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Abstract

A sharp version of the Real Schwarz Lemma of G. Besson, G. Courtois
and S. Gallot is proved. Namely we show that every homotopy class of
maps [f] : (Y,9) = (X, go) between riemannian manifolds of dimension
n > 3 contains a family of mappings which reduce volumes of a factor
tending to Entg(g)™/(n — 1)", provided that X has sectional curvature
k(go) < —1. The constant Enty(g) is the exponential growth rate of
volumes of balls in the covering of Y determined by the class [f]. More-
over, in case volumes are both globally and infinitesimally preserved (i.e.
if Vol(Y, g) = deg(f) - Vol(X, go) and the reduction factor is precisely 1)
then [f] contains a riemannian covering. This result is also shown to hold
for non-orientable manifolds. Then, we consider the case of a connected
sum and we discuss optimality of our reduction factor.

1 Statement of the results

By the term “Schwarz lemma” one commonly means, in differential geometry,
a result of the kind: given manifolds Y, X endowed with some metric struc-
tures g, go (for instance, hermitian metrics), normalized in order that suitable
hypotheses on their curvature are satisfied, point out a class of maps f: Y — X
with the property of contracting volumes !; moreover, possibly characterize the
case where volumes are preserved.

The protoype of these results is the classical Schwarz lemma: the derivative
of any holomorphic map f of the unitary disk D C C into itself has norm smaller
than 1 (equivalently, it contracts the natural hyperbolic distance of the disk)
and, if | f' |= 1 somewhere, then f is a conformal automorphism of D (i.e. a
hyperbolic isometry).

Several generalizations (due to Yau, Ahlfors, Pick et al.) are presented
in [14]. In [4] G. Besson, G. Courtois and S. Gallot proved a similar result
(a “Real Schwarz Lemma”) for riemannian manifolds (Y, g), (X, go): under the
assumption that the sectional curvature k(go) < 1, every homotopy class of maps

lthis means that | Jacy f |< 1 for every y, or, equivalently, that Vol(U, g) > Vol(f(U), go)
for any sufficiently small neighbourhood U of a regular point of f; as a consequence,
Vol(Y, g) >[deg(f)| Vol(X, go)
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[f] : Y = X contains an explicit family of mappings which reduce volumes of
a factor tending to Ent(g)"/(n — 1), where n is the dimension of ¥ and X,
and Ent(g) is the volume entropy of g (an asymptotic riemannian invariant
depending on the curvature of g, which will be discussed hereafter). Moreover,
provided that f has nonvanishing degree and that the metric g is normalized
so that Ent(g) = (n — 1), they completely described the case where volume is
preserved: i.e. Vol(Y,g) = deg(f)Vol(X, go) if and only if f is homotopic to a
riemannian covering. An even better result holds when g¢q is moreover assumed
to be locally symmetric, in which case it has been shown (see [3]) that the family
of mappings under consideration reduces volumes of a factor Ent(g)™/Ent(go)".

Hereby we are mainly concerned about the problem of sharpening (when
possible) the reduction factor. The purpose of the paper is to prove a sharper
version of the “Real Schwarz Lemma”, by replacing the entropy Ent(g) with
another invariant of g whose value is generally smaller: the exponential growth
rate of volumes of balls in the riemannian covering Y associated to the subgroup
H = ker(f,) <m(Y) (where f, : m(Y) = m1(X) denotes the homomorphism
induced by f). Moreover, we show that this result also holds for non-orientable
manifolds (the extension being almost straightforward), provided that we con-
sider the notion of absolute degree Adeg(f) of a map f, instead of the usual
degree.

Definition 1.1 Entropy relative to a covering.
Given a compact riemannian manifold (Y, g) and a regular covering ¥ — Y,
associated to a normal subgroup H of 71 (Y'), the (volume) entropy of g relative
to Y (or relative to H) is defined as

Entg(g) = limp_, o %log VOl(B(7, R)),
where Vol(B(¥, R)) denotes the volume of the ball of radius R centered at ¥ in
the covering Y (with respect to the riemannian distance d induced by the lift
of g to Y). It is classical that this limit always exists and it does not depend on
the choice of 7 € Y.
If H=(1) (i.e. Y =Y, the universal covering of Y), the above formula defines
the usual (volume) entropy Ent(g) of g. Clearly, one always has Entg(g) <
Ent(g).
Another fundamental characterization of Entg(g) is given by the formula:

(1) Ents(g) = inf{c > 0 \ /_ e~ 4T ) gy, (7)< oo}

%
(see for instance [15], where the entropy is discussed in the general setting of a
discrete cocompact group I' acting on a metric space endowed with a I'-invariant

measure).

Namely, we will prove
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Theorem 1.2 (Strong Real Schwarz Lemma)

Let (Y,g) and (X, go) be compact riemannian manifolds of dimension n > 3,
and let f : Y — X be a continuous map. Let H denote the kernel ker(f.) of the
homomorphism induced by f between the fundamental groups.

Assume that the sectional curvature of go satisfies k(go) < —1. Then, in the
homotopy class of f there exists a family of C* mappings f. which verify:

@ Jact, < (B2 )
In particular,
3) VollY,) > (s ) - Ades()- V(X o)

Moreover, in case Adeg(f) # 0, equality holds in the above formula (3) if and
only if f is homotopic to a riemannian covering, and both (Y,g) and (X, go)
have constant curvature —1 (up to rescaling g).

Theorem 1.3 (Strong Real Schwarz Lemma, locally symmetric case)
Let (Y,g) and (X, go) be compact riemannian manifolds of dimension n > 3,
and let f : Y — X be a continuous map. Let H denote the kernel ker(f.) of the
homomorphism induced by f between the fundamental groups.

Assume that go is a negatively curved locally symmetric metric. Then, in the
homotopy class of f there exists a family of C* mappings f. which verify:

Entr(g) + e)"

@ Jact.|< (TR0

In particular,

Ent(go)
Entg(g)

Moreover, in case Adeg(f) # 0, equality holds in the above formula (5) if and
only if f is homotopic to a riemannian covering (up to rescaling g).

(5) Vol(Y, g) > ( ) Adeg(f)- Vol(X., go).

Recall that the absolute degree 2 of a continuous map f : Y — X between
compact n-dimensional manifolds is the non-negative integer
Adeg(f) = inf{G(f") \ f' : Y - X homotopic to f},
where G(f') denotes the geometric degree of f' (that is the smallest number
of connected components of f'~1(D), when D varies among the n—cells of

2By definition, the absolute degree is a homotopy invariant and it coincides with the
absolute value | deg(f) | of the usual degree for maps between oriented manifolds. In any
case, it is congruent mod 2 to the modulo 2 degree of f (denoted dega(f)). If f is a covering,
Adeg(f) is equal to the number of sheets of the covering.
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X such that f'~(D) — D is a covering). By Sard’s theorem, for any suf-
ficiently regular map f : ¥ — X (e.g. a C! map) one has that G(f) =
inf{#f () \ = regular value of f}, hence #f!(z) > Adeg(f) for almost ev-
eryx € X.

In [7], D.B.A. Epstein gave an explicit criterion (mainly due to H. Hopf) to
compute Adeg(f), disregarding the whole homotopy class of f: it essentially
consists in computing the usual degree of some lift of f to suitable oriented
coverings of Y and X.

In section 2 we will prove inequalities (2) and (4) simultaneously, while
in section 3 we will prove the rigidity statements in the equality cases. The
method is largely founded on the works [4] and [3] of G. Besson, G. Courtois
and S. Gallot, with the following main differences:

a) the universal covering Y of Y is replaced by the intermediate covering
Y — Y associated to H (which is the smallest covering of ¥ such that f can
be lifted to amap f:Y — X, whose arrival space is the universal covering of
X), as well as the lift f:Y — X is replaced by f, and every geometric object
defined in [4] on the space Y can correctly be built on Y;

b) in [4] the authors essentially develop the proof of the Real Schwarz
Lemma when Y is homotopically equivalent to X (and k(g) < 0 also), in
which case an explicit mapping fo : ¥ — X is defined with the property that
|Jacfo |< Ent(g)™/(n —1)™ exactly, and fp is an isometry if Ent(g)"-Vol(Y, g) =
Adeg(f)-Ent(go)™-Vol(X, go). The general case is only sketched using a family
of probability measures, supported by the geometric boundary 8X of X, defined
by the convolution (and renormalization) of the measures f.[e “*®¥)dv,(y')]
with the measure e~B+(*)df of HX.

In contrast, we simply use the family of measures, supported by X, given by
the direct image via f of measures =¥ dy, (y' ) (which are deﬁned onY).
This makes the exposition more elementary, and it leads us to consider a notion
of barycenter of a measure defined on a negatively curved simply connected
space (compare with [5]). On the other hand, we pay this simplification by
some difficulties which arise because of the necessary renormalizations of the
quadratic forms which express the estimates on | Jacf, | (as these forms are
integrals on Y, which is non-compact, differently from 8X).

c) as to the equality case, the proof is more delicate than in [4], since we
build the isometry fo : ¥ — X as a limit of the f.’s. We explicitely followed
the lines of [3] (in particular for lemmas 3.5 and 3.6).

In section 4, in order to show that the new estimates of theorems 1.2 & 1.3 are
generally strictly sharper than those of [4], we will analyze explicitely the case
of a connected sum Y = X#M. Finally, we discuss optimality of the reduction
factor Ent(g)™/Ent(go)".

For some other applications of our strong version of the Real Schwarz Lemma
see [16].
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2 Proof of the inequalities

Let Y — Y be the covering associated to H. We lift g and go to metrics on Y and
X (which will be still denoted by g, go, in order to avoid cumbersome notations),
and let d,dy be the induced riemannian distances. As f.(H) = (1), the map
f:Y — X can be lifted to a map f : Y — X, by the theory of covering spaces.
The groups of deck transformations Aut(Y) and Aut(X) can be identified to
[ = m (Y)/H and m(X) respectively, and f is equivariant with respect to the
homomorphism ¢ : ' < m;(X) induced by f., i.e. f(v-y) = é(7) - f(y) 2 for
every y €Y and vy € I. )

Let us consider the spaces M(Y) and M(X) of positive and finite Borel mea-
sures on Y and X. The groups Aut(Y) and Aut(X) naturally act on M(Y)
and M(X) by pushing forward measures (i.e., v - pt = Yupt, if ¥ € Aut(Z) and
i€ M(Z)). - ~

The idea is to embed Y “as much isometrically as possible” in M(Y) by means
of maps y — fi., (for € — 0), then to take the push-forward f,pu., of the
measures f, via f, and to come back on X by the barycenter map (described
hereafter). One therefore obtains maps f, : Y — X, defined by the composition
f. =bar(f,pic,y), which are “more isometric” than the initial map f:

MT) L2 m(x)
Ne,yT 76 ;bar

Y —F— X
The measures y,, are defined on Y by g, = e (Ertu(@)+9dw) gy ('), and
they are finite by the characterization (1) of the invariant Ent g (g).

The barycenter of a measure p on a simply connected riemannian manifold of
negative curvature is defined by the following

Proposition-Definition 2.1 Barycenter.

Let (X, go) be a simply connected riemannian manifold of negative curvature,
and let i € M(X). If the integral Jz d(zo,z")? (") converges for some o € X,
then the function Dy(x) = [ do(x, ")’ u(x') is well defined and C™ for every
z € X. It admits a unique critical point, which is an absolute minimum and
which is called the barycenter of p (and denoted bar{u)).

The barycenter of u is univoquely characterized by the implicit equation

(6) (dDN)baT[u] (’U) =2 /)_{ P, (bar[,u]) : (dpml)bar[u] (U) N(xl) =0, Vv € Tba,r[u]X

where p_, denotes the function of x defined by p , (z) = do(z,2'). *

3given a covering Z — Z, we will write v - z instead of y(2), if z € Z and v € Aut(Z) or
v € Isom(Z) (in case Z is riemannian).

4the expression (dp,,). will always denote, in the following, the differential of do(z,z")
with respect to the first variable, at z = 2.
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The barycenter satisfies the following properties:

(a) for every o € Isom(X,go) one has bar[o,p] = o - bar{u]

(b) let 1, be the visual measure of (X,go) from z, i.e. l, = (exp,)s(Lz)
(where L, = dxi...dz, denotes the usual Lebesgue measure on T, X ), and let
Ao = F(do(z,-))ls, for some function F such that [; do(z,2')*A.(z') < oo.
Then, one has bar{\;] =

Remark 2.2 Remark that the measures f*ue,y satisfy the assumptions of the
above proposition, as there exist positive constants A,B such that
do(f(y1), f(yz)) < A-d(y1,y2) + B for every y1,y2 € ¥ (smce the quotient
spaces Y =Y /T and X = X /7 (X) are compact).

Proof of proposition 2.1.
If D, () < 0o, then clearly also D,(z) < oo for any z € X. As X is simply
connected and negatively curved, the function d(z,z')? is C*, and the function
t pf, (¢(t)) = d(c(t),z")? is strictly convex, for any choice of a point z' € X
and of a geodesic c. By Lebesgue’s dominated convergence theorem, also D, is
C° and strictly convex, hence it admits exactly one critical point which is an
absolute minimum (as obviously D, (z) = oo if  — o).
Still by Lebesgue’s theorem, one can differentiate under the integral and deduce
formula (6), as (dp? ). (v) = 2p,, (z)(dp,, )« (v) a.e. .
Property (a) immediately follows from the fact that D,, ,(0-z) = D, (z) for all
o € Isom(X, go). To verify (b), notice that, as (X, go) is negatively curved and
simply connected, if ' = exp,(u) one has

do(z,exp,(u)) =|lul| and gradp,(z) = —u/ [|u|
so that (dDx,)z(v) = — [, % [lull go(u/ [[ull,v)F(||w]])La(u) = 0 for every
v € T, X (as it is the integral of an odd function of u). Hence z = bar[\,]. O

Lemma 2.3 Equivariance of the maps f..
1) The maps f, induce maps between the quotient spaces f. : Y — X;
2) the maps f. are homotopic to the initial map f.

Proof of lemma 2.3.

1. Tt is enough to show that the maps f, are ¢—equivariant, i.e. that
bar[f, fte v-y] = #(7) - bar[f, pic ] for all vy € T C Isom(Y, g)
First, we notice that pc .y = 7« ,u6 y for every v € Isom(Y, g) because
Sh(y")e —(Entu(g)+e)d(v-y,y )dv = [x-h(v-y')e —(Entu(9)+e)d(vy,7y") gy 0 (')

This implies that f, fic.., = ¢(y ) f*,uf,y s0, by property (a) of proposition 2.1,
one gets the ¢g—equivariance of the f_’s.

2. Let Lg,l, and A, be as in proposition 2. 1(b). One easily checks that
Aoz = 0x), for all o € Isom(X). Then, the map © : Y x I — X defined by

O(y,t) = bar[(1 - )’\f(y) +tf*ﬂe,y] SatlSﬁes O(y-y,t) = ¢(7) - O(y, ), by the
equivariance properties of the measures p. , A, and by proposition 2.1.(a).
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Therefore, © induces on quotient spaces a map © : ¥ x I — X, which is a

homotopy between f. and f, since O(y,1) = f (y) and O(y,0) = bardz,, =

f(y) (by proposition 2.1.(b)). O

Lemma 2.4 Implicit equations for fe _
The maps f,. are univoquely defined by the equation G(f.(y),y) = 0, if
G.=(GY) : X xY — R" is defined by
. 1 /
Gi(z,y) = —/(dp_2 )E(Ez.)e—(EntH(g)ﬁ)d(y,y)dvg(y,)
2 Jy TFen
where {E;} is a global go-orthonormal frame of the (trivial) tangent bundle
TX ~ X x R", and where [ denotes the function (of x) do(f(y'), ).

Proof of lemma 2.4.

Remark that TX is trivial since X is negatively curved, hence diffeomorphic to
R™. By proposition 2.1, f,(y) is the unique point of X which satisfies, for all 4,
0= (D,.,)7,)(B:) = (4 f @ Fotten(a)g, ) (B) = 2G(F.(w).)
where differentiation under the integral is allowed by Lebesgue’s dominated

convergence theorem since, if z(t) — x, one has
‘do(z(t)j(yl))i—do(w,?(yl))z‘ . e—cd(y,y') < (2 + (S) X do(.’lf,?(yl)) X e—cd(y,y')

which belongs to L'(Y, dv,), if ¢ > Entg(g). O

Lemma 2.5 Formulas for df..

The map Ge : X x Y — R™ is C! and its differential (dGe) (s y) 7, % is mon-
singular, for everyy €Y and z = f (y) € X.

As a consequence, f.:Y — X is C' and satisfies

(7) (dfe)y = _(dGe)(z,y) |;:)} o(dGe)(z,y) |Ty? .

Namely, ifu € T,Y and v € T,X one has ®:

)a (Ei) do(F(y'), ) e,y (y')

F(y'y

(8)(dG?) (z,y) (u) = —(Entr (g) +e) /? (dp,)y(u)(dp;

©) @G ) =5 [ (Ddi,, ) (0.5 pesv)

Proof of lemma 2.5.

Let y and z = f,(y) be fixed and, for any unitary v € T, X, let z(t) be the
geodesic such that 2(0) = z,z'(0) = v. Then,

dp? Vo (Ei) — (dp?  )u(E;
[( p?(y’)) (t)( ) ( pf(y’)) ( )‘| e_Cd(y’yl)dUg(yl)

(dGi)(w,y) (v) = lim

i—0 |y 2t

Snotice that, for fixed y € Y and u € T,Y, (dpy, )y(u) esists if y & Cut(y’) (that is, if
y' & Cut(y)). As Cut(y) has zero Lebesgue measure, formula (8) makes sense.
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if ¢ = Enty(g) + €. As the curvature of (X, go) is bounded from below by a
constant —k? (X being compact), by Rauch’s theorem (cf. [6]) it follows that
the Hessian || Ddp, ||< k/tgh(kp) < k. Since 1Ddp? = pDdp + dp ® dp, one
gets £ || (de?( ,))m I< kdo(f(y'),z)+1. Thus, by Lagrange’s theorem, the term
Y

2t |62, Doy (E) = (A2 | )o(E)
1+ (k+ || DoE;[|)do(f(y'), z) + 6.
Then, by Lebesgue’s dominated convergence theorem, and by using the fact
that z is the barycenter of f, ey, i.€. _

f?(dp?z(y,))z(Din) Hey(y') = fj(dpf,)z(Din)f*,ue,y(xl) =0 Vi=1,..,n
one deduces formula (9) and that 8,G, is continuous.
Analogously, if 4 is a unitary tangent vector at y and y(t) is the geodesic such
that y(0) =y, y'(0) = u, one has, for small ¢t and ¢ > Entg(g)
(ST Y (g2 ), (B < dletd)e 10 do(Fly'), 2) € LT, dvy)

Y

which allows to differentiate the G%’s with respect to u under the sign of the
integral, and to obtain (8).
Finally, we already remarked that the function [ (x)? is strictly convex (since

is dominated, for small ¢, by

(X, go) has negative curvature), hence de?z( I)(v,v) > 0 for every v € T, X.
Y

Therefore (dG)(z,y) |7, 3 i non-singular. By the implicit functions theorem it

then follows that f_ is C', as well as formula (7). O

Lemma 2.6 Estimate of Jacf,. .
For every fizedy €Y, let v, be the measure on 'Y given by

Vey(y') = do(fc(y), F(Y')tey(y')-

Putz = f(y) € X, and let kX,,hX, and hY,, denote respectively the positive

definite quadratic forms S defined on T, X, T, X and T,Y by

1 1 ~
X - _ - D 2 . ! TwX
k., (v,v) @) /? 5 ( dp?(yl))x (0,0) e y(y'), Yve€
1 -
X - 2 !
M) = s /? da,, )e(0)veyy), Vo€ T,X

.1 , _
Wy = e [ ) vaw), ueT,y

We will moreover write KX, HX, and HY, respectively for the endomorphisms
of TuX, T,X and T,Y associated to kX ,hX and hY, (with respect to the

€7y, €7y
metrics go,g). One then has:

Sthe notations (-)X, (-)¥ indicate on which spaces the forms are defined (respectively on
TX and TY), whereas the subscript (-)c,, stresses the dependance of the forms on y, via f,.
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(10) TryHY, =1, Trp, HX =1

€&y — &y —

and the eigenvalues ofoy, ngy are strictly included between O and 1. Moreover:

(11) kX, ((df )y (u),0) < (Bntw(g) + €)hY, (u,u)'*hY, (v,0)"/?
for allu € T,Y, v € T, X, and

1/2
Entu(g) + ¢ (detHZ,)"

71
<
(12) |Jacyf€| — nn/2 detKé)’(y

VyeY.

Proof of lemma 2.6.
Since ||gradp, [|= 1, one has > 7, dp?(y,)(Ei)2 =1, and so Try HX, = 1 (and
analogously Tr,HY = 1). As hX, and hY, are positive definite, the eigenvalues

are positive and strictly smaller than 1.
From formulas (7), (8) and (9) of lemma 2.5 it straightforwardly follows that

KXy (dF Dy (w),0) = 220 fo(dp, )y (u)(dpy ) (0)vey (')

for all u € T,,Y, v € T, X. The Cauchy-Schwarz inequality then yields (11).
To show that (12) holds, let us first notice that KZ¥, is non-singular (as (Ddp? ).

is positive definite), and that (12) is trivially satisfied when Jac,f, = 0. On
the other hand, at a point y where (df,), is invertible, inequality (12) directly
follows from (11) algebraically. In fact, let F' : (U,g) — (V,go) be a linear
isomorphism F': (U, g) = (V, go) between euclidean spaces of dimension n, and
let AU and AV, kY be positive definite bilinear forms respectively on U and V
(represented by endomorphisms HY, KV, HY) which verify
KV (F(u),0) |< C - O ()72 - BY (v, 0)"/2.
Since K" is an isomorphism, if one chooses a go—orthonormal basis {v;} of V
which diagonalizes hY', one can consider the basis {u;} of U which is obtained
by orthonormalization of the basis {(K" o F)~1(v;)}. Then KV o F(u;) is a
linear combination )., ai;v;, hence the matrix of K V o F with respect to the
bases {u;} and {v;} is superior triangular. It follows that
| detKY | - | detF |= [Ty |90 (KY o F(us),vi)| = [Tiey |[FY (F(ui),vi)| <

<Con (H?:l hU(Ui,ui)l/z)'(Hyzl hV(vi,vi)l/Q) <Con (%TrHU)"m.(detHV)lh 0

Now the proofs of inequalities (2) and (4) differ about the computation of
the bilinear forms ké{y.

Lemma 2.7 Estimate of Kexy
Let o € (X, g0) and put p(z) = d(zo, z).
1) Assume that k(go) < —1. Then,

(13) kX, > 90— hY, and detK), > det(I - H))).
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2) Assume that go is locally symmetric of negative curvature ”. If d = dimrK,
let Ji, ..., Jg—1 denote the orthogonal endomorphisms ofTX' such that J2 = —id,
induced by multiplication by the imaginary units of the algebra K. Let moreover
be J; = id. Then,

d—1

(14) kX, (v,0) > go(v,v) — B, (v,v) + Z h,(Jkv, Jyv)
k=1

and

(15) det KX, > det(I — Z TeHX,Tr) -

Proof of lemma 2.7.
Let c,(p) be the unitary geodesic issuing from zy with ¢;,(0) = u, and put
a% = c,(p). Let S(p) = {z € X \d(xo,z) = p} and let IIg(,(-,-) be the
second fundamental form of S(p). One has IIg,)(v,v) = (Ddp)(v,v) for every
v € T,S(p), while Ddp(-, 8%) =0.

1. For any Jacobi field Y (p ) (dexp,, )tu(tv) along c,, orthogonal to c,,
one has ITg,)(Y,Y) = go(Dy Y) =go(Y',Y). As k(go) < —1, by Rauch’s

comparison theorem (cf. [6]) it follows that

Ddp(V)Y) _ go(¥.Y) | 5(V.Y) _ 1
90 (Y,Y) 9 (Y,Y) ~ 90(Y,Y) tghp

(16)

if Y denotes a comparison Jacobi field in the hyperbolic space (H"(R),d,)
along a geodesic ¢z, orthogonal to ¢z, with Y (0) = 0, || Y (0)||=]|Y"(0) ]|, and

90(Y(0),) = go(Y"(0), w). .
This shows that Ddp >
singular), and therefore

5Ddp* = pDdp + dp ® dp > p(go — dp @ dp)
By the very definition of k%, and A, it then follows that k%, > go — hX,, and
hence that detKX, > det(I HY).

2. One knows that the complex tangent planes < v, Jyv > of the spaces
H™(K) have sectional curvature equal to —4 (and R(v, Jyv)v//J(v)), whereas
totally real planes (i.e. planes < vy,vs > with vy 1< Jgv1 >g=1,.4, have
sectional curvature equal to —1 (and R(vy,v2)v1//v2).

So let {v;} an orthonormal basis at z¢ such that v; = Ju for 1 < i < d, and such
that v; L< Jyu >p=1,...,q if i > d. Let V;(p) denote the parallel displacement of

the v;’s along ¢, (p).

ﬁ(go — dp ® dp) (since dexp,, is everywhere non-

7this amounts to say that (X, go) is the hyperbolic space H™ (K) over the algebra K (where
K = R, C,H) or the Cayley hyperbolic plane H2(Ca). We will assume go normalized so that
k(go) = —1if K=R, and —4 < k(go) < —1 otherwise.
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Since DR = 0, one finds that the Jacobi fields Y; along c,, whose initial data
are Y;(0) = 0, Y/(0) = v;, satisty:
v L<Jpu>p=1,..q4 = k(Vz,a )=—1 along ¢, = Y;(p) =senhp-V;(p)

(
and v; = J;u (for z;éd) = k(Vz,aap)——él along ¢, = Y;(p) = Lsenh2p-V;(p).
)

Hence the Y;(p)’s are eigenvectors of the second fundamental form of S(p) for
every p (because Dy; 8% =D 2 Y; =Y/ //Y;), and the principal curvatures are
P

_9Y(R),Yi(R) [ mr i L<Jpu>p=i,d
"= iR, Y:(R) | 54y ifvi=Ju (fori<d).

One then deduces that for any v € T X,
Dap(v,v) = gz {90(v:0) = dp(v)*} + (t9hp) oy dp(Jec)*
and also the estimate Ddp(v,v) > go(v,v) — dp(v)? + Ek 1 dp(Jyv)2.
As %de > pDdp, one therefore obtains formula (14) for kX . As the form

Z } hX y(Jk+; Ji-) is represented by the operator — Zk L JeHX yJi with respect
t0 go, formula (15) also immediately follows. O

Lemma 2.8 (Algebraic lemma)

Let V. = K™ (where K = R,C,H or Ca) and d = dimgK. Let Jy,...,Jq 1
denote the endomorphisms of V which are the multiplication by the imaginary
units of K, and let J; = idy. Assume moreover that dimgrV =n > 3.

Let K be the compact set made up of all symmetric endomorphisms H of V' (with
respect to the standard metric of V') whose eigenvalues h; satisfy 0 < h; <1
and Tr(H) =Y h; = 1. Then, one has

(det H)'/? < n"/?

2H) = det(I =0 JyHJ,) ~ (n+d—2)"

for every H € K°

and the value % is attained at the unique point of absolute maximum
H = I/n. Moreover, one has limsupg_, 5 ®(H) < ®(I/n).

Proof: see Appendice B of [3].

Conclusion: by introducing the estimates (13) and (15) of lemma 2.7 for det KX,
in formula (12), which expresses the jacobian of f., one obtains:

(Entr(g) + o™ (det HX))'/?

(17) |Jacy fe |< —
! nn/? det (I e Jngnyk)

(where clearly one means that d = 1 and Zzzl JeHX, Jp = HZX, when k(go) <
—1 but go is not assumed to be locally symmetric).
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Since Ent(go) = n + d — 2 if gq is locally symmetric 8 (with curvature equal to
—1if go is real hyperbolic, and normalized between —4 and —1 otherwise), the
above formula and the previous algebraic lemma yield:

(M)" if k(go) < —1

|Jacy fe |< (@)n

Eni(g0) if go is locally symmetric.

By using the coarea formula [y, | Jacyfe | dvy > Adeg(fc)-Vol(X,go), and
by taking the limit as ¢ — 0, one also deduces inequalities (3) and (5) (as
Adeg(f.) = Adeg(f), since the f.’s are homotopic to f).

3 The equality case

In order to treat both cases simultaneously, we let d = 1 and hg = n — 1 in the
general case (theorem 1.2), while hy will denote the constant Ent(go) = n+d—2
and d = dimgK when go is assumed to be locally symmetric (with sectional
curvature equal to —1 if gg is real hyperbolic, and normalized between —4 and
—1 otherwise). By rescaling the metric g on Y, one may suppose moreover that
also Entg(g) = ho.
So, we have to show that if Adeg(f) # 0 and Vol(Y,g) = Adeg(f)- Vol(X, go),
the homotopy class of f contains a riemannian covering fo : (Y, g9) = (X, go)-
In particular, in case hg is assumed to be equal to n — 1, this will show that also
go is a metric with Ent(go) = n—1 (and sectional curvature bounded from above
by —1): therefore gy necessarily has constant sectional curvature k(go) = —1,
by a well-known result due to U. Hamenstéddt (see [10]).
Now, by the coarea formula

e—0

Adeg(f.)-Vol(X, go) < [y |Jacy fe| dvy < (%E€)™-Vol(Y, g) = Vol(Y, g)

and by the hypothesis Vol(Y, g) = Adeg(f)Vol(X, go), one deduces that if ¢ — 0

Lt . .
then |Jac, fe | — 1. We will extract, from the f.’s, a sequence f., which tends
to a riemannian covering fy as ¢ — 00.

1
As | Jacy fe |£> 1, we can consider a decreasing sequence €; \, 0, such that the
maps fe, satisfy | Jacy fe, |= 1 a.e. y, if i = co. For simplicity, we will replace,
from now on, every index ¢; with 4.

Remark 3.1 Let 7: Y & Y e @ : X — X be the coverings of ¥ and X under
consideration. If § € Y and y = 7(7), by the equivariance properties of the
measures p;y € M(Y) proved in lemma 2.3, it follows that the bilinear form

8although classical, this result directly follows from the computation of the second fun-
damental form of the geodesic sphere S(p) C H™(K) developed in lemma 2.7.2, since, by
L’Hépital’s rule, the entropy Ent(go) is

limpy 400 VolS(p)’1 . %VolS(p) =limy oo Trllg(,) = limp—4oo [n_d +

2(d— 1)]
tgh p .

tgh2p
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h}y of T3Y induces on T,Y a bilinear form (still denoted by h}, ), defined as
hY, (u,u) = hl5(@,a), for every @ € T3Y such that (d7)3(7) = u. L
Analogously, because of the equivariance properties of the maps f;, : ¥ — X

with respect to the homomorphism ¢ : I' = m (X), also the quadratic forms

hz{% and ki)’%, defined on the spaces T ) X for every § € V', induce quadratic
forms on T',(,y X, which again will be denoted by h*,, k¥, (if y = 7(7)).

We will equally use H;, and K7, to indicate the symmetric endomorphisms of

T}, (45X induced by the endomorphisms H, i{%, K ng

Lemma 3.2 Estimates for Hz-)fy, Kle when ¢ — 0.

I)Hi)fy—)l/n a.e. Yy, asi — 00 ;
2) Kﬁ%hg]/n a.e. Yy, asi — 00 .

Proof of lemma 3.2.
Inequalites (12), (13) & (15) and lemma 2.8 yield

1/2 1/2

—-|Jacy fi| < = T he
y detK X det (T = Sy HHE )~ H6

(ho + €i)

therefore (detH;X,)'/2/det(I — e JoH, Ji) = n™? | W} a.e. y necessarily, as
i — oo, since |Jac, f; | 1 a.e. y by assumption. Still by lemma 2.8 it follows
that H;Y — I/n a.e. y.
On the other hand, the previuos chain of inequalities shows that, if i — oo,
|det KX, — det(I — Yp_, JoHX,Jk)|—= 0 ae. y.
Moreover, as we have, by formulas (13) & (14) of lemma, 2.7,
d

00(KX0,0) > go(I = Sy JH TeJo,0)
we deduce that, if i = oo, J

||Kz),(y - =2 JkHi,Xka) = 0ae. y
which proves the second assertion, since I — Zle JkHz-)nyk = hol/n. O
Lemma 3.3 Estimate of || df;|| when i — oo.

1) There ezxists eg > 0 such that if ||Hf"; —I/n||<e€o then || (dfi)y||I< 4n Vi;
2) | (dfi)yll= 1 a.e. y, asi — o0 (not necessarily uniformly in y).

Proof of lemma 3.3.
1. Taking the infimum in inequality (11) of lemma 2.6 over v € T, X,
[|v]|< 1, one obtains

1/2 ]‘ —\ 2 12 1/2
(18) 155, 0 (dfs)y (w) 1< (o + ) || 1 (T | o, @ity ))

for all w € T,Y, and for all § € Y, € T;Y such that 7(y) = y, d7(u) = u.
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Assume || H — I/n||< e. As go(K{%,v,v) > go((I — >4 JeHYX, Ji)v,v), we
deduce that the smallest eigenvalue of K, )‘;J is greater than 1 — d(L +¢).
By (18) it then follows that, for all u € T,Y, ||u||< 1,

ldfs () <11 KX, 0 (df)y )| /(1= d(E + ) < fb2bar /Tn e < 4n

if € is smaller than some ¢; (assuming that €¢; was chosen smaller than 1).

2. Tt will suffice to show that the pullback (K;¥, o (dfi)y)” go tends to (ho/n)?g
a.e. y, since we already showed (lemma 3.2.2) that K;‘;/ — hol/n ae. y.
Now, on the one hand

. ho\ 2"
(19) z1_1)1{)1O det (Kﬁo(dfi)y) Jgo = (ﬁ) a.e. y

since, by assumption and by lemma 3.2.2,

det(K;X o(dfi)y)* g0 =|Jacy f;| -det(K;X)*go — 1- det(hol/n)? a.e. y.
On the other hand, if #(y) = y and {%;} is a g—orthonormal basis of 7Y,
formula (18) yields

ke T (K0 (@) g0 < 25l [ 370 (dp, )5(@ vy =11 H |
SO

.
(20) legloTrg( (df,)) L Ay

From formulas (19) and (20) it then follows, algebraically, that (KX, o(df:),) g0
tends to (hg/n)%g for almost every y. O

Remarks 3.4 _ . ~
1) As Adeg(f) # 0, the map f : (Y,9) — (X,g0) is a quasi-isometry,
i.e. there exist positive costants a, b, A, B such that

(21) a-d(y1,y2) — b <do(f(y1), f(y2)) < A-d(y1,y2) + B Vyr, 42 €Y.

In fact, the spaces (Y,g) and (X, go) are quasi-isometric respectively to the
groups I' and 71 (X) (endowed by the word metrics induced by some finite sets
of generators, cf. [9]) and, in turn, T is quasi-isometric to 1 (X), since it may
be identified to a subgroup of finite index of 71 (X) via ¢.
2) There ezists vo > 0 such that || viy ||> vo for all i and for all y € Y
(where ||v;y ||= [5Vi,y is the norm of v;, as a finite Borel measure on Y).
Actually, there exists vy > 0 such that the measures

Ve,z,y = f? dO(maF(yl))ei(EntH(g)+f)d(y’yl)dvg (yl) 2 Yo
forallz € X,y €Y and for all € > 0.
In fact, let yo € Y be given: as Y = Y /T is compact, and by (21), we can find

some Ry > 0 such that for every z € X one has ?71(390 (z,1)) C By(v-yo, Ro),
for some 7y € T'. Let moreover 7' € T' such that d(v'-yo,y) < diam(Y, g). Then,
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|| Ve,y ||Z f?\Bg(’Y'yo Ro) e—(EntH(g)-i-e)d(y,y’)d,Ug (y/) >

> ¢ (Bntn(g)+e)diam(Y,g) f?\B e*(EntH(9)+€)d(7"yo,y')dvg(y') >

g(790,Ro)

e_(EntH (g)+1)diam(Y,g) f?\B (yO,RO) e—(EntH (9)+1)d(y01yl)dvg (yl)

because of the I'—invariance of dv, and of the metric g on Y.

Lemma 3.5 Variation of Hsz with respect to y, when i is fixed.
Letyr,y2 €Y, let x1 = fi(y1),x2 = fi(y2) and let B be a minimizing go— geodesic
from z1 to x2. If P,, denotes the parallel displacement from x1 to x2 along 3,
one has:

| H, zy1 OH,-),(;,QOPm”S M {d(y1,y2) + do(w1,22)}

for some constant M which does not depend on i,y1,y2-

Proof of lemma 3.5.

Let §,,7, € Y e &1,% € X be points which are projected respectively onto
Y1,Y2,T1, T2, and such that d(ylay2) - d(y17y2) and d0($17w2) - do(:i.la'i'?)
Let 8 be the lift of 8 from #; to %2, and Ps (1) the parallel displacement from

#1 to B(t) along B. Let us compute hz{%l - h%z o Py, (vy,v1)| for v; € Ts, X,

Fo. F(y'))e— (Potei)d@2.v)
) (v1)2'd0( 2,f(y’))e” "0 2 dvg(y’)

[|v1 [|< 1. Adding the terms + [5-(dp. I ZEAl

one gets:

hX hX Opiz(’l)l,’l}l) S

,Yq 4,Y2
(22) < Ll a0 = ey s (0 iz ) +
.Y
Vig, _ _Vijg, ‘
g~ Mg, |

As the curvature of (X, go) is bounded from below by a constant —k2, Rauch’s
comparison theorem yields (as in lemma 2.5) || Ddp, ||< M; for all z € X.
Then, by Lagrange’s theorem, the value of ‘(dp?( ))wl(ful) (dp?( ))gﬁ2 (v2)?
(and, in turn, of the integral in (22)) is smaller than 2M;dy (%1, Z2).

Let us now consider the last term of (22). One has

H 4,91 ,?/2 ‘
i, | g, 1 = lvig, |

(23) < m /7|do(i‘1,7(y’)) — do (&2, f(y'))] e~ thote)d@a") gy, (') +
4,Y2

|| Vi7§1 - Via§2 || S

2 < T1.y' Tosy'
+ i /_do(572,f(y')) ‘e—(ho+ei)d(y1,y) — g (hote)d(¥2y') dv, (y') -
Ivig, | J¥
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By the triangular inequality, and since || v;, ||> vo for every i,y (cf. remark
3.4.2), the first integral is not greater than

2e~ (hotei)d(@102) . g (F, %) - ﬁ f?e—(ho-i-ei)d@my’)dvg () <

Vi3,
VLO f?_lBgo (5271) e_(h0+€i)d(y2’y )dvg (yl))

which is smaller than do(#1, Z2) - M2 (because of the fact that T_I(Bg(J (&2,1)) is
included in some ball of Y of radius Ry, whose value does not depend on i and
F9, by (21), and since volumes of balls of fixed radius in (Y, g) are uniformly
bounded from above).
Lastly, the second integral in (23) is easily seen to be not greater than

2(ho + €;)eltote)dWT2)d(y, , g,) < M3 - d(5,,7)-

< 2e(hote)d(@102) . dy (3, %) - (1+

Concluding,

‘hi{?l - hnyOPh ('111,’01) < (2M1 + MQ)do(.’f?l,i'Q) + Mgd(gl,ﬂz). O
Lemma 3.6 Uniform convergence of the H ’s.
The endomorphisms Hffy converge uniformly to I/n onY, asi — oo .

Proof of lemma 3.6.

Let us prove the lemma by contradiction, by supposing that H, X;/ do not converge
to I/n uniformly. Then, there exists € > 0, smaller than the ¢ of lemma 3.3,
and points {y;} so that, for arbitrarily large 4,

(24) IH, = I/nl> €.

As H} X , converges to I /m a.e. y, by Egoroff’s theorem H, X;J converges uniformly
to I / n on subsets F of measure arbitrarily close to Vol(Y, g). Since volumes of
balls with fixed radius in (Y, g) are uniformly bounded from below (because Y
is compact), we can choose a § = §(e) > 0 and a subset E5 C Y which verify

(25) sup{d,0 + M(1+4n)é} < e < €
(26) d(y,Es) <6 forallyeVY

and such that HX , converges uniformly to I /non Es, as i — oo.
Let then N =N (6) be such that

(27) I|HY, —I/n||<6 foralli>N andforally € Es.

Consider a point y = y;, for some fixed ¢ > N, and let y' € Es5 be so that
d(y,y') < 6. As ||[H}(y") — I/n||< d < e, by (27), and since || H, — I/n||> €,
by (24), there exists by continuity a first point 3", along a minimizing geodesic
a of (Y, g) joining y' to y, where

X —
(28) ||H’i,y” _I/n“— €.
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Since, then, at every point of a between 3’ and y” one has || Hi)fy,, —I/n||< € < €,
by lemma 3.3 it follows that || (df;)||< 4n along «, between y' and y".

Hence, do(fi(y"), fi(¥")) < 4n-d(y',y") < 4né and, by lemma 3.5, if Py, is
the parallel displacement from f;(y') to fi(y") along a minimizing go-geodesic,
one obtains || H, — Pﬁ(ly,,) o HY o Py IS M(1 4 4n)d. This yields
| HX = I/n||I<|| HY, = I/n||[< 8§+ M(1+4n)§ < €, by the choice (25) of
4, which contradicts (28). O

Lemma 3.7 Limit fy of the f;’s.
A subsequence of the {f;}’s converges uniformly to a map fo : Y — X which
contracts distances and is homotopic to the initial map f.

Proof of lemma 3.7.

As H )‘; — I'/n uniformly on Y, lemma 3.3.1 ensures that || df; || is uniformly
bounded on Y. By Ascoh—Arzela s theorem there exists a subsequence of the
{fi}’s which converges uniformly to a continuous map fo. This map is homotopic
to f, being a uniform limit of maps homotopic to f.

As || (dfi)y||— 1 a.e. y (by lemma 3.3.2), there exists an open set E C Y of full
measure where every || (df;)y || is defined and where || (df;)y ||— 1.

For every pair of points y;,y2 € Y one can choose, by Fubini’s theorem, a point
y4 arbitrarily close to y2 and a minimizing geodesic 7 from y; to y which only
meets Y\ E on some set of zero measure. Thus,

do(fi(y), £i(wh)) < [, Ildfill ds =5 £(y) = d(y1,5)
by the dominated convergence theorem Taking the limit for i — oo and, then,

for y, — ya, we deduce that f contracts distances. O

Conclusion: we have a map fo : (Y, g) = (X, go) which contracts distances and
is homotopic to f, and, by assumption, Vol(X, g) = Adeg(f)Vol(X, go). Then
fo is a riemannian covering because of the following

Proposition 3.8 Let F: (Y,g) = (X, g0) be a map between compact rieman-
nian manifolds. Assume that Adeg(F) = d # 0 and that the metrics are nor-
malized so that Vol(Y,g) = d - Vol(X, go)- If F contracts distances, then F is a
riemannian covering (of degree d).

This result was proved in [3] (Proposition C.1, Appendice C) for oriented man-
ifolds Y and X. We report here a brief proof for non-orientable manifolds, ass-
suming that it holds in the oriented case.

Proof of Proposition 3.8.

Let us first notice that F' is a lipschitz map, thus differentiable almost every-
where, and that the condition of contracting distances is equivalent to
| (dF)y ||< 1 a.e. y . This condition, being local, is satisfied by any (possi-
ble) lift F:Y = X of F to riemannian coverings Y X of Y and X.
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Let 77 : X — X be the riemannian covering associated to the subgroup
F.(m(Y)) « m(X), let i be the number of sheets of this covering and let
F:Y — X be a lift of F. We will use the notation 7 : Z; — Z for the
canonical double oriented covering of a non-orientable manifold Z, and Oz for
the subgroup of 71(Z) made up of all elements which preserve orientation (i.e.
the subgroup associated to the covering 7).

Now, three cases have to be checked.

(i) f Y and X are orientable, then Adeg(F) = i- | deg(F) | and by applying
Proposition C.1 of [3] to the map F one deduces that F and, as a consequence,
F' are riemannian coverings.

(ii) If Y is non-orientable, if F,(Oy) C Ox but F.(m(Y)) ¢ Ox, then X is
non-orientable and the composition map F; = F om can be lifted to a map
F:Y1 = (X)1:

in this case, Epstein’s criterion (cf. [7]) yields Adeg(F) = i- | deg(F) | . By
applying Proposition C.1 of [3] to F': Y1 — (X)1, one still deduces that F'is a
riemannian covering.

(iii) If Y is non-orientable, if F,(Oy) = F,(71(Y)) and if deg,(F) # 0, then
Epstein’s criterion tells us that Adeg(F) = . Any other case is excluded by
the condition Adeg(F') # 0 (see [7]). In this case, our asssumptions imply that
Vol(Y, g) = Vol (X, go).

It will therefore suffice to show that if F is a map which contracts distances
and preserve volumes, with non-vanishing modulo 2 degree, and such that F,
is surjective, then F' is an isometry.

First of all, from the condition |Jac,(F)|<||(dF),||"< 1 a.e. y, one obtains
—1

Vol(Y, g) > [y, [Jacy(F)| dvy(y) = [x #F  (z)dvy, (z) > Vol(X, go),
by the coarea formula (since F is surjective, because degs (F) # 0). Thus, by the
condition of preserving volumes, one necessarily has |Jacy(F) |=|| (dF),||=1

a.e. y, and #Fﬁl(m) = 1 a.e. z. Therefore, Vol(?71 (A),g) = Vol(A4, go) for
every measurable subset A C X.

Starting from this inequality, let us show that the preimage of one point is
exactly one point. Indeed, if F(y;) = F(y2) = x for some y; # ¥, then one

should have .

o F (B!Jo(m7r)) DBQ(ylar)U‘BQ(y?:r)
since F' contracts distances. Thus, for balls of radius r small enough:

VOlBg (z,7)
VOlBg(yl,r)+o\701Bg(y1,r) Z 1
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which gives a contradiction as » — 0, since the volume of balls tends to the
euclidean volume when r — 0. Hence, F ' is well-defined.
Let us now show that F  is a lipschitz map of lipschitz constant smaller than
2. In fact, otherwise, for any sufficiently small r there should exist points z, ' in
X such that do(z,2") = and d(F ' (z),F ' (2')) > 2r. Then, the intersection
of the balls By, (x,7) e By,(z',r) would contain the ball of radius r/2 centered
at the middle point Z of the geodesic joining z to z', while the balls of radius r
centered at Fﬁl(:c) and Fﬁl(w’ ) would not intersect. So, from the contracting
condition we would deduce that
VolBy(F ' (x),7) + VolBy(F ' (2),r) < Vol (Byy (z,7) U Byo (',7)) <

< VolBy, (x,r) + VolBy,(z',1) — VolB,, (T,r/2) ;
again, since the volume of riemannian balls of dimension n goes to zero as
Vol(B™ eucl)r™ when r — 0 (uniformly with respect to the centers, the sectional
curvature of X and Y being bounded), dividing by r™ and taking the limit for

r — 0, we would obtain the contradiction 2 < 2 — (1/2)™. So Flis lipschitz.

e ll=

|= 1 a.e. z (since the image, via F, of the zero measure set where F'

The map F ' is therefore almost everywhere differentiable and || (dF
l (dF)f—l(z) | o
is not differentiable still has zero measure), which proves that also F' ~ contracts
distances. This implies that F' is an isometry. O

4 Best constants on connected sums

A typical example where the reduction factor Ent(g)/Ent(go) provided by the
version of the Real Schwarz Lemma of [4] is inadequate is the case of a connected
sum Y = XM with a negatively curved manifold X. In contrast, we will show
that the factor Entg(g)/Ent(ge) is “generally” optimal, in a sense that will be
specified later on.

If Y = X{M is obtained by removing two open n—cells Bx and Bjs respec-
tively from X and M and then by pasting together (canonically) the resulting
boundaries ?, one has a natural map Px : Y — X defined by sending X \ Bx
diffeomorphically onto X \ {z¢}, and M \ By onto z, for some zy € Bx.
As Adeg(Px) < G(Px) and Adeg(Px) = deg,(Px) mod2, we deduce that
Adeg(Px) = 1. Let H be the kernel of the homomorphism induced by Px
between the fundamental groups.

In order to make our assertions more precise, we need estimates on the
minimal value of the invariants Ent(g)-Vol(Y, g)'/" and Entg(g)-Vol(Y, g)'/™
when ¢ varies among all differentiable metrics on Y. We will call these lower

9the connected sum Y of two n—dimensional manifolds X, M is univoquely defined if at
least one of them is non-orientable, otherwise Y is defined with respect to the choice of fixed
orientations of X and M. The resulting manifold Y is orientable iff both X and M are
orientable, in which case Y can be endowed of a natural orientation which coincides with
those of X and M respectively on X \ Bx and on M \ By (see for instance [12] for details).
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bounds — as the minimal values may not be attained by any metric— the minimal
entropy of Y and the minimal entropy of Y relative to H (respectively denoted
by MinEnt(Y) and MinEntg (Y)).

So, let X, M be compact manifolds, and let go,g be metrics respectively on
X and M. Consider points g € X, mg € M and a real number 7o smaller
than the injectivity radii of go and g at xg, mg. Fix an isometry j between the
tangent spaces T, X — Ty M and let J : T, X \ {0} — T, M be defined by
J() = (ro— [li) ) - 5()/ [ 5 () ]-
Let us see the connected sum Y = XM as the gluing of X \ {zo} to M \ {mo}
by means of the map exp§, o Jo (exp$)~"' : B (xo,70) = Bj(mo, 7o), where
the * means that the center has been excised from the open geodesic balls
By, (z9,70), Bg(mg,m0). We will see X \ {zo}, M \ {mo} as open subsets of Y’
(endowed with the respective metrics go, g), whose intersection is Bj_ (z9,70) =
Bj(mg,ro). Let do be the distance induced by go on X (hence, on X \ {zo}).
Consider real differentiable functions hy, : [0,7] — [0, 1] which are null for ¢ < ¢
and equal to 1 for ¢ > 2. Then hyop, where p = dg, (o, ), is a function on
X \ {zo} which can be extended to Y as 1 on X \ B} (z0,79) and as 0 on
M \ Bj;(mq,r0). Let us define on Y the metrics

(29) 9k = (hkop)2 -go+(1-— hkop)2 . k%’
so that g = go on X \ By (o, 2), and gy = 759 on M\ B;(mo,70 — ). Let dy,

be the distance functions induced by the metrics g on Y.
The main properties of the above metrics g are summarized by the following

Proposition 4.1 Let X, M be n—dimensional compact manifolds, and let H
denote the kernel of the homomorphism induced by Px : ¥ = XM — X
between their fundamental groups. For every metric go on X, the metrics gy
defined by (29) satisfy

1) Bntr(gi)" - Vol(gr) "= Bnt(go)" - Vol(go);

2) diam(gy,) b2 diam(go);

3) (Y,dy) hog (X,do) with respect to the Gromov-Hausdorff distance. 1°

Corollary 4.2 Let (X, go) be a compact locally symmetric manifold of negative
curvature, of dimension n > 3, and let Y = XM be the connected sum of
X with any manifold M of same dimension. Then, one has MinEntg(Y) =
MinEnt(X) and, if Y is not diffeomorphic to X, the value MinEntg(Y) is
never attained by any metric on Y.

10Recall that (cf. [9]) the Gromov-Hausdorff distance dg(X1,X2) between two metric
spaces (X1,d1), (X2,d2) is defined as
inf{dg (X1,X2) \ X1 C Z,X2 C Z isometric immersions in some metric space Z}
where df{ (X1,X2) denotes the usual Hausdorff distance between subsets of a metric space
(Z,d), that is d% (X1, X2) = inf{r \ d(X1,z2) <, d(z1,X2)<r for all 21 € X1,32 € X2}.
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Remark 4.3 Corollary 4.2 incidentally shows that the minimal entropy prob-
lem is completely solved for Y = X§M when M is simply connected: one has
MinEnt(Y) = MinEnt(X') and this value is not attained by any metric on Y iff
Y is not diffeomorphic to X (e.g. if M is not a homotopy sphere).

Notice that the number MinEnt(X) is precisely equal to Ent(go)-Vol(X, go)'/",
as a corollary of the Real Schwarz Lemma proved by G. Besson, G. Courtois and
S. Gallot in the locally symmetric case (cf. [3]), and it is explicitely computable
from the Euler characteristic of X in even dimension, by the Hirzebruch-Gauss-
Bonnet proportionality formula)

To prove proposition 4.1, we need a preliminary lemma.

Endow the universal covering X of X with the lifted metric o (and the induced
distance dy) and, as previously done for Y, perform, around all the preim-
ages {7%o}yem (x) Of 2o in X, the gluing of (infinite) copies of M \ {mg} to
X \ {7 %o}rem(x)- Let ¥ denote the resulting manifold: Y contains
X \ {7%o}yenr, (x) as an open set, and it naturally defines a covering 7 : Y »Y.
It is easily verified that this is the covering of Y associated to the kernel H
of the homomorpism induced by Px : Y — X (since the lift of any element
v € m(Y) is a closed path if and only if v € H).

Finally, let g, be the lift of the g;’s to Y, and let dj denote the distance induced
by g, on Y.

Lemma 4.4 For every positive € small enough, there exists K=K (€) such that
for all k > K one has 3 ~

5 (1 —e€)do(z,y) < di(z,y) < (1+€)do(z,y)
ifx,y € X \ {¥%o}yem (x) ond if y & By, (x,€).

Proof of the lemma 4.4.

Let B;(2) denote the closed go-balls of radius 2 centered at the preimages
z; of zo in X, and B;(2) = Bi(2) \ {zi}. As before, we may consider that
X\ U, B;(2) is a subset of Y on which the metrics gj, and go coincide.

We start proving the first inequality: let v be a dg-minimizing curve joining
to y in X#M. If  entirely lies in X\U; B; (2), the inequality di(z,y) > do(z,7)
is trivially satisfied. Otherwise, if v meets B;(%),..., By(%) in this order, let
4 denote the part of  which lies in X \ |J; B} (2), and let [u;,v;11] be the dj-
geodesic segment of 4 which joins B} (2) to Bf,;(2). As do(zi,i+1) is greater
than twice the injectivity radius of (X, go), we deduce that

Cio (Uz’+1 ’ ui+1) < 4/k

30 = )
(30) do(uj uipr) ~— 2ro —4/k

which implies, by the triangle inequality, that
di(z,y) > €5, (7) = L50(7) = do(x,u1) — 4/k+
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+ 25\52 (Czo (wi, Uig1) — JO(Ui+17Ui+1)) +do(un_1,vn) +do(vn,y) — 4/k >

> do(@,y)(1 = 5 L47) = 8/k > do(w,9)(1 — 5rh=z — &)
This proves the first inequality.

The proof of the fact that dy(z,y) < (1 + e)Jg(w,y) is obtained by mi-
micking the above proof, exchanging the roles of dy and dj and considering
a dy-minimizing geodesic v from z to y in X. In this case, by the defini-
tion (29) of g, the distance dj(u,v) in Y between any two points u,v of the
same ball B;(2) is bounded by (4 + £), where D is an upper bound of the
g-diameter of M \ By(mg,70). By the triangle inequality, we thus deduce that
di(z,u1) — (H22) and dy(vn,y) — (22) bound from below di(z, Bf (%)) and
dr(Bx(%),y) respectively. Moreover, as the first inequality of lemma 4.4 is
valid, we also deduce that

dr(vig1,uit1) o (4+D)/k < __(4+D)/k

di(uiuiz1) — (1—e)do(ui,uit1) — (1—€)(2ro—4/k)"
Replacing inequality (30) by this estimate in the end of the proof, we get in the
same way

do(w,y) > l5,(7) > di(@,9)(1 — =GH2Le ) — 2(4+ D)/k,

therefore .
di(wy) < do(,y) (14 2420) (1- ) o

Proof of proposition 4.1.
1) Consider z € X \ {v-Zo}iex, (x) C Y. For every vy € Aut(Y) = m(V)/H ~
71(X), one has do(z,yz) > 2r¢ and therefore, by lemma 4.4:

(1 = €)do(z,72) < di(z,77) < (1 + €)do(z, V)
if e <2rg e k > K(e). This implies

Ent(go)/(1 +€) < Enty(gx) < Ent(go)/(1 —¢€)
that is Entz (gx) "=3° Ent(go).
On the other hand, the concavity of the function log(detA) (on positive def-
inite matrices) and the fact that a'~*b* < a + b for a,b € Rt imply that
dvg, < dvg, +dvgp2 in Bj (zo, %) By integration, this yields

Vol (X \ B} (0, %), 90) < Vol(Y, gx) < Vol(X, go) + Vol(M, g/k?).
This shows that also Vol(Y] gx) o Vol(X, go), thus proving 1).
2) First notice that, if 2,y € X \ {zo} C Y,
do(z,y) =inf{do(Z,y) \ T,y €Y, 7(Z) = =, 7(Yy) = y},
di(z,y) = inf{d(z,9) \ 7,5 €Y, 7(@) ==, 7(Y) =y}

hence lemma 4.4 holds for z,y € X \ {y%o}exr, (x) as well as for z,y € X\ {zo}.
So, diam(X \ By, (w0, %), dy) hoee diam(X,dp), while it is easy to see that
diam(M \ By (mo,ro — 2),dy) “=3° 0.
By the decomposition Y = X\ By, (0, 2) U M\ By(mq,ro — %) it follows that
diam(Y, di) "=3° diam(X, do).




A. Sambusetti 23

3) For any fixed €, let N = {n;};cr be a maximal (ey/2)-separated set of
(X\ {20}, do), i-e.
U; Bgo (ni, §) = X \ {zo} and d(ni,n;) > €o/2.

Thus, N is eg-net of X. Since diam(M \ By(mo,r0 — %), dk) "2% 0, by lemma
4.4 (applied to X \ {zo}) we deduce that N C X \ {zo} also is a ep-net of
(Y,dk), if k& > K(éo), and that | dk(ni,nj)/do(ni,nj) -1 |< eif k > K(e)
Since sup;, diam(Y, d) < oo and € is arbitrarily small, this is equivalent to the
Gromov-Hausdorff convergence (Y, dy) hoge (X,do) (cf. [9]). O

Proof of corollary 4.2.

The inequality MinEntg(Y) < MinEnt(X) is given by proposition 4.1. On the
other hand, by using inequality (4) of theorem 1.3 in the case f=Px : Y = X,
Adeg(f) =1, we get

(Eplote) " Vol(g) > [y, |Jac(fe) | dug > Vol(go)

by the coarea formula, hence the opposite inequality MinEnt g (Y') > MinEnt(X).

Finally, if the value MinEnt g (Y) was attained by some metric g on Y, we should
have Entg(g)"Vol(Y, g) = Ent(ge)"Vol(X, go), so Y would be diffeomorphic to
X by the rigidity statement of the strong version of the Real Schwarz Lemma
1.3.0

Remarks 4.5

1) One generally has Entg(g) < Ent(g), hence theorems 1.2 and 1.3 strictly
sharpen the result of G. Besson, G. Courtois and S. Gallot of [4]. Actually,
from Proposition 4.1 one can deduce in some cases an uniform lower bound on
Ent(g) — Entg(g) (provided some normalization condition on the metrics g is
assumed, for instance Vol(Y, g) = 1).

In fact, a general inequality is known for the minimal entropy of a compact
n—dimensional manifold Y, namely

MinEnt(Y)™ > 2~ ||V ||
where || Y || is a homotopy invariant (introduced by M. Gromov in order to

study the minimal volume problem for riemannian manifolds, cf. [8]) which is
called the simplicial volume of Y.

n/2
n!

In the case of a connected sum Y = X{M with a negatively curved manifold
X, the additivity of the simplicial volume on connected sums and Proposition
4.1 then yield, if || M ||> 0,

MinEnt(Y)" > 22 (|| X || + || M) > MinEnt(X)" > MinEntg (Y)" .
An interesting question is whether MinEnt(X#M) always is greater than
MinEnt(X), for any non-simply connected M, or if || M ||# 0.

n!
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2) Also the case of dimension 2 is enlightening ! to get convinced that
generally Entg(g) < Ent(g). As a simple example, let us consider two compact
surfaces Y = Xy and X = X of genera k' > k > 2 respectively, and let
f:Y — X be the map which shrinks some handles of Y to a point of X. As
the minimal entropy of a surface is precisely attained by hyperbolic metrics (cf.
[11], [3]), given hyperbolic metrics ¢’ and g on ¥ and X one has:

Ent(¢') = Ent(g) = 1, Vol(Y,g') =27 (2k' — 2), Vol(X,g) = 2m(2k — 2)
hence MinEnt(Y)? = 27(2k' —2) > 2m(2k —2) = MinEnt(X)? > MinEntg(Y)?2.

3) Remark also that not even the estimate MinEnt(Y) > Adeg(f)MinEnt(X)

can be generally obtained from the version of the Real Schwarz Lemma proved
in [4], in case f : Y — X is a map between non-oriented manifolds.
For instance, when ¥ = X#M, where X is orientable and M not, the lift
Px : Y — X of Px to any oriented covering Y of Y has zero degree (since it
factors through the canonical double oriented covering of Y). This shows that
the above inequality cannot be generally obtained by simply applying the result
of G. Besson, G. Courtois and S. Gallot to the lift of f to some suitable oriented
covering of Y.

Remark 4.6 About the optimality of the factor Entg(g)™/Ent(go)™.
Given the geometric data of a C* map f : (V,g) = (X, go) between riemannian
manifolds (normalized so that f globally preserves volumes, i.e. Vol(Y,g) =
Adeg(f)-Vol(X, go)), one may wonder to what extent f can be deformed, within
its homotopy class, in order that volumes are infinitesimally preserved as much
as possible. That is, what is the value of the best reduction factor

R([f],9,90) = inf{sup,ey | Jac, f'| \ f homotopic to f} = ?
Of course the answer depends on the particular geometric problem under consid-
eration, but the coarea formula yields the general lower bound R([f], g,g0) > 1.
On the other hand, when gg is locally symmetric and negatively curved, by
theorem 1.3 one has 1 < R([f],9,90) < Entu(g)"/Ent(go)™.
When moreover f = Px : XM — X and g is e—close to the minimal value
of the functional Entg(-)"Vol(X§M,-), Proposition 4.1 shows that the factor
Entr(g)"/Ent(go)" is o(e)—close to the solution R([f],9,90), since

Entu(g)”
| Splel — 1 < o(e).

In other words, the factor Entg(g)™/Ent(go)™ tends to be optimal as long as g
tends to be minimal for the volume-entropy functional Entg(-)"Vol(X4M,-).

Let us finally remark that the case that we have considered (where Y = XM
and f = Px : Y — X) is not so a particular case, as combining our strong
version of the Real Schwarz Lemma with some results of I. K. Babenko ([1])

even if it is not pertinent to show that theorems 1.2 and 1.3 are strictly sharper than

the version of the Real Schwarz Lemma proved in [4], since they hold in dimension greater
than 2. However, it should be pointed out at least that also the inequality MinEnt(Y) >
Adeg(f)-MinEnt(X), found by G. Besson, G. Courtois and S. Gallot in [3]foramap f : ¥ — X
of non-vanishing degree between compact surfaces, can be replaced by the sharp equality
MinEnt gy (Y) = Adeg(f) - MinEnt(X) (see [16]).
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one can prove that the equality MinEntg (YY) = Adeg(f)-MinEnt(X) holds in
general for maps f : Y — X onto a locally symmetric manifold of negative
curvature, (see [16]).
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