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In this paper we study chord diagrams using spin models. Such a spin model yields

a linear application Z (called partition function) from the vector space D spanned by all

chord diagrams into some vector space V .

The partition function of a diagram D is the sum of “local” contributions associated

to subsets of k chords D (such subsets are called sites). In the case of models with more

than one spin, one has also to sum over all states (applications of the set of chords in D into

a finite set Sp called the set of spins).

We search now for a subspace R % V of “relations” which is easy to describe and

which contains the vector space R̃ % V spanned by the partition functions of all 4T rela-

tions in chord diagrams. The main feature of all our examples is the fact that sites which

do not contain the two special chords involved in a 4T relation contribute nothing to the

partition function. This fact allows a concrete description of a space R % V which is gen-

erated by the contribution of a site containing the two chords involved in some 4T relation

r or by the contributions of two sites each of which contains exactly one of the two chords

involved in r and which are identical otherwise.

Choosing a linear function µ : V &(' C containing R in its kernel (we call such a

function a weight) we obtain a weight system Zµ on chord diagrams by setting Zµ ) D *,+
µ ) Z ) D *-* .

Of course, since the partition function Z is not necessarily surjective, not every non-

zero weight on V yields a non-zero weight system on chord diagrams.

We may also miss some weight systems since R̃ may be strictly smaller than the

intersection of R with the image Z ) D * .

This paper consists of an introductory section containing standard definitions and

generalities on chord diagrams which is followed by four parts.

In part I we define flower diagrams and consider spin models with values in the

vector space generated by all k & flowers. Orientable flowers lead to a spin model with one

spin whereas non-orientable flowers lead to a model on 2 spins.
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Part I is in some sense a straightforward generaization of the graphical calculus for

the Lie groups g l ) n * (orientable flowers) and so ) n * (non-orientable flowers).

In part II we define spin models with values in vector spaces defined by intersection

properties of chords.

In part III we define spin models with values in the algebra � + � Dn/ <

4T relations > of chord diagrams modulo 4T relations. We call partition functions of

such models a local operators.

In part IV we consider spin models whose partition functions generalize “cabling

operations”.

A further example which fits well into the mainstream of this paper is given by the

comultiplication � &('������ of the Hopf algebra � on chord diagrams. This example

will not be mentioned further since spin models don’t suggest anything new about it.

1. Basic definitions

In the sequel we work over the field of complex numbers. Since only linear equa-

tions with integral coefficients are involved, most results hold for arbitrary (commutative)

fields or even commutative rings with unit.

Notice that for knots there are some problems when working with arbitrary fields

or rings: The Kontsevitch integral is then no longer defined.

Definition 1.1. An n & chord diagram (or a diagram over n chords) is an oriented cir-

cle (inducing a cyclic order on its points) together with a distinguished set of n unordered

pairs of points on it, up to diffeomorphisms preserving the orientation of the circle. An

unordered pair of points in a chord diagram is a chord.

Figure 1.1. Examples of chord diagrams

We denote by C ) D * (or by C if the underlying chord diagram D is obvious) the set

of chords in a chord diagram D.
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Equivalently, an n & chord diagram can be defined as an involution α without fixed

points on a cyclically ordered set � b1, . . . , b2n � (ie. two such involutions α and α � are equiv-

alent if they are conjugated by a power of the cyclic permutation

b1 � &(' b2 � &(' . . . � & ' b2n � &(' b1 * .

Given an n & chord diagram D represented by an involution α � Sym ) � b1, . . . ,

b2n � * , a chord of D is a pair of points of the the form � bi , α ) bi * � .

Let D denote the graded vector space generated by all chord diagrams with grading

given by the number of chords in a diagram.

Given a graded complex vector space V we denote by Vn the subspace of all ele-

ments with grading n. We denote moreover by V � t � (respectively Vn � t � ) the C � t ��& module

V � C C � t � (respectively Vn � C C � t � ).

We denote hence by Dn the finite dimensional subspace of D generated by all

n & chord diagrams and by D � t � (respectively Dn � t � ) the tensor product of D (respectively

Dn � t � ) with C � t � .

An element r � Dn is a 4T relation if r is represented by D1 & D2 � D3 & D4 where

D1, . . . , D4 are four n & chord diagrams as in figure 1.2 which is drawn using the conven-

tion that there can be more chords not entering the regions enclosed by the dots but these

“invisible” chords are “identical” in the four diagrams.

+- -

Figure 1.2. A 4T relation r + D1 & D2 � D3 & D4

Inspection of a 4T relation shows that such a relation is determined by a special

chord c � (which is the horizontal chord in our figure) in an ) n & 1 *�& chord diagram D̃ to-

gether with a special point (the lower endpoint of the “moving” chord in our figure) which

is not endpoint of a chord in D̃. One takes then the alternating sum of the four chord di-

agrams obtained by adjoining a second special chord c � � starting at the special point and

ending immediately before or after the endpoints of the special chord c � .

This labelling of the two special chords in a 4T relation and identification of

corresponding chords in all four diagrams of r allows us to identify the set of chords

C ) D1 * , . . . , C ) D4 * with an abstract set C ) r * of n elements called the chords of the relation

r .
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Replacing the special chord c � by a whole bunch of chords entirely contained in a

very small neighbourhood of it we get generalized 4T relations which we represent graphi-

cally as in figure 1.3
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Figure 1.3. Generalized 4T relations

Any chord in such a relation has either both or none of its endpoints in the dark

region of the picture. Dark regions are the same in all four diagrams and there may be

many more “invisible” chords which are allowed to cross the dark region and which are

also identical in all four diagrams.

Lemma 1.2. A generalized 4T relation can be expressed as a finite sum of (ordinary)

4T relations.

Proof. Sum up all 4T relations gotten by choosing the special chord c � among the

chords in the dark region and by choosing the lower endpoint of the moving chord in figure

1.3 as the special point. For the correct sign choice a simplification occurs and yields the

result. QED

A special instance of a generalized 4T relation is the case where the dark region has

only “one end”. A resulting generalized 4T relation simplifies then to yield the relation given

by figure 1.4. 	
	
	�
�
� �
�
�
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Figure 1.4. A special instance of generalized 4T relations

Relations of this last kind allow the definition of a product on the quotient space

� + D/ < 4T relations > of D by the subspace spanned by all 4T relations turning �
into a commutative (and associative) graded algebra called the chord diagram algebra. In-

deed, define the product of two elements represented by chord diagrams D and D � as the

“connected sum” of D and D � as illustrated by figure 1.5. More precisely, open the oriented

circles S and S � supporting D and D � at arbitrarily chosen points of S, S � which are not end-

points of a chord and glue the resulting four ends two by two together in the unique way
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which preserves orientations and yields a chord diagram. The relation represented in fig-

ure 1.4 shows that the result is well defined modulo 4T relations. It is then easy to check

that this defines a commutative and associative product on � with a grading induced by

the grading of D (4T relations are homogenous). The element represented by the chord

diagram without chords is the unit of this algebra.

=

Figure 1.5. A product in �

The algebra � can also be endowed with a cocommutative and coassociative co-

product. Indeed, given a subset I % C ) D * of chords in a chord diagram D we define D ) I *
as the chord diagram obtained by deleting all chords of C ) D *�� I in D. In the sequel, given

any subset I % C ) D * of chords in D, we denote by I + C ) D *�� I its complement in C ) D * .

The coproduct ∆ ) D * of a chord diagram representing an element in � is then given by

∆ ) D * + �
I � C � D �

D ) I * � D ) I *
(one has to check that ∆ is well defined, ie ∆ ) r *�+ 0 in � � � for r � D a 4T relation) and

the counit is given by ε ) D * + 1 if D has no chords and by ε ) D * + 0 otherwise.

The multiplication and comultiplication introduced above turn � into a Hopf alge-

bra (the compatibility between the algebra and coalgebra structures is easy to verify): see

also [B].

Definition 1.3. An element of ���n + HomC ) calDn , C * + HomC ) Dn/ < 4T rela &
tions >, C * is a weight of degree n and an element of � � +	� � �n + HomC ) � , C * is a

weight system.

We use this terminology also in the case of the C � t � & modules � n � t � and � � t � : a

weight denotes in this case an element of ) � n � t � *
� ie a C � t ��& linear application from � n � t �
into C � t � .

In the sequel we call even a linear application from � n (respectively � ) into a vector

space V a weight with values in V . The same holds for C � t � & linear applications from � n � t �
(or � � t � ) into some C � t ��& module V � t � .

The vector space � � �n generated by all weights is also a Hopf algebra: comultiplica-

tion in � yields a multiplication in � � �n and multiplication in � yields a comultiplication

in � � �n .

Considering a completion of the tensor product turns even the space � � of all

weight systems into a Hopf algebra.
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However, the natural object linked to knots in 3-space is not the chord diagram

algebra � but a quotient ˜� of it which is isomorphic to a sub-Hopf algebra in � . The

Konsevitch integral yields then a bijection of the vector space ˜� �n generated by all genuine

weights with the vector space of all Vassiliev invariants of type n on knots (see for instance

[B] or [V] for more details on the links between the topology of knots, the Kontsevitch

integral, Vassiliev invariants and weight systems).

An n & chord diagram D is a 1T relation if D contains an isolated chord (ie a chord

not crossed by any other chord of D, see figure 1.6 for an example).

Figure 1.6. 1T relation

A 1T relation represents a product in � which contains (the element represented

by) the chord diagram T having a unique chord as a factor. The span of 1T relations in �
is hence the principal ideal of � generated by (the element represented by) T . This ideal is

also a co-ideal in � and we get a Hopf algebra structure on the quotient

˜� + D/ < 1T and 4T relations >

which is hence a quotient Hopf-algebra of the Hopf algebra � . We call the subspace ˜� �n %
� �n the space of genuine weights and elements of � ˜� �n genuine weight systems.

There exists a natural projection

Rn : D &(' �
called renormalization (see [CDLI]), which contains all 4T and 1T relations in its kernel and

which factors hence through ˜� . Renormalization yields an isomorphism of Hopf algebras

between ˜� and the sub-Hopf algebra Rn ) D * of � . Identifying ˜� with Rn ) D * we can con-

sider the space of genuine weight systems as a quotient of the space of all weight systems.

More precisely, given a weight system w, the linear form Rn � ) w * + w � Rn : D &(' C

defines a genuine weight system.

The renormalization operator Rn : D &(' � is explicitely given by

Rn ) D * + �
I � C � D � )

& T * ] � I � D ) I *

with I + C ) D * � I (where T is the chord diagram with one chord and where all operations

take place in the Hopf algebra � , see [CDLI]). Equivalently, the operator Rn is given by

Rn + µ � ) id � τ *�� ∆ where ∆ : � &(' � � � is the coproduct, τ : � &(' � is defined

by D & ' ) & T * ] � C � D � � for any chord diagram D and µ : � � � &(' � is the product.
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Renormalization reduces the study of ˜� (and of its dual, the genuine weight sys-

tems) to the study of � (and of its dual, the weight systems). In particular, its adjoint

projects ordinary weight systems onto genuine ones.

A framed weight system is a C � t ��& linear application f : D � t �,& ' C � t � factoring

through � � t � such that f ) T D * + t f ) D * for any chord diagram D (where T stands again

for the unique chord diagram with one chord). Framed weight systems deal with knots

endowed with a framing, ie. with a nowhere zero section of their normal bundle.

The specialization t + 0 turns a framed weight system into a genuine one.

Another method to get a genuine weight system out of a framed weight system is

to apply the renormalization operator: Given a framed weight system f it is easy to check

directly that f � Rn given by

) f � Rn * ) D * + �
I � C � D � )

& t * ] � I � f ) D ) I *-*

defines a genuine weight system with values in C � t � .

A framed weight system f is primitive if we have ) f � Rn * ) D * + f ) D * � t � 0. This is

equivalent to

f ) D * + �
I � C � D �

t ] � I ��� f ) D ) I *-* � t � 0 �

since the equality

f ) D * + �
I � C � D �

t ] � I ��� f � Rn ) D ) I * * �

holds if f is an arbitrary framed weight system.

Any framed weight system f can be written as

f +
�
�
k � 0

fk t k

where the functions fk are primitive framed weight systems such that there exists a func-

tion r : N &(' N with f i ) D * + 0 for any n & chord diagram D and any integer i � r ) n *
(this ensures that f ) D * is a polynomial and not a formal power series). The specialization

t + 0 picks out f0 whereas applying the adjoint Rn � of the renormalization operator yields

f +
�
�
k � 0

fk t k � & ' Rn � ) f * +
�
�
k � 0

� fk
�
t � 0 � t k

and induces a bijection between framed weight systems and genuine weight sytems with

values in C � t � .

7



A weight system w is multiplicative if we have w ) D D � * + w ) D * w ) D � * for any pair

D, D � of chord diagrams. Multiplicative weight systems are the same as characters of the

algebra � (ie homomorphisms from � into the algebra C of complex numbers).

Remark 1.4. There exists an analogue of chord diagrams for links. This analogue

has however no longer a structure of a Hopf algera but is only a graded vector space. It

is fairly easy to modify the constructions of this paper in order to deal with these chord

daigrams for links. We leave the details to the reader.

Part I: Flower diagrams

I.1 Orientable flowers

Let b1, . . . , b2k be a basis of a ) 2k *�& dimensional vector space. Set

E + � & b1, b1, & b2, b2, . . . , & b2k , b2k � .

Definition I.1.1. An orientable k & flower is an equivalence class of two permuta-

tions α, β � Sym ) E * of the set E such that

(i) α and β are involutions of E without fixed points,

(ii) α extends to a linear application of the vector space generated by E ,

(iii) α ) bi *��+ & bi for i + 1, . . . , 2k.

(iv) α ) bi * , β ) bi * � � & b1, & b2, . . . , & b2k � for all i (orientability condition).

Two such pairs ) α, β * and ) α � , β � * are equivalent if they are conjugated by a power

of the permutation obtained by restricting the linear application defined by

b1 � &(' b2 � &(' . . . b2k � 1 � & ' b2k � &(' b1

to the set E + � & b1, b1, & b2, b2, . . . , & b2k , b2k � .

A simple k & flower is a flower having representatives α, β � Sym ) E * such that

β ) bi * + & bi � 1 for i + 1, . . . , 2k & 1 and β ) b2k * + & b1.

We represent a k & flower graphically by choosing 4k consecutive points on a circle

S which we identify with the set E + � & b1, b1, & b2, b2, . . . , & b2k , b2k � . The points & bi , bi

should be close to each other. We join then pairs of points � & bi , & α ) bi * � and � bi , α ) bi * �
by two close parallel arcs inside S and pairs � & bi , β ) & bi * � respectively � bi , β ) bi * � by arcs

outside S (only the endpoints of such arcs are relevant).

Sets of the form ��� bi , � α ) bi * � are chords. We denote them by C ) F * . Chords cor-

respond graphically to pairs of close parallel arcs inside the circle S.
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The set of chords in a flower F defines a k & chord diagram D ) F * , called the heart of

the flower.

The arcs of a flower past together to form closed paths. They correspond to the

orbits in � & b1, b1, . . . , & b2k , b2k � of the group generated by α and β (as an abstract group

this is always a finite dihedral group). These paths have natural orientations by orienting

arcs � & bi , bj � + � & bi , α ) & bi * � inside the heart of a flower F from & bi to b j . This induces

coherent orientations on all paths.

Given an n & chord diagram D with n > 0 drawn inside a circle S, we associate to it

a simple n & flower as followings: Replace each chord by two close parallel arcs. Join then

the 4n points where these arcs meet S by arcs outside S in the unique way which yields a

simple n & flower (we call such outer arcs trivial outer arcs). We denote this flower by F ) D *
(see figure I.1.1).

If D is the 0 & chord diagram we set F ) D *�+ tF where F is the 0 & chord flower and

t is a variable.

Figure I.1.1 A chord diagram D and its simple flower F ) D *

We denote by F � � t � the free C � t � & module generated by all orientable flowers. This

module is of course graded by the number of chords of a flower. We denote hence by F �k � t �
the finitely generated submodule generated by all orientable k & flowers.

To an orientable flower F and a subset I % C ) F * of k chords in F , we associate

an element F ) I * � F �k � t � as follows: Push outside the heart of F all pairs of arcs forming

chords c �� I . The result is a k & flower F̃ ) I * � F �k together with ν isolated closed arcs not

intersecting the heart of F̃ ) I * . Set F ) I * + t νF̃ ) I * . Figure I.1.2 shows an example with a set

I consisting of two chords. The resulting integer ν equals 2.

t 2

Figure I.1.2.
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I.2. Weight systems for flowers

In this section we define and construct “weight systems” for orientable flowers and

use these to construct weight systems for chord diagrams. This is achieved by defining re-

lations R ) F � � t � * in the space of orientable flowers which are preserved under a suitable

projection operator 1� n � k � ! ) π � * n � k : F �n &(' F �k . One shows then that the linear applica-

tion D � &(' F ) D * which associates to a chord diagram D the simple flower F ) D * having D

as its heart induces a linear application � & ' F � � t � /R ) F � � t � * .

We define a C � t ��& linear application π � : F �k � 1 � t �"&(' F �k � t � by

π � ) F * + �
c � C � F �

t ν � c � F̃ ) C � � c � * + �
c � C � F �

F ) C � � c � * � F �k � t �

for an oriented ) k � 1 * & flower F (see figure I.2.1 for an example).

t + +
|---->

Figure I.2.1 The operator π �

We define now relations in F �k � t � which are analogs of 4T relations for chord dia-

grams.

An element r � F �k � t � is a 4T2 relation if it is of the form r + F1 & F2 � F3 & F4 for

four orientable k & flowers as in figure I.2.2. In other terms, the four k & chord diagrams in

the hearts of the flowers form a 4T relation, the two inner arcs which are not parallel but

obviously adjacent, are joined by a trivial outer arc and the four flowers agree everywhere

else.

- + -

Figure I.2.2. A 4T2 relation F1 & F2 � F3 & F4

A 4T1 relation is the element r � F �k � t � obtained by applying π � to a 4T2 relation

r̃ � F �k � 1 and by removing the k & 1 obvious 4T 2 relations in F �k from π � ) r̃ * . A 4T1 relation

is a C � t � & linear combination of eight k & flowers as in figure I.2.4 (with the convention that

isolated closed paths outside the heart correspond to a factor t ).
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Figure I.2.4 A 4T1 relation

We denote by R ) F �k � t � * the C � t � & module generated by all 4T2 and 4T1 relations in

F �k � t � . The orientable flower space
� � � t � is the quotient space �

� �
k � t � + � F �k � t � /R ) F �k � t � * .

We call the space

) � �
k � t � * � + HomC � t � ) � �

k � t � , C � t � *
the weight space of orientable k-flowers. Its elements are weights of degree k. Elements of

� ) � �
k � t � * � are weight systems for orientable flowers.

Recall that we can associate to each k & chord diagram D an orientable k & flower

F ) D * (replacing all chords of D by pairs of parallel arcs and drawing trivial outer arcs

around the heart).

Proposition I.2.1. The C � t � & linear extension of the application

D � & ' F ) D *
induces a homomorphism i �k : � k � t � & ' � �

k � t � .

Proof. This is obvious from the definition of F ) D * and from the definition of rela-

tions in F �k � t � . Indeed, four diagrams forming a 4T relation in Dk yield flowers forming a

4T2 relation in F �k � t � . QED

In section I.3 we will construct a C � t � & linear application ρ �k :
� �

k � t �,& ' � k � t �
which is a retraction of i �k , ie the composition ρ �k � i �k is the identity on � �k � t � .

Proposition I.2.2. We have π � ) R ) F �k � 1 � t � *-*�% R ) F �k � t � * .

Proof: Given a 4T2 relation r � R ) F �k � 1 � t � * , the element π � ) r * is (by definition of

4T1 relations) a linear combination of 4T1 and 4T2 relations.

For a 4T1 relation r � R ) F �k � 1 � t � * , an inspection shows that π � ) r * is the sum of

k 4T1 relations in R ) F �k � t � * (this follows also from the fact that pushing out the heart of
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the flowers both chords implied in a 4T2 relation of F �k � 2 � t � yields an alternate sum of four

elements in F �k � 1 � t � which annihilate two by two). QED

This last proposition allows us to define a projection
� �

n � t ��&(' � �
k � t � by consid-

ering

F � &(' ) n & k * !
) π � * n & k ) F *

for any orientalbe n & flower F . We have hence the following result:

Corollary I.2.3. A weight µ � ) � �
k � t � * � of orientable k & flowers defines a weight

system Zµ with values in C � t � on orientable flowers and on chord diagrams.

Proof. Given a weight µ � ) � �
k � t � * � and F � F �n we set Zµ ) F * + 0 if n < k and

Zµ ) F * + µ � 1

) n & k * !
) π � * n � k ) F * � + �

I � C � F � , ] � I � � k

µ ) F ) I *-*

otherwise. For an n & chord diagram D � Dn we set Zµ ) D * + Zµ ) F ) D *-* where F ) D * is the

simple n & flower associated to D.

Corollary I.2.3 is now implied by propositions I.2.1 and I.2.2. QED

We call the weight system Zµ constructed in the proof of Corollary I.2.3 the partition

function associated to µ.

Another immediate consequence of proposition I.2.3 and corollary I.2.3 is the fol-

lowing result.

Corollary I.2.4. (i) The adjoint ) π � * � of the linear operator π � induces a homo-

morphism (still written) ) π � * � : ) �
k � t � * � & ' ) �

k � 1 � t � * � from the space of weights of

orientable k & flowers into the space of weights of orientable ) k � 1 *�& flowers.

(ii) For F ��� �n � t � with n � k � 1 and µ � ) � �
k � t � * � we have

Z � π � ��� � µ � ) F * + ) n & k * Zµ ) F * .

Remark I.2.5. One could introduce the analog of 1T relations of chord diagrams for

orientable flowers. Since this is messy, useless (because of the renormalization operator)

and yields much less weight systems we omit it.

I.3. Standard weights

In this section we construct a retraction ρ �k :
� �

k � t �#&(' � k � t � of the homomor-

phism i �k considered in proposition I.2.1. This implies that each weight µ̃ can be extended
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to a weight system Zµ : ��&(' D � t � by setting µ + ) ρ �k * � ) µ̃ * and applying corollary I.2.3.

We call the weight µ + ) ρ �k * � ) µ̃ * the standard weight associated to µ̃.

Proposition I.3.4 characterizes them and shows the relationship between them and

invariants associated to g l ) n * .

Let F be a k & flower represented by α, β � Sym ) � b1, . . . , � b2k * . Let P1 � . . . �
Pl + ��� b1, . . . , � b2k � be the finest partition of the set ��� b1, . . . , � b2k � which satisfies

the following conditions:

(i) bi � Pj ��� & bi � Pj ,

(ii) � bi � Pj ��� β ) bi * , β ) & bi * � Pj ,

(iii) P j �+�� for 1 � j � l.

Set λ ) F * + l & 1.

Let us recall that given an orientable k & flower F we denote by D ) F * the associated

k & chord diagram formed by the heart of the flower. We extend the application R � &('
D ) F * which associates to an orientable flower its heart by C � t � & linearity to an application

D : F � � t � & ' D � t � .

Theorem I.3.1. The C � t ��& linear application ρ �k : F �k � t � &(' D �k � t � defined by

ρ �k ) F * + t λ � F � D ) F *
induces a C � t � & linear application (still called) ρ �k :

� �
k � t �"& ' � �k � t � .

Proof. We have to show that ρ �k ) r * � R ) Dk � t � * for r � R ) F �k � t � * a 4T2 or 4T1

relation.

An inspection of figure I.2.2 shows that λ ) F1 * + λ ) F2 * + λ ) F3 * + λ ) F4 * if r +
F1 & F2 � F3 & F4 is a 4T2 relation. We denote this common value by λ ) r * . We have hence

ρ �k ) r * + ) D ) F1 * & D ) F2 * � D ) F3 * & D ) F4 * * t λ � r � . Since D ) F1 * & D ) F2 * � D ) F3 *�& D ) F4 *
is a 4T relation of k & chord diagrams in Dk � t � we have ρ

�
k ) r * � R ) Dk � t � * .

Given a 4T2 relation r̃ + F1 & F2 � F3 & F4 of orientable ) k � 1 *�& flowers we consider

the associated 4T1 relation of orientable k & flowers. Let us write F �i + Fi ) C ) Fi * � � c � � * �
F �k � t � and F � �i + Fi ) C ) Fi * � � c � � � * � F �k � t � where c � , c � � are the two special chords involved

in r̃ .

The element

r + F �1 � F � �1 & F �2 & F � �2 � F �3 � F � �3 & F �4 & F � �4 � F �k � t �
is then a 4T1 relation in Fk � t � and every 4T1 relation is of this kind. One checks that

ρ �k ) F �1 *#+ ρ �k ) F �2 * , ρ �k ) F � �1 * + ρ �k ) F � �2 * and ρ �k ) F �3 * + ρ �k ) F �4 * , ρ �k ) F � �3 *#+ ρ �k ) F � �4 * which

shows that ρ �k ) r * + 0 for any 4T1 relation r � F �k � t � . QED
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One has ρ �k ) F ) D * * + D ) F ) D * * t λ � F � D � � + D for any chord diagram D (recall that

F ) D * * denotes the unique orientable simple flower with heart the chord diagram D). This

shows that ρ �k � i �k : Dk � t � &(' Dk � t � is the identity on Dk � t � and ρ �k is hence a retraction

of the C � t ��& linear operator i �k : Dk � t �"&(' F �k � t � introduced in proposition I.2.1.

The adjoint operator ) ρ �k * � induces a C � t ��& linear operator from the weights

) � k � t � * � on k & chord diagrams into the weights ) � �
k � t � * � on orientable k & flowers by

setting µ ) F * + µ̃ ) ρ �k ) F *-* for any weight µ̃ � ) � k � t � *
� . We call the weight µ + ) ρ �k * � ) µ̃ *
the standard weight associated to µ̃.

We have hence the following result.

Proposition I.3.2. Given a weight µ̃ � ) � k * � on k & chord diagrams, the partition

function Zµ defined in corollary I.2.3 with µ + ) ρ �k * � ) µ̃ * extends µ̃ to a weight system with

values in C � t � .

Example I.3.3. Let µ̃0 : D0 & ' C be the weight which sends the unique chord

diagrams without chords onto 1. The weight system Zµ0 constructed by the previous corol-

lary is given by the graphical calculus associated to the Lie algebras g l ) n * (see [B] for the

details).

The following proposition describes weight systems on � which come from stan-

dard weights.

Proposition I.3.4. Let µ̃ � ) � k * � be a weight and let µ � ) � �
k � t � * � be the associated

standard weight. The weight system Zµ � � � is then the product of µ̃ (extended to a weight

system by setting µ̃ ) D * + 0 if D �� Dk ) with the weight system Zµ0 described in example

I.3.3.

This last result shows that standard weights yield no interesting (new) weight sys-

tems.

I.4. Spin models

In this section we introduce spin models and rephrase corollary I.2.3 in terms of

spin models.

Definition I.4.1. A spin model with values in a vector space V is defined by the

following data:

(1) A finite set Sp of spins.

(2) A finite set C .

14



(3) A finite set S of sites.

(4) An energy function e : S � SpC &(' V .

(5) A function f : SpC & ' C.

Given a spin model SM ) Sp, C, S, e, f * , an element σ � SpC is a state of the model.

A state defines a spin function σ : C &(' Sp on the set C which assigns a spin σ ) c * � Sp

to every element c � C . We identify states with their spin functions.

A state σ yields a function I � &(' e ) I , σ * � V from the set S of sites into the vector

space V . The element e ) I , σ * � V is the energy of the site I in the state σ.

The element f ) σ * �
I � S e ) I , σ * is the energy of the state σ.

The element

ZSM + �
σ � SpC

f ) σ * �
I � S

e ) I , σ * � V

obtained by summing up the energies of all states is the partition function of the model.

Remarks I.4.2. (i) This definition of spin models is of course not well suited for sta-

tistical physics. There are however analogies with models coming from statistical physics

which justify hopefully the usurpation of terminology.

(ii) We would like to have more precise and more restricted definitions. Indeed, the

energy function should be “local” in some sense and the function f should depend on the

spin functions in a “global” and simple way. This justifies the separation of the function f

from the energy function e.

(iii) In most examples the set C will be the set of chords in a chord diagram (or in a

flower) and the set I of sites will consist in all subsets I % C containing exactly k elements

(for some fixed integer k).

Given a positive integer k, we define for each orientable n & flower F a spin model

with values in the vector space F �k � t � spanned by orientable k & flowers with polynomial

coefficients. This model is given by the data:

(1) The set of spins is the set � � 1 � .

(2) The set C is the set C ) F * of chords in F .

(3) The set S of sites is the set � I % C ) F * �
] ) I * + k � of all subsets with k chords

in C ) F * .

(4) A subset I % C ) F * yields an element F ) I * � F �k � t � (which is an orientable

k & flower multiplied by a power of t ). The energy e ) I * of the site I (in the unique state of

the model) is the element F ) I * � F �k � t � .
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(5) Since our model has only one state the function f is the constant 1.

Since there is only one state in our model, the partition function Zk + ZSM boils

down to

Zk ) F * + �
I � C, ] � I � � k

F ) I * � F �k � t � .

Extending Zk by C � t � & linearity, we get a linear application Zk : F � � t � &(' F �k � t �
which we continue to call a partition function.

Choosing a C � t � & linear form µ � ) F �k � t � * � we get a spin model with values in C � t �
by replacing the energy function in the above model with e ) I *�+ µ ) F ) I * * . This model has

partition function Zµ ) F * + µ ) Zk ) F * * which we extend C � t � & linearly to F � � t � .

Theorem I.4.3. (i) Let r � R ) F �n � t � * be a 4T2 or a 4T1 relation. The partition func-

tion Zk ) r * � F �k � t � is then an element of the subspace R ) F �k � t � * spanned by all 4T2 and 4T1

relations in F �k � t � .

(ii) Let µ � ) � �
k � t � * � be a weight of orientable k & flowers. The associated partition

function

F � &(' Zµ ) F * + �
I � C, ] � I � � k

µ � F ) I * � � C � t �

defines then a weight system of orientable flowers.

Assertions (i) and (ii) of this theorem are obviously equivalent and assertion (ii) is a

translation of Corollary I.2.3 into the formalism of spin models.

Proof of Theorem I.4.3. We prove only (i). Let us first consider a 4T2 relation r +
F1 & F2 � F3 & F4 � F �n � t � and compute the contribution of all sites to the partition function

Zk ) r * .

We call a site S % C ) r * of type i if it contains exactly i chords among the special

chords c � , c � � involved in r . We denote by Si the set of sites of type i. We have hence a

partition S + S0 � S1 � S2 of all sites in C ) r * into three subsets according to their type.

We compute the contributions of sites of type 2, 1 or 0 to the partition function.

First case: Consider a site I of type 2. This implies that the element rI + F1 ) I *�&
F2 ) I * � F3 ) I * & F4 ) I * is a 4T2 relation (perhaps multiplied by a power of t ). The contribution

of a site I � S2 to Zk is hence in R ) F �k � t � * .

Second case: Sites of type 1. These sites exist in pairs I � , I � � such that c � � I � and

c � � � I � � and ) I � � � c � � *�+ ) I � � � � c � � � * . The element F ) I � * � F ) I � � * � F �k � t � is then a 4T1

relation (perhaps multiplied by a power of t ) and the sum of the energies of both sites I �
and I � � is in R ) F �k � t � * .
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Third case: Sites of type 0. An inspection of figure I.2.2 shows that pushing outside

the flowers Fi all arcs associated to the two chords involved in a relation of type 4T2 yields 2

pairs � F1, F4 � and � F2, F3 � of isomorphic flowers (perhaps multplied by common powers

of t ). We have hence F1 ) I * + F4 ) I * and F2 ) I * + F3 ) I * and their contributions to the

partition function cancel mutually. The contribution of a site of type 0 to the partition

function is hence zero.

4T1 relations can be treated in the same way. The details are easy and left to the

reader. One can also use the fact that for F � F �n � t � with n > k

) n & k * Zk ) F * + Zk ) π � ) F * *
where π � : F �n � t �"&(' F �n � 1 � t � is the linear operator introduced in section I.2. QED

I.5 Homogeneous relations

In this section we describe for a fixed positive integer n a subspace R ) F �k � t � * n of the

space R ) F �k � t � * of relations in orientable k & flowers such that Zk ) r * � R ) F �k � t � * n for any

4T2 relation of orientable n & flowers.

The results of this section may no longer hold if one works over a field or a ring

which does not contain the rationals (in fact, if ) n & k * has no multiplicative inverse).

Let r + F1 & F2 � F3 & F4 be a 4T2 relation of ) k � 1 *�& flowers. Let c � , c � � be the

two special chords involved in the relation r . For any chord c � C ) r * we set

rc + F1 ) C ) F1 * � � c � *�& F2 ) C ) F1 * � � c � * � F3 ) C ) F1 * � � c � * & F4 ) C ) F1 * � � c � * .

We call the element

) n & k * ) rc � � rc � � * � �
c � C � r � , c

�� c � ,c � �

rc � F �k � t �

a homogenous 4T relation of degre n.

A homogeneous relation of degre n is hence a sum of the 4T1 relation ) rc � � rc � � *
(taken ) n & k * times) and of the ) k & 1 * 4T2 relations rc , c �+ c � , c � � . The C � t ��& linear

span R ) F �k � t � * n of all homogeneous relations of degre n is hence a subspace of the space

R ) F �k � t � * spanned by all 4T2 and 4T1 relations.

Theorem I.5.1. For any 4T2 relation r � F �n � t � the partition function Zk ) r * is an

element in the space R ) F �k � t � * n of homogeneous 4T relations of degre n.

Proof. Consider a subset J % C ) r * of k � 1 chords containing the two special chords

c � , c � � . In other words, J is a type 2 subset of ) k � 1 * chords in C ) r * . Each such subset J

contains two appariated sites of type 1 and k & 1 sites of type 2. Appariated sites of type 1 are
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in bijection with such subsets whereas each site of type 2 belongs to ) n & k * different sets

J as above. A simple counting argument and the fact that type 0 sites contribute nothing

to Zk ) r * yield then the result. QED

Corollary I.5.2. Let µ : F �k � t � & ' C � t � be a C � t ��& linear application containing

R ) F �k � t � * n in its kernel.

The restriction of the partition function Zµ to n & chord diagrams yields then a

weight of degree n.

I.6. Non-orientable flowers

Definition I.6.1. A k & flower (or a non-orientable k & flower) is an equivalence class

of two permutations α, β on the set E + � & b1, b1, . . . , & b2k , b2k � such that

(i) α and β are involutions of E without fixed points,

(ii) α extends to a linear application of the vector space generated by E ,

(iii) α ) bi *��+ & bi for i + 1, . . . , 2k.

Equivalence classes are defined as in the case of orientable flowers. The difference

between flowers and orientable flowers is requirement (iv) (the orientability condition) in

definition I.2.1 for orientable flowers.

Flowers have of course graphical representations.

The heart of a flower F is a chord diagram D ) F * together with a function σ :

C ) D ) F *-* &(' � � 1 � defined by σ ) c * + 1 if a chord c + � � bi , � bj � is given by

α ) bi * + & bj and σ ) c * + & 1 otherwise (ie. α ) bi * + bj and α ) bj * + bi ). We call

such a function a spin function. A flower F with σ ) c * + 1 for every chord c � C ) F * is

a positive flower. An arbitrary flower can also be considered as a positive flower together

with a spin function.

Given a chord diagram D with k chords and a spin function σ : C ) D * &(' ��� 1 � ,

we define the simple flower F ) D, σ * associated to the chord diagram D with spin function

σ to be the unique flower with heart D, spin function σ and which has only trivial outer

arcs (ie. if α, β � Sym ) � & b1, b1, . . . , & b2k , b2k � * represent F ) D, σ * then β ) bi * + & bi � 1

for i + 1, . . . , 2k & 1 and β ) b2k * + & b1).

We denote by F � t � the graded C � t ��& module generated by all flowers with grad-

ing given by the number of chords in a flower. We denote moreover by Fp � t � the graded

C � t � & module generated by all positive flowers.

Given any subset I % C ) F * of k chords in an n & flower F , we define the element

F ) I * � Fk � t � by

F ) I * + t νF̃ ) I *
18



where F̃ ) I * is the flower obtained by pushing out the heart of F all arcs in chords �� I and

by deleting the ν isolated closed arcs created during this process outside the heart.

Given a positive flower F � Fp
n � 1 � t � and a chord c � C ) F * we denote by F ) C ) F * �

� c � * � Fp
n � t � the obvious element obtained by pushing the chord c out the heart of F . We

denote moreover by F ) C ) F * � � c � * � Fp
n � t � the element obtained by changing first the spin

of the chord c and then pushing this out of the flower.

We define a C � t ��& linear operator πp : Fp
n � 1 � t � &(' Fp

n � t � by

π ) F * + �
c � C � F �

F ) C ) F * � � c � * & F ) C ) F *�� � c � * .

|---> - + -   =  0

Figure I.6.1 An example for the operator πp .

As for orientable flowers there exist relations for positive flowers.

The definition of 4T2 relations for positive flowers is exactly the same as for ori-

entable flowers (except that all flowers involved are only positive), see figure I.2.2.

A 4T1 relation is the element r � Fp
k � t � obtained by applying πp to a 4T2 relation

r̃ � Fp
k � 1 and by removing the 2 ) k & 1 * obvious 4T 2 relations in Fp

k from πp ) r̃ * . A 4T1

relation is hence a C � t � & linear combination of sixteen positive k & flowers.

We denote by R ) Fp
k � t � * the C � t ��& module generated by all 4T2 and 4T1 relations in

Fp
k � t � . The positive flower space

� p
k � t � is the quotient space

� p
k � t � + Fp

k � t � /R ) Fp
k � t � * . The

space

) � p
k � t � * � + HomC � t � ) � p

k � t � , C � t � *
is the weight space of positive k-flowers. Its elements are weights of degree k. Elements of

� ) � �
k � t � * � are weight systems for positive flowers.

Given a k & chord diagram D, its associated simple orientable k & flower F ) D * is of

course a positive flower. We have now analogs of all statements given for orientable flowers

before. We list the analogous results without proofs.

Proposition I.6.2. The C � t � & linear extension of the application

D � & ' F ) D *
induces a homomorphism i

p
k : � k � t �"&(' � p

k � t � .

Proposition I.6.3. We have πp ) R ) Fp
k � 1 � t � * *�% R ) Fp

k � t � * .
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Corollary I.6.4. A weight µ � ) � p
k � t � * � of positive k & flowers defines a weight sys-

tem Zµ (given by

Zµ ) F * + µ
� 1

) n & k * !
) πp * n � k ) F * �

for a positive n & chord flower F with n � k) with values in C � t � on positive flowers and on

chord diagrams.

Corollary I.6.5. (i) The adjoint ) πp * � of the linear operator πp induces a homomor-

phism (still written) ) πp * � : ) � p
k � t � * � & ' ) � p

k � 1 � t � * � from the space of weights of positive

k & flowers into the space of weights of positive ) k � 1 * & flowers.

(ii) For F ��� �n � t � with n � k � 1 and µ � ) � �
k � t � *
� we have

Z � π � ��� � µ � ) F * + ) n & k * Zµ ) F * .

The same definition as in I.3 works also for positive flowers and defines a retraction

ρ
p
k :

� p
k � t � & ' � k � t � of the homomorphism i

p
k considered in proposition I.6.2 above. We

have hence also standard weight systems for positive flowers. The standard weight system

associated to positive 0 & flowers is given by the graphical calculus for the Lie groups so ) n *
and we have of course the analogue of proposition I.3.4 in this setting.

Given a positive integer k we use non-orientable positive flowers to define a Spin

model on an n & chord diagram D with values in Fp
k � t � in the sense of Definition I.3.1. The

spin model is then defined by:

(1) The set of spins is the set ��� 1 � .

(2) The set C is the set C ) D * of chords in D.

(3) The set S of sites is the set � I % C ) D * �
] ) I * + k � of all subsets with k chords

in C ) D * .

(4) A site s � S is a subset I % C ) D * of k chords in D. A spin function σ :

C ) D * & ' ��� 1 � defines a simple flower F ) D, σ * . We define then the energie function

e : S � � � 1 � C � D � &(' Fk � t � by

e ) I , σ * + F ) D, σ * ) I *
if F ) D, σ * ) I * is a positive flower multiplied by a power of t and by e ) I , σ * + 0 otherwise

(we identify the subset I of chords in D with the obvious corresponding subset of chords in

the simple flower F ) D, σ * ).

(5) The function f : σ � C � t � & ' C � t � is given by

f ) σ * + �

c � C � D �
σ ) c * .
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We have hence f ) σ * + & 1 if the state σ has an odd number of chords with spin & 1 and

f ) σ * + 1 otherwise.

The partition function of this spin model is given by

Zk ) D * + �
σ ����� 1 � C � D �

� �

c � C � D �
σ ) c * � �

I � C � D � , ] � I � � k, σ � c � � 1 � c � I

F ) D, σ * ) I * .

It is easy to check that we have also

Zk ) D * + 1

) n & k * !
�

σ ����� 1 � C � D �

� �

c � C � D �
σ ) c * � ) πp * n � k ) F ) D * * .

We extend Zk in order to get a C � t � & linear application D � t � & ' Fp
k � t � .

The important feature of the partition function Zk is given by the following Lemma:

I.6.6. Let r � Dn be a 4T relation. Let I % C ) r * be a site of type 0 (containing

neither of the special chords c � , c � � involved in r).

Then the site I contributes nothing to Zk ) r * (ie

�
σ � SpC � r 	 I �

f ) σ * F ) D, σ * ) I *�+ 0 * .

The proof is an inspection of figure I.6.2 below.

- +

- + - +

- + - +

+ - + -

-
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Figure I.6.2. Proof of lemma I.6.6.

As in the case of orientable flowers, a 4T2 relation is an elementary contribution of

a site of type 2 to the partition function and a 4T1 relation corresponds to the contribution

of two appariated type 1 sites.

In analogy with section I.5 we can describe a subspace R ) Fp
k � t � * n % R ) Fp

k � t � * such

that Zµ ) r * � R ) Fp
k � t � * n for any 4T relation r � Dn and for any element µ � ) Fp

k � t � * �
containing R ) Fp

k � t � * n in its kernel.

More precisely, given a 4T2 relation r + F1 & F2 � F3 & F4 � Fp
k � 1 � t � of positive

) k � 1 * flowers, we set for any c � C ) r *

rc +
4

�
i � 1

) & 1 * i � Fi ) C ) r * � � c � * & Fi ) C ) r * � � c � * �
with the same notation as in the beginning of the section.

We call then the element

) n & k * ) rc � � rc � � * � �
c � C � r � , c

�� c � ,c � �

rc � Fp
k � t �

a homogeneous 4T relation of degree n in Fp
k � t � .

The space R ) Fp
k � t � * n of all C � t ��& linear combinations of such relations has then the

desired properties.

I.7. Flower diagrams for braid groups

This section gives an outline of how flowers can be used for braid groups. Only the

pure braid group is considered but it is possible to deal with the ordinary braid group after

some modifications.

Definition 7.1. A k & chord diagram for the pure braid group on n & strands is a se-

quence

� c1, c �1 � , � c2, c �2 � , . . . , � ck , c �k �
of k subsets with two elements in � 1, 2, . . . , N � .

Figure I.7.1. A 5 & chord diagram on the pure braid group with 4 strands
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Such diagrams have graphical representations as illustrated in figure I.7.1. They can

be composed in the same way as braids.

The subsets � ci , c �i � are the chords of the diagram.

4T relations of such diagrams are given by linear combinations of four diagrams as

in figure I.7.2. We denote by Bk � t � the free C � t � & module on all such k & chord diagrams and

by R ) Bk * the subspace spanned by all 4T relations.

- -+

Figure I.7.2. 4T relations

We define again the space of weights � k � t � * � of degree k where � k � t � + Bk � t � /
R ) Bk � t � * .

Orientable pure braid flowers are defined as suggested by the examples of Figure

I.7.3.

Figure I.7.3. Examples of orientable pure braid flowers

One defines also 4T2 and 4T1 relations according to figures I.7.4 and I.7.5.

+ - + -

Figure I.7.4. 4T2 relations for orientable pure braid flowers
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- + -

+ - + -

Figure I.7.5. 4T1 relations for orientable pure braid flowers

One can then define spin models, partition functions etc as discussed for chord

diagrams.

Given a spin function σ : C ) B * &(' � � 1 � (where C ) B * denotes the set of chords

of such a diagram B) we associate to it a simple (pure braid-)flower with spin function σ by

replacing all chords with two parallel or crossing arcs (according to the value of the spin

function).

+ - + -

- + - +

- + - +

+ - + -

Figure I.7.6. 4T2 relations for non-orientable pure braid flowers

The obvious results for non-orientable flowers on chord diagrams adapt then and

yield analogous results on pure braid flowers.
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I.8. Some weight systems for small flowers

In this section we describe the weight spaces for small flowers.

Example I.8.1: Orientable 0 & flowers. They yield a unique weight system which is

standard and corresponds to the graphical calculus associated to the Lie groups g l ) n * .

Example I.8.2: Orientable 1 & flowers. There are only two orientable 1-flowers (the

flowers A and B of figure I.8.4 below).

There are no 4T2 relations since they always involve at least two chords. A short

computation (using symetries there is in fact only one case to check) yields that there are

also no 4T1 relations. Orientable 1 & flowers yield hence two C � t � & linearly independent

weight systems.

The first one is the standard solution (given by µ ) A * + t and µ ) B *,+ 1) and the

second one is ) π � * � ) µ * where µ is the standard weight on 0 & flowers (and we have hence

) π � * � ) µ * ) A *�+ 1 and ) π � * � ) µ * ) B *�+ t ).

Example I.8.3: Orientable 2 & flowers. (i) Let F1, . . . , F10 be the flowers represented

by α ) � b1 * +�� b3, α ) � b2 * +�� b4 and β given by

F1 : β ) � bi * +�� bi (i + 1, 2, 3, 4),

F2 : β ) � b1 * +�� b1, β ) � b2 * +�� b2 and β ) � b3 * +�� b4,

F3 : β ) � b1 * +�� b1, β ) � b3 * +�� b3 and β ) � b2 * +�� b4,

F4 : β ) � b1 * +�� b1, β ) & b2 * + b3, β ) b2 * + & b4 and β ) & b3 * + b4,

F5 : β ) � b1 * +�� b1, β ) & b2 * + b4, β ) b2 * + & b3 and β ) b3 * + & b4,

F6 : β ) � b1 * +�� b2 and β ) � b3 * +�� b4,

F7 : β ) � b1 * +�� b3 and β ) � b2 * +�� b4,

F8 : β ) & b1 * + b2, β ) b1 * + & b4, β ) & b2 * + b3 and β ) & b3 * + b4,

F9 : β ) & b1 * + b2, β ) b1 * + & b3, β ) & b2 * + b4 and β ) b3 * + & b4,

F10 : β ) & b1 * + b4, β ) b1 * + & b2, β ) b2 * + & b3 and β ) b3 * + & b4.
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F F F F F21 3 4 5

F F F F F6 7 8 9 10

Figure I.8.1. The 10 orientable 2 flowers with crossing chords

We get a standard weight by setting µ ) F1 * + t 3, µ ) F2 * + µ ) F3 * + t 2, µ ) F4 * +
µ ) F5 *#+ µ ) F6 * + µ ) F7 * + t and µ ) F8 *#+ µ ) F9 * + µ ) F10 * + 1 and µ ) F * + 0 if F is an

orientable 2 & flower with crossing chords.

(ii) Let F11, . . . , F26 be the flowers represented by α ) � b1 *�+ � b4, α ) � b2 *�+ � b3

and β given by

F11 : β ) � bi * +�� bi (i + 1, 2, 3, 4),

F12 : β ) � b1 * +�� b1, β ) � b2 *�+ � b3 and β ) � b4 * +�� b4,

F13 : β ) � b1 * +�� b1, β ) � b2 *�+ � b2 and β ) � b3 * +�� b4,

F14 : β ) � b1 * +�� b3, β ) � b2 *�+ � b2, β ) � b4 * +�� b4,

F15 : β ) � b1 * +�� b1, β ) � b2 *�+ � b4, β ) � b3 * +�� b3,

F16 : β ) & b1 * + b2, β ) b1 * + & b3, β ) & b2 * + b3, β ) � b4 * + � b4,

F17 : β ) & b1 * + b2, β ) b1 * + & b4, β ) & b2 * + b4, β ) � b3 * + � b3,

F18 : β ) � b1 * +�� b2, β ) � b3 *�+ � b4,

F19 : β ) � b1 * +�� b1, β ) & b2 *�+ b4, β ) b2 * + & b3, β ) b3 * + & b4,

F20 : β ) & b1 * + b3, β ) b1 * + & b2, β ) b2 * + & b3, β ) � b4 * + � b4,

F21 : β ) � b1 * +�� b3, β ) � b2 *�+ � b4,

F22 : β ) � b1 * +�� b4, β ) � b2 *�+ � b3,

F23 : β ) & b1 * + b2, β ) b1 * + & b3, β ) & b2 * + b4, β ) b3 * + & b4,

F24 : β ) & b1 * + b3, β ) b1 * + & b4, β ) & b2 * + b4, β ) b2 * + & b3,

F25 : β ) & b1 * + b2, β ) b1 * + & b4, β ) & b2 * + b3, β ) & b3 * + b4,

F26 : β ) & b1 * + b4, β ) b1 * + & b2, β ) b2 * + & b3, β ) b3 * + & b4.
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F

F

19

F F F11 12 13 14

F F F15 16 17 18

F F F F20 21 22

F F F F23 24 25 26

Figure I.8.2. The 16 orientable 2 flowers without crossing chords

Setting µ ) F11 * + t 3, µ ) F12 * + µ ) F13 * + µ ) F14 * + µ ) F15 * + t 2, µ ) F16 * +
µ ) F17 * + µ ) F18 *�+ µ ) F19 *�+ µ ) F20 * + µ ) F21 *�+ µ ) F22 * + t and µ ) F23 *�+ µ ) F24 * +
µ ) F25 *�+ µ ) F26 * + 1 and µ ) Fi * + 0 for i + 1 . . . 10 we get another standard weight.

Two more C � t � & linearly weight system on orientable 2 & flowers are of the form

) π � * � ) µ * where µ is a weight on orientable 1 & flowers.

There are two solutions which are only weights ) mod t * (ie only the constant

term of Zµ ) r * is zero for a 4T relation r � D) and which are not standard. They are given as

follows.

(iii) Setting µ ) F8 *�+ 2, µ ) F9 *�+ 1 and µ ) F * + 0 in all other cases and taking the

result ) mod t * (ie considering only the constant term) one gets a weight system.

(iv) A second such solution is given by µ ) F2 * + µ ) F13 * + µ ) F14 * + µ ) F15 * +
µ ) F24 *�+ 1, µ ) F8 * + 2 and µ ) F * + 0 in all other cases.

Let us compute the value of the weight systems (i)-(iv) on all 3 & chord diagrams.

The associated orientable simple flowers are given by Figure I.8.3.
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C D EA B
Figure I.8.3. The five orientable simple flowers associated to all 3 & chord diagrams

Applying the operator π � to these five flowers and evaluating the weight systems

µ � described by (*) we get:

flower π � ) flower * µi µii µiii µiv

A 3t F26 0 3t 0 0
B 2t F26 � F22 0 3t 0 0
C t F10 � F19 � F20 t 2t 0 0
D 2 F5 � F18 2t t 0 0
E 3 F6 3t 0 0 0

(generators of 4T-relations for 3 & chord diagrams are given by A & B and C � E & 2D).

Example I.8.4: Non-orientable 0 & flowers. They yield one solution which is stan-

dard.

Example I.8.5: Non-orientable positive 1 & flowers.

A B C

Figure I.8.4. The three non-orientable positive & flowers

There are three non-orientable positive 1-flowers. Since 4T2 relations always in-

volve at least 2 chords there are no such relations. The computation of the subspace gen-

erated by 4T1 relations can be done by hand (using symmetries one has to consider only

four different cases) and one gets the unique relation

2A & t ) B � C *
with A, B, C the three positive 1-flowers of figure I.8.4.

We have two C � t � & linearly independent weight systems. All solutions are C � t � & li-

near combinations of a standard solution (given by µ ) A *�+ t and µ ) B *�+ µ ) C *�+ 1) and

of π � ) µ * with µ standard (ie given by π � ) µ * ) A *�+ 0, π � ) µ * ) B * + t & 1, π � ) µ * ) C *�+ 1 & t ).
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II. Intersection properties

II.1. Preintersection matrices

Let SDk denote the finite set of k & chord diagrams.

Given a k & chord diagram D � SDk , its automorphism group Aut ) D * is the group of

all “rotations” which leave D invariant. More formally, let D be defined by a fixed-point free

involution α � Sym ) � b1, . . . , b2k � * (where � b1, . . . , b2k � � S are the endpoints of chords

in D, cyclically ordered by the orientation of S and where the orbits of α correspond to

chords in D), its automorphism group Aut ) D * is the cyclic group � γ
�
γ jαγ � j + α � %

Sym ) � b1, . . . , b2k � * of all permutations γ which preserve the cyclic order of � b1, . . . , b2k �
and which commute with α.

Given a k & chord diagram D � SDk , the k chords of it define (for k � 1) 2k open

disjoint intervals on the oriented circle S supporting D (remove all endpoints of chords

from the circle S). Denote these intervals by J1, . . . , J2k .

Recall that a subset I % C ) D * of k chords in an n & chord diagram D defines a

k & chord diagram D ) I * obtained by erasing all chords of C ) D * � I . The endpoints of the

k chords in D ) I * cut the circle S containing D also into 2k open intervals. Choosing an

isomorphism ψ between D ) I * and the unique k & chord diagram A � SDk isomorphic to

D ) I * we get a labelling J �1, . . . , J �2k of these intervals by setting J �i + ψ ) Ji * . Since there are�
Aut ) A * � isomorphisms between D ) I * and A this labelling is not uniquely determined by

the fixed labelling of the corresponding intervals in the diagram A.

We define preintersection numbers by

ist + ] � c � C ) D * � I with extremities in J �s and J �t � .

We call the symmetric matrix M̃D � I � with entries ist the preintersection matrix of

D ) I * . The chord diagram D ) I * is the index of the matrix M̃D � I � .
The group Aut ) A * of automorphisms of the diagram A acts on preintersection num-

bers by permuting their indices. It acts hence also on preintersection matrices (by M̃ � &('
P t M̃ P where P is the appropriate permutation matrix).

Example II.1.1. The following figure shows three chord diagrams D1, D2 and D3

with subsets I % C ) Di * indicated by chords which have been drawn as straight fat seg-

ments.
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J1

J2J3

J4 J1

J2J3

J4

J2

J1

D D D1 2 3
Figure II.1.1

For I % D1 the preintersection numbers ist (which are of course symmetric in s, t )

are given by i11 + i22 + 2 and i12 + 3. The preintersection matrix is

M̃D1 � I � +
�

2 3
3 2 � .

The automorphism group of the unique 1 & chord diagram is cyclic of order two and acts on

J1, J2 by transposing them. In the case of the chord diagram D1, the automorphism group

of D1 ) I * leaves the preintersection matrix invariant.

For I % D2 the preintersection numbers are i11 + i33 + i44 + i12 + i14 + 0, i22 +
i23 + i24 + 1 and i34 + i13 + 2 and we get the preintersection matrix

M̃D2 � I � +���� 0 0 2 0
0 1 1 1
2 1 0 2
0 1 2 0

���	
The automorphism group of the 2 & chord diagram D2 ) I * is the cyclic group of order four

acting on the intervals J1, . . . , J4 by permuting them cyclically. The orbit of preintersection

matrices under Aut ) D2 ) I *-* is hence given by

��� 0 0 2 0
0 1 1 1
2 1 0 2
0 1 2 0

���	 , ��� 1 1 1 0
1 0 2 2
1 2 0 0
0 2 0 0

���	 , ��� 0 2 2 1
2 0 0 1
2 0 0 0
1 1 0 1

���	 , ��� 0 0 1 2
0 0 0 2
1 0 1 1
2 2 1 0

���	 .

For I % D3 the preintersection numbers are i22 + i14 + 0, i11 + i33 + i44 + i12 +
i13 + i23 + i34 + 1 and i24 + 2 and we get the preintersection matrix

M̃D3 � I � + ��� 1 1 1 0
1 0 1 2
1 1 1 1
0 2 1 1

���	
The automorphism group of the 2 & chord diagram D3 ) I * is the cyclic group of order two

which acts on the intervals J1, . . . , J4 by interchanging J1, J3 respectively J2, J4. The orbit of
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preintersection matrices under Aut ) D3 ) I * * is given by

��� 1 1 1 0
1 0 1 2
1 1 1 1
0 2 1 1

� �	 , ��� 1 1 1 1
1 1 0 2
1 0 1 1
1 2 1 0

� �	 .

II.2. A spin model

Choose a natural integer p � 2 which will be fixed in the sequel (p + 1 works but is

uninteresting). Considering all k & preintersection matrices ) mod p * we get a finite set

of symmetric ) 2k * � ) 2k * matrices with coefficients in the finite ring Z/pZ and indices in

the set of k & chord diagrams.

For a given k & chord diagram A the group Aut ) A * of its automorphisms acts by per-

mutation on all preintersection matrices with index A. Call two preintersection matrices

equivalent if they are indexed by the same chord diagram A and if they are in the same orbit

under Aut ) A * .

This action and the associated equivalence relation are of course compatible with

the reduction ) mod p * of preintersection matrices.

We denote by

Ek + Ek ) p *
the finite-dimensional vector space with basis all equivalence classes of k & preintersection

matrices taken ) mod p * .

Given a preintersection matrix M̃D � I � of index a k & chord diagram D ) I * , we denote

by ED � I � + ED � I � ) p * the corresponding element in Ek .

We define a spin model values in Ek by considering the same settings as in sec-

tion I.4 for orientable flowers except that the energy function of a site I is given by e ) I *�+
ED � I � % Ek and we extend the partition function

D � &(' Zk ) D * + �
I � C � D � , ] � I � � k

ED � I � � Ek

C & linearly to a partition function Zk : D &(' Ek

We denote by R̃ ) Ek * the subspace R̃ ) Ek *�% Ek spanned by the set

� πk ) r * � r a 4T relation of chord diagrams � % Ek >

A linear form µ � E �k containing R̃ ) Ek * in its kernel defines a partition function

Zµ ) D * + l ) πk ) D *-* + �
I � C � D � , ] � I � � k

µ ) ED � I � *
which extends linearly to a weight system on D.
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The main difficulty is of course the description of the subspace R̃ ) Ek * . In the next

section we exhibit a finite set of elements whose span contains R̃ ) Ek * .

II.3. Relations

Let r + D1 & D2 � D3 & D4 � Dn be a 4T relation of n & chord diagrams. Let

c � , c � � � C ) r * be the two chords involved in r .

Let I % C ) Di * be a k & chord subset of C ) r * which is of type 2, ie which contains c �
and c � � . We call the element

ED1 � I � & ED2 � I � � ED3 � I � & ED4 � I � � Ek

a 4T2 relation.

Let I � and I � � be two appariated type 1 subsets of k chords in C ) r * (ie. I � + ) I � �
I � � * � � c � � and I � � + ) I � � I � � * � � c � � � ). We call the element

ED1 � I � � � ED1 � I � � � & ED2 � I � � & ED2 � I � � � � ED3 � I � � � ED3 � I � � � & ED4 � I � � & ED4 � I � � �
of Ek a 4T1 relation.

Theorem II.3.1. Let R ) Ek * % Ek be the vector space spanned by all 4T2 relations

in n & chord diagrams with n � k ) 2k � 1 * ) p & 1 * � k and by all 4T1 relations given by

n & chord diagrams with n � ) k � 1 * ) 2k � 3 * ) p & 1 * � k � 1. Then the space R̃ ) Ek * is

contained in R ) Ek * .

Proof. Consider the contribution ED1 � I � & ED2 � I � � ED3 � I � & ED4 � I � � Ek of a given

site I % C ) r * to the partition function

Z ) r *�+ �
I � C � Di � , ] � I � � k

ED1 � I � & ED2 � I � � ED3 � I � & ED4 � I � � Ek

where r + D1 & D2 � D3 & D4 is a 4T relation of chord diagrams.

If I is a site of type 0 we have ED1 � I � + ED2 � I � and ED3 � I � + ED4 � I � . Type zero sites

contribute hence nothing to partition functions.

Consider now a site of type 2. The four preintersection matrices M̃D1 � I � , . . . , M̃D4 � I �
associated to these sites have the “same” entries (of course placed in a different man-

ner). If such an entry is � p, we can remove the same set of p chords from the four dia-

grams D1, . . . , D4 without changing the matrices M̃D1 � I � ) mod p * , . . . , M̃D4 � I � ) mod p *
and we get finally a 4T relation r̃ + D̃1 & D̃2 � D̃3 & D̃4 such that EDi � I � + ED̃i � Ĩ � and the

partition function

Z ) r̃ * + ED̃1 � Ĩ � & ED̃2 � Ĩ � � ED̃3 � Ĩ � & ED̃4 � Ĩ �
32



of r̃ is a 4T2 relation. All ) 2k * ) 2k � 1 * /2 + k ) 2k � 1 * different preintersection numbers ist

of this relation are � p & 1 and

�
s � t

ist � k � 2k ) 2k � 1 *
2

) p & 1 * � k

equals the number of chords in the diagrams of the relation r̃ . This implies Zk ) r̃ *�+
Zk ) r * � R ) Ek * .

Sites of type 1 are always associated in pairs. An argument similar to that used for

sites of type 2 can be applied to the sum of contributions of two appariated type 1 sites and

yields the result. QED

Remark II.2.2. (i) The estimations of the number n of chords given in Theorem

II.2.1 are not optimal. Indeed they can easily be lowered by remarking that at least 2k of

the preintersection numbers given by a site I of type 2 in a relation are zero. An analogous

remark holds for sites of type I.

(ii) The set of generators described in theorem II.2.1 is highly redundant. It is

indeed enough to consider 4T2 relations with respect to all subset I such that all preinter-

section numbers are < p. 4T1 relations are given by subsets J of type 2 with k � 1 chords

in a relation r and one can again assume that all preintersection numbers given by J are

< p. Moreover, the exact position of chords in C ) D * � I (or C ) D * � J ) is irrelevant, only their

relative positions with respect to chords in I (or J ) matters.

(iii) The space Ek has a grading given by the number of chords ) mod p * in D for

an element MD � I � � Ek . Since all relations are also graded, one can solve all equations in

the p different homogeneous parts.

Unfortunately, even using all simplifications implied by the above remarks awfully

many variables and even more relations still remain.

II.4. Homogeneous relations

As in sections I.5 and I.8 it is possible to describe a subspace R ) Ek * n % R ) Ek * of

homogeneous relations such that any linear function µ � E �k containing R ) Ek * n defines a

partition function Zµ which yields a weight of degree n on chord diagrams.

Let us take a 4T relation r + D1 & D2 � D3 & D4 with special chords c � , c � � involved

in the relation. Let us also choose a subset I % C ) r * of k � 1 chords which is of type 2 (ie.

c � , c � � � I ). We define Ec � Ek by

Ec + ED1 � I � � c � � & ED2 � I � � c � � � ED3 � I � � c � � & ED4 � I � � c � �
for any chord c � I . We call the element

) n & k * ) Ec � � Ec � � * � �
c � I � � c � ,c � � �

Ec
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a homogenous 4T relation of degre n in Ek .

Such a relation is hence a sum of an unique 4T1 relation (taken ) n & k * times) and

of ) k & 1 * 4T2 relations.

Theorem II.4.1. Let R ) Ek * n be the subspace spanned by all homogenous 4T rela-

tions coming from m & chord diagrams with m � n ) mod p * and m � min � ) k � 1 * ) 2k �
3 * ) p & 1 * � k � 1, n � .

Then Zk ) r * � R ) Ek * n for any 4T relation of n & chord diagrams.

Proof. Given a 4T relation r + D1 & D2 � D3 & D4 of n & chord diagrams one checks

that

) n & k * Z ) r *�+ �
J � C � Di � , ] � J � � k � 1, c � ,c � � � J

RJ � C � r �
where RJ � C � r � denotes the homogeneous 4T relation of degree n associated to the subset

J of ) k � 1 * chords in C ) r * . As in the proof of theorem II.3.1 one can replace the relation r

by a relation r̃ having less chords if n is too huge. QED

Remark II.4.2. For a fixed n, preintersection matrices coming from n & chord di-

agrams are in finite number and the positive integer p used for reducing preintersection

matrices ) mod p * is useless if p > n & k.

II.5. Colours

It is possible to “colour” chords in C ) D * by spin functions σ : C ) D * &(' Sp +
� s1, . . . , sr � with values in a finite set Sp of spins or colours.

All definitions and results of sections II.1-4 generalize easily and lead to spin models

which have states given by colorations.

In fact, different versions of such models can be set up.

The simplest spin model is defined by considering all states given by all possible

colorations in SpC � D �
One can also restrict oneself to consider only states which have a prescribed num-

ber of chords in each colour. There are of course more relations to consider than in the first

case. One works however with vector spaces having smaller dimensions.

II.6. A trivial spin model

The recipe for the construction of spin models is to consider some intrinsic “local”

properties of chord diagrams which can be encoded by elements in a finite dimensional
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vector space and to study a spin model with values in this vector space. One has then

to caracterize the subspace generated by relations (or at least a space containing it) thus

getting weight systems on chord diagrams.

The easiest way to get intrinsic local properties out of preintersection matrices is

to consider the sum of preintersection matrices under Aut ) D ) I *-* and to turn these ma-

trices into a vector space. We define hence the intersection matrix MD � I � associated to a

preintersection matrix M̃D � I � by

MD � I � + �
ϕ � Aut � D � I � �

ϕ ) M̃D � I � *
and we denote by IMk the vector space spanned by all intersection matrices (the “coordi-

nates” of IMk are hence symmetric ) 2k * � ) 2k * matrices indexed by k & chord diagrams).

We define a partition function Zk : Dn & ' IMk by

D � & ' Zk ) D * + �
I � C � I � , ] � I � � k

MD � I �
and call the subspace R ) IMk * generated by all partition functions of 4T relations in � Dn

the space of relations.

Given a linear function µ : IMk &(' C containing all elements of R ) IMk * in its

kernel, we get a weight system on � by considering the linear application defined by the

partition function

D � & ' Zµ ) D * + µ ) Zk ) D *-* + �
I � C � I � , ] � I � � k

µ ) MD � I � *

The following result shows that this construction is uninteresting. The main ingre-

dient of its proof is the fact that for a given subset I % C ) D * the application D � &(' MD � I �
is in some sense “linear” in the chords c � C ) D * � I . We leave the details to the reader.

Theorem II.6.1. (i) The space R ) Ek * of relations in IMk is spanned by the image of

all 4T relations in ) k � 1 * & chord diagrams.

(ii) Every weight system Zµ as above is of the form

D � & ' �
I � C � D � , ] � I � � k � 1

f ) D ) I * *

where f : Dk � 1 & ' C is a suitable weight of degre ) k � 1 * on chord diagrams.
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III. Local operators

III.1. Definitions

In this part we construct spin models on � with values in � . Such spin models are

hence simply endomorphisms of the (infinite dimensional) vector space � .

Let D � Dn be an n & chord diagram drawn inside an oriented circle S. Given a

subset I of k & chords, a neighbourhood of I is an open subset of S having 2k (for k � 1)

connected components which contains all endpoints of chords in I and which contains no

endpoints of chords not in I . A neighbourhood of the empty chord set is given by any open

connected subset in S which contains no endpoints of chords.

Definition III.1.1. A local ) k, l *�& operator is an application L which associates to a

chord diagram D and a subset I % C ) D * of k chords in D an element L ) D, I * � � n � k � l

(with n the number of chords in D) such that the following conditions hold:

(i) L ) D, I * is given by a linear combination of ) n & k � l * & chord diagrams which

are obtained from D by erasing the chords c � I in D and by gluing l new chords with all

their endpoints in a neighbourhood of the erased chords.

The coefficients and the new chord diagrams depend only on the subdiagram D ) I *
formed by the erased set of chords.

(ii) If r + D1 & D2 � D3 & D4 is a 4T relation and I % C ) r * is a type 2 subset of k

chords, then

L ) D1, I *�& L ) D2, I * � L ) D3, I *�& L ) D4, I * + 0

in � .

(iii) If r + D1 & D2 � D3 & D4 is a 4T relation and I � , I � � % C ) r * are two appariated

type 1 subsets of k chords, then

L ) D1, I � * � L ) D1, I � � *�& L ) D2, I � *�& L ) D2, I � � * � L ) D3, I � * � L ) D3, I � � *�& L ) D4, I � *�& L ) D4, I � � * + 0

in � .

Given a local ) k, l * & operator L as in the above definition and an n & chord diagram

D we define a spin model on D with partition function

ZL ) D * + �
I � C � D � , ] � I � � k

L ) D, I * � �

which we extend to a partition function ZL : D &(' � .

Theorem III.1.2. (i) The partition function ZL factorizes through 4T relations and

yields hence a linear application (still called partition function) ZL : � & ' � .
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(ii) The vector space spanned by all partition functions ZL with L a local operator

is an algebra for the composition of such partition functions.

Proof. (i) Given a 4T relation r + D1 & D2 � D3 & D4 in Dn the element L ) D1, I * &
L ) D2, I * � L ) D3, I *�& L ) D4, I * of � n � k � l is obviously zero if I is a type 0 subset.

For a type 2 subset the above element is zero by requirement (ii) in definition III.1.1.

Requirement (iii) shows that

L ) D1, I � * � L ) D1, I � � * & L ) D2, I � * & L ) D2, I � � * � L ) D3, I � * � L ) D3, I � � * & L ) D4, I � * & L ) D4, I � � *
is zero if I � , I � � are two associated type 1 sets. This proves assertion (i).

(ii) Given a local ) k, l *�& operator L and a local ) k � , l � *�& operator L � , it is easy to

check that ZL � ZL � is a sum of partition functions of local ) s, t *�& operators with s � k � k �
and t � l � l � . QED

Examples III.1.3. (i) Multiplication in � by a fixed l & chord diagram is given by a

partition function ZL with L a local ) 0, l *�& operator.

(ii) Given a weight f � ) � k * � , the application ) id � f * � ∆ (with ∆ : � & ' � � �
the comultiplication) is given by ZL with L a local ) k, 0 * & operator.

The above examples exhaust the set of local ) 0, l * and local ) k, 0 *�& operators. They

generate a subalgebra which is the algebra of differential operators on � with polynomial

coefficients.

The partition function ZL associated to a local ) k, l *�& operator has degree l & k and

one has of course the obvious inclusion
���

k,l % ���
k � 1,l � 1 if

���
k,l % End ) �,* denotes

the vector space of all partition functions coming from local ) k, l *�& operators. It would

of course be interesting to know the dimensions of the spaces
���

k,l (they are obviously

finite). In particular, we have always dim ) ��� 0,k * + dim ) ��� k,0 * since the first number is

the dimension of � k and the second the dimension of ) � k * � .
III.2. Local ) 1, � *�& operators

We state here without proof two easy properties of local ) 1, � * & operators.

Proposition III.2.1. (i) Given k local ) 1, li * & operators L1, . . . , Lk , we get a local

) k,
�

li * & operator by applying the operators L1, . . . , Lk in the k! possible ways to the k

chords of a k & chord set I (applying a different operator on each chord).

(ii) Denote the operator constructed above by L � L1, . . . , Lk � . The local operator

associated to the partition function

ZL1 � ZL2 & ZL � L1,L2 �
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is a local ) 1, l1 � l2 & 1 * & operator.

This proposition allows the construction of many ) 1, � *�& operators by iteration.

The following result (whose proof is easy) shows that local ) 1, � *�& operators are also

interesting from an algebraic point of view.

Proposition III.2.2. (i) The partition function ZL associated to a local ) 1, � *�& opera-

tor defines a derivation on the algebra � (ie we have ZL ) D � D � * + ) LZ ) D *-*�� D � � D � ) LZ ) D � * *
).

(ii) Given a local ) 1, l * & operator L, let CL denote the application defined by apply-

ing the local operator L to any chord of a chord diagram. The operator CL defines then an

endomorphism of � which is moreover a homomorphism for the algebra structure on �
(ie CL ) D � D � * + ) CL ) D *-*�� ) CL ) D � *-* ).

Examples III.2.3. (i) Let L1 be defined by figure III.2.1 (only the chord I and a neigh-

bourhood of it have been drawn).

|----->
Figure III.2.1. The local ) 1, 2 *�& operator L1

We claim that this defines a local ) 1, 2 *�& operator. The proof is by contemplation

of the sum of two 4T relation given by the following figure (and by remembering that 4T

relations imply generalized 4T relations).

- + -

= -

+ - + -

Figure III.2.2. Proof

(ii) The local ) 1, 3 * & operator associated to ZL1 � ZL1 & ZL � L1,L1 � with L1 as above

is then given by
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|--->

+

Figure III.2.3. A local ) 1, 3 * & operator

Example III.2.4. The operator of example III.2.2 (i) can be modified to yield local

) 1, l * & operators by replacing the single additional chord by a bunch of ) l & 1 * parallel

chords as shown in figure III.2.4 with l + 4.

|--->

Figure III.2.4. A local ) 1, 4 * & operator

Proposition III.2.5. Let L be a local ) 1, � * & operator from example III.2.4 and let CL

be the associated algebra homomorphism defined in proposition III.2.2 (ii).

Considering CL as a homomorphism from � to ˜� the element CL is even a Hopf

algebra homomorphism (ie we have also ) CL � CL *�� ∆ + ∆ � CL : � & ' ˜� ).

IV. Liftings and q & podal chord diagrams

IV.1. Definitions

In this section we define spin models on Dn with values in D which yield linear

applications � n & ' � . These models generalize a well-known construction on chord

diagrams which corresponds to cablings of knots.

Given an integer q � 1 and a chord diagram D � Dn one defines ψq ) D * � Dn as

the sum of all liftings of D to the q & cover of the oriented circle supporting D (see definition

3.11 in [B]). The element ψq ) D * is hence a sum of q2n diagrams.

We give the principal properties of the linear operator ψq in the following (well-

known) proposition:

Proposition IV.1.1. (i) The operator ψq induces an operator (still called) ψq : � &('
� (ie ψq ) r * � < 4T relations > for any 4T relation r).
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(ii) ψq � ψp + ψqp .

(iii) ∆ � ψq + ) ψq � ψq *�� ∆ (ie ψq defines a morphism of coalgebras).

The operator ψq can be generalized to an operator ψq1,...,ql : � n & ' � l
n (where Dl

n

denotes the set of chord diagrams associated to singular links having n singularities and

whose desingularisations have l components) in the following way: Choose l (non-zero)

integers q1, . . . , ql and consider a covering of an oriented circle which has l connected

components and the degree of the i & th component is
�
qi
�
. Orient the i & th component

such that the projection operator preserves the orientation if qi > 0 and reverses the ori-

entation if qi < 0. As before take the sum of all liftings of chords in D to this covering but

multiply an element by & 1 if the number of endpoints of chords on negatively oriented

circles (circles corresponding to a negative integer qi) is odd.

In the sequel we will mainly consider the simpler operator ψq but all constructions

can also be done with the operators ψq1,...,ql . The necessary modifications are only roughly

outlined.

Definition IV.1.2. (i) A q & podal chord diagram is a chord diagram D inside a circle

S together with a set of q disjoint open intervals on S which contain all endpoints of chords

in D.

(ii) A q & podal subdiagram is a subset of chords I % C ) D * of a chord diagram D

such that there exists q disjoint open intervals in S containing all endpoints of chords in I

and no endpoints of chords in C ) D * � I .

A q & podal relation is an alternating sum of 2q chord diagrams as suggested in fig-

ure IV.1.1.
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Figure IV.1.1. A 3 & podal relation

It is easy to check that 4T relations imply all q & podal relations (the proof is the

same as for Lemma 1.2).

IV.2. A spin model

Let q � 2 be a fixed integer and let G be a fixed q & podal chord diagram.

Given three positive integers n, k1, k2 with n � k1 � k2, we construct for each

n & chord diagram D � Dn a spin model with values in D as follows:
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(1) Given a chord c the finite set of spins which it can take are the q2 possible liftings

of c to the connected covering pq : S & ' S of degree q of the circle underlying D.

(2) The set C is the set of chords in D.

(3) A site I + ) I o
1 � I2 * is given by the choice of k1 chords I1 in C ) D * together with one

of their endpoints and by the choice of k2 more chords I2 (there are hence 2k1 � n
k1
� � n � k1

k2
�

sites). The choosen endpoint of the chords in I1 endows them with an orientation. We

denote hence by I o
1 the set of these oriented chords.

(4) The energy e ) I , σ * � D of the site I + ) I o
1 , I2 * in the state σ is the sum of the

qk1 � 2k2 chord diagrams defined as follows:

Lift first the n & k1 & k2 chords in C ) D * � � I1 � I2 � according to the state σ to the

connected q & th covering of S.

Given an endpoint α � I o
1 glue the fixed q & podal diagram G onto an ε & neighbour-

hood of p � 1
q ) α * (there are q such gluings corresponding to the action of the cyclic group

Z/qZ on p � 1
q ) α * ).

For chords c � I2 do the same with both endpoints of c.

Finally define e ) I , σ * as the sum of all qk1 � 2k2 possible chord diagrams obtained in

this way.

(5) The function f is independent of the state σ (take for instance the function

f ) σ * + 1 for all σ).

The partition function Z ) D * is then a sum of

2k1

�
n

k1 � � n & k1

k2 � q2n � k1 � 2k2 � 2k1 � 2k2 + q2n � 2

q
� k1

�
n

k1 � � n & k1

k2 �
diagrams.

Example IV.2.1. (i) The choice k1 + k2 + 0 (no q & pode is then involve) leads to

Z ) D *�+ ψq ) D * with ψq : Dn & ' Dn as in section IV.1.

(ii) The choice q + 2, G the unique 2 & pode with a unique chord joining the two

intervals of G , k1 + 0, k2 + n leads to Z ) D * + 22n A where A � D2n is the 2n & chord

diagram having 2n chords joining 2n pairs of diagonally opposite points.

Extending the partition function Z to a linear application Z : Dn &(' D we get the

following result.

Theorem IV.2.2. Let r � Dn be a 4T relation. Then Z ) r * � R ) D * (ie Z ) r * is a sum of

4T relations in D).

41



This theorem shows that the partition function Z defines a linear application (still

denoted) Z : � n &(' � .

Proof. Sites not containing any of the special chords involved in the relation r con-

tribute sums of 4T relations. Sites containing exactly one of the special chords contribute

either zero or sums of q & podal relations and sites containing both special chords con-

tribute always zero. QED

Remarks IV.2.3. (i) If the q & podal diagram G used in the above construction has

automorphisms (as a q & podal diagram; the definition is the obvious one), the energy

e ) I , σ * of a site and the partition function are easier to compute since all involved chord

diagrams have huge multiplicities.

(ii) The construction of this section can easily be generalized as follows: instead of

gluing the same fixed q & podal diagram G it is possible to consider a set of k1 � 2k2 fixed

q & podal diagrams G1, . . . , Gk1 � 2k2 and to glue them in all ) k1 � 2k2 * !qk1 � 2k2 possible ways

in order to define the energy e ) I , σ * of a site I .

(iii) The construction can of course be generalized to arbitrary finite coverings of

a circle S. There is an obvious definition of ) q1, . . . , ql *�& podal chord diagrams (for links).

The main difference is the fact that the function f involved in the definition of the partition

function is no longer constant but is a sign function depending on the number of endpoints

of lifted chords ending in negatively oriented circles.

Let us finish this section with a possible application of the construction using

q & podal chord diagrams.

One of the main problems concerning chord diagrams is the question if a chord

diagram is always equivalent modulo 4T relations to its image in a mirror (obtained by

reflection along a line). This would indeed imply that Vassiliev invariants are not complete.

So far, no weight system distinguishing some chord diagram from its mirror has

been found.

The q & podal construction outlined in this section sends a chord diagram and its

mirror to (seemingly) very different sums of diagrams (at least if the q & podal diagram G is

not equal or equivalent modulo 4T relation to its mirror q & podal diagram).

If a weight system distinguishing some chord diagram from its mirror exists, it is

perhaps possible to construct such a weight system by using the spin model outlined in

this section (with suitable parameters) together with some known weight system.

I thank Luis Funar very much for many discussions, explications and references.
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