ON THE REPRESENTATIONS OF FUNDAMENTAL GROUPS OF RAMIFIED COVERINGS IN SL $2\left(\overline{\mathbb{F}}_{q}\right)$

by Joan PORTI \& Alexander REZNIKOV

Recently a spectacular progress in our understanding of a big class of closed threemanifolds has been made by Freedman-Freedman. Namely, in [FF] they proved a theorem, whose refined version [CL] implies:
${ }^{(*)}$ Let $K \subset M$ be a non-fibered knot in a homology sphere. Let $M_{n} \rightarrow M$ be a ramified covering along K. Then for $M \gg 1, M_{n}$ is Haken.

A purely different analytic approach, also proving the above theorem, has been developed in [Re 1]. Moreover in [Re 1] it is proved that any ramified covering (say, with $n=2$) is Haken after a big Dehn surgery ([Re 1], theorem A6).

Before [FF], essentially the only way to construct incompressible surface was to exhibit an action of π_{1} on a tree of $\mathrm{SL}_{2}\left(K_{\nu}\right)$ where K_{ν} is a discrete valuation field. Though neither the approach of [FF] and [CL] nor the approach of [Re 1] deal with such actions, one may ask:
$\left({ }^{*}\right) \quad$ Do π_{1} of ramified coverings admit a non-rigid representations to $\mathrm{SL}_{2}(K), K$ a field?
Infinitesimally, the answer is yes, as the our main result asserts:

Theorem. - Let M be an irreducible homology sphere with rich fundamental group, e.g. hyperbolic. Let $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}(F), F$ a number field, is a rigid representation, and let $\rho_{p}: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right), q$ a power of a prime p, is a surjective reduction. For K a knot in M, not contained in a ball, let $\bar{\rho}_{p}: \pi_{1}\left(M_{p}\right) \rightarrow \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ be a composition homomorphism. Then for all but finitely many p,

$$
H^{1}\left(\pi_{1}\left(M_{p}\right), \mathfrak{s} l_{2}\left(\mathbb{F}_{q}\right)\right) \neq 0
$$

Remarks.

1. We refer to [Re 2], [RM] for all notions used in the statement of the theorem.
2. To actually have a representation variety one need to check that all Massey products are zero and that a formal variation of a representation is integrated to an actual variation. We do not know if that is true.
[^0]Lemma (1.1). - Let $K \subset M$ be a knot as above, let $T=\partial N(K)$ be a boundary of a tubular neighbourhood of K in M. Let $x, y \in \pi_{1}(T)$ be a parallel and a meridian (y is not defined uniquely). Let $\pi_{1}(M \backslash K) \xrightarrow{\varphi} \pi_{1}(M)$ be a canonical surjection and let $Q=\operatorname{Ker} \varphi$ and let $W=Q /[Q, Q]$ as $\pi_{1}(M)$-modules. Then $W \simeq \mathbb{Z}\left[\pi_{1}(M) /\langle x\rangle\right]$.

Proof. - Let V be a $\pi_{1}(M)$-module. The Meyer-Wietoris sequence for V is (observe that both M and $M \backslash K$ are acyclic)

$$
\begin{aligned}
H_{2}\left(\pi_{1}(M), V\right) \longrightarrow H_{1}(\mathbb{Z} \oplus \mathbb{Z}, V) \longrightarrow H_{1}\left(\pi_{1}(M \backslash K), V\right) \oplus & H_{1}(\langle y\rangle, V) \\
& \longrightarrow H_{1}\left(\pi_{1}(M), V\right) \longrightarrow \cdots
\end{aligned}
$$

If we put $V=\mathbb{Z}\left[\pi_{1}(M)\right]$, then $H_{1}\left(\pi_{1}(M \backslash K), V\right)=W$ by Shapiro's lemma. Moreover, $H_{i}\left(\pi_{1}(M), V\right)=0$. Computing $H_{1}(\mathbb{Z} \oplus \mathbb{Z}, V)$ by the spectral sequence, we arrive immediately to the result.

Now, let M_{p} be a p-fold ramified covering along K. We have a diagram

Let R be a kernel of the composed map $\pi_{1}\left(M_{p} \backslash K\right) \rightarrow \pi_{1}(M)$. We will compute $R /[R, R]$ in two ways. First, we have a sequence

$$
1 \longrightarrow R \longrightarrow Q \longrightarrow \mathbb{Z}_{p} \longrightarrow 1
$$

from which we have a short exact sequence

$$
0 \longrightarrow H_{0}\left(\mathbb{Z}_{p}, R /[R, R]\right) \longrightarrow W \stackrel{\varepsilon}{\longrightarrow} \mathbb{Z}_{p} \longrightarrow 0
$$

where after identification $W \simeq \mathbb{Z}\left[\pi_{1}(M) /\langle x\rangle\right], \varepsilon$ becomes an argumentation map.
Second, we have a short exact sequence

$$
1 \longrightarrow Q_{p} \longrightarrow R \longrightarrow \operatorname{Ker}\left(\pi_{1}\left(M_{p}\right) \rightarrow \pi_{1}(M)\right) \longrightarrow 1
$$

where Q_{p} is the kernel of the map $\pi_{1}\left(M_{p} \backslash K\right) \longrightarrow \pi_{1}\left(M_{p}\right)$. This gives

$$
\begin{aligned}
H_{0}\left(\operatorname{Ker}\left(\pi_{1}\left(M_{p}\right) \rightarrow \pi_{1}(M)\right), \mathbb{Z}\left[\pi_{1}\left(M_{p}\right) /\left\langle y^{p}\right\rangle\right]\right) & \longrightarrow R /[R, R] \\
& \longrightarrow H_{1}\left(\operatorname{Ker}\left(\pi_{1}\left(M_{p}\right) \rightarrow \pi_{1}(M)\right)\right) \longrightarrow 0
\end{aligned}
$$

Let $G=\operatorname{Ker}\left(\pi_{1}\left(M_{p}\right) \rightarrow \pi_{1}(M)\right)$. We have

$$
H_{0}\left(G, \mathbb{Z}\left[\pi_{1}\left(M_{p}\right),\left\langle y^{p}\right\rangle\right]\right)=\mathbb{Z}\left[\pi_{1}(M) /\left\langle y^{p}\right\rangle\right]
$$

so that the sequence above becomes

$$
\mathbb{Z}\left[\pi_{1}(M) /\left\langle y^{p}\right\rangle\right] \longrightarrow R[R, R] \longrightarrow H_{1}(G) \longrightarrow 0
$$

(the first map can in principle be not injective because of d_{2} in the LHS spectral sequence).
Applying the functor $H_{0}\left(\mathbb{Z}_{p}, \cdot\right)$ we get

$$
\mathbb{Z}\left[\pi_{1}(M) /\left\langle y^{p}\right\rangle\right] \longrightarrow H_{0}\left(\mathbb{Z}_{p}, R /[R, R]\right) \longrightarrow H_{0}\left(\mathbb{Z}_{p}, H_{1}(G)\right) \longrightarrow 0,
$$

or

$$
\mathbb{Z}\left[\pi_{1}(M) /\left\langle y^{p}\right\rangle\right] \longrightarrow \operatorname{Ker} \varepsilon \longrightarrow H_{0}\left(\mathbb{Z}_{p}, H_{1}(G)\right) \longrightarrow 0 .
$$

The first map is the projection $\mathbb{Z}\left[\pi_{1}(M) /\left\langle y^{p}\right\rangle\right) \rightarrow \mathbb{Z}\left[\pi_{1}(M) /\langle y\rangle\right]$ followed by the multiplication by p, so $H_{0}\left(\mathbb{Z}_{p}, H_{1}(G)\right)=\mathbb{F}_{p}\left[\pi_{1}(M) /\langle y\rangle\right]$.

Now, let D be any $\mathbb{F}_{p}\left[\pi_{1}(M)\right]$-module. We have a piece of the spectral sequence.

$$
\xrightarrow[H]{H^{0}\left(\pi_{1}(M), H^{1}(G, D)\right)} \Longrightarrow H^{i+j}\left(\pi_{1}\left(M_{p}\right), D\right)
$$

Since D as a G-module is trivial,

$$
H^{0}\left(\pi_{1}(M), H^{1}(G, D)\right)=\operatorname{Hom}_{\pi_{1}(M)}(G, D)=\operatorname{Hom}_{\pi_{1}(M)}\left(H_{1}(G), D\right)
$$

Now,

$$
\begin{aligned}
H^{0}\left(\mathbb{Z}_{p}, \operatorname{Hom}_{\pi_{1}(M)}\left(H_{1}(G), D\right)\right) & =\operatorname{Hom}_{\pi_{1}(M)}\left(H_{0}\left(\mathbb{Z}_{p}, H_{1}(G)\right), D\right) \\
& =\operatorname{Hom}_{\pi_{1}(M)}\left(\mathbb{F}_{p}\left[\pi_{1}(M) /\langle y\rangle\right], D\right) \\
& =\operatorname{Inv}_{\langle y\rangle} D
\end{aligned}
$$

Now, $H^{i}\left(\pi_{1}(M), D\right)=H_{3-i}\left(\pi_{1}(M), D\right)$ by Poincaré duality. So if $\operatorname{Inv}_{\langle y\rangle} D \neq 0$ and $H_{i}\left(\pi_{1}(M), D\right)=0, i=0,1$, then $H^{1}\left(\pi_{1}\left(M_{p}\right), D\right) \neq 0$.

Now we let $D=\mathfrak{s l} l_{2}\left(\mathbb{F}_{q}\right)$, an adjoint module. Obviously $\operatorname{Inv}_{\langle y\rangle} D \neq 0$. Next, $H_{0}\left(\pi_{1}(M), D\right)=0$ as there is no center in the Lie algebra $\mathfrak{s l} 2\left(\mathbb{F}_{q}\right)$. The only question to check is wether $H_{1}\left(\pi_{1}(M), \mathfrak{s l} l_{2}\left(\mathbb{F}_{q}\right)\right)=0$.

Lemma (2.1). - Let F be a number field, Γ a finitely generated group, V a finite dimensional over $F, F[\Gamma]$-module. If for infinitely many prime ideals \mathcal{P} in F the reduction module $V_{\mathcal{P}}$ satisfies $H_{i}\left(\Gamma, V_{\mathcal{P}}\right) \neq 0$, then $H_{i}(\Gamma, V) \neq 0$.

Remark. - The reduction module is defined for all but finitely many \mathcal{P}.
Proof is simple linear algebra and is left to the reader.

Now, $H_{1}\left(\pi_{1}(M), \mathfrak{s l} l_{2}(\mathbb{C})\right)$ is 0 because ρ is rigid, so $H_{1}\left(\pi_{1}(M), \mathfrak{s l} l_{2}\left(\mathbb{F}_{q}\right)\right)=0$ for all but finitely many \mathcal{P}. The theorem is proved.

References

[CL] D. Cooper, D.D. Long. - Virtually Haken Dehn surgeries, preprint, 1996.
[FF] B. Freedman, M. Freedman. - Kneser-Haken finiteness for bounded 3-manifolds, locally free groups and cyclic covers, Topology 37 (1998), 133-148.
[Rel] A. Reznikov. - Hakenness and b_{1}, preprint, (sept. 1997).
[Re2] A. Reznikov. - Three-manifolds class field theory, Selecta Math. 3 (1997), 361-400.
[RM] A. Reznikov, P. Moree. - Three-manifold subgroup growth, homology of coverings and simplicial volume, Asian J. Math. 1 (1997), ${ }^{\circ} 4$.
Joan PORTI
Université Paul Sabatier
Département de Mathématiques
118 , route de Narbonne
31042 TOULOUSE Cedex (France)
porti@picard.ups-tlse.fr
Alexander REZNIKOV
Department of Mathematical Sciences
University of Durham
Durham (UK)
Current address :
Université de Grenoble I
Institut Fourier
UMR 5582
UFR de Mathématiques
B.P. 74
38402 St MARTIN D'HĖRES Cedex (France)
reznikov@daphne.polytechnique.fr

[^0]: Mots-clés : ramified coverings, action on trace.

