CROSSING NUMBER AND LOWER CENTRAL SERIES OF A SURFACE GROUP

by Alexander REZNIKOV

0. — Let S^g be a closed oriented surface, $\Gamma = \pi_1(S)$. For Z a conjugacy class in Γ a crossing number d(Z) is defined as a minimal number of self-intersection points taken over all immersed loops with only double crossings, representing Z. Let $\Gamma = \Gamma_0 \supset \Gamma_1 \supset \Gamma_2 \cdots$ be the lower central series of $\Gamma(\Gamma_{i+1} = [\Gamma_i, \Gamma_i])$. In this paper, we prove the following result.

THEOREM. — For
$$Z \in \Gamma_r$$
, $d(Z) \geq \frac{1}{2}r + \text{const.}$

Strategy of the proof. — The key point in our approach is the use of group cohomology (of finite *p*-groups), namely the construction of Bogomolov-Barge-Ghys [BG], and the argument of [Re1].

1. — Let *p* be a prime, *A* a vector space over \mathbb{F}_p of dimension 2*g*. Let $\omega \in \Lambda^2 A$ be a symplectic form on A^* . Consider a universal central extension

$$0 \longrightarrow \Lambda^2 A \longrightarrow B \longrightarrow A \longrightarrow 0.$$

Quotioning by $\mathbb{F}_p \cdot \omega$, we arrive to an extension

$$0 \longrightarrow \Lambda^2 A / \mathbb{F}_p \cdot \omega \longrightarrow B' \longrightarrow A \longrightarrow 0$$

The extension class of B' is just an isomorphism $H_2(A, \mathbb{Z}) \simeq \Lambda^2 A$, followed by a projection fo $\Lambda^2 A / \mathbb{F}_p \omega$.

COROLLARY 1.1. — The image of the natural homomorphism $H_2(B', \mathbb{Z}) \to H_2(A, \mathbb{Z})$ is generated by ω .

Proof is immediate from the LHS spectral sequence.

Now, by a theorem of Hopf, there is a homomorphism φ of a surface group $\pi_1(S^{g''})$ to B', representing an element of $H_2(B', \mathbb{Z})$, whose projection to $H_2(A, \mathbb{Z})$ is ω . By an argument of [Re1] there is another homomorphism, of a group $\pi_1(S^{g'})$ to B' with the same

Mots-clés : crossing number, surface group.

¹

property which is essentially injective, that is, no class of a simple essential loop in $S^{g'}$ is taken to one. We claim $g' \ge g$. Indeed, by construction there is a homomorphism of $\pi_1(S^{g'})$ to A, inducing a map in homology whose image contain ω . Let $V = H_1(S^{g'}, \mathbb{F}_p)$, then the image of $H_2(\pi_1(S^{g'}))$ in $\Lambda_2 A$ is contained in the image of $\Lambda^2 V$ under the induced map. But ω is symplectic, so necessarily $g' \ge g$.

On the other hand we could start with a map of $\pi_1(S^g) = \Gamma$ to A, representing ω (recall that $A \simeq \Gamma/[\Gamma, \Gamma]$). We claim that such map lifts to B'. Indeed, it is equivalent to saying that the restriction class of B', pulled back to Γ becomes 0, but this is obvious.

Summing up we arrive to an essentially injective map of $\pi_1(S^g)$ to B'.

COROLLARY 1.2. — Let $Z \in \Gamma$ be a conjugacy class of a simple separating essential loop, then the image of Z in $\Gamma_1/[\Gamma, \Gamma_1] \simeq \mathbb{Z}^{2g + \binom{2g}{2}}$ is a nonzero primitive vector.

Proof. — Let $\psi : \Gamma \to B'$ be an essentially injective map. Since $Z \in \Gamma_1, \psi(Z)$ lies in $\Lambda^2 A / \mathbb{F}_p \cdot \omega$ and is nonzero. Since *p* may be any prime, the result follows.

Proof of the Theorem. — Let *L* be an immersed loop with minimal number d(Z) of crossings, representing *Z*. Then $L = L_1 \cup L_2$ where L_1 is simple essential and $d(L_2) < d(Z)$. By the proof of the Corollary 1.2 there is a map ψ of Γ to a 2-nilpotent *p*-group *B'* such that $\psi([L_1]) \neq 1$. Let $Z \in \Gamma_r$, $r \geq 2$. Then $\psi(Z) = 1$. Let *S'* be a normal covering of *S* of index |B'|, corresponding to ψ , that is, $\pi_1(S') = \text{Ker } \psi$. Then *L* lifts as a closed loop *L'* to *S'* and $d(L') \leq d(L) - 1$. Moreover, since *B'* is two-step nilpotent, then if $Z \in \Gamma_r$, $[L] \in \Gamma'_{r-2}$. The theorem follows now by induction.

References

[BG] J. BARGE, E. GHYS. — Surfaces et cohomologie bornée, Invent. Math. 92 (1988), 509–526.

[Re] A. REZNIKOV. — Quadratic equations in groups from the global geometry viewpoint, Topology 36 (1997), 849–865.

 $-\Diamond -$

Department of Mathematical Sciences University of Durham Durham (UK) *Current address :* Université de Grenoble I **Institut Fourier** UMR 5582 UFR de Mathématiques B.P. 74 38402 St MARTIN D'HÈRES Cedex (France) reznikov@daphne.polytechnique.fr

2