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by Joan PORTI & Alexander REZNIKOV

Recently a spectacular progress in our understanding of a big class of closed three-

manifolds has beenmade by Freedman-Freedman. Namely, in [FF] they proved a theorem,

whose refined version [CL] implies:

(*) LetK 8 M be a non-fibered knot in a homology sphere. LetMn 9 M be a ramified

covering along K . Then forM : 1,Mn is Haken.

A purely different analytic approach, also proving the above theorem, has been de-

veloped in [Re 1]. Moreover in [Re 1] it is proved that any ramified covering (say, with

n ; 2) is Haken after a big Dehn surgery ([Re 1], theorem A6).

Before [FF], essentially the only way to construct incompressible surface was to ex-

hibit an action of π1 on a tree of SL2 < Kv = where Kv is a discrete valuation field. Though
neither the approach of [FF] and [CL] nor the approach of [Re 1] deal with such actions,

one may ask:

(*) Doπ1 of ramified coverings admit a non-rigid representations to SL2 < K = , K a field?
Infinitesimally, the answer is yes, as the our main result asserts:

T. — Let M be an irreducible homology sphere with rich fundamental

group, e.g. hyperbolic. Let ρ : π1 < M =#9 SL2 < F = , F a number field, is a rigid represen-
tation, and let ρp : π1 < M =�9 SL2 <?> q = , q a power of a prime p, is a surjective reduction.
For K a knot inM , not contained in a ball, let ρ̄p : π1 < Mp =@9 SL2 <A> q = be a composition
homomorphism. Then for all but finitely many p,

H 1 B π1 < Mp = , C l2 <?> q =+D�E; 0 .
Remarks.

1. We refer to [Re 2], [RM] for all notions used in the statement of the theorem.

2. To actually have a representation variety one need to check that all Massey prod-

ucts are zero and that a formal variation of a representation is integrated to an actual vari-

ation. We do not know if that is true.

Mots-clés : ramified coverings, action on trace.
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L (1.1). — Let K 8 M be a knot as above, let T ; ∂N < K = be a boundary
of a tubular neighbourhood of K in M . Let x, y � π1 < T = be a parallel and a meridian (y
is not defined uniquely). Let π1 < M � K = ϕ� 9 π1 < M = be a canonical surjection and let
Q ; Kerϕ and letW ; Q/ �Q, Q � as π1 < M = -modules. ThenW �����π1 < M = / 	 x 
�� .

Proof. — Let V be a π1 < M = -module. The Meyer-Wietoris sequence for V is (ob-

serve that bothM andM � K are acyclic)
H2 < π1 < M = , V = � 9 H1 < ���� , V = � 9 H1 < π1 < M � K = , V = � H1 < 	 y 
 , V =

� 9 H1 < π1 < M = , V = � 9������
If we put V ;����π1 < M = � , then H1 < π1 < M � K = , V = ; W by Shapiro’s lemma. Moreover,

Hi < π1 < M = , V = ; 0. Computing H1 < ����� , V = by the spectral sequence, we arrive imme-
diately to the result.

Now, letMp be a p-fold ramified covering along K . We have a diagram

1���
π1 < Mp � K = � 9 π1 < Mp = � 9 1���

���
π1 < M � K = � 9 π1 < M = � 9 1���

���
� p 1

Let R be a kernel of the composed map π1 < Mp � K = 9 π1 < M = . We will compute R/ � R, R �
in two ways. First, we have a sequence

1 � 9 R � 9 Q � 9 � p � 9 1

from which we have a short exact sequence

0 � 9 H0 < � p, R/ � R, R � = � 9 W
ε� 9 � p � 9 0

where after identificationW �����π1 < M = / 	 x 
�� , ε becomes an argumentation map.
Second, we have a short exact sequence

1 � 9 Qp � 9 R � 9 Ker < π1 < Mp = 9 π1 < M =,= � 9 1

whereQp is the kernel of the map π1 < Mp � K = � 9 π1 < Mp = . This gives
H0
B Ker < π1 < Mp = 9 π1 < M =+= , ���π1 < Mp = / 	 yp 
�� D � 9 R/ � R, R �

� 9 H1
B Ker < π1 < Mp = 9 π1 < M =+=,D � 9 0 .

Let G ; Ker < π1 < Mp = 9 π1 < M =+= . We have
H0 < G, ���π1 < Mp = , 	 yp 
�� = ;����π1 < M = / 	 yp 
��
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so that the sequence above becomes

���π1 < M = / 	 yp 
�� � 9 R � R, R � � 9 H1 < G = � 9 0

(the firstmap can in principle be not injective because of d2 in the LHS spectral sequence).

Applying the functor H0 < � p, � = we get
���π1 < M = / 	 yp 
�� � 9 H0 < � p, R/ � R, R � = � 9 H0 < � p, H1 < G =,= � 9 0,

or

���π1 < M = / 	 yp 
�� � 9 Ker ε � 9 H0 < � p, H1 < G =,= � 9 0.

The first map is the projection ���π1 < M = / 	 yp 
 = 9 ���π1 < M = / 	 y 
�� followed by themultipli-
cation by p, soH0 < � p, H1 < G =+= ; > p �π1 < M = / 	 y 
�� .

Now, letD be any > p �π1 < M = � -module. We have a piece of the spectral sequence.
H 0 < π1 < M = , H 1 < G, D =+=

H 1 < π1 < M = , D = H 2 < π1 < M = , D = H 3 < π1 < M = , D =

;�� H i � j < π1 < Mp = , D =

SinceD as a G-module is trivial,

H 0 < π1 < M = , H 1 < G, D =+= ; Homπ1 � M � < G, D = ; Homπ1 � M � < H1 < G = , D = .
Now,

H 0 < � p,Homπ1 � M � < H1 < G = , D =+= ; Homπ1 � M � < H0 < � p, H1 < G =,= , D =; Homπ1 � M � <A> p �π1 < M = / 	 y 
�� , D =
; Inv � y � D .

Now,H i < π1 < M = , D = ; H3 � i < π1 < M = , D = by Poincaré duality. So if Inv � y � D E; 0 and
Hi < π1 < M = , D = ; 0, i ; 0, 1, thenH 1 < π1 < Mp = , D =@E; 0.

Now we let D ;�C l2 <A> q = , an adjoint module. Obviously Inv � y � D E; 0. Next,

H0 < π1 < M = , D = ; 0 as there is no center in the Lie algebra C l2 <?> q = . The only question
to check is wetherH1 < π1 < M = , C l2 <?> q =+= ; 0.

L (2.1). — Let F be a number field, Γ a finitely generated group, V a finite

dimensional over F , F � Γ � -module. If for infinitely many prime ideals � in F the reduction

module V 	 satisfiesHi < Γ, V 	 = E; 0, thenHi < Γ, V =@E; 0.
Remark. — The reduction module is defined for all but finitely many � .

Proof is simple linear algebra and is left to the reader.

3



Now, H1 < π1 < M = , C l2 <�� = = is 0 because ρ is rigid, so H1 < π1 < M = , C l2 <A> q =+= ; 0 for all

but finitely many � . The theorem is proved.
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