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by Alexander REZNIKOV

1. Gromov’s category and algebraic geometry.

Twenty years ago, Gromov suggested to study a category Grn where objects were

compact oriented n-dimensional manifolds and morphisms were nonzero degree maps.

If M,N / Grn and Mor 0 M,N 1�2354 , then one says that M dominates N . The image of

the fundamental group ofM in that ofN has finite index, in particular a simply-connected

manifold never dominates a K 0 π, 1 1 -manifold. On the contrary, in Gr3 any 3-manifold is
dominated by a hyperbolic manifold 0 1 1 . The simplicial volume (or Gromov’s invariant)
suits nicely this category, as it satisfies a Gromov-Thurston inequality: if ϕ : M 6 N a

dominating map, then

Vols 0 M 187�9 degϕ 9 Vols N .

IfX , Y are two smooth proper varieties over Spec : of dimensionn, andϕ : X 6 Y

a dominating— in the sense of algebraic geometry—morphism, thenX , Y are also objects

of Gr2n and ϕ is dominating in the above sense. In particular, Vols 0 X 1�7 degϕ ; Vols Y .
A fundamental question is:

1.1. M . — Which algebraic varieties are dominated by ones with pos-

itive simplicial volume?

A theorem of Gromov-Thurston asserts that a smooth compact manifoldM which

admits a metric of negative sectional curvature, has positive simplicial volume. In the

other direction, if M has positive simplicial volume, then it is essential, that is, the nat-

ural mapM 6 K 0 π1 0 M 1 , 1 1 induces a nonzero homomorphism ofHn 0<; , =>1 . Besides this,
not much is known [Ber].

2. Locally symmetric spaces, Gromov conjecture and a theoremof Savage.

Let G be a semisimple Lie group, Γ a cocompact lattice in G , K a maximal compact
group. The following problem has attracted a lot of attention:

Mots-clés : Shimura varieties, simplicial volume.

0 1 1 I would like to thankM. Boileau for this remark.
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2.1. P. — Does Γ � G/K have a positive simplicial volume?

A conjecture of Gromov [Gr] says that the answer should be yes if G/K is a symmet-

ric space.

Known cases.

1. If G is a product of the symmetry groups of rank one noncompact symmetric

spaces 0 = � n , : � n , � � n , : a � 2 1 then the answer is yes. This because these spaces carry
a metric with negative sectional curvature.

2. If G 3 SL 0 n, = 1 then the answer is yes [Sav] 0 2 1 .
3. On the other hand, if G has infinite center (like

�
SL 0 2, =>1 ) then the answer is no.

However, some corollaries of the Gromov-Thurston inequality survive [Re1].

3. Statement of themain results.

TA. — Let Γbe a cocompact lattice in Sp 0 2n, = 1 . Let Y 3 Γ � Sp 0 2n, = 1 /U 0 n 1
be a Shimura variety. Let X � Y be a subvariety. Then Vols 0 X 1 > 0.

T B. — Let Z 6 X be a family of smooth projective curves of genus g 7 2

over a smooth proper base, generic in the sense that the inducedmorphism X 6�� g has

generically maximal rank. Then Vols 0 X 1 > 0.

T C. — Gromov conjecture is true for all Hermitian locally symmetric spaces

with a classical group of symmetry, that is, of type I, II, III, IV of Siegel’s classification.

Remarks.

1. The definition of the simplicial volume can be carried over to all proper varieties

over : , not necessarily smooth, and the Gromov-Thurston inequality is still valid for dom-
inating (in the sense of algebraic geometry) morphisms. In theorem A we don’t suppose

that X is smooth.

2. It is very temptating to conjecture that in theorem B, Vols 0 Z 1 is also positive. The
following related conjecture 0 3 1 has been made by Dieter Kotschisck: if Σ 6 M�

S

is a C � -

fibration of closed surfaces over a closed surface, both of genus 7 2, then Vols 0 M 1 > 0.

0 2 1 The note of Leutzinger [L] is unfortunally found wrong.

0 3 1 I thankM. Boileau for telling me about this conjecture.
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4. Three cohomology classes inH 2 0 Spδ 0 2n, =>1�1 .

4.1. T  . — The universal covering �Sp 0 2n, =>1 has a center, isomor-
phic to

�
, so we get an extension 1 6 � 6 �Sp 0 2n, = 1�6 Sp 0 2n, = 1�6 1. Correspond-

ingly, we have an extension class (δ stands for discrete)

e / H 2 � Spδ 0 2n, = 1 , ��� .
4.2. T . — Let

� 3 Sp 0 2n, =>1 /U 0 n 1 be the Siegel upper half-plane. This
is a contractiblemanifoldwith a canonical Sp 0 2n, =>1 -invariant Kähler formω. By a general

theory ([Re 2], section 3) this defines a class Bor 0 ω 1 / H 2 0 Spδ 0 2n, =>1 , =81 . Moreover, this
class can be represented by a continuous cocycle (a Dupont construction, see [Re 3]). So

wemay, and will, be thinking of Bor 0 ω 1 as an element ofH 2
cont 0 Sp 0 2n, = 1 , =�1 .

4.3. TM . — This class appears in many places, see [Ne], [BG] for exam-

ple. Fix a Lagrangian plane L in = 2n . For g1, g2 / Sp 0 2n, =>1 define
µ 0 g1, g2 1 3 i 0 L, g1L, g1g2L 1 ,

where i is the Maslov index [GS]. This gives a class in the bounded cohomology group:

µ / H 2
b
� Spδ 0 2n, = 1 , = � .

4.4. C  0 4 1 . — The images of the classes e, Bor 0 ω 1 , m in

H 2 � Spδ 0 2n 1 , = � coincide up to a nonzero multiplier.
5. Proof of the comparison theorem. — We first remark thatH 2

cont 0 �Sp 0 2n, = 1 , =�1 3 0.
Indeed, it follows immediately from the Van Est spectral sequence if we account that

H1 0 �Sp 0 2n, = 1 top , =>1 3 0 andH 2 0�� p 0 2n, =>1 , =�1 3 0. Let Borδ 0 ω 1 be the image of Bor 0 ω 1
in H 2 0 Spδ 0 2n, =>1 , =�1 . It follows that the pullback of Borδ 0 ω 1 to H 2 � �Spδ 0 2n, = 1 , =	� is
zero. It now follows from the Lyndon-Serre-Hochschild spectral sequence that Borδ 0 ω 1 is
proportional to e. Indeed, the spectral sequence reduces to a Gysin long exact sequence

H i � Spδ 0 2n, = 1 , = ��
 e� 6 H i 
 2 � Spδ 0 2n, = 1 , = � � 6 H i 
 2 � �Spδ 0 2n, = 1 , =	�
� 6 H i 
 1 � Spδ 0 2n, = 1 , = � � 6 ; ; ;

so the kernel of the pullback mapH 2 � Spδ 0 2n, = 1 , = � 6 H 2 � �Spδ 0 2n, =>1 , = � is generated
by e. Now, the image ofm inH 2 � Spδ 0 2n, = 1 , = � is proportional to e by [BG]. The theorem
will follow if we prove that Borδ 0 ω 1 23 0. This is implied by existence of cocompact lattices
and the fact thatω is a Kähler form, see the next section.

0 4 1 Inspired by a conversation with M.S. Narashimhan.
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6. Proof of themain results.

Proof of Theorem A. — If ω � is a restriction of the Kähler form ω of Y 3 Γ �
Sp 0 2n, = 1 /U 0 n 1 on X then

�
X

ω � m > 0, where m 3 dim � X . On the other hand the
inclusion X � Y induces a class � X � in H2m � Spδ 0 2n, = 1 , � � and by definition of Bor 0 ω 1
[Re 2] one has �

X

ω � m 3 � 0 Borδ 0 ω 1�1 m , � X � � .
It follows that Borδ 0 ω 1 23 0 (which finishes the proof of the Comparison Theorem). More-

over, by the Comparison Theorem, Borδ 0 ω 1 3 C ; µ where c 23 0. But µ is a bounded

cohomology class, so 9 0 µm , � X � 1 9��	� µm � `0 ;
��� X ��� `1 by definition. So �
� X ��� `1 23 0.

First proof of Theorem B. — Let Mapg be the mapping class group, ϕ : Mapg 6
Sp 0 2g , � 1 the canonical homomorphism. It is well-known thatH 2 0 Mapg , =>1 3 = andϕ �
is an isomorphism onH 2 level.

Let Ω be the Weil-Peterson Kähler form in the Teichmüller space Tg , invariant under

Mapg . A fibration by smooth topological closed surfaces Z 6 X defines a flat bundle over�
, X with Tg as a fiber [Mor 1]. If this is a holomorphic family, then

�
has a holomorphic

section, say S.

Next, the general theory of regulators gives a class Bor 0 Ω 1 / H 2 0 Mapg , =>1 , defined by
Ω. This class necessarily is proportional to a pullback of µ / H 2 0 Sp 0 2g , = 1 , =81 therefore
is bounded. On the other hand, the value of Borm 0 Ω 1 on � X � is

0 Borm 0 Ω 1 , � X � 1 3
�
X

0 S � Ω 1 m > 0 ,

since S is generic. It follows that Vols 0 X 1 3 ��� X ��� `1 > 0 .

Second proof of Theorem B. — Let Homeos be a group of quasi-symmetric homeo-

morphisms of a circle. There is an Euler class e / H 2
cont 0 Homeos 0 S1 1�1 . It is bounded,

in fact given by an explicit cocycle valued in � 0, � 1 � . There is a homomorphism Mapg 6
Homeos 0 S1 1 so that the pull-back of the Euler class is a generator ofH 2 0 Mapg , =>1 ([Mor 2]).
Then the proof goes as above.

Remark. — If the fibers of Z 6 X are not generically hyperelliptic, then theorem B

follows directly from theorem A.

Proof of Theorem C. — Let G/K be a classical hermitian symmetric space. By a

theorem of Satake [Sa] there exists an equivariant holomorphic embedding G/K 6
Sp 0 2N, =>1 /U 0 N 1 for some N , induced by a homomorphism ψ : G 6 Sp 0 2N, =>1 . The
Kähler form of Sp 0 2N, = 1 /U 0 N 1 restricts to a G-invariant Kähler form ω on G/K and the

latter gives a regulator Bor 0 ω 1 / H 2
cont 0 G, =>1 . On the other hand, the Maslov class of
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Sp 0 2N, =>1 restricts to a bounded classm inH 2
b 0 Gδ, =>1 . By functoriality, Bor 0 ω 1 and µ are

proportional as classes inH 2 0 Gδ, =>1 . Then the proof goes exactly as above.

Remarks.

1. This argument cannot be applied for exceptional domains.

2. We prove in [Re4] that for any compact Kähler surface X whose fundamental group

admits a homomorphism into a lattice in Sp 0 4 1 or SO 0 2, n 1 , on n odd, such that the corre-
sponding linear representation is rigid, the simplicial volume of X is positive.

3. Kodaira surfaces (families of smooth projective curves over a smooth projective

curve) of fiber rank at least three are uniformized by a bounded (non-symmetric) domain

in : 2 . It is possibly true that the Bergman metric of the domain induces a bounded class
in the second cohomology of their fundamental group.
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