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ABSTRACT. We show that one-dimensional aperiodic sets of points hav-
ing the Delaunay property can be associated with generalized Meyer sets,
for which 1) the internal space is toric, IR/AZ, with a selection rule based
on a congruence mode with respect to the frequencies A producing punctu-
ated windows, 2) a scaling exponent function, having values in [0;1], can be
uniquely defined on the window, is related to the scaling properties of the
intensity function and the point density measure on canonical 1-dimensional
sublattices of period X\, where a scaling exponent of 1 corresponds to Bragg-
peaks, 3) the projection mappings are adapted to the global average lattice
and are not orthogonal. The case of the Thue-Morse quasicrystal is explicitely
developed. We prove also that it is a Meyer set and it is harmonious.
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1. INTRODUCTION

The notion of model set in the context of the cut-and-project scheme developed
by Y. Meyer [1],[2] in the 1970s has been successfully and extensively applied to the
study of the structure of quasicrystals for more than ten years. Its simplicity, which
is expressed by the existence of a suitable lattice in a periodization space and suitable
windows in the internal space, and its power when refinements of structure models [3]
are in cause make model sets exciting new tools for studying aperiodic sets of points
in the quasiperiodic context and quasicrystals.

As far as the authors know it, the constructions of Y. Meyer were developed in
the context of locally compact Abelian groups such as finitely-dimensional Euclidean
spaces IR™, compact subgroups of the infinite torus 7', discrete or finite groups,
and all the mixed possibilities (see Rudin, [12], chap. 2), whereas the applications to
quasicrystals were using only IR™ spaces, for a certain integer m > 1. A natural and
fundamental question to be asked is therefore to understand when toric internal or
physical spaces appear naturally in the study of point sets and for which purposes
they have to be used. The present contribution is reporting a new vision of the
(CPS) cut-and-project scheme for which a toric internal space is bearing information
about the way the intensity is scaled with the number of diffracting sites in the point
sets at each element of the spectrum and its geometrical representation with the
corresponding scaling exponents at each element of the windows.

Indeed, when aperiodic point sets are not any more quasiperiodic, the search for
the sets supporting the components of the spectrum, Bragg, singular continuous and
absolutely continuous becomes more complicated. Model sets in the quasiperiodic
context, the context of the (CPS) normal cut-and-project scheme with Euclidean
spaces as physical space and internal space, give only pure Bragg spectra. Many
other possibilities could of course occur, and the full generality of the theory calls new
concepts to deal with the scaling exponents associated with the singular continuous
component of the spectrum.

On the other hand, Hof [4] has developed a mathematical modelization of diffrac-
tion theory adapted to any Delaunay set in IR",n > 1. He shows that the knowledge
of the autocorrelation measure of this set is basic since it gives rise, by its Fourier
transform, to the diffraction patterns of the set, known to physicists. This autocorre-
lation can for instance be computed directly by hand in the case of interpenetrating
G-clusters, where G is a finite non-crystallographic symmetry point group and when
G-clusters are arranged quasiperiodically or not [5]. When arranged quasiperiodically
in a suitable way, the system of interpenetrating G-clusters is composing a quasicrys-
tal [6], and this approach is another view to the diffraction of the quasicrystal and its
decomposition through the existence of the local clusters of atoms it contains.



Of importance is the search of the localization of the Bragg-peaks, the peaks be-
longing to the singular continuous component of the spectrum. This can be carried
out by a suitable Fourier-Bohr analysis [7, 8, 9], or, in some extent, with the average
unit cell approach [10],[11] typical of finite systems.

In the following, in order to justify our claim that a toric internal space is important
for describing the behaviour of the intensity function, the autocorrelation measure or
any function linked, by duality, to the point set considered, we will treat the problem
in dimension 1.

We are then interested in the following by (non-periodic) Delaunay sequence of
points on the real line given for instance by the image { f(n) / n € IN } of a strictly
increasing function f : IN — IR, f(0) = 0, that we will consider modulo a lat-
tice AZ, where A > 0 is a real number, and such that the set of values Q, =
{f(n)moduloAZ / n € IN} is finite. This means that we assume that, by some
arithmetical spectral computation - through the definition of f -, we know which
frequencies are such that €2, is finite. Under this hypothesis, we show that we can
associate scaling exponents to each element of €2, in a natural way if some regularity
assumptions are satisfied by the sequence : at first, we express Bochner’s theorem [12]
on the interval | —A/2; +A/2] by splitting up the extremities {£\/2} of the torus,
second, we make a suitable Lebesgue decomposition of the structure factor. The ex-
ponents which appear by this method are shown to be correlated to fractal rates of
occupancy at infinity of some 1-dimensional lattices associated with f. The case of
the Thue-Morse quasicrystal is presented in this context. We show in particular that
a Thue-Morse quasicrystal has an average lattice, is a Delone set, satisfies the Meyer
property, but, since it does possess a non empty singular continuous component of
the spectrum, is not a ‘model set’. We show that the Thue-Morse quasicrystal is an
harmonious set.

In the last paragraph, we present a generalized cut-and-project scheme built in
order to extend the normal CPS to sequences which are not quasiperiodic, where €2,
behaves as a window in the one-dimensional torus. It allows more general spectra
than only pure Bragg spectra and enables to understand the origin of the scaling
exponents for the intensity. We examplify some results about the Thue-Morse in this
context.

All the considerations below for one-sided sequences can be transposed easily, with-
out gaining in generality, to two-sided sequences, extended for instance by inversion
with respect to the origin, and we will leave this aside. Another generalization, far
from trivial, will consist in developing the present approach to non punctuated win-
dows in one-dimensional tori, and in m-dimensional tori, m greater than one. This
will be the subject of another contribution. In the following, we will denote by Zy



or yZ C IR the lattice {ym |m € Z }.

2. DEFINITIONS

In the following, we will consider sequences {f} of points satisfying the following
assumptions :

(H) : f is a strictly increasing function defined on IN taking values in IR. {f(n)/n €
IN'} represents an infinite sequence of points on the real line, satisfying the crystallo-
graphic hypothesis (Delaunay) :
(D1) (uniformly discrete) 3r > 0 such that, for all n € IV, each interval
| =7+ f(n);+r+ f(n)[ contains only the point f(n) of the sequence,
(D2) (relatively dense) 3R > 0 such that Vz > f(0) , 3n € IN such that
|z — f(n)| < R.

Each time we will consider such a sequence f, we will (arbitrarily) set the origin at
f(0), so that f(0) = 0. Let us consider a sequence f satisfying the hypothesis (H)
above, A > 0 a real number, and

Oy = {u€l—A/2;+)/2] /Gn € IN, f(n) = u+ pA for a certain p=p(n)}
the set of values which are reached by the sequence {f(n)} modulo Z\. Denote
Qf = QN R™ Oy = BNR-
For each u €] — A\/2;+)/2], we call
Ny(u) ={neIN/Ipe IN,—p\+ f(n) =u}

By definition, all the sets IV,(u) are empty when u €] — A/2;+A/2] \ 2, and non
empty when u € (2.

Lemma 1.- The following union s disjoint :

N = [| Nu) (1)

uEN)

This lemma represents just a partitioning of the set IN with respect to the ‘lattices’
U+ Z M.

Some of these lattices are strongly occupied and others very few. In order to under-
stand their roles in the diffraction process of the sequence f, we introduce asymptotic



rates of occupancy to each of them and study fractional exponents associated with
them.

For any interval [a; b] of the real line, we denote by x[q;y its characteristic function. Let
denote by p the measure on IN which is counting points : i.e. for any A C IN, p(A4) =
Card(A). For any A > 0, ¢ € IN, N an integer > 1 and v €] — A\/2;+A/2], we call

IPy(q) = {n€ IN/f(n) € [0;¢)] } (2)

and

rval) = [ Xowv-1(n) dp(n) (3)

INA(v)NIPx(q)
When ), g, v are fixed, the sequence N — d, n,(v) is stationnary : it can be calculated
with ¢ and N such that
f(N=1) < g < f(N) (4)
fN fN)
A

and ¢ = l—)] the greatest integer less than

3 . We denote by

Org(v) = lim 0y ng(v) = #(INa(v) N PA(q)) (5)

For couples ¢, N such that Eq. [4] is valid, we have 0) n4(v) = d54(v). For each
v € (2, we now consider the sets of exponents

{6 € [0;1]/ timinf (&;7;5”) -0} (6)
and
(v e 01/ timsup 22 < o0 (7

Since IN(v) # 0, the first set of exponents is not empty : it contains at least 5 = 0.

We call

0x(0) = sup{6 € [0:1]/ tignjut 242 > o) ©

Similarly, the second set of exponents above is not empty since it contains § = 1 :
this comes from the fact that #( INx(v) N Px(q) ) < ¢. Let us denote

o
a)(v) = inf{y € [0;1] / lim sup Ora(v) < 400} 9)
q—00 q”Y
Proposition 1.- For all v € Q,, we have
0<a(v)<ay(v) <1 (10)

5



Proof : If a,(v) = 0 or if @,(v) = 1, the proposition is proved. Assume a,(v) > 0
and 0 < @,(v) < a,(v) < 1. Then there exists two real numbers 3, ' such that

a\(v) < f < B <a\(v)

We have a,(v) > 3 — ' > 0, hence liminf (V)

q——+00 qﬁ_ﬁ'
liminf. Tt is strictly positive and there exists a subsequence {g;/i € IN} such that

O Oxr.as ,
lim G = L. Therefore, lim )"q#fv) = lim Lq¢” and tends to infinity. But

i——+00 qiﬂ_ﬂ’ i—+00 q; i—+o0

Ox.a: 5
y(v) < B and hence Tim 4% < i gup PalV)
e g g—+oo 8

> (. Let us denote by L this

< +00. Contradiction O.

Definition 1.- Given A > 0 ; for each v € 0y, an average sublattice in v of period
A, v+ ZN, of the sequence {f(n)} is a lattice in IR which contains v and such that
its period A satisfies

ap(v) = ax(v) = 1

)
Definition 2.- Given v € Q). When a,(v) = @,(v) and ligginfLEU)) and
oo qg)\"}
Orq(v)

lim sup == are strictly positive, exist and are equal, we denote
g—00 qa)\( )
ax(v) = ax(v) = @x(v) (11)

and 5 5

(5/(\0‘*(”))(1)) = liminf Ona(v) = limsup Dn(v) (12)

gq—00 qa/\(v) g—00 qu(U)
In particular, when
ay(v) =1

we call this common limit 6x(v). It is by definition the average number of points of
the sequence {f(n)} per period of the lattice v+ Z X, with f(n) = v (mod Z\).

The notation of Eq. [12] is such that the quantity («,(v)) is a superscript and not an
exponent. When a,(v) = 1, the occupancy of the lattice v + Z \ is fairly regular. In
this case, we always have 6,(v) € [0;1]. The occupancy is fractional.

When a, (v) = @)(v) = 1 and 6,(v) = 1, it means that we have exactly one point of
the sequence, in average, congruent to v, per cell of the lattice v+ ZA. This does not
mean that we have a full occupancy of the lattice v + Z . Owing to the assumption



(D2), the number of successive cells of the lattice v + Z\ receiving no points of the
sequence at all cannot be arbitrarily large.

Definition 3.- Given A > 0 ; a sequence {f(n)} which is such that for each v € §,,
@,\(v) <1
1s called singular in A.

Conversely, for sequences of points that are subsets of lattices, we have the following
result.

Proposition 2.- If {f(n)} is a subset of the lattice Z2r, r > 0, consisting of the
points of the lattice indexed by the positive integers, except possibly a finite number of
them, then :

i) if A\ = 2r, then Q\ = {0}. The lattice Z2r is the average sublattice in v = 0 of
period 2r of the sequence {f(n)}, with 6,(0) = 1,

ii) if X is such that 0 # A/2r = t/w € @, ged(t,w) = 1, then Q) is the set of
residues of 0,1 x2r,2 x2r,...,(t—=1) x2r in]|— A/2;4+)X/2] modulo Z X, and,
for allv € Qy, ay(v) = @\(v) = 1, with §)(v) = 1/w,

iii) if A is such that \/2r ¢ @, then Q, is the uniformly dense set of residues of Z2r
in ] — N2;4A/2] modulo Z\ and a,(v) = ax(v) = 0.

From case ii), we see that each time A is an integral multiple of 27, then w = 1, ie
each lattice v + Z X is an average sublattice in v, for all v € Q, (see Definition 1.-).
Such collections of points are singular for any A\ which are incommensurate with the
period 2r, from iii).

Corollary .- For any sequence {f(n)}, satisfying the hypothesis (H), if ry denotes
the mazimal bound of r such that the intervals : | —r + f(n);+r + f(n)[,n € N,
are mutually disjoint, then the sequence {f(n)} is such that for any A < 2r, and any
v €] — A\/2;4+)/2], we have 65(v) € [0;1] if it exists.

The value 1 cannot be reached in this case, sites being too dispersed on each sublattice
v+ ZMNv € .

3. FOURIER TRANSFORM DECOMPOSITION BY SUBLATTICES
Let A > 0 and assume that Q, is finite. Let £ = 27/\ the corresponding wave vector

and N > 1 an integer. We will make a Lebesgue-type decomposition of the structure
factor of the sequence f below, gathering diffracting sites by sublattices setting 1



to each site as individual scattering factor. The structure factor considered for N
diffracting sites is equal to:

Zle““f = [ Xy ) dpu(n) (13)

Lemma 1 implies

=/ Xow oM™ dp(n)
L

weay Nalw)

[ Xow o du(n)

u€Qly Y IVx(uw)

= (L X0 ) ) o (14)

where 1 = Y ,cq, 0y is the measure on 2, which counts points : ie., p(A) =
Card(A) for any A C Q,. Since kA = 2m, and that f(n) —p(n)A = u for a certain
u € 2y and a certain (unique) integer p(n) associated with n, we have

N </ Xpouy _yy () e/ 7PN dﬂ(")> dp(u)
Ny (v)

Qy

= [ ([ s )

= Ja, - </JN (w) Xn- (") d,u(n)) ) 1

Let us assume now that the value \ is such that the sequence {f(n)/n > 1} satis-
fies the equality conditions (Eq. [11,12]) of Definition 2 for all v € Q). Then, the
expression of the structure factor can be written, N >> 1 :

~ 3 e ([ 19

’UEQ/\

owing to Eq. [3,4,12]. We now classify the elements v € Q, by lexicographic order
in the following way : if v and w are any two elements of {2, we say that v > w if
ax(v) > ay(w), or, when ay(v) = ay(w), v < w. Therefore, there exists a stationary
sequence of integers ng = 1,n4,... such that

Ung=1 m~ V2 > .. > Up,—1 > Upy > Upyg1 > «oo > Ung—1 > Uny > Upoyl > - --
with
1> an(vne=1) = ar(v2) = ... = ax(vp,—1) > an(vn,) = an(vny41) =

8



= a’/\(vnzfl) > a)\(UM) = a/\(vnﬁ-l) =

and
v < VU <... < Up -1

Upy < VUppg1 < ovn < Upy1

corresponding to the jumps of the scaling exponent function a;, on €2). This sequence

is finite since €2, is assumed finite. With the convention, for any integer 7« > 0, that
n;—1

Y~ = 0 the structure factor is equal to (the first summation is finite)
+oo ny41—1 ) N aA(vnl)
S|y e a&““”"l%j)] ) o
=0 [ j=n
Let us denote by
et (e (vn))
C,\(l) — Z e2z7rvj/)\ 6)\ou Un; (Uj)
J=m

the [-th coefficient. The index [ is called the level index of the scaling exponent.
The level [ is constituted by n;; — m; elements in the window (2. The intensity
I(2w/)\) produced by an infinite number of diffracting sites is given by the limit
(thermodynamic limit) when N — 400

2
m-1 N)2oa ()
ren/n) = | 5 emmamen e | (i IOEE) - ay
i=1

the other terms being negligible if the first coefficient cy(g) is not equal to zero and if the
limit exists in the second term of the product ; here we have made the approximation,
for N >>1,and alli > 0

S (CS TS R

which is justified by the fact that f(N) — f(N — 1) < 2R, uniformly for all N, the
Delaunay constant of assumption (D2). More generally

Proposition 3.- If the first h + 1 terms (h > 1) cx(l) are such that, for any | =

0,1,...,h—1
ax(vn,)
. () f(N)> e
1 SR =0 20

ﬁiﬂfﬁ( A (20)




and

ax(vny,)
(k) (fN)\T .
N1—1>I—Eoo JN (T exists and is # 0 (21)
then, we have
np41—1 2 20 (vn; )
— 2imv; [ (ax(vny,)) N y—ax(vn;) : f(N) h
10n/0) = | 3 @I )| i TG (22)

Thus, we have an explicit expression of the scaling factor for intensities with N in
the general case, given by the second term in the product.

Corollary.- Under the above assumptions, the scaling exponent of the intensity with
the size N of diffracting sites is given by

(f (N )j\j*‘”"”) (23)

In particular, if the sequence {f(n)/n > 1} has an average lattice, i.e. when the limit
limy 100 f(N)/N = 1, 6-peaks can be obtained if and only if the scaling exponent is
1, that is if and only if

ax(vp,) =1, thatis for h =0, ng =1 (24)
and
o (v1)
. a(0) (fIV))™ : :
Nl_l)IEOO /N ( ) exists and is # 0 (25)

The intensity of the 6-peak at k = 2w /A, per diffracting site, is then

ni—1 2

lim 1er/A) _ ST il gy (v) A (26)
j=1

N—+oo N

The lexicographical classification of the elements v of €2, by the values of the scaling
exponent a,(v) can be reported naturally on the torus : indeed, the present situation
means that, if we identify €2, with the torus IR/A\Z, and denote T the corresponding
elements in the torus, we obtain levels which are the different values of the scaling
exponent function a. This defines naturally a scaling exponent function @, on the
torus by, for any v € Q, :

() = aa(v)

The levels are attached to the 1-dimensional lattices v + \Z = 7.

10



3. MULTIPERIOD ANALYSIS AND RELATIONS

Assume A; > 0,2, finite and Ay = mA;, with m > 1 an integer.

Proposition 4.- a) If m is odd, there exists an integer M = M(A,m) < m —1
such that :
melrr2j —m+1 M
2, C | [(%) M +QA1] c U (@, +kN)

j=0 k=—M

b) If m is even, there exists an integer M' = M'(\,m) < m — 1 such that :

m—1 25
Ty (= PREN [
j=1

Qy, C

MI
C U (Q)\z + k/\l)
k=—M

Proof : a) For any u € 2,,, there exists v €] — A\1/2;+A;/2] such that v = v modulo
Z ). Therefore, there exists j € {0,1,...,m — 1} such that u = —Xo/2 + jA\; +
AM/24+v = (%) A1 +v. Now, since u € ,,, there exists ¢, p(q) integers such
that v = f(q) —p(q)As. The fact that m is odd implies that w is an integer and

that 2% —m+1 2 —m+1
—m —m
v=u-— (%) A= flg) —plg)mA — (%) At

can be written f(q) — p'(¢)\; for certain integers ¢, p'(q) ; therefore v € ), and

m=lr /95 —m+1
0 U [(7J : ))\1+Q)\1]

=0

Conversely, assume u €] — A\y/2; +X9/2] and that there exists 7 € {0,1,...,m — 1}
such that u € (%}ﬂ) A1 + Q). Then there exists s, ¢(s) integers such that

u = (%) AL+ f(s) —a(s)h

= f(s) = (A2/2 = jA + q(s)A — A1 /2)
But ¢(s)A; lies within an interval |r Ay — Ao/2; 7 A+ A2 /2] ; hence, for a certain integer
r = r(s) and j' € {0,1,...,m — 1}, we have
At

A
q(s)A\ = TAy — 72 + 7'\ + )

11



and

u= f(s)—rra+ (-5
with j —j € {-m+1,-m+2,...,m —2,m—1}. M denotes the greatest (reached
necessarily) value of |j — j'|, over all the elements u € 2,.

b) Similarly when m is evenl.

Corollary.- If Ay > 0 is such that Qy, is finite, then, for any integer m > 1, 0y, is
finite.

In the following, we will be interested in sequences f{n} and values of \; for which
M(A1,m) = 0, that is for which the set €2, is completely decomposed, ie : if m is
odd,

melr i —m+1
o = U (2 nn)
j=0

if m is even,

m mlrr2j—m m
Q,, = (__+Q;> vl [( J )/\1+QA1] U (—)\14—9;1)
2 et 2 2
We call this case of complete decomposition the assumption (SD).

Proposition 5.-Under the assumption (SD), we have :

27 — 1 Al A
a) m odd : for anyv € Q,, , 35 € {0,1,...,m—1} with U—¢)\1 E]—EI;EI]
and 2% —m+1
-m
Ny, (v) C INy, (v _ %Al) (27)
27 — 1
For any w € Q,, , 3j' € {0,1,...,m —1} withw—l—%/\l € Q,, and
27 —m+1
Ny, (w) € Nyy(w+ Z——=x) (28)
27 — AL A
b) m even : for anyv € Q,, , 37 € {0,1,...,m} with v— J m)q E]—EI;EI] and
27 —m
Ny, (v) = Ny, (U- L )\1> (29)
. , 25" —m
For any w € Q,, , 35' € {0,1,...,m} with w+ A1 € Qy, and
25" —m
W)\l(w) - W)\2(w+ /\1) (30)

2

12



Proof.- a) Assume n € IN,,(v). Then, for a certain integer p = p(n), we have
f(n) = v+p
But 35 € {0,1,...,m — 1} and w €]\;/2; +);/2] such that

A2 A .
v=wA —— 4+ g

2 2
25 — 1
Since % is an integer, we have
2j—m+1 2] —m+1
) = v— L= + 22T
2 2
2j—m+1
= w+%)\1 +pm)\1
hence o 41
n € Ny, (U—%)q)

The second inclusion is obvious using assumption (SD). The two other assertions
follow in the way.

4. THE THUE-MORSE CASE
Let a,b > 0 two real numbers with a # b and n € IN,n > 1. The nth-tile ¢,, of the
Thue-Morse sequence (for instance [7]) is given by
tn = §(a+ b) + 5(@ —b)(—1)~?

where Sy(n) is the sum of the 2-digits in the binary expansion of n. In other terms, if
n = ay+ a2 + a2’ +az2® + ...

then
SQ(TL) =Qay+a; +as+as3+...

each sum being obviously finite.

Another sequence produced by the Thue-Morse automaton is the following, but it is
obvious that its spectrum is much simpler since it is periodical: its nth-tile ¢/, is given
by

1 1
t = §(a+b) + §(a —b)m,

13



where m, = €é€;...€,, and €, = (—1)",n € IN. The aperiodic sequence f(n), resp.
f'(n), with n € IN, is given by

0<m<n-—1
for n > 1. We will analyze the rates of occupancy of sublattices at infinity of each
sequence as in Proposition 3 and the stability under multiplication by integers as in
Proposition 4. We will show that both sequences will behave in a very similar way, at
least for a collection of Bragg peaks, for which the intensities are exactly the same.
Lemma 2.- For alln > 1, we have
n—1

f'(n) = g(a +b) + %(a —b) Z (_1)m(m+1)/2

m=0

Consequently, when n = 2p, p integer, p > 1, then
f'(2p) = pla+b)

fl2p=1) = f'(2p) - (a+b)/2 - %(a —p)(—1)-Dp

It can be easily checked that (—1)(21”_1)” is equal to +1 when p is even, and to -1
when p is odd. Therefore, f'(2p) — f'(2p — 1) = b or a with equal probability, when
p lies in IN. With the above notations, leaving the superscript ’> for the quantities
associated with the sequence f’, we deduce

Proposition 6.- With A\ = a + b, we have, relatively to the sequence f' :

Q'A = {v'l = —b,v’2 :O,v;:—i-b}
0)(=b) = a}(0) = a}(+b) = 1

! ! ].
65(—b) :6A(+b):Z
' 1
5,(0) = =
() =
ng=1, n, =4=mny, =ny = ... = Card(Qy) + 1

14



Lemma 3.- For alln > 1, we have

n 1 n—1
f(n) = 5(0, + b) + 5(0, — b) Z (_1)Sz(m)
m=0
with .
> (—1)%M € {-1,0,+1}
m=0

Proof : If n is even, the first coefficient ag in its binary expansion is equal to 0.
Therefore, going from n to n + 1 leads to just adding 1 to Sa(n) to find Ss(n + 1).
We have :

- if Sy(n) is even, then Sy(n + 1) is odd,
- if Sy(n) is odd, then Sy(n + 1) is even.

In other terms, if n is even :

(_1)52(n)(_1)52(n+1) —

Now, we prove inductively that, for any n € 2IV,

n—1

> (=1 =0

m=0

If n = 2, the result is true. Assume the result for n > 2 even. We have :

n—1
> (=)= =0
m=0

and

n+1 n—1

Z (_1)52(m) — Z (_1)52(m) 4 (_1)52(77,) + (_1)52(n+1) — (_1)52(71) + (_1)52(n+1)

but the sum of these two quantities is zero. Hence, the result. O

Proposition 7.- With A = a + b, we have, for the Thue-Morse sequence :
Q= {v1=—bve=0,u3=+b}
ax(—=b) = ax(0) = ax(+b) =1

S\(-b) = Br(+0) = |
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6x(0) =

N =

oo = Card(2y) +1

n0=1, n1:4=n2=n3

Proof : Since, for each n € 2IN, we have

Y (<)% =0

then a,(0) = 1, 6,(0) = 3. Denote now
A- = {ne2lN|(-1)"M = _1}
At = {ne2lN|(-1)%™ = 41}

We have 2IN = A~UA™ as a disjoint union. The injective application ¢ : z — 2z +2
defined on 21N sends A~ to A" and A™ to A~. Therefore, for the distribution of points
f(n), withn € 1+2IN, on the sublattices +b+\Z, we have : a)(—b) = ax(+b) = 1,
and 6,(—b) = 0,(+b) = 1. Hence, no = 1 with the other values n; equal to 4, for
j>1.0

Corollary 1.- The intensity per diffracting site of the sequence f' or the Thue-Morse
sequence f, at the wave vector k = 2m/(a + b), is given by

1 14+ 2mh
— cos
4 a+b
Proof : Counting the intensity per diffracting site leads to divide by N before taking
the limit in Proposition 3. This gives immediately (abbreviating the notation in a
non-correct but understandable form)
I(2r7/(a+ b))

lim ———— =
N—+oo N

2

. 1 . 112
2o/t L sin(eb)/(a+t) L

1
4 2 4

hence the result O.

It can be easily checked that, for the Thue-Morse sequence f and for the sequence f,
the assumption (SD) [ Corollary of Proposition 4 | is satisfied for A = a + b with any
integer m > 2 and that we have equalities in the equations Eq. [27, 28] and Eq. [29,
30]. Hence, with the notations of Proposition 5, we deduce, for m odd

5 _ 2j=mil
lim 2V ) =m lim IO
q——+00 q q——+00 q
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for m even

Oy q(v — 25 5
lim )\1,(1 (v 2 ) = m lim )\2,(](/1))
g—+00 q qg——+00 q

Similarly, for the ' quantities associated with f’. Therefore, going from 2, to 2,,,

resp. (2, to ), leads to divide all the coefficients ¢y, (I), resp. c,, (I), by m. For
instance, with A\ = a + b, m = 3,

Q3(atb) = Q;(Hb) = {-a—2b,—a —b,—a,—b,0,4+b, +a,+a + b, +a + 2b}

and the intensity per diffracting site is, for both sequences :

. I(27/3(a+b)) L gin(-a-25)/(3(a4b)) |, L 2in(—a-b)/(3(a+b))
Nl—l)r—{—loo N = E& + 66 +
L gir(—a)/(3a+t) | L 2in(=0)/Ga+) . L | 1 oir(an)/(3(att))
—|—126 +12€ +6+12e +

L gir(4a)/(3a+b) | L 2in(+atd)/(3a+b) | L 2in(+a+26)/(3(a+b)) |2
+ 126 + 66 + 126 |

These expressions allow to consider the case when N = +oc.

Corollary 2.- The Thue-Morse sequence gives rise to a lattice of 6-peaks at the inte-
gral multiples of Ay = a + b.

Proof : 1t is a consequence of the previous expression of the intensity .0

This result was also obtained according to another approach, by Kolar et al [17] for
substitutional systems of length 2 formed with two tiles. The authors report there
other Bragg-peaks.

5. GENERALIZED MEYER SETS

Before showing that the Thue-Morse sequence can be formulated within the context
of Meyer sets, as generalized Meyer sets under generalized cut-and-project schemes
(generalized CPS), what will be explained below, we recall at first the basic facts
of Meyer’s constructions with locally compact abelian groups, following Meyer[1],
Moody[2] and Baake and Moody[13].

Definition 4.- | classical CPS : cut-and-project scheme | Let G and H be two locally
compact abelian groups, and my : G Xx H — G,m : G x H — H the canonical
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projections. We say that G produces H if there exists
(A.s) a closed subgroup L of G x H satisfying :

(A.a) L is discrete in G x H

(A.b) L is relatively dense in G x H | property H-(D2) ]

(A.c) LnN{0} x H = {0,0} where 0 denotes the neutral element of G, resp. H
(A.d) mo(L) is dense in H

The structure of locally compact groups is well known, see for instance Rudin [12],
chap. 2. A l.c.a group G contains an open (also closed) subset G of the type IR™ x K
such that K is a compact in the infinite torus 7' and that the quotient G/G is
a discrete group. In particular, K may be a space like a finitely-dimensional torus
(R/Z)', for | > 1 any integer. Up to the knowledge of one of the authors, for all
the applications concerning the crystallography and structure models of quasicrystals,
particularly icosahedral quasicrystals and decagonal quasicrystals, only the euclidean
part was used up till now in cut-and-project schemes. Very recent results communi-
cated to the authors also make use of p-adic internal spaces [14] in the spirit of the
previous works of Meyer [1] and Schreiber [15], but, they seem not being used as such
by experimentalists up till now. The normal CPS is then a collection of mappings
and euclidean spaces :

R" & R"xR" = R
U
L

where L C IR™ x IR" is a lattice, m; and 7y the orthogonal projection mappings onto
Im(m;) := the physical space = IR™, and Im(my) := the internal space = IR". L is
assumed such that with L the physical space produces the internal space, mo(L) is
dense in IR"™ and 7|y, is injective. Let Y := m;(L). The application
() == meo (ﬁl\L)fl

is well defined on T and has values in the internal space. It is extended on the @-span
@Y of T. In the context of structure models of quasicrystals, we normally choose
lattices L which are invariant under a finite symmetry group (the icosahedral group,
cyclic groups, ...) and one or several windows [2][13] in the internal space IR" to select
points of L. If W C IR" is a window, it satisfies the following assumptions :

W1 The window W C IR" is compact,

W2 W = it(W) # 0,
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W3 The boundary OW of W has Lebesgue measure 0.

and a model set is given by
A={zeX|zreW} CcR"
Some properties of model sets are the following :

M1 A is a Delone set [ property H | : it is relatively dense and uniformly discrete.

M2 A is a Meyer set : A is discrete and relatively dense and there exists a finite
set F'such that A — A C A + F

M3 A has a well-defined point density d | see Rogers [16] for definitions for instance
], i-e.

t (AN B(0,R))
R s Vol(B(0, R))

where B(0, R) is the ball centred at the origin of radius R > 0 in JR™. Its volume is
a2 R T (mE2).

d =

M4 A has a well-defined spectrum composed of Bragg-peaks.

We now show that the toric part (IR/ Z)l, with [ = 1, in the internal space, plays
naturally a role in the representation of the Thue-Morse sequence for frequencies A
such that €2, is finite.

Lemma 4.- The Thue-Morse sequence and the sequence f' satisfy the properties M1,
M2 and M3.

Proof : The physical space has dimension m = 1 here. If A := { f(n) |n € IN},
resp. A" := {f'(n) |n € IN}, denotes the subset of IR composed of the points
of the Thue-Morse sequence, resp. of the sequence f’, we clearly see that M1 is
satisfied for A, resp A'. The fact that M2 is satisfied for f follows from Lemma 3
with F:= {0,%+(a —b)/2,+(a — b), £3(a — b)/2 } since, for any m > n > 0, we have
f(m) — f(n) — f(m —n) € F. Similarly, the algebraic representation of {f'(n)},
given by Lemma 2, yields, for m, n integers, m > n,

m—1 n—1
(a+0b) + %(a—b) S (—peth/2 N (—q)petl/2

p=0 p=0

m —-n

flm) - 1) = T
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which can be written

m—1 n—1 m—n—1
= f'(m—n) + %(a— b) Z (_1)p(p+1)/2 _ Z (_1)p(p+1)/2 — Z (_1)p(p+1)/2
p=0 p=0 p=0

But, since each sum in the last equation is equal to 1 or 0, we have
Flm) — f'(n) ~ Fm—n) C J(a—b){£3,%2,1,0)
The set F' := {0,4+(a —b)/2,£(a — b),+3(a — b)/2 } is finite and we have
AN—ANcCcAN+F
proving M2. The property M3 is clearly satisfied for f and f’ since
Ay = A, := %(a—i—b)z

is the global average lattice for them. There is one point of A, resp. A’, per node of
A4y and the point density d, resp. d’, of the Thue-Morse sequence is equal to 1. O

Proposition 8.- The Thue-Morse sequence is harmonious.
Proof : This is a consequence of Lemma 3 and Theorem X in chap. I in Meyer [1].0

We will analyze somewhere else characters on the Thue-Morse sequence, with the
notions of duality following this proposition.

Now, since it is well-known that the Thue-Morse sequence has a spectrum which is
not only composed of Bragg-peaks [ for instance Kolar et al [17], Queffelec [8] |, we
should remove some assumptions from the normal cut-and-project scheme in order to
get more general spectra than Bragg-spectra, as given by M4. We will do this only in
a minimal way, sticking to the formalism of the previous paragraphs and we will have
to join to this geometrical approach and framework the need to define simultaneously
scaling exponents for the intensity function, for the singular continuous component
of the spectrum.

We suggest the following scheme :

S1 Take H := IR/\Z the one-dimensional torus, as internal space and G := IR
the physical space.

S2 Let denote by
1
A §(a+b)lN — A
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the bijective mapping from the average lattice A, N IRT to A such that, for any
n € IN,

a+b
fln) = T2 n)
We have, for any integer n :
a+b n a—b
|ma(——n) = Sla+b)| <

2 2 2

and we denote by 73" its inverse mapping defined on the set of the elements { f(n) /n €
IN }, is valued in the average lattice A,,. Call v an element in | — A\/2; +)/2[ and
u its canonical image in H.

Take

2
L:={(zx,u) € GxH|z€Ay, u such that u € Q,, u= f(a—fb) (moduloAZ) }

Lemma 5.- L is discrete in G x H.

S3 Let denote by 7y : IR — IR any strictly increasing function satisfying

TAlA,, = TA

We can take it continuous but there is no reason a priori to do so. Then we have a
new CPS consisting of a collection of spaces and mappings :

R ™ Rx RN = R/\Z
U
L

Lemma 6.- 75 o m s uniformly bounded with respect to m in the sense that its
restriction to L satisfies :

. - a—>b
| a0y, || := sup [7Taom(z) — m(z)| < 5
z€L
We see that (myom)|, = (mpom )| is injective, and that the selection mode on the

closed subset L is not based on a projection mode but on a congruent mode through f
and the frequency A which is such that 2, is finite. Clearly, L is closed in G x H, and,
since we have assumed that f(0) = 0, the properties (A.a), (A.b), (A.c) in Definition
4 are satisfied. L is a priori not a subgroup in G x H and assumption (A.s) has
no reason to be satisfied. mo(L) is discrete in H by construction. We have a (.)*
operation as in a the normal CPS :

() = mo((mpom)|s)™ : A = H=R/Z
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S4 We can now choose windows as in the normal CPS : if W is a window, W is
a subset of {uw € R/Z | u € Q,}. It is a compact set for which the boundary has
Lebesgue measure 0 (properties W1 andW3 are satisfied). It is not the adherence of
its interior, and property W2 is not satisfied.

The generalized Meyer sets we can form from the Thue-Morse sequence f with respect
to the frequency A such that €2, is finite are given, similarly to the normal CPS, by

Aw = {zeA|zreW}

Of course, the property M4 is not any more valid and the spectrum displays more
peaks than only Bragg-peaks. If the window is maximal, we obtain the full Thue-
Morse sequence as defined algebraically by f. If the window is smaller and contains
only some points inside the torus IR/AZ, we obtain a subset of the Thue-Morse
sequence and we have only to consider, for the scaling exponent of the diffracting
intensity of the reduced system of points to consider the values of the levels for the
elements which are selected by the window. we have seen that the scaling exponents
and the rates of occupancy for the intensity function are attached to the lattices
v+ AZ, that is to the elements v € H = IR/\Z and can be classified according to a
lexicographical order and that the dominant scaling exponent is given by Eq. [23].

S5 The question whether there exists a substitute to (A.s), that is, an algebraic
structure on L can be partially overcome by recent results obtained by Gazeau and
Miekisz [18] who have proved that there exists a canonical symmetry group on the
Thue-Morse quasicrystal. By the (.)*-operation, this can be reported to the elements
of the window, and globally on L. However, the operations of this group have no
reason to be stable by classes inside the toric internal space. So, this operation is not
well-defined and cannot be used in this case.
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