ON THE REPRESENTATIONS OF FUNDAMENTAL

GROUPS OF RAMIFIED COVERINGS IN SLy(IF)

by Joan PORTI & Alexander REZNIKOV

Recently a spectacular progress in our understanding of a big class of closed three-
manifolds has been made by Freedman-Freedman. Namely, in [FF] they proved a theorem,
whose refined version [CL] implies:

(*) Let K C M be anon-fibered knot in a homology sphere. Let M,, = M be aramified
covering along K. Then for M > 1, M,, is Haken.

A purely different analytic approach, also proving the above theorem, has been de-
veloped in [Re 1]. Moreover in [Re 1] it is proved that any ramified covering (say, with
n = 2) is Haken after a big Dehn surgery ([Re 1], theorem A6).

Before [FF], essentially the only way to construct incompressible surface was to ex-
hibit an action of 111 on a tree of SL,(K,) where K, is a discrete valuation field. Though
neither the approach of [FF] and [CL] nor the approach of [Re 1] deal with such actions,
one may ask:

* Do 1, of ramified coverings admit a non-rigid representations to SL,(K), K a field?

Infinitesimally, the answer is yes, as the our main result asserts:

THEOREM. — Let M be an irreducible homology sphere with rich fundamental
group, e.g. hyperbolic. Letp : 1;(M) — SL,(F), F a number field, is a rigid represen-
tation, and let p,, : (M) — SLy(I;), g a power of a prime p, is a surjective reduction.
For K a knot in M, not contained in a ball, let p,, : 11;(M),) — SL,(If;) be a composition
homomorphism. Then for all but finitely many p,

H' (m1(Mp),sl,(E,;)) #0.

Remarks.
1. We refer to [Re 2], [RM] for all notions used in the statement of the theorem.

2. To actually have a representation variety one need to check that all Massey prod-
ucts are zero and that a formal variation of a representation is integrated to an actual vari-
ation. We do not know if that is true.

Mots-clés : ramified coverings, action on trace.



LemMma (1.1). — Let K C M be a knot as above, let T = dN(K) be a boundary
of a tubular neighbourhood of K in M. Let x,y € m(T) be a parallel and a meridian (y
is not defined uniquely). Let 1;(M \ K) 2, 111 (M) be a canonical surjection and let
Q = Kerp and let W = Q/[Q, Q] as 1 (M) -modules. Then W =~ Z[m(M)/{x}].

Proof. — Let V be a 111(M)-module. The Meyer-Wietoris sequence for V is (ob-
serve that both M and M \ K are acyclic)

Hy(m(M), V) — H(Z® Z, V) — H(m(M\K),V) & H({y),V)
— H1(7T1(M), V) —_— -

If we put V = Z[m;(M)], then H (111 (M \ K), V) = W by Shapiro’s lemma. Moreover,
H;(mm; (M), V) = 0. Computing H,(Z & Z, V) by the spectral sequence, we arrive imme-
diately to the result.

Now, let M, be a p-fold ramified covering along K. We have a diagram

1

!

'ITI(Mp AN K) — 7T1(Mp) — 1

! |

mM~K) — mM) — 1

! !

Zp 1
Let R be a kernel of the composed map 111 (M), \ K) — 1;(M). We will compute R/[R, R]
in two ways. First, we have a sequence

1—R—Q—Z,—1
from which we have a short exact sequence
0 — Ho(Zp R/[RR]) — W — Z, — 0
where after identification W =~ Z[m;(M)/{x)], e becomes an argumentation map.
Second, we have a short exact sequence
1 — Q) — R — Ker(m; (Mp) = m(M)) — 1
where Q, is the kernel of the map 11, (M,, \ K) — 1(M,,). This gives

Hy (Ker (i (Mp) — m1(M)), Z[m(My)/{y")]) — R/[R,R]
— H; (Ker(m (M) = m(M))) — 0.

Let G = Ker(m;(M,) — m(M)). We have
Ho(G, Z[mty(Mp), (y")]) = Z[m(M)/(y")]
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so that the sequence above becomes
Z[m(M)/{y’)] — R[R,R] — Hi(G) — 0
(the first map can in principle be not injective because of d, in the LHS spectral sequence).
Applying the functor Hy(Z, - ) we get
Z[m(M)/{y")] — Ho(Zp R/[R, R]) — Ho(Z)p, Hi(G)) — 0,

Z[rty(M)/{y")] — Kere — Hy(Zp, H(G)) — 0.

The first map is the projection Z[m(M)/{y")) — Z[m(M)/{y}] followed by the multipli-
cation by p, so Hy(Z , Hi(G)) = F,[m1(M)/(y)].

Now, let D be any F, [T, (M)]-module. We have a piece of the spectral sequence.

H°(r; (M), H(G, D))

— H*(m (M), D)

H'(m(M),D) H*(m(M),D) H*(mi(M),D)
Since D as a G-module is trivial,
H°(m(M), H'(G, D)) = Homy, (3)(G, D) = Homy, () (H1(G), D) .

Now,
HO (2, Hom, () (H1 (G), D)) = Homy, up) (Ho(Zp H1(G)), D)

= Homy, () (B, [m (M)/(y)], D)
=Invyy D.
Now, H'(11,(M), D) = Hs_ (111 (M), D) by Poincaré duality. So if Inv,y D # 0and
H;(mt1(M),D) = 0,i=0,1, then H'(11;(M,), D) # 0.

Now we let D = sl,(F;), an adjoint module. Obviously Inv(,y D # 0. Next,
Ho(m(M),D) = 0 as there is no center in the Lie algebra s/,(F,). The only question
to check is wether H,(m (M), sl,(F;)) = 0.

LEmMmA (2.1). — Let F be a number field, T a finitely generated group, V a finite
dimensional over F, F[[']-module. If for infinitely many prime ideals P in F the reduction
module Vp satisfies H;(T, Vp) # 0, then H;(T, V) # 0.

Remark. — The reduction module is defined for all but finitely many P.
Proof is simple linear algebra and is left to the reader.
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Now, H; (111(M), s1(C)) is 0 because p is rigid, so H; (11 (M), s1»(F;)) = 0 for all
but finitely many P. The theorem is proved.
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