � q

� � ϕ � α � δ � ; M , E �
and

Kn � q � 1 : Z 0
n,n � q � 1

� � ϕ � α � ; M , E � ��� Z <1/2
n,n � q � 1

� � ϕ � α0 � ; M , E �
such that

∂Tn � q � 1 f � f � Kn � q � 1 f

for all f � Z 0
n,n � q � 1

� � ϕ � α � ; M , E � .
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Proof. — By Lemma 2.2, if δ is sufficiently small, there exist continuous linear operators

T α
n � q � 1 : Z 0

n,n � q � 1

� � ϕ � α � ; M , E � ��� � <1/2
n,n � q

� � α0 � δ < ϕ < α � δ � ; M , E �

such that

∂bT α
n � q � 1 f � f on

�
α0 � δ

2
< ϕ �

Take a � 
 partition of unity χα, χ1, . . . , χN on M such that

(a) χα � 1 in a neighborhood of � α0 � ϕ � and χα � 0 in a neighborhood of � ϕ � α0 �
δ/2 � ;

(b) for 1 � j � N , the support of χj is contained in certain open subset U j � � � ϕ < α0 � of

M , which is sufficiently small. Then we have continuous linear operators (e.g.[4] or TheoremI.4.2

in [8]).

T
j

n � q � 1 : Z 0
n,n � q � 1

�
M , E � ��� � <1/2

n,n � q

�
Uj , E � , 1 � j � N ,

such that

∂bT
j

n � q � 1 f � f � Uj

for all f � Z 0
0,q � 1

�
M , E � .

Now the operators

Tn � q � 1 : � χαT α
n � q � 1 �

N�
j � 1

χj T
j

n � q � 1

and

Kn � q � 1 : � ∂χα � T α
n � q � 1 �

N�
j � 1

∂χj � T
j

n � q � 1

have the required properties.

Proof of Theorem 2.1. — Let ϕ, c0, c 
 , α, α0, δ, Tr , Kr be as is Theorem 2.3 where δ is so

small that inf ϕ < α � δ . Then Z 0
n,n � q � 1

� � ϕ � α � ; M , E � is a Banach space,

Tn � q � 1 � Z 0
n,n � q � 1

� � ϕ � α � ; M , E ���  � 0
n,n � q

�
c; M , E � (2.3)

and, by Ascoli’s theorem, Kn � q � 1 is compact as an operator acting from Z 0
n,n � q � 1

� � ϕ �
α � ; M , E � into itself. Since ∂bTn � q � 1 � id � Kn � q � 1 on this space, it follows that ∂bTn � q � 1 is a

Fredholm operator in Z 0
n,n � q � 1

� � ϕ � α � ; M , E � . Hence

∂bTn � q � 1 � Z 0
n,n � q � 1

� � ϕ � α � ; M , E ���
is of finite codimension in Z 0

n,n � q � 1

� � ϕ � α � ; M , E � . Since, by (2.3),

∂bTn � q � 1 � Z 0
n,n � q � 1

� � ϕ � α � ; M , E ���  E 0
n,n � q � 1

�
c; M , E � ,

this implies that

dim � Z 0
n,n � q � 1

� � ϕ � α � ; M , E ��	 � E 0
n,n � q � 1

�
c; M , E � � Z 0

n,n � q � 1

� � ϕ � α � ; M , E � ��
 < � .

(2.4)
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Moreover, Theorem 2.3 implies the relation

Z 0
n,n � q � 1

�
c; M , E � � linear hull of E 0

n,n � q � 1

�
c; M , E � 	 Z 0

n,n � q � 1

� � ϕ � α � ; M , E � . (2.5)

Now (2.1) follows from (2.4) and (2.5).

3. Serre duality in C R manifolds

In this section we need not to restrict ourselves to the hypersurface case. For the main prop-

erties of CR manifolds and of the tangential Cauchy-Riemann complex, which are useful in this

section, the reader may consult for example the book of Boggess [3]

Let X be an n-dimensional complex manifold, E a holomorphic vector bundle over X , M a

� 
 -smooth CR generic submanifold of X of real codimension k, p, q ��� and l ��� 	 � .

We denote by Λp,q
X ,E the vector bundle over X of

�
p, q � -forms in X with values in E and by Λp,q

M ,E

the vector bundle over M of
�
p, q � -forms in M with values in E . � l

p,q

�
M , E � is the space of � l -

smooth sections of Λp,q
M ,E over M and � l

p,q

�
c; M , E � the space of compactly supported elements

of � l
p,q

�
M , E � . Note that Λp,q

M ,E � 0 if either p > n or q > n � k and consequently � l
p,q

�
M , E � �

� l
p,q

�
c; M , E � � 0 for such p and q.

We put on � l
p,q

�
M , E � the topology of uniform convergence on compact sets of the sections

and all their derivatives.

Let K be a compact subset of M , let � l
p,q

�
K ; M , E � the closed subspace of � l

p,q

�
M , E � of forms

with support in K endowed with the induced topology. Choose
�
Kn � n ��� an exhausting sequence

of compact subsets of M . Then � l
p,q

�
c; M , E � ���

n � 0
� l

p,q

�
Kn ; M , E � . We put on � l

p,q

�
c; M , E � the

strict inductive limit topology defined by the Fréchet spaces � l
p,q

�
Kn ; M , E � .

The space of currents on M with values in E � of bidegree
�
n � p, n � k � q � is the dual of the

space � 
p,q

�
c; M , E � and is denoted by �
	 n � p,n � k � q �

M , E � � . An element of �
	 n � p,n � k � q �
M , E � �

can be identified with a distribution section of Λn � p,n � k � q
M ,E

� . The dual of � 
p,q

�
M , E � , denoted

by � 	 n � p,n � k � q
�
M , E � � , is the space of currents of bidegree

�
n � p, n � k � q � with compact sup-

ports.

We shall use the following notations:

Z l
p,q

�
M , E � � � l

p,q

�
M , E � � Ker ∂b , E l

p,q

�
M , E � � � l

p,q

�
M , E � � Im ∂b

Z l
p,q

�
c; M , E � � � l

p,q

�
c; M , E � � Ker ∂b , E l

p,q

�
c; M , E � � � l

p,q

�
c; M , E � � Im ∂b

Z cur
p,q

�
M , E � � ��� 	 p,q �

M , E � � � Ker ∂b , E cur
p,q

�
M , E � � �� 	 p,q �

M , E � � � Im ∂b

Z cur
p,q

�
c; M , E � � ��� 	 p,q �

M , E � � � Ker ∂b , E cur
p,q

�
c; M , E � � ��� 	 p,q �

M , E � � � Im ∂b

H
p,q
l

�
M , E � � Z l

p,q

�
M , E � /E l

p,q

�
M , E � , H

p,q
c,l

�
M , E � � Z l

p,q

�
c; M , E � /E l

p,q

�
c; M , E �

H
p,q
cur

�
M , E � � � Z

p,q
cur

�
M , E � � /E

p,q
cur

�
M , E � � , H

p,q
c,cur

�
M , E � � � Z cur

p,q

�
c; M , E � � /E cur

p,q

�
c; M , E � � .

In [10], using the fact that for all
�
p, q � , 0 � p � n and 0 � q � n � k, � 
p,q

�
M , E � is a

FS-space and its dual � 	 n � p,n � k � q
�
M , E � � is a DFS-space, we get the following result :
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T 3.1. — Let M be a CR generic � 
 -submanifold of real codimension k in an n-

dimensional complex manifold X . Let p, q � � with 0 � p � n and 0 � q � n � k, then

the following assertions are equivalent :

(i) E cur
n � p,n � k � q

�
c; M , E � � �

�
T � � 	n � p,n � k � q

�
M , E � � ��� T, ϕ � � 0, � ϕ � Z 
p,q

�
M , E ���

(ii) H
n � p,n � k � q
c,cur

�
M , E � � is separated;

(iii) E


p,q � 1

�
M , E � �

�
f � � 
p,q � 1

�
M , E � ��� T, f � � 0, � T � Z cur

n � p,n � k � q � 1

�
c; M , E � � �

(iv) H
p,q � 1
 �

M , E � is separated.

Moreover, if these assertions hold, then

a) the natural linear map H
n � p,n � k � q
c,cur

�
M , E � � ��� � H p,q
 �

M , E ��� 	 is a topological isomor-

phism;

b) the natural linear map H
p,q � 1
 �

M , E � ��� � H n � p,n � k � q � 1
c,cur

�
M , E � � � 	 is an algebraic iso-

morphism.

Now the question arises about what happens if we assume that H
p,q � 1
c, 
 �

M , E � is separated.

Would it imply that the group H
p,q � 1
cur

�
M , E � � is separated ? In this case several difficulties ap-

pears : � 
p,q

�
c; M , E � is no more a Fréchet space but only a strict inductive limit of Fréchet spaces

and a closed subspace of a strict inductive limit of Fréchet spaces is not a strict inductive limit of

Fréchet spaces, which gives troubles in the application of the open mapping theorem, and also

� 	 n � p,n � k � q �
M , E � � is not metrizable. Nevertheless, under additional assumptions on the ∂b

operator, we can get some duality theorem.

D 3.2. — Let M be a CR generic � 
 -submanifold of real codimension k in an n-

dimensional complex manifold X and p, q � � with 0 � p � n and 0 � q � n � k. The

∂b operator is regular in bidegree
�
p, q � , if for T a

�
p, q � 1 � current on an open subset Ω of M ,

with values in a holomorphic vector bundle E over X , such that ∂bT is defined by a � 
 -smooth�
p, q � -form on Ω, their exists a

�
p, q � 1 � form u of class � 
 on Ω, with values in E, such that

∂bu � ∂bT .

D 3.3. — Let M be a CR generic � 
 -submanifold of real codimension k in an n-

dimensional complex manifold X and p, q � � with 0 � p � n and 0 � q � n � k. We shall say

that M satisfies the
�
p, q � -exactness � l -propagation property if the following assertion holds :

There exists a sequence
�
Kn � n ��� of compact subsets of M such that Kn � �
	K n � 1 for all n � � ,

M � �
n ���

Kn and if ϕ is a
�
p, q � -form of class � l on M with values in a holomorphic vector bundle

E over X which satisfies ∂M ψn � ϕ on 	K n , where ψn is a form of class � l on 	K n , one can find a

form ψn � 1 of class � l on 	K n � 1 such that ∂M ψn � 1 � ϕ on 	K n � 1 and ψn � 1 � ψn on 	K n � 1.
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T 3.4. — Let M be a CR generic � 
 -submanifold of real codimension k in an n-di-

mensional complex manifold X , and p, q � � with 0 � p � n and 0 � q � n � k. Assume ∂b is

regular in bidegree
�
n � p, n � k � q � and satisfies the

�
n � p, n � k � q � -exactness � l -propagation

property for some l � � 	 � .

Consider the following assertions

(i) E l
p,q � 1

�
c; M , E � �

�
f � � l

p,q � 1

�
c; M , E � ��� f , ϕ � � 0, � ϕ � Z l

n � p,n � k � q � 1

�
M , E � � � ;

(ii) H
p,q � 1
c,l

�
M , E � is separated;

(iii) E


n � p,n � k � q

�
M , E � � �

�
ϕ � � 
n � p,n � k � q

�
M , E � � � � ϕ, f � � 0, � f � Z l

p,q

�
c; M , E � � ;

(iv) H
n � p,n � k � q
 �

M , E � � is separated;

then
�
i � � � �

ii � � � �
iii � � � �

iv � .

Moreover if
�
i � holds for l � � , then the natural map

H
n � p,n � k � q
 �

M , E � � ��� � H p,q
c, 
 �

M , E � � 	
is an algebraic isomorphism.

Theorem 3.4 will be deduced from several lemmas.

L 3.5. — Let M , p, q be as in Theorem 3.4, we consider the following assertions

�
ii � H

p,q � 1
c,l

�
M , E � is separated;

�
ii � 	 For each compact subset K in M , � l

p,q � 1

�
K ; M , E � � E l

p,q � 1

�
c; M , E � is topologi-

cally closed in � l
p,q � 1

�
K ; M , E � .

�
ii � 	 	 For each compact subset K in M , there exists a compact subset

�
K in M with

� l
p,q � 1

�
K ; M , E � � E l

p,q � 1

�
c; M , E � � � l

p,q � 1

�
K ; M , E � � ∂b � l

p,q

� �
K ; M , E �

then
�
ii � � � �

ii � 	 � � �
ii � 	 	 .

Proof. — The assertion
�
ii � says that E l

p,q � 1

�
c; M , E � is topologically closed in � l

p,q � 1

�
c; M , E � ,

this implies
�
ii � 	 by definition of the inductive limit topology on � l

p,q � 1

�
c; M , E � .

Assume now that
�
ii � 	 is fulfilled. We denote by

�
Kn � n ��� an exhaustive sequence of compact

subsets in M , then for a fixed compact subset K in M

� l
p,q � 1

�
K ; M , E � � E l

p,q � 1

�
c; M , E � � 	 n ���

�
� l

p,q � 1

�
K ; M , E � � ∂� l

p,q

�
Kn; M , E ��� .

Since, by
�
ii � 	 , � l

p,q � 1

�
K ; M , E � � E l

p,q � 1

�
c; M , E � is a Fréchet space, for a certain n0, the space

� l
p,q � 1

�
K ; M , E � � ∂� l

p,q

�
Kn0 ; M , E � is of second Baire category. Then ∂b is a closed operator
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with domain of definition � ϕ � � l
p,q

�
Kn0 ; M , E � � ∂M ϕ � � l

p,q

�
K ; M , E ��� between the Fréchet

spaces � l
p,q

�
Kn0 ; M , E � and � l

p,q � 1

�
K ; M , E � � E l

p,q � 1

�
c; M , E � whose range is of second Baire

category in � l
p,q � 1

�
K ; M , E � � E l

p,q � 1

�
c; M , E � ; it follows by the open mapping theorem that this

operator is onto and open. Setting
�

K � Kn0 ,
�
ii � 	 	 is proven.

L 3.6. — Let M , p, q be as in Theorem 3.4 and K a fixed compact subset in M . Assume

�
ii � 	K � l

p,q � 1

�
K ; M , E � � E l

p,q � 1

�
c; M , E � is topologically closed in � l

p,q � 1

�
K ; M , E � and

let
�

K be the compact subset associated to K by
�
ii � 	 	 in Lemma 3.5. If ϕ is a

�
n � p, n � k � q � -

form of class � 
 on M with values in E � which satisfies � ϕ, f � � 0 for all f � Z l
p,q

�
c; M , E � �

� l
p,q

� �
K ; M , E � , then there exists a form ψ of class � 
 on M such that ∂bψ � ϕ on 	K .

Proof. — We define a linear form Lϕ on � l
p,q � 1

�
K ; M , E � � E l

p,q � 1

�
c; M , E � by setting for

ϕ � � 
n � p,n � k � q

�
M , E � � as in the lemma

Lϕ

�
β � � � ϕ, α � if β � ∂M α with supp α � �

K .

By Lemma 3.5 and the orthogonality condition on ϕ, Lϕ is well defined, moreover by
�
ii � 	K and

the open mapping theorem, Lϕ is continuous. We may apply the Hahn-Banach theorem and

extends Lϕ to a continuous linear form on � l
p,q � 1

�
M , E � .

This extension defines a current S of order l on M such that

� S, ∂M α � � � T, α � for α � � 
p,q

�
K ; M , E �

which implies ∂M S � ϕ on 	K . As the operator ∂b is regular in bidegree
�
n � p, n � k � q � , there

exists a a form ψ of class � 
 on M such that ∂M ψ � ϕ on 	K .

Proof of Theorem 3.4. — It is clear that
�
i � � � �

ii � and
�
iii � � � �

iv � . It remains to prove�
ii � � � �

iii � .

Assume
�
ii � is fulfilled and fix ϕ ��� 
n � p,n � k � q

�
M , E � � which satisfies � ϕ, f � � 0 for all

f � Z l
p,q

�
c; M , E � .Then by Lemma 3.5,

�
ii � 	 and

�
ii � 	 	 are satisfied and it follows from Lemma 3.6

that, for any compact subset K of M , there exists a form ψ of class � 
 on M such that ∂M ψ � ϕ

on 	K .

By the
�
n � p, n � k � q � -exactness � l -propagation property, there exists a sequence

�
Kn � n ���

of compact subsets of M such that Kn � �
	K n � 1 for all n � � , M � �
n ���

Kn and if ϕ is a
�
n �

p, n � k � q � -form of class � l on M which satisfies ∂M ψn � ϕ on 	K n, where ψn is a form of

class � l on 	K n, one can find a form ψn � 1 of class � l on 	K n � 1 such that ∂M ψn � 1 � ϕ on 	K n � 1

and ψn � 1 � ψn on 	K n � 1. Taking K � K1, we can define by induction a sequence
�
ψn � n ��� of�

n � p, n � k � q � 1 � -form of class � l such that ψn � 1 � ψn on 	K n � 1. Then the � l -smooth�
n � p, n � k � q � 1 � -form ψ � limn � 
 ψn satisfies ∂bψ � ϕ on M . Moreover by regularity

of the ∂b-operator in bidegree
�
n � p, n � k � q � and since ϕ is of class � 
 , there exists a

� 
 -smooth
�
n � p, n � k � q � 1 � -form

�
ψ on M such that ∂b

�
ψ � ϕ on M .
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4. An Andreotti-Vesentini separation theorem on q-concave hypersurfaces

From the previous sections we can deduce a separation theorem of Andreotti-Vesentini type

for the ∂b cohomology in q-concave hypersurfaces.

T 4.1. — Let X be an n-dimensional complex manifold, E a holomorphic vector bun-

dle over X and M a real � 
 -hypersurface in X (not necessarily closed). Assume M is q-concave,

then H
0,q � 1
 �

M , E � is separated.

Proof. — If q � 1, H
0,q � 1
 �

M , E � is the space of CR sections of E in M , and therefore sepa-

rated.

If q � 2, in Theorem 2.1 we have proved that under the hypotheses of Theorem 4.1

dim H
n,n � q � 1
c,0

�
M , E � � < � ,

which implies the condition (ii)’ of Lemma 3.5 in bidegree
�
n, n � q � 1 � for l � 0.

As a q-concave real hypersurface is q-convex-concave, it follows from the De Rham-Weil iso-

morphism and the Poincaré lemma for the ∂b operator in bidegree
�
0, q � 1 � (cf. [4], [11]) that the

∂b operator is regular in bidegree
�
0, q � 1 � . Moreover Theorem 9.5 in [8] says that a q-concave real

hypersurface has the
�
0, q � 1 � -exactness � 0-propagation property. Consequently the hypothe-

ses of Theorem 3.4 are fulfilled and we deduce from the proof of this theorem that the condition

(ii)’ of Lemma 3.5 in bidegree
�
n, n � q � 1 � for l � 0 implies that the ∂b-cohomology group

H
0,q � 1
 �

M , E � is separated.
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